The Properties of RP-1 and RP-2 MIPR F1SBAA8022G001

Thomas J. Bruno

Physical and Chemical Properties Division

National Institute of Standards and Technology

Boulder, CO

Executive Summary: AFOSR-MIPR F1SBAA8022G001

- Characterization of a real fuel: JP-8

 i.e., chemical analysis, VLE, ρ, υ, λ, C_v
- Complete RefProp fluids files for RP-1 and RP-2
- Perform thermal decomposition studies on RP-2:
 - no additives
 - with THQ, tetralin, +100 package

NIST Staff:

- Tom Bruno
- Arno Laesecke
- Stephanie Outcalt
- Richard Perkins
- Jason Widegren
- Marcia Huber
- Eric Lemmon

and Students:

- Beverly Smith
- Lisa Ott
- Kari Brumbeck
- Amelia Hadler
- Tara Lovestead

First, a bit of history

RP-1:

- Rocket Propellant 1 (refined petroleum 1)
- Kerosene base, used with LOX in rockets such as the Saturn V
- Density 0.81 1.02 g/mL
- Oxidizer to fuel ratio = 2.56
- Temperature of combustion = 3,670 K

RP-2

- A highly hydrotreated kerosene
- Little or no sulfur
- Few if any aromatics
- Clear at present, no added dye

NASA RP-1 Project

- We obtained a sample of RP-1, 2002:
 - P000016660
 - Chemical analysis revealed presence of many aromatics and alkenes
- An extensive series of measurements and correlations was done.
- At the December '03 workshop, it was decided that the lot was "unusual".
- A follow-on project determined compositional variability.

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce Our results were summarized in NISTIR 6646, and the preliminary RP-1 fluid file was developed

We start with:

- Comprehensive chemical analysis
- Distillation curves (of the advanced variety)

RP-1 Distillation Curves

Now, complete the property suite:

ρ, υ, λ, **C**_v, etc.

Density:

Experimental details were discussed earlier

And for RP-2:

Speed of sound of RP-1 and RP-2 as a function of temperature at ambient pressure.

Adiabatic compressibility data of RP-1 and RP-2 as a function of temperature at ambient pressure.

Kinematic viscosity of RP-1 and RP-2 as a function of temperature at ambient pressure.

Thermal Conductivity of RP-1 (New Sample)

Thermal Conductivity of RP-2

In parallel, a study of decomposition was done:

 Decomposition studies have been part of the NIST protocol since we left cryogenics

- With RP-2, the decomposition is important as a measurement.
 - straight RP-2, RP-2 with additives, corrosivity studies

Explicit consideration of sample decomposition was begun of necessity:

- Straty, G.C., Palavra, A.M.F., Bruno, T.J., PVT Properties of Methanol at Temperatures to 300 °C, *Int. J. Thermophys*, 7(5), 1077, 1986.
- Straty, G.C., Ball, M.J., Bruno, T.J., PVT of toluene at temperatures to 673 K, *J. Chem. Eng. Data*, 33,115,1988.

Experimental effort involves numerous high value, one-of-a kind apparatus:

- VLE Instruments
- Viscometers
 - torsional crystal
 - Stabinger
 - gravitational
- Densimeters
 - dual sinker
 - rapid screening
- Thermal Conductivity
 - low and high temperature hot wire
- Speed of Sound
- Etc.

At only 100 °C, the sample decomposed into CO, H_2 , and synthetic products

Samples are thermally stressed in stainless steel ampoule reactors

Ampoule reactors:

Temperatures to 450 °C Pressures to 10,000 psi (once, by accident, to 36,000 psi)

Extent of decomposition determined by analysis

GC-FID of RP-2

The light decomposition products are used for the kinetic analysis

Pseudo-first-order kinetics on the emergent suite of decomposition products

$$A \xrightarrow{k'} B$$

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = k'[A]$$

$$t_{1/2} = \frac{\ln 2}{k'}$$

Separate phase analysis is performed

determine thermal or catalytic mechanisms

Liquid and gas phases analyzed by FTIR, GC-FID and GC-MS

Bruno, T.J., Conditioning of multiphase flowing samples for chemical analysis, *Sep. Sci. Tech.*, 40, 1721-1732, 2005.

The rate constant for decomposition, k', is obtained from the fit.

The rate constant for decomposition, k', is obtained from the fit.

Rate constants for RP-2 decomposition

<i>T</i> / °C	(k′ ± 1σ) / s ⁻¹		
375	$(1.33 \pm 0.30) \times 10^{-5}$		
400	(9.28 ± 2.01)×10 ⁻⁵	-7	
425	$(1.33 \pm 0.33) \times 10^{-4}$		
450	$(5.47 \pm 0.80) \times 10^{-4}$	-8	
		9	
		X	

The decomposition of RP-1 and RP-2 is very similar.

Andersen, P.C., Bruno, T.J., Thermal decomposition of RP-1 rocket propellant, *Ind. Eng. Chem. Res.*, 44, 1670-1676, 2005.

Comparison of RP-1 and RP-2 decomposition

Comparison of Jet A with RP-1 and RP-2

Comparison of RP-1 and RP-2 decomposition

	RP-1	RP-2	
<i>T</i> / °C	<i>(k′</i> ± 1σ) / s ⁻¹	<i>(k′</i> ± 1σ) / s ⁻¹	
375	$(1.13 \pm 0.04) \times 10^{-5}$	$(1.33 \pm 0.30) \times 10^{-5}$	
400	$(1.19 \pm 0.33) \times 10^{-4}$	(9.28 ± 2.01)×10 ⁻⁵	
425	$(3.08 \pm 0.77) \times 10^{-4}$	$(1.33 \pm 0.33) \times 10^{-4}$	
450	$(5.84 \pm 1.33) \times 10^{-4}$	$(5.47 \pm 0.80) \times 10^{-4}$	

RP-2 with 256 ppm of the additive mixture in JP-8 +100
 - contains a chelator, antioxidant, and surfactant

Hydrogen donors increase thermal stability by interrupting radical decomposition pathways.

5% THQ lowers the rate of decomposition by about an order of magnitude.

Concentration of THQ during decomposition

Parallels results with B100 (biodiesel):

Average standard deviation for distillation curves of B100 with 3% additives

Average standard deviation for distillation curves of B100 with 1% additives

Lower is better!

A clear high-temperature stabilization effect occurs.

Stabilization of RP-2:

tetrahydroquinoline

tetralin

+100

Stabilization of B100:

Corrosivity of decomposed RP-1

An improved copper strip corrosion test, developed at NIST, was used to determine the corrosivity of four liquids based on RP-1:

(1) RP-1
(2) RP-1 + 0.14 % allyl sulfide
(3) RP-1 after 2 h at 400 °C
(4) RP-1 + 0.14 % allyl sulfide after 2 h at 400 °C

1018 steel coupons

Corrosivity of decomposed RP-1

Decomposition greatly increased the corrosivity of the mixture, and slightly increased the corrosivity of RP-1.

Corrosivity of decomposed RP-1

Sample	CSCT	L*	[sulfur] / ppm
RP-1 + 0.14 % allyl sulfide, decomposed	4a	160	3.1
RP-1 + 0.14 % allyl sulfide	1a	199	28.8
RP-1, decomposed	1b	189	not detected
RP-1	untarnished	197	not detected

Rocket and Hypersonic Vehicle Propellant Workshop:

Place: NIST Boulder Laboratories

Time: Sept. 25 - 26, 2008

"Rollout of RP fluid files"

Acknowledgements:

AFRL-EAFB

 Matt Billingsley, Ron Bates and Steve Hanna

• Tim Edwards, AFRL-WPAFB

Thermal Conductivity of RP-1 (2003)

