
The quadratic formula
You may recall the quadratic formula for roots of quadratic
polynomials ax2 + bx + c . It says that the solutions to this
polynomial are

−b ±
√

b2 − 4ac

2a
.

For example, when we take the polynomial f (x) = x2 − 3x − 4, we
obtain

3±
√

9 + 16

2

which gives 4 and −1.

Some quick terminology

I We say that 4 and −1 are roots of the polynomial x2 − 3x − 4
or solutions to the polynomial equation x2 − 3x − 4 = 0.

I We may factor x2 − 3x − 4 as (x − 4)(x + 1).

I If we denote x2 − 3x − 4 as f (x), we have f (4) = 0 and
f (−1) = 0.
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Note that in the example both roots are integers, but other times
it may give numbers are not integers or even rational numbers,
such as with x2 − 5, which gives ±

√
5, which is a real number that

is not rational.

Other times it may even give complex numbers that are not real,
such as with x2 + 1, which gives ±i .
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Higher degree polynomials
If you look at a cubic polynomial a3x3 + a2x2 + a1x + a0 or a
quartic a4x4 + a3x3 + a2x2 + a1x + a0 (where the ai are all
integers) there are similar (but more complicated) formulas.

For degree 5, there are no such formulas. This is called the
insolubility of the quintic and it is a famous result proved by Abel
and Galois in the early 19th century.

However, we will be interested in something a bit more simple to
begin with: rational number solutions to polynomials with integer
coefficients.

That is, we will consider polynomials of the form

f (x) = anxn + an−1xn−1 + · · ·+ a0

and look for rational numbers b/c such that

f (b/c) = 0.
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Rational solutions to polynomials
Note that if we have f (x) = anxn + an−1xn−1 + · · ·+ a0 and

f (b/c) = 0,

(where b/c is in lowest terms, i.e. b and c have no common
factors) then we have

a0 =
b

c

(
an

(
b

c

)n−1

+ . . . x1

)
so b must divide a0.

Similarly, after multiplying through by (c/b)n we obtain

an =
c

b

(
a0

(c

b

)n−1
+ · · ·+ an−1

)
so c must divide an.

Since there are finitely many rational b/c such that b divides an

and c divides a0, this reduces finding all the rational solutions to
f (x) = 0 to a simple search problem.



Rational solutions to polynomials
Note that if we have f (x) = anxn + an−1xn−1 + · · ·+ a0 and

f (b/c) = 0,

(where b/c is in lowest terms, i.e. b and c have no common
factors) then we have

a0 =
b

c

(
an

(
b

c

)n−1

+ . . . x1

)
so b must divide a0.

Similarly, after multiplying through by (c/b)n we obtain

an =
c

b

(
a0

(c

b

)n−1
+ · · ·+ an−1

)
so c must divide an.

Since there are finitely many rational b/c such that b divides an

and c divides a0, this reduces finding all the rational solutions to
f (x) = 0 to a simple search problem.



Rational solutions to polynomials
Note that if we have f (x) = anxn + an−1xn−1 + · · ·+ a0 and

f (b/c) = 0,

(where b/c is in lowest terms, i.e. b and c have no common
factors) then we have

a0 =
b

c

(
an

(
b

c

)n−1

+ . . . x1

)
so b must divide a0.

Similarly, after multiplying through by (c/b)n we obtain

an =
c

b

(
a0

(c

b

)n−1
+ · · ·+ an−1

)
so c must divide an.

Since there are finitely many rational b/c such that b divides an

and c divides a0, this reduces finding all the rational solutions to
f (x) = 0 to a simple search problem.



Polynomials in two variables
What if we look instead at polynomials in two variables? Those are
polynomials like x4y2 + 5xy3 + 7x + y + 10 and y2 − x3 − 2x + 1.

Example

Fermat’s last theorem (first considered by Fermat in 1637, proved
by Wiles in 1994) says that for n ≥ 3, there are no positive integers
A, B, and C such that

An + Bn = Cn.

Dividing by C , we get (
A

C

)n

+

(
B

C

)n

= 1.

Thus, integer solutions to Fermat’s equation are the same as
rational solutions to the two-variable equation

xn + yn − 1 = 0.
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Even older polynomial equations in two variable

Example

Pythagorean triples A2 + B2 = C 2, e.g. 32 + 42 = 52, become
solutions to

x2 + y2 − 1 = 0

after dividing by C (that is, letting x = A/C and y = B/C ).

Example

Take the polynomial equation

y2 = x8 + x4 + x2.

Diophantus of Alexandria found that x = 1/4, y = 9/16 was a
solution in the third century AD. In 1997, Wetherell showed that
was the only nonzero solution, up to sign (of course
x = ±1/4, y = ±9/16 are solutions as well).
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Questions about two-variable polynomials

Based on what we have seen so far, it seems that questions about
rational solutions to two-variable polynomial equations are much
harder than for one variable. So here’s some questions:

I Can you tell when a two-variable polynomial has infinitely
many rational solutions?

I Is there a method for finding all the solutions when the
number is finite?

I Does the number of rational solutions depend only on the
degree of the polynomial (when that number is finite)?

Since we will be talking about degree a lot I should define it with
an example:

The degree of y2 − x8 + x4 + x2 is 8, the degree of
y2x9 + 7x5y3 + x + 3y is 11. The degree is the total degree –
x-degree plus y -degree – of the term of highest total degree. We’ll
begin by considering polynomials of various degrees.
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Two-variable polynomials of degree 2
Two-variable polynomials of degree 2 may have infinitely many
solutions. You may recall that there are infinitely many
Pythagorean triples A2 + B2 = C 2. Dividing through as we saw
before gives infinitely many solutions to

x2 + y2 − 1 = 0.

Another way of seeing that there are infinitely many solutions to
x2 − y2 − 1 = 0 is with the following picture, which gives a
one-to-one correspondence between the curve x2 + y2 − 1 = 0 in
the Cartesian plane (minus a single point) and the usual number
line.
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More on two-variable polynomials of degree 2

The one-to-one correspondence on the last page can be written as

t 7→
(

t2 − 1

t2 + 1
,

2t

t2 + 1

)
which sends the usual number line to the locus of x2 + y2 − 1 = 0
in the Cartesian plane.

Using this correspondence, we count the number of rational points
on x2 + y2 − 1 = 0 with numerator and denominator less than
some fixed constant M. We see that

#

{(
b

c
,

d

e

)
|
(

b

c

)2

+

(
d

e

)2

= 1 and |b|, |c |, |d |, |e| ≤ M

}
∼ M.

In other words, there are quite a lot of rational points on the curve
x2 + y2 − 1 = 0.
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Two-variable polynomials of degree 3
In the case of a two-variable polynomial f (x , y) of degree 3, any
straight line intersects our curve f (x , y) = 0 in three points. Thus,
given two rational points we can “add them together” to get a
third as in this picture below (where we have “P1 + P2 = P3”).

This often allows us to generate infinitely many rational points on
the curve.The points are more sparsely spaced though

#

{(
b

c
,

d

e

)
| f (b/c , d/e) = 0 and |b|, |c |, |d |, |e| ≤ M

}
∼ log M.

This is due to Mordell (1922). Note that in general f (x , y) = 0
gives a curve and we refer to rational solutions as rational points
on the curve.
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Two-variable polynomials of degree 4 or more

How about for polynomials of degree 4 or more?

Conjecture

(Mordell conjecture, 1922) If f (x , y) is a “good” polynomial of
degree 4 or greater, then there are finitely many pairs of rational
numbers (b/c , d/e) such that f (b/c , d/e) = 0.

The first real progress on this came in the 1960s when Mumford
showed that the log M that appeared in degree 3 was at most
log log M in the case of degree 4 or more, and when Manin proved
it for “function fields” (which are analogs of the rational numbers).

The theorem was finally was proved by Faltings in 1983 and
reproved by Faltings and Vojta in a more exact form in 1991.
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“Bad polynomial” #1

Here’s some polynomials where we clearly do have infinitely many
rational solutions despite being of degree 4. Here’s a picture of the
curve corresponding to the equation x4 − 5x2y2 + 4y4 = 0, which
is just the union of four lines, so clearly has infinitely many rational
points on it.

Note that the four lines come from the fact that

x4 − 5x2y2 + 4y4 = (x − y)(x + y)(x − 2y)(x + 2y).

Notice that all four points meet at the origin so there is no clear
“direction” for the curve there.
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“Bad polynomials” #2

Here’s another polynomial equation of degree greater than or equal
to 4 that has infinitely many rational points on it: x2 − y5 = 0.

Note that this curve can be parametrized by t 7→ (t5, t2).

Notice that here again the curve has no clear “direction” at the
origin.
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Tangent vectors

The technical term for the direction a curve is moving in at a point
(x0, y0) is the tangent vector (up to scaling). It can be defined as(

−∂f

∂y
(x0, y0),

∂f

∂x
(x0, y0)

)
.

When both partials are zero, there is no well-defined tangent
vector. One easily sees that this is the case, for example, for
x2 − y5 at the origin (0, 0).
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A geometric condition

Being nonsingular is a geometric condition, so one has to check
not just over the real numbers R but over all of the complex
numbers C.

One also has to check the so-called “points at infinity”. This can
be seen from considering the case of four parallel lines. Clearly, the
lines contain infinitely many rational points, but there is no
singularity in the Cartesian plane.

But the lines all meet “at infinity” in the projective plane, which is
the natural place to compactify curves in the Cartesian plane.
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A proper statement of the Mordell Conjecture

So here is a formal statement of the Mordell conjecture.

Theorem
(Mordell conjecture/Faltings theorem) If f (x , y) is a nonsingular
polynomial of degree 4 or greater, then there are finitely many
pairs of rational numbers (b/c, d/e) such that f (b/c , d/e) = 0.

We should also make a note about the pictures we have been
drawing. It may look like there are lots of points on these curves
and hence lots of rational solutions. However, the pictures are over
the real numbers, not the rational numbers. Thus, the points we
see do not necessarily correspond to rational solutions.

It turns out that what really matters is what the curves look like
over the complex numbers.
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Curves over the complex numbers

When you take the set of all complex numbers a and b such that
f (a, b) = 0, you get a two-dimensional object.
Here’s what a curve of degree 2 looks like over the complex
numbers.

Here’s what a curve of degree 3 looks like. It has one hole.

A nonsingular curve of degree 4 has three holes. It looks like this:
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Addition laws on curves

We noted before that curves coming from polynomials of of degree
3 have an addition law on them.

We also noted that curves corresponding to polynomials of degree
2 have a one-one correspondence with the usual number line,
which gives them the addition law from the usual number line!

It turns out that a curve with more than one hole in it cannot have
an addition law on it.

When you have a singularity, it looks like a hole but it is not really
one. This is why singular curves are different from nonsingular
ones.
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A nodal cubic

Look for example at the “nodal cubic” defined by

y2 − x2(1− x) = 0

One sees what looks like a hole. However, it can be disentangled
(the technical term is desingularized) so that the hole disappears.

In this case, what one ends up with is a degree three polynomial
that has “as many” rational solutions as a degree two polynomial
equation. That is one gets M – rather than rather than log M –
solutions with numerator and denominator bounded by M.
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Mordell-Lang-Vojta philosophy of solutions

The Mordell-Lang-Vojta conjecture (proved in some cases by
Faltings, Vojta, and McQuillan) says the following roughly.

Conjecture

Whenever a polynomial equation (in any number of variables) has
infinitely many solutions there is an underlying addition law on
some part of the geometric object that the polynomial equation
defines.

In the case of two-variable polynomials, the geometric object will
be the entire curve. In three or more variables, it becomes more
complicated.
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Finding all the solutions

Knowing that a nonsingular polynomial of degree 4 in two variables
has only finitely many solutions is hardly the end of the story.
Faltings’ proof says very little about finding all the solutions.

Question
Is there an algorithm for finding all the rational solutions to a
nonsingular polynomial of degree 4?

Answer: No one knows. There is an approach, called the method
of Coleman-Chabauty which often seems to work but there is no
guarantee that it will work in a particular situation. On the
negative side there is something called Hilbert’s Tenth Problem,
solved by Matiyasevich, Robinson, Davis, and Putnam. I’ll state it
roughly in Hilbert’s language.



Finding all the solutions

Knowing that a nonsingular polynomial of degree 4 in two variables
has only finitely many solutions is hardly the end of the story.
Faltings’ proof says very little about finding all the solutions.

Question
Is there an algorithm for finding all the rational solutions to a
nonsingular polynomial of degree 4?

Answer: No one knows. There is an approach, called the method
of Coleman-Chabauty which often seems to work but there is no
guarantee that it will work in a particular situation. On the
negative side there is something called Hilbert’s Tenth Problem,
solved by Matiyasevich, Robinson, Davis, and Putnam. I’ll state it
roughly in Hilbert’s language.



Finding all the solutions

Knowing that a nonsingular polynomial of degree 4 in two variables
has only finitely many solutions is hardly the end of the story.
Faltings’ proof says very little about finding all the solutions.

Question
Is there an algorithm for finding all the rational solutions to a
nonsingular polynomial of degree 4?

Answer: No one knows. There is an approach, called the method
of Coleman-Chabauty which often seems to work but there is no
guarantee that it will work in a particular situation. On the
negative side there is something called Hilbert’s Tenth Problem,
solved by Matiyasevich, Robinson, Davis, and Putnam. I’ll state it
roughly in Hilbert’s language.



Hilbert’s tenth problem

Theorem
There is no process according to which it can be determined in a
finite number of operations whether a polynomial equation
F (x1, . . . , xn) = 0 with integer coefficients has an integer solution
(that is, some b1, . . . , bn such that F (b1, . . . , bn) = 0.

In other words, there is no general algorithm for determining
whether or not a multivariable polynomial equation has an integer
solution.

A few points:

I It is not known whether or not such an algorithm exists for
determining whether there is a rational solution.

I It is not known whether or not such an algorithm exists when
we look at polynomials with only two variables.
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How many solutions?

For a one variable equation F (x) = 0, we know that if we have
solutions α1, . . . , αn, then

F (x) = (x − α1) · · · (x − αn).

So a one-variable polynomial equation has at most n rational
solutions.

Two-variable polynomial equations can have more than n solutions:
they can have at least n2. Take for example polynomial equations
like

(x − 1)(x − 2) · · · (x − n)− (y − 1)(y − 2) · · · (y − n) = 0.

This has n2 rational solutions. But nevertheless one can ask the
following.
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How many solutions?

Question
Is there a constant C (n) such that any nonsingular polynomial
equation f (x , y) = 0 of degree n ≥ 4 has at most C (n) solutions?

This is is called the “uniform boundedness question”.

This is a conjecture that many (most?) do not believe, but...

It turns out that would be implied by the Mordell-Lang-Vojta
conjecture mentioned earlier, and many (most?) do (did?) believe
that.

So it is a true mystery.
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A “proof” of something simpler

The proof of the Mordell conjecture is quite difficult, but we would
like to give some kind of a proof of something related. So let us
look at a simpler question, involving integer solutions to a special
type of polynomial equation.

I Let f (x , y) be a homogeneous polynomial, that is one where
every term has the same degree, e.g.
f (x , y) = 2x3 + 5xy2 + y3.

I Suppose that f (x , y) factors over the C as

f (x , y) = (x − α1y) · · · (x − αny)

for some αi ∈ C with no two αi equal to each other.

I Suppose the degree n of f is at least 3 and that all the
coefficients of f are integers.
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A “proof” of something simpler continued
Letting f (x , y) be on the previous page, an equation

f (x , y) = m for m an integer

is called a Thue equation.

Thue proved there were finitely integer
solutions (b, c) to such an equation in 1909. This is the first
serious theorem in the area.
To sketch Thue’s proof is simple. We write

m = f (b, c) = (b − α1c) · · · (b − αnc)

and divide by cn and take absolute values to get∣∣∣∣(b

c
− α1

)
· · ·
(

b

c
− αn

)∣∣∣∣ =
|m|
|c |n

Since the αi are not equal, they cannot be too close together so
we have ∣∣∣∣bc − αi

∣∣∣∣ ≤ M

|c |n

for some constant M (not depending on b and c).
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Diophantine approximation

So we are reduced to showing that we cannot have∣∣∣∣bc − αi

∣∣∣∣ ≤ M

|c |n

infinitely often for any complex αi that is algebraic of degree
n >= 3 (that is, a solution to a polynomial equation of degree
n >= 3 over the integers). This is what Thue showed to prove his
theorem. This technique is called diophantine approximation.

We will prove something weaker, but first a picture with an idea. If
β is a real number, then we can always get infinitely many b/c
within 1/c of it. See the following picture.
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Liouville’s theorem

Thus, it makes sense to think that there is some bound on the
number r such that we can get a rational number b

c within 1
|c|r of

β. The following is due to Liouville (1844).

Theorem
Let β be an irrational complex number such that there exists a
polynomial f of degree n over the integers such that f (β) = 0.
There is a constant M > 0 such that∣∣∣∣bc − β

∣∣∣∣ ≥ M

|c |n
for all rational b/c

Note that the constant M here is not the same as the one for
Thue’s theorem, so this does not imply the finiteness of solutions
to Thue’s equation.
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Proof of Liouville’s theorem
Since f (β) = 0, we may write

f (x) = (x − β)g(x) (1)

for some polynomial g such that g(β) 6= 0 (note that after dividing
through we may assume that (x − β) only divides f once).

Then
|g | is bounded from above near β by some constant D, so

|g(b/c)| < D (2)

Now since f has integer coefficients, we have

|f (b/c)| =

∣∣∣∣an
bn

cn
+ · · ·+ a0

∣∣∣∣ ≥ 1

|c |n

Plugging b/c into (1), and letting M = 1/D in (2) gives∣∣∣∣β − b

c

∣∣∣∣ ≥ M

|c |n
.
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Conclusion

The proof of the Mordell conjecture by Faltings-Vojta is simply a
much more complicated version of the proof of Liouville’s theorem.


