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Talk Philosophy

* Objectives
* Review Al in PSE: 1980s to Present
e Potential of Al in PSE: Present — 20407

 Identify the challenges: Intellectual, Implementational,
Organizational

* Broad overview

* Not a detailed, in-depth technical presentation
* More details in these papers
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Branches of Al

* Games - study of state space search, e.g., Chess, GO

* Automated reasoning and theorem proving, e.g., Logic Theorist
* Robotics and planning — e.g., driverless cars

* Vision — e.g., facial recognition

e Natural language understanding and semantic modeling, e.g. Siri
e Expert Systems or Knowledge-based systems

* Machine Learning — e.g., Bayesian classifiers, Deep neural nets

* Automatic programming

* Hardware for Al

* Distributed & Self-organizing Al — e.g., Drone swarms

 Artificial Life — e.g., cellular automata, agent-based modeling
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Promise of Al in PSE

* |In essence, Al is about problem-solving and decision-making under
complex conditions

lll-posed problems

Model and data uncertainties

Combinatorial search spaces

Nonlinearity and multiple local optima

Noisy data

Fast decisions are required — e.g., fight or flight responses

e But these are applicable to many PSE problems: Design, Control,
Optimization

* So some of us went about developing Al approaches in the mid-80s

Davis, Kramer, Stephanopoulos, Ungar, Venkatasubramanian and Westerberg

* We expected significant impact from Al, much like Optimization and
MPC

e But it did not happen — Why not?
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Al in PSE:
Why very little impact?

Before | answer this question,
let me first review the

different phases of
Al in PSE
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Al in PSE: Different Phases

* Phase I: Expert Systems in PSE (1983 — 1995)

e Davis, Kramer, Stephanopoulos, Ungar,
Venkatasubramanian and Westerberg

« CONPHYDE (1983), DECADE (1985), MODEX (1986),
DESIGN-KIT (1987), MODEL.LA (1990), ...

e LISPE Consortium founded at MIT (1985)

* First course on Al in PSE developed at Columbia (1986)
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Al Research Program On

ARTIFICIAL INTELLIGENCE IN
PROCESS ENGINEERING

GEORGE STEPHANOPOULOS in knowledge-based expert system is nothing else but
Massachusetts Institute of Technology a very serious effort in self-education. We will have
Cambridge, MA 02139 to wait for the next phase of developments to see use-

chemical engineering education e e

of artificial intelligence as a  gineering purposes.

viable and utilitarian discipline offe thc potential Existing prototypes of expert
of harvesting early promise: t man teresting examples, and some of them havu had signif-
machine interaction. For process ungmucnng. thes icant economic impact in areas other than those re-
promises have nurtured and disillusioned a generation lated to chemical and biochemical engineering. They
of engineers. Presently, the mood is cautiously op- have provided certain paradigms which later efforts
timistic. The “novelty” of the technology has taken have tried to imitate. But, are these prototypes appro-
most by surprise and has found the large majority, priate for process engineering?
even among the early devotees in artificial intel

ce, unprepared for meaningful engineering appli-
cations. Nevertheless, idling skepticism has been re-
placed by a wide-spread activism, leading to a mul-
titude of exploratory prototypes. But, what we ob-
serve as a feverish research and development activity

® Can they “model” the human activity during the concep-
tion of & chemical process, the design of a product, the
development of a process flowsheet, or the synthesis of con-
trol configurations and operating procedures for complete

they support engineering activities, capitalizing on the
innate “intellikence™ of expert technologisis and
igence is articulated within the context of the

® Do they provide high eve, transparent communicati
{ween man aad machine during the graphic peneration of
process flowsheets, or control configurations, or the ana-
Istic development of process models, the introduction of
qualitative reasoning, or the formulation of design prob-
lems (assumptions, assertions, hypothesis testing, etc.)?

It is our view that the existing paradigms cannot
satisfy the above needs; after all, they were (‘oncelved
to solve different problems. New prototypes
needed which should reflect the particularities of the

\ process systems engineering problems.
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VER THE RECENT past, notable advances have
been made in the field of artificial intelligence
(A that are poised to make important contributions
to various engineering disciplines [2). Chemical en-
gineering, process engineering in particular, stands
to make significant gains by the application of the Al
methodology called “Knowledge-Based Expert Sys-
tems” (KBES). Briefly, Al is the study of understand- A
ing human information processing with the aid of com- i Yk s e iy repmy
puters and computational models. KBES is the first  engincering ot Columbla University. Afer rceiving his doctoral de-
attempt towards this goal by concentrating on nar-  greo from Comell University in 1983, ho worked o3 o research os-
row, restricted domains of knowledge (such as those  %ciate in the Deporiment of Computer Science at Cornegie-Mellon
of experts), rather than tackling the ntire spectrum  Unv. A1 Columibio be s drcing the reseorch ffots n b -
of human intelligence. Such an attempt has TeSUIted o, oioping knowledgn bosed exmert sysems for peocess dlognosis. do.
in some progress towards the understanding of the sign, ond aining. ¢
different facets of human cognition (13]. In this paper e s AP —
we discuss the organization and content of a new ST e e
e ot e pecinlydegned o b Dty T B, O DTS e e
engineers on the application of KBES methodology in oot with one or more chemical engineers (called the
Process engineerng. “domain experts”), and together they develop the
knomledge-bn.qed system for the given problem. This
MOTIVATION approach has the drawback that the knowledge en-
It is becoming inereasingly clear that areas such  gineer spends a considerable amount of time and effort
thesis and design, process diagnosisand  in learning the problem domain (say, a given problem
telligent computer-aided instruction and in process synthesis or diagnosis) in order to be able
ining, ete., will derive substantial benefits by in- o design an appropriate system. Similarly, the do-
tegrating the KBES methodology into the existing  main engineer spends considerable time and effort in
predominantly algorithmic approaches. We are then  conveying the domain knowledge to the knowledge
faced with the question of ho\\ m go about doing thi engineer as well as learning something about Al and
proach the application of  KBES. It seems that a better approach would be to
the KBES methodology is ‘he socalled dialogue ap-  train chemical engineers in AL let them develop the
appropriate knowledge-based systems for their prob-

s :
lems, and let the computer science expert (knowledge

In this paper we discuss the organization and
content of a new course been speci

Y
for chermical angineers on the application of

KBES mothodology In process sngineering.

engineer) be involved only as an occasional consultant
for some difficult Al related problems which are
beyond the seope of our artificially intelligent chemical
engineer. Such an approach is, in fact,

to what chemical engineers have been doing for a long

CHEMICAL EN;NEE“!NG EDUCATION




First Al in PSE Meeting
Columbia University, March 1987

NSF - AAAI WORKSHOP ON

ARTIFICIAL INTELLIGENCE
IN
PROCESS ENGINEERING

March 9-10, 1987

COLUMBIA UNIVERSITY

New York, NY




Porto Carras, Greece, June 20-24, 1988

Stephanopoulos, Ungar, and Venkatasubramanian

Expert Systems in Process
Engineering: Process Development,
Design, Control and Operations




Al in PSE: Phase Il

* Phase II: Machine Learning | - Neural Networks (1990 — 2005)
* Backpropagation algorithm: Rumelhart, Hinton and Williams (1986)
* Whitley and Davis (1993, 1994)

* Hoskins and Himmelblau (1988); Matsuura, Abe, Kubota, Himmelblau
(1989)

 Kramer (1991); Leonard and Kramer (1991, 1992, 1993)

e Bhat and McAvoy (1990); Qin and McAvoy (1992)

* Bakshi and Stephanopoulos (1992, 1993)

e Ungar, Powell, and Kamens (1990); Psichogios and Ungar (1991, 1992)

* Venkatasubramanian (1985); Venkatasubramanian and Chan (1989); Kavuri
and Venkatasubramanian (1993, 1994)

* Also progress in Expert Systems and Genetic Algorithmic methods

* Most work was on process control and fault diagnosis
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Diagnostic ToolKit (Dkit): 1995-2000

Diagnostic ToolKit (Dkit)
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Dkit successfully anticipated and diagnosed
several failures even before the alarms went off
(~1/2 — 2 hours ahead)

Implemented in G2, tested at Exxon’s BRCP
Dkit was licensed to Honeywell in 1998

We were about 20-30 years too early to tackle
this problem!

©V. Venkatasubramanian, 2000
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So, why wasn’t Al in PSE
NOT impactful in Industry during (1985- 2015)?

For the same reasons it was not impactful in other domains
* Lack of computational power and computational storage
e Lack of communication infrastructure — NO Internet, Wireless
* Lack of convenient software environment
* Lack of specialized hardware — e.g., NVIDIA GPU for simulations
e Lack of data
* Lack of acceptance of computer generated advice
* Costs were prohibitive

NO technology PUSH

NO market PULL

* Low-hanging fruits in optimization and control applications
* No need to go after the more challenging Al applications

Technology usually takes ~40-50 years to reach wide adoption —
e.g., Aspen+, LP, MINLP, MPC, etc.

COLUMBIA ENGINEERING
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What is Different Now?

* Cray-2 Supercomputer (1985) | ey
° 19 GFLOPS RESEARCH, INC.
* 244 MHz Your text here
e 150 kW!

* $32 Million! (2010 dollars)

e Apple Watch (2015)
e 3 GFLOPS
* 1GHz
e 1WI!
* $300!

* Performance/unit cost Gain ~150,000

15 COLUMBIA ENGINEERING Source: Wiki 14(1
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So, what happened?

Basically Moore’s Law happened over the last 30 years!

All these metrics improved by orders of magnitude!
* Computational power
 Computational storage
e Communication infrastructure: Internet, Wireless
e Convenient software infrastructure — Python, Java, OWL, ...
* Specialized hardware — graphics processors
* Big Data
* Trust & Acceptance — Google, Yelp, Trip Advisor, Tinder, ...

Technology PUSH is there now

Market PULL is there now

* Many low-hanging fruits in optimization and control applications have
been picked in the last 30 years

* Need to go after the more challenging tasks for further improvements

There is Great Convergence now!

15' COLUMBIA ENGINEERING 15(‘
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So, what happened?
Watson and AlphaGO

* Deep Blue (IBM) vs Gary Kasparov
* May 11, 1997 — New York City
* Score:3.5-2.5
e First computer program to defeat a world
champion in a match under tournament
regulations
* Watson (IBM) wins Jeopardy
* Feb 2011

* Human Champs: Jennings (2"9) and
Rutter (3")

* AlphaGO (DeepMind) vs Lee Seedol
* Mar 2016
* Score: 4-1
* Deep Learning Neural Networks

15 COLUMBIA ENGINEERING
1864-2014
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Al in PSE:
Entered Phase lli

* Phase lll: Machine Learning Il - Data Science (2005 —
Present)

* Deep Learning Neural Nets
e Statistical Machine Learning
* Reinforcement Learning

* Big impact on NLP, Robotics, Vision
* Watson, AlphaGO, Self-driving cars

15 COLUMBIA ENGINEERING 17‘4
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How about “Watson” for PSE?

 What will it take to develop “Watson” for
PSE?

* Not just qualitative facts
* Quantitative

* Math Models

e Charts, Tables, Spectra

* Heuristic Knowledge

15 COLUMBIA ENGINEERING
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“Watson” for Pharmaceutical Engineering

Modeling

Multiscale models for synthesis
mehtods

Model rystalline
Struct

Unit

Process modeling
First Principles Process Model

! Experiments

Experiments Instruments

y % e
COLUMBIA ENGINE
The Fu Foundation School of Engineering and 1
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(2005-2011)

Material synthesis method
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Venkatasubramanian, V., Zhao, C., Joglekar, G., Jain, A., Hailemariam, L., Sureshbabu,
P., Akkisetti, P., Morris, K. and Reklaitis, G.V., “Ontological Informatics Infrastructure
for Chemical Product Design and Process Development”, Comp. & Chem. Engg., 2006.



http://www.muzzio.rutgers.edu/Moakher/ToteVert.html
http://www.muzzio.rutgers.edu/Moakher/ToteVert.html
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“Watson” for Pharmaceutical Engineering
(2005-2011)

User

Modeling

*Intellectual ChaIIenges

. Ontologles
* Hybrid Models _
. Domaln specific compllers

Experiments

COLUMBIA ENGINEERING Venkatasubramanian, V., Zhao, C., Joglekar, G., Jain, A., Hailemariam, L., Sureshbabu,

P., Akkisetti, P., Morris, K. and Reklaitis, G.V., “Ontological Informatics Infrastructure

1864-2014 for Chemical Product Design and Process Development”, Comp. & Chem. Engg., 2006.




HOLMES: SEMANTIC SEARCH ENGINE
(2011-2017)

= HOLMES: Ontology-Learning Materials Engineering System

AcadeMlasbine L RRTOES
g nguage Processing (NLP) Semantic Storage

Named Entity Relatior|d
Recognition Extractio

Document Cross
Sectioning Reference

Formula Processing

COLUMBIA | ENGINEERING . . A .
The Fu Fo .+ School of En ing and Applicd Sci HOLMES: Hybrid ontology-learning materials engineering system for pharmaceutical products:

1864 2014 Multi-label entity recognition and concept detection, M. M. Remolona et. al., Comp. & Chem.
Engg, in press, 2017.



Al in PSE: Phase Ill — Data Science

* Challenges: Intellectual, Implementational and Organizational

* Smart Manufacturing Initiative
* Many relevant algorithms and knowledge modeling frameworks are already known

* Implementational
* Computational power, storage, communication are here now!
* Integrating Hardware, Software, Communication, and Models
* Managing and updating data, knowledge and models

* Organizational
* Personnel training
* User acceptance and trust
* System maintenance

* These were the main limitations of the Honeywell ASM Program in 1995-2000

* Intellectual challenges

* Hybrid models * Custom languages and representations — e.g., Chemistry
* Semantic search engines
* Visualization

* Ontologies ‘
15. COLUMBIA ENGINEERING 22‘4
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Al in PSE: Phase IV
(2010 - ?)

* Self-organizing Intelligent Systems

* Modeling, predicting, and controlling the behavior
a large population of self-organizing intelligent
agents

* Drone swarms, Driverless car fleets
* Self-assembling nanostructures

* Science of Emergence
* Grand conceptual challenges here

15 COLUMBIA ENGINEERING 23(‘
1864-2014 Slah




Science of Self-organizing Systems

* 20t" Century Science was largely Reductionist

* Quantum Mechanics and Elementary Particle Physics

* Molecular Biology, Double Helix, Sequencing Human
Genome

String Sting

Molecule |
| | Elactron v'
3 Newtron Quark
\:\ :; . ‘@ >, 7

At Proton
15‘ COLUMBIA ENGINEERING
1d Applied S
1864— 2014




Complex Self-organizing Systems

* But can reductionism answer this question?

e Given the properties of a neuron, can we predict the
behavior of a system of 100 billion neurons?

* From Neuron mmm) Brain mmm) Mind

* How do you go from Parts to System?
 Reductionism cannot answer this!

15 COLUMBIA ENGINEERING 25‘{1
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Two Small Clouds at the Dawn of 20" Century

= Lord Kelvin’s lecture, Royal Society, London, in April 1900
=  “Nineteenth Century Clouds Over the Dynamic Theory of Heat and Light”

= “Physics knowledge is almost complete, except for two small “clouds” that remain
over the horizon”

= These small “clouds” Revolutionized 20t Century Physics

= Blackbody Radiation: Quantum Mechanics
= Michelson-Morley Null Experiment: Relativity

Albert
Einstein

Max
Planck

15 COLUMBIA ENGINEERING
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“Large Cloud” at the Dawn of 215t Century

= How do you go from Parts to Whole?

= Reductionism can’t help here!
= Need an Constructionist Theory of Emergent Behavior

= Requires a NEW conceptual synthesis across Al, Systems
Engineering, Statistical Mechanics, Game Theory, and Biology

= What might such a theory look like? P

15 COLUMBIA ENGINEERING 27‘{1
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“Large Cloud” at the Dawn of 215t Century

= Individual agent properties ===) Emergent properties
of millions of agents

= “Dumb” agents — e.g., Molecules
s Classical Mechanics (Small) - e.g., Planetary motion
= Statistical Mechanics (Large) - e.g., Gas

= “Intelligent” agents — e.g., People
= Classical Mechanics ===) Neoclassical Economics
= Statistical Mechanics =) ?7?7?

= Conceptual problem with Entropy as Disorder o

15 COLUMBIA ENGINEERING 28‘1
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“Large Cloud” at the Dawn of 215t Century

= True meaning of Entropy: Measure of Fairness in a Distribution
= Statistical Mechanics mmmm) Statistical Teleodynamics (4 Laws)
= Dynamics of Ideal Free Market

= Proves equilibrium is reached by Maximizing Fairness

= Proves equilibrium is both Statistical and Nash

= Deep connection between Statistical Mechanics and Game
Theory

= Proves Existence, Uniqueness, Optimality, and Asymptotic
Stability

= Proves the Emergence of Income Distribution: Lognormal
= Fairest Inequality
= Guidelines for Tax Policy and Executive Compensation

15 COLUMBIA ENGINEERING 29‘{‘
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Predictions for Different Countries

* Theory estimates lognormal-based income shares for
Top 1%, Top 10-1%, and Bottom 90% for ideally fair societies

* Piketty’s World Top Incomes Database (WTI)

Actual share

-i i ici U = — 100%
Non-ideal Inequality Coefficient 1 Tdeal share (

Y =0 Fairest Inequality; Y # 0 Unfair Inequality

&5 COLUMBIA | ENGINEERINIGR015 V.

7\ The Fu Foundation School of Engineering and Appked Scdme ubramanian




Norway: Non-ideal Inequality ¢

Fairest Inequality Line at 0%
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Norway: Non-ideal Inequality ¢

Fairest Inequality Line at 0%
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Norway: Non-ideal Inequality ¢

Fairest Inequality Line at 0%
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USA: Non-ideal Inequality ¢

300% -

FAIR Inequality Line at 0%
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How Much
INEQUALITY

is Fair?

Mathematical Principles of a Moral, Optimal,
and Stable Capitalist Society

S=kp IVW A

e V) =oInS—f((In

! h,( X )dx

VENKAT VENKATASUBRAMANIAN

Mathematical and
Conceptual Foundations of
Statistical Teleodynamics

Synthesis of Concepts from
Political Philosophy,
Economics, Game Theory,
Statistical Mechanics,
Information Theory, and
Systems Engineering

Theory of Emergence of
Income Distribution

Columbia University Press

Economics Series
July 2017
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“Large Cloud” at the Dawn of 215t Century

= How do you go from Parts to Whole?

= Need an Constructionist Theory of Emergent Behavior

= Requires a NEW conceptual synthesis across Al,
Systems Engineering, Statistical Mechanics, Game

Theory, and Biology
Vi
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Al in PSE: Dawn of a New Era

* Grand Intellectual Challenges at the intersection of Complexity
Science, Al and Systems Engineering
e Theory of Emergence
* Design, Control, Optimization and Risk Management by Self-Organization

* Impact of Al in PSE

* Hardware, software, communication, cost, acceptance are here
e But will still take 20 — 30 years to reach significant impact

Hybrid models e Custom languages and representations
Domain-specific Compilers e Semantic search engines
Ontologies e Visualization

* Revolutionize all aspects of PSE

* Energy, Sustainability, Materials, Pharmaceuticals,
Healthcare, Systems Biology

15 COLUMBIA ENGINEERING
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Thank You,
George!

}
l'l
\
3
A\
ln

For your great contributions to PSE! For your support in my career!
* Happy 70" Birthday!

e Best wishes for a happy
retired life!

COLUMBIA ENGINEERING
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