
First-time silicon success with qflow and efabless

Tim Edwards

The Raven chip:

Mohamed Kassem

efabless

The Raven chip: First-time silicon success with qflow and efabless

The Challenge:

Design and verify a working microprocessor SoC in < 3 months.

Validate first-time silicon success.

Requirements:

Chip to be simulated and layout drawn with all open-source tools.

All software, firmware, and hardware to be open source.*

Chip must demonstrate function of a set of digital and analog IP.

Test board PCB design, BOM, and USB driver to be open source

Final design to be placed in efabless catalog and in github

Design becomes a reference design to be customized by other
platform users.

*(caveats apply)

The starting point:

The PicoRV32 RISC-V core by Clifford Wolf

Fully open source under generous license

Available for download from github

Packaged with a reference SoC implementation with
UART and SPI flash driver

Packaged with example C code and testbenches

Packaged with instructions for obtaining and installing the
RISC-V gcc cross-compiler (for RV32IMC)

“Because Instruction Sets Want To Be Free”

Modifications to verilog source needed:

SRAM pulled out of core module

Parameters adjusted for 1k words (4kB) SRAM

Memory mapping for analog IP

GPIO controls extended for general-purpose digital I/O cell

The target process:

X-Fab XH018

Base MOS LP (low power) option

6 metal stack (5 standard route layers, 1 thicker top metal)

The proprietary parts:

X-Fab digital standard cells

X-Fab padframe I/O (3.3V with both 3.3V and 1.8V core)

X-Fab analog IP

X-Fab SRAM (from memory compiler)

Can a design have proprietary IP and still be called "open hardware"?

To be continued. . .

The platform:

https://efabless.com

The efabless platform provides a way to present the open source
tools configured for real foundry processes.

efabless has installed custom PDKs for X-Fab XH035 and XH018.

efabless requires registration, approved manually, to satisfy ECCN
rules and help protect foundry proprietary data.

The platform consists of a web interface including a marketplace
catalog, and a design platform which is a virtual CentOS machine.

The platform is free to use as a sandbox for experimenting with
designs.

The Open Galaxy open source software environment:

Open Circuit Design tools

Electric

ngspice

Icarus verilog

GTKwave

https://www.staticfreesoft.com

http://ngspice.sourceforge.net

http://iverilog.icarus.com

http://gtkwave.sourceforge.net

http://opencircuitdesign.com

Custom scripts and tools on the
platform

Open Circuit Design tools:

Read/write LEF, DEF, GDS

Interactive DRC

Interactive and batch Tcl
scripting

Device and parasitic
extraction, SPICE netlisting

Interactive wiring

Tcl-based PDK

http://opencircuitdesign.com/magic

The Magic PDK: Device list for XH018

Tcl-scripted device generators

Netgen (version 1.5)

Open Circuit Design tools:

LVS tool

Compares SPICE and verilog netlists

Device (e.g., resistor) network matching

Hierarchical matching

Property matching

Property expression evaluation

Pin name matching

http://opencircuitdesign.com/netgen

Open Circuit Design tools:

Qflow (stable version 1.3) digital synthesis:

Flow comprised of “mix and match” tools

Current tools handle designs of up to ~30k gates

Current tools understand layout practices at ~65nm and above

Easily synthesizes, analyzes, and routes the Raven SoC core

http://opencircuitdesign.com/qflow

Yosys

Graywolf

Qrouter

Vesta

Qflow components:

Netgen

Magic

synthesis

placement

routing

static timing analysis

LVS

DRC, GDS

Netlist manipulation (BLIF, verilog, SPICE, SPEF)

Add power buses

Resize gates

Add clock tree

Reduce fanout

Reduce density

Arrange pins

Qflow scripts:

GUI

(coupled with placement, unlike other tools)

Qflow GUI

step-by-step execution

generate reports from
log files

one-click end-to-end
synthesis

What is Open Layout?

3.3V ADC, Original vendor layout: 3.3V ADC, Abstracted layout (from LEF view):

Wire to pins
Obstruction metal layers
ensure DRC correct design

(Layout blurred to protect the identity
 of the victim)

Mask-geometry layout is foundry proprietary.

How can you design an entire chip and submit to the foundry for fabrication
without signing an NDA, purchasing commercial tools, and installing PDKs?

All cells at the transistor level are abstracted views using
information from the corresponding LEF files.

Building the Raven chip

Part 1: SoC Synthesis

Large design, needs 5 route layers
+ 6th thick metal for power

Reduce density to ensure route success.

Post-layout static timing analysis
shows clock rate > 150 MHz

raven_soc
detail view

Building the Raven chip

Part 2: Housekeeping SPI synthesis

3.3V digital standard cells

Accesses critical functions:

Core 1.8V power supply
Crystal oscillator enable
Clock multiplier enable
CPU trap signal

Generates signals:
CPU reset
IRQ event

Vendor/Product IDs
Metal mask programmed

Building the Raven chip

Part 3: Custom Analog Cells

Analog Multiplexers

Level Shifters

Padframe voltage domain splitter

gpio
[15] SDI CSB SCK SDO flash

io3
VDD
3.3GND

GND 3.3V core
1.8V
core

1.8V
core

Go to/from 1.8V and
3.3V circuits

Building the Raven chip

Part 4: Process-compatible X-Fab cells

 Six metal layer stack variants:

1.8V Regulator

Crystal Oscillator

8x clock
multiplier
PLL

1.8V
voltage
regulator

crystal
oscillator

XIXO VDD1V8 VDD3V3

Building the Raven chip

Part 5: Chip top-level assembly with Magic

Abstracted view: GDS view (except for SRAM):

SRAM has no other view than the abstracted one.

All top-level wiring done with Magic interactive wiring tool
Manual top-level floorplanning

Building the Raven chip
Part 6: Top-level verification

Simulation:

DRC

LVS

Subcells assumed validated. DRC only looks at the top
level wiring and interactions with abstracted subcells.

Abstracted subcells are “black boxes”

Simulation testbenches
written in C and verilog.
Makefile generates hex
file from C code.

Simulate with iverilog

View waveforms with
GTKwave

One testbench program
for each system function
to validate.

Analog blocks have behavioral verilog
with real-valued I/O to enable full-chip
simulation

Building the Raven chip

Part 7: Tape-out
GDS generated with Magic running in batch mode.

GDS is proprietary; GDS generation is not a user-accessible
tool on the efabless platform.

Foundry (X-Fab) runs its own DRC for sign-off verification

Shuttle run is slow (5 months) and limited (two process
variants, 4- and 6-metal back-end stacks)

Raven chip die photo

13 14 15 16 17 18

29

34
35

7
8

30
31

1
2
3
4
5
6

45 44 43 3839404142
36

RAVEN

48 QFN
(view from top)

32
33

paddle = VSS12

9
10
11

19 20 21 22 23
25
26
27
28

48 4647

24

37
GPIO3

G
P

IO
2

X
I

G
P

IO
0

V
R

E
F

_H
V

R
E

F
_L

V
D

D
1V

8

G
P

IO
1

V
D

D
3V

3

X
O

A
D

C
1_

IN

A
N

A
LO

G
_O

U
T

A
D

C
0_

IN

SER_RX

VSS
VDD1V8

COMP_INP

SER_TX

VSS

COMP_INN

IRQ

VDD3V3

VDD1V8
VDD3V3

VDD3V3

X
C

LK

F
LA

S
H

_C
S

B
F

LA
S

H
_IO

0

F
LA

S
H

_IO
3

F
LA

S
H

_IO
2

S
D

I
C

S
B

F
LA

S
H

_C
LK

G
P

IO
15

S
C

K

F
LA

S
H

_IO
1

S
D

O

GPIO4
GPIO5
GPIO6

GPIO7
GPIO8
GPIO9

GPIO10
GPIO11
GPIO12
GPIO13
GPIO14

efabless

RISC-V 32-bit microprocessor

Standard
packaging
(QFN-48),
outsourced.

Wire bond
diagram is
open source
on github.

Building the Raven chip

Part 8: Designing the test board with gEDA's Pcb
http://pcb.geda-project.orgOpen source, of course:

Board is designed for
characterization, not for
ease of use.

Building the Raven chip

Part 9: Test environment with Tclftdi
http://opencircuitdesign.com/tclftdi

Tool uses the same interactive/batch methods as Magic, netgen,
etc.
Tool uses libftdi (or FTDI's D2XX) libraries for communicating
with the on-board FTDI chip, which communicates with the SPI
flash and the Raven housekeeping SPI.

Tclftdi running with script for flash access and programming

Assembled test board

the Raven chip

Building the Raven chip

Part 10: Testing

Tclftdi running with script for Raven housekeeping SPI access

The Raven board running
100 MHz core clock

Demonstration program written
in C and compiled with gcc from
the raven “standalone” version
in the git repository:
https://github.com/efabless/raven-picorv32

Demo program shows flash SPI modes,
DAC and ADC operation, RC oscillator,
and GPIO functions (via LEDs).

26.8mA (88mW)

Current tool and platform limitations:

No IR drop analysis

No dynamic power estimation (or static, but that's easier)

No electromigration analysis

DRC rules at 90nm feature size and lower get increasingly difficult

Run-length rules not handled in the router

Handling of non-standard cell macros is a work in progress

Top-level routing is feasible but still a work in progress

No timing-aware synthesis

Practical size limitation of about 50k gates

Certain standard cell libraries generate lots of DRC errors

No DFT (scan chain insertion, ATPG)

Future tool and platform development:

Looking to ABK Open Road for large designs and cutting-edge
technologies

https://github.com/abk-openroad

qflow version 1.4 under development

OpenSTA and OpenTimer integration done

Additional foundry process PDKs under development at efabless

Starting work on DFT in qflow

Hard macro handling and top-level routing (in progress)

Move from BLIF netlists to verilog

Work on XH018, XH035 support for OpenRAM
 (one less proprietary block)

https://github.com/VLSIDA/OpenRAM

Based on Atalanta ATPG

Conclusions:

This presentation was written with xcircuit
http://opencircuitdesign.com/xcircuit

End-to-end open source hardware is possible, although transistor
level descriptions (i.e., GDS) remain elusive without open foundries

On mature process nodes (e.g., 0.18µm), using best practices and
reasonable margins, open source EDA tools are capable of making
production−grade chips

First-time silicon success is possible with open source EDA tools

Community involvement makes open source happen

Go forth and design!

Go forth and code!

https://efabless.com/toolbox/design
https://github.com/efabless/raven-picorv32

