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Abstract 

Replication is often viewed as the demarcation between science and non-science. However, 

contrary to the commonly held view, we show that in the current (selective) publication system 

replications may increase bias in effect size estimates. Specifically, we examine the effect of 

replication on bias in estimated population effect size as a function of publication bias and the 

studies’ sample size or power. We analytically show that incorporating the results of published 

replication studies will in general not lead to less bias in the estimated population effect size. We 

therefore conclude that mere replication will not solve the problem of overestimation of effect 

sizes. We will discuss the implications of our findings for interpreting results of published and 

unpublished studies, and for conducting and interpreting results of meta-analyses. We also 

discuss solutions for the problem of overestimation of effect sizes, such as discarding and not 

publishing small studies with low power, and implementing practices that completely eliminate 

publication bias (e.g., study registration). 

 Keywords: replication, effect size, publication bias, power, meta-analysis  



Imagine that you want to estimate the effect size of a certain treatment. To this end, you search 

for articles published in scientific journals and you come across two articles that include an 

estimation of the treatment effect. The two studies can be considered exact replications because 

the population, designs and procedures of the included studies are identical. The only difference 

between the two studies concerns their sample size: one study is based on 40 observations (a 

small study; S), whereas the other study is based on 70 observations (a larger study; L). The 

following questions are now relevant: How do you evaluate this information? Which effects would 

you include to get the most accurate estimate of the population effect? Would you evaluate only 

the small study, only the large study, or both? And what if you would have come across two small 

or two large studies? 

To get an idea about the intuitions researchers have about these questions, we 

administered a short questionnaire (see Appendix 1) among three groups of subjects, with 

supposedly different levels of statistical knowledge: second year’s psychology students (N=106; 

paper survey administered during statistics tutorials; Dutch translation), social scientists (N=360; 

online survey), and quantitative psychologists (N=31; paper survey administered at the 78th 

Annual Meeting of the Psychometric Society). In the questionnaire we presented different 

hypothetical situations with combinations of small and large studies, all published in peer-

reviewed journals, and asked which situation would yield the most accurate estimate of the effect 

of the treatment in the population. Accuracy was described in the questionnaire as “the closeness 

of the estimate to the population effect, inversely related to the bias of an estimate”. We list the 

different situations and responses in Table 1.1 



Table 1. 

Results of the questionnaire to assess researchers’ intuitions about the value of replication. Answers of 106 psychology students (PS), 360 social 

scientists (SS), and 31 quantitative psychologists (QP). S = Small published study with 40 observations; L = Large published study with 70 

observations.  

 “Which situation (A or B) 

yields the most accurate 

estimate of the effect of the 

treatment in the population?” 

 

 

 

Proportion of subsample that endorses the answer category 

 Situation A Situation B Situation 

A more accurate 

Situation  

B more accurate 

Situation A and B equally 

accurate 

   PS SS QP PS SS QP PS SS QP 

Question 1 L* S .972 .857 .871 .019 .036 .032 .009 .108 .097 

Question 2 L* L+S .057 .045 .032 .925 .839 .935 .019 .117 .032 

Question 3 L* S+S .340 .283 .258 .566 .619 .710 .094 .099 .032 

Question 4 L L+L .000 .022 .032 .943 .915 .935 .057 .063 .032 

Question 5 L+S* S+S .943 .816 .839 .038 .045 .032 .019 .139 .129 

The options that were selected most per subsample are printed in bold face. The correct answers (i.e., the scenarios that were shown to be most effective by 

our calculations) are indicated with a *. There is no * in Question 4, since both situations contain an equal amount of expected bias. 



The three groups showed the same pattern in all five situations: participants preferred to 

use as much information as possible, i.e., they preferred the situation with the largest total sample 

size. For instance, the majority (57% of the students, 62% of the social scientists, 71% of the 

quantitative psychologists) preferred two small studies (total of 80 observations) over one large 

study (70 observations; Question 3). Second, most respondents believed that incorporating a 

small exact replication with a larger study in the evaluation (Question 2) would improve the 

accuracy of the estimate of the effect (93% of the students, 84% of the social scientists, 94% of 

the quantitative psychologists). So answers to questions 2 and 3 revealed two intuitions that are 

widely held among experts, social scientists, and students alike, namely, that (1) the larger the 

total sample size, the higher the accuracy, and (2) any replication, however small, improves 

accuracy. However logical these intuitions may appear at first sight, in this paper we show that 

both intuitions are false in the current publication system.  

In this article we first explain the origin of these intuitions. Secondly, we show that 

replications are not science’s Holy Grail, because of the ‘replication paradox’; the publication of 

replications by itself does not decrease bias in effect size estimates. We show that this bias 

depends on sample size, population effect size, and publication bias. Finally, we discuss the 

implications for replications (and other studies that would be included in a meta-analysis of the 

effect under investigation) and consider possible solutions to problems associated with the use of 

multiple underpowered studies in the current publication system.  

Why Do We Want More Observations and More Studies? 

Our intuitions are grounded in what we learned in our first statistics courses, namely that: 

the larger the sample size, the more information, the greater the precision (i.e., the smaller the 

standard error), and the better the estimate. A replication study can also be viewed as increasing 

the original sample size. Hence, intuitively, both increasing the number of observations and 

incorporating a replication study increases the precision and the accuracy of the estimate of the 

population effect. This line of thought is reflected in the fact that multiple-study papers have 

increasingly become the norm in major psychology journals (Giner-Sorolla, 2012), although many 

of these involve conceptual replications rather than direct replications (Pashler & Harris, 2012; 

see also Makel et al., 2012).  



Furthermore, there is also a large and growing literature on the merits of replication 

studies. For example, replications are said to be able to protect science from fraud and 

questionable research practices (Crocker & Cooper, 2011) and clarify ambiguous results 

(Simmons, Nelson, & Simonsohn, 2011). Replication is called “the gold standard for reliability” 

and “even if a small number of [independent replications] find the same result, then that result 

can be relied on” (Frank & Saxe, 2012). Finally, replications are supposed to uncover false 

positives that are the result of publication bias (Diekmann, 2011; Murayama, Pekrun, & Fiedler, 

2013).   

However, the above lines of reasoning do not take into account that publication bias may 

influence dissemination of both replication studies and original studies. We show how publication 

bias might limit the usefulness of replication studies and show why publication bias leads our 

intuitions and those of our colleagues (see Table 1) astray. We first present evidence of the 

omnipresence of publication bias in science, and show analytically how publication bias affects 

accuracy of the effect size estimate of a single study. Thereafter, we discuss the implications of 

our findings for the accuracy of effect size estimates in meta-analyses that include replications. 

Publication Bias and How it Affects Effect Size Estimates 

Presence of Publication Bias. Publication bias is the phenomenon that studies with results that 

are not statistically significant are less likely to be published (Greenwald, 1975). A way to search 

for publication bias is by looking for an overrepresentation of statistically significant or “positive” 

findings given the typical power of the studies (Ioannidis & Trikalinos, 2007). If there was no 

publication bias, and all effects were truly non-null (further called “true effects” or “existing 

effects”), then the proportion of positive findings in the literature would be approximately equal to 

the average power (the probability that you reject the null hypothesis when it is false). Although 

the recommended power for a study is at least .80 (e.g., Cohen, 1988), the median power has 

been estimated to average around .35 across studies in psychology (Bakker, van Dijk, & Wicherts, 

2012)2, the average power is .40-.47 across studies in behavioral ecology (Jennions & Moller, 

2003)3, and .21 across studies in neuroscience (Button et al., 2013)4. However, the rate of 

significant results is 95.1% in psychology and psychiatry, and 85% in neuroscience and behavior 



(Fanelli, 2010). These numbers are incompatible with the average power across studies in the 

respective fields and represent strong evidence for publication bias in these fields. 

An excess of significant findings has been established in many fields (Bakker et al., 2012; 

Button et al., 2013; Fanelli, 2012; Francis, 2014; Ioannidis, 2011; Kavvoura et al., 2008; 

Renkewitz, Fuchs, & Fiedler, 2011; Tsilidis, Papatheodorou, Evangelou, & Ioannidis, 2012). The 

rate of positive findings seems to be higher in the “softer” sciences, such as psychology, than in 

“harder” sciences, such as space sciences (Fanelli, 2010). There is evidence that the rate of 

positive findings has stayed approximately the same from the 1950’s (97.3% in psychology; 

Sterling, 1959) until the 1990s (95.6% in psychology and 85.4% in medical sciences; Sterling, 

Rosenbaum, & Weinkam, 1995), and that it even has increased since the 1990s (Fanelli, 2012).  

Several studies have combined the results of tests of publication bias tests from multiple 

meta-analyses from various scientific fields and found evidence for publication bias in these fields.  

For instance, there is evidence for publication bias in about 10% of the meta-analyses in the field 

of genetic associations (Ioannidis, 2011), in roughly 15% of the meta-analyses in psychotherapy 

(Niemeyer, Musch, & Pietrowsky, 2012, 2013), in 20% to 40% of psychological meta-analyses 

(Ferguson & Brannick, 2012), in about 25%-50% of meta-analyses in the medical sciences 

(Sterne, Gavaghan, & Egger, 2000; Sutton, Duval, Tweedie, Abrams, & Jones, 2000), in 38%-50% 

of meta-analyses in ecology and evolution (Jennions & Moller, 2002), and in about 80% of meta-

analyses in the field of communication sciences (Levine, Asada, & Carpenter, 2009). Although 

percentages of meta-analyses that are subject to publication bias do not seem to be impressively 

high, the power of publication bias tests was generally low in these meta-analyses. Hence, a 

failure to detect evidence for publication bias does not necessarily mean that there is no 

publication bias. A recent study established funnel plot asymmetry as a sign of publication bias in 

82 meta-analyses (Fanelli & Ioannidis, 2013; see also Nuijten, Van Assen, Van Aert, & Wicherts, 

2014).  

Both the high prevalence of positive findings and the tests for publication bias in meta-

analyses are not conclusive (but see Cooper, DeNeve, & Charlton, 1997; Franco, Malhotra, & 

Simonovits, 2014 for direct evidence of bias in psychology and the social sciences), but together 



they make a strong case for a presence of publication bias in much of the scientific literature. 

Therefore, it is important to investigate how studies are affected by publication bias. 

The Effect of Publication Bias on an Estimate from a Single Study. We analytically derived 

the effect of publication bias on the effect size estimate in a published study with a two-

independent samples design (see also Button et al., 2013; Gerber, Green, & Nickerson, 2001; 

Kraemer, Gardner, Brooks, & Yesavage, 1998). We used several scenarios differing in the 

degree of publication bias, the samples sizes, and the underlying effect size. Effect sizes were 

expressed in Cohen’s d, or the standardized mean difference (i.e., d = (μ1 - μ2)/σ), with σ = 1). In 

each scenario we tested H0: d = 0 against H1: d > 0 using a z test. We also derived the effect of 

publication bias in the case where σ is unknown, using a t-test. Because the results of the two 

analyses are very similar, we only report those of the simpler z test. The equations and results for 

the t-test can be found at the Open Science Framework page https://osf.io/rumwi/. 

We assumed that all significant results were published (α = .05) and that there was one 

underlying effect. Two additional parameters were sample size N, and pub, representing the 

proportion of non-significant results published. We assumed that all non-significant p-values had 

the same probability of being published. Our assumptions on the probability of publication can 

also be interpreted differently, i.e., with pub as the probability of publication of a non-significant 

studies relative to the probability of publication of a significant study, where the latter probability 

can be smaller than 1. We were interested in the bias in the effect size estimate as a function of d, 

pub, and N. Figure 1 shows a variant of the typical depiction of power (used in most statistics 

textbooks) in which we display the effect of publication bias. Specifically, it shows the effect of d 

and pub on the published effect size estimate. In the figure “H0” and “H1” are the regions of 

accepting and rejecting the null hypothesis, respectively; 1- represents power, α is the type I 

error, cv is the critical value of the z test, and d is the true population effect size. Without 

publication bias, available studies are drawn from the sampling distribution underlying d (H1). 

However, because of publication bias, non-significant results are less likely published, leading to 

an asymmetry of reported studies. Specifically, the dark gray area represents the proportion of 

studies with non-significant results that get published. The ratio of the lowered density (dark gray) 

to the regular density under H1 in the acceptance region equals pub, which equals .5 in Figure 1.  



 

Figure 1. Schematic representation of the effect of publication bias on the published effect size 

estimate. “H0” and “H1” are the regions of accepting and rejecting H0, respectively, 1- 

represents power, α is the type I error, cv is the critical value of the test, and d is the true effect 

size. D0 and D1 are the expected effect sizes conditional on the acceptance or rejection of H0, 

respectively, and D is the expected value of the published effect size. 

 

To establish the bias in the effect size estimate, we calculated the difference between the 

actual effect size d, and the expected value of the published effect size estimate, D. The value of 

D consists of two components. The first component is the expected value of the published effect 

size given that the effect size was significant, D1, i.e., the expected value of the light-gray area. 

The second component is the expected value of the published effect size given that it was non-

significant, D0, or the expected value of the dark-gray area. The overall estimate D is a weighted 

average of D1 and D0, weighted by the light-gray and dark-gray areas, respectively. The higher 



the publication bias, the fewer non-significant findings are published, and the less weight D0 will 

receive. In that case the weighted average will depend more on D1, and D will overestimate d, as 

illustrated in Figure 1. If pub = 1 (no publication bias), the estimate D is equal to the true d, and if 

pub = 0 (maximal publication bias), the estimate D is equal to D1, which overestimates d. 

Appendix 2 contains the exact equations.  

In our analysis of the effect of publication bias on the accuracy of the effect size estimate 

in a published study we varied sample size (N) to be either 20 or 35 observations per group (40 

or 70 observations in total, as in our questionnaire). These sample sizes were chosen to reflect 

typical sample sizes in psychology (Marszalek, Barber, Kohlhart, & Holmes, 2011; Wetzels et al., 

2011). The population effect size, Cohen´s d, varied from zero to one. Finally, we chose values of 

pub equal to 0, .05, .25, .5, and 1. Values for pub of 0 and 1 reflect the two most extreme 

scenarios: total publication bias and no publication bias at all, respectively. The value .05 was 

based on an estimate of publication bias using the number of significant findings in the literature 

(see Appendix 3). We included the values .25 and .5 to reflect less severe publication bias. The 

dependent variable of our analysis is the bias in the effect size estimate, which is equal to the 

expected published effect size minus the true effect. The more bias in the effect size estimate, the 

less accurate the estimate. So in Figure 1, this amounts to the difference between d and D. Note 

that whereas this analysis renders the bias of the effect size estimate, the realized estimate will 

differ across studies and fields. 

Figure 2 shows the effect of publication bias and population effect size on the bias in the 

effect size estimate in a single study with either 35 (left) or 20 observations per group (right). In 

both the large and the small study the same pattern appears. Both scenarios show that if the true 

effect size is sufficiently large, the bias approximates zero; the effect size estimate as it appears 

in the literature is equal to the true effect size. The nihil bias arises because for large enough 

effect sizes nearly all experiments are significant and therefore published. However, if the true 

effect size becomes smaller, more findings are non-significant and are not published. When that 

happens, bias or the overestimation of the effect generally increases.  



 

Figure 2. The effect of publication bias and population effect size (Cohen’s d) on the bias in the 

effect size estimate in a single study with either 35 or 20 observations per group. The bias in the 

effect size estimate is equal to the published effect minus the true effect. The vertical, dotted lines 

indicate Cohen’s d at a power of .25, .50, and .75, respectively. 

 

Unsurprisingly, the magnitude of the bias depends on the severity of publication bias. If 

there is maximum publication bias (none of the non-significant results are published), the bias is 

the largest (black line in Figure 2). The bias decreases as more non-significant results are 

published. Without publication bias (results are published independent of their statistical 

significance), the bias in the effect size estimates disappears completely (lowest, light gray line in 

Figure 2). Formally, the (relative) bias compared to the situation where only significant results are 

published is a function of both pub and power (see Appendix 4 for the derivation of this equation): 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑏𝑖𝑎𝑠 =  
1−𝑝𝑢𝑏

1+𝑝𝑢𝑏 𝛽
1−𝛽

     (1) 

It follows from (1) that bias already decreases dramatically for small values of pub, which is also 

apparent from the sharp drop in bias for pub=.05. For instance, consider a case in which pub=.05 

and d=0. It follows that the obtained power is equal to α = .05. In this scenario we obtain a 

relative bias of (1-.05)/(1+.05*(.95/.05)) = .95/1.95 = .487, meaning that the bias is more than 

halved compared to the bias when pub=0. This is also apparent from Figure 2: in both the left and 

right panel it shows that at d=0 the bias in effect size estimate more than halves when pub 



increases from 0 to .05. Now consider a scenario where pub = .05 and power is .50 (middle 

vertical dotted line in Figure 2). Here we obtain a relative bias of (1-.05)/(1+.05*(.50/.50)) 

= .95/1.05 = .905, meaning that the bias is only slightly lower compared to the bias when pub = 0. 

It also follows from (1) that relative bias for a certain value of pub is only dependent on power. 

Hence both figures in Figure 2 have exactly the same shape. However, absolute bias decreases 

when sample size increases, hence bias is more severe in the small published study (right figure) 

than in the large published study (left figure). The difference in bias between the two studies is 

greatest when publication bias is maximal, and diminishes as publication bias decreases. 

Surprisingly, Figure 2 shows that bias sometimes first increases when population effect 

size d increases. This happens whenever a small proportion of non-significant studies is 

published (pub=.05, .25, .5) and power is low. This somewhat counterintuitive result is due to two 

opposing forces. The first force is the decrease in bias for pub = 0 (upper black line); as d 

increases, the average D1 of the light gray area in Figure 1 gets closer to d, thereby decreasing 

bias. The other force is relative bias; if pub > 0 and d increases, then power increases and 

relative bias (1) increases. Bias is the product of these two forces (see also Appendix 4). The 

bump in the figures for pub > 0 arises because the increase in relative bias overrules the 

decrease in bias for the significant studies whenever power is small. In other words, bias 

increases because the proportion of significant studies, which result in bias, increases more than 

their bias decreases as d increases. For larger values of power, bias decreases monotonically in 

d because then relative bias increases relatively less (see (1)) than bias for pub = 0 decreases. 

The results of the analysis of the effect of publication bias and true effect size on the 

accuracy on effect size estimate when using a t-test (when σ is unknown) show that the shape of 

the figure based on the results of the t-test is identical to the shape of Figure 2.5 The difference is 

that bias is slightly higher for the t-test than for the z-test, given the same publication bias and 

true effect size, and this difference decreases in sample size or degrees of freedom of the t-test. 

An often-proposed solution to the problems of publication bias is to perform multiple 

studies within an article (see e.g., Murayama et al., 2013), or to add more replications (see e.g., 

Nosek, Spies, & Motyl, 2012). However, this advice does not take into account that such multiple 

studies may suffer from the same bias in effect size estimation because of publication bias 



(Francis, 2012a). In the next paragraph we will therefore extend the known implications of 

publication bias on a single published study, to the implications of publication bias on scenarios 

with multiple published studies. 

Implications of Publication Bias on the Accuracy of Multiple Published Studies 

In this paragraph we show that replication studies are not necessarily a solution to the problem of 

overestimated effect size. In fact, we will show that replication can actually add bias to an effect 

size estimate under publication bias. We analytically derived the bias for three possible replication 

scenarios: two large studies, two small studies, and a large and a small study, and compared the 

bias in the effect size estimate with the bias in a single large study. 

Let A be the original study, and B the replication. If we have two studies, the combined 

(weighted) effect size estimate D equals  

𝑁𝐴𝐷𝐴+𝑁𝐵𝐷𝐵

𝑁𝐴+𝑁𝐵
,       (2) 

where NA and NB represent the sample size, and DA and DB the estimated effect size of A and B, 

respectively. The results for the bias of estimated effect size based on both studies are shown in 

Figure 3.  

The left panel of Figure 3 shows the bias after combining two large studies (one large 

study and a large replication). The responses to the questionnaire indicate that most researchers 

believe that two large studies yield a more accurate estimate of effect size than only one large 

study. However, the bias of two large studies is exactly the same as the bias in just one large 

study; because the replication contains the same amount of bias as the original study, the 

weighted average (2) of the two effect sizes will also contain the same amount of bias as the 

original study. Adding a replication to a single study will increase the precision or standard error 

of the estimate, but not its accuracy as long as there is publication bias. 



 

 

Figure 3. The effect of publication bias and population effect size (Cohen’s d) on the bias in the 

effect size estimate in a replication scenario with either two large studies (left panel; identical to 

the bias in just one large study), one large and one small study (middle panel), or two small 

studies (right panel; identical to the bias in just one small study).   

 

The middle panel of Figure 3 shows the bias in a large study combined with a small 

replication. According to the responses to the questionnaire, most researchers believe that a 

combination of one large and one small study yield a more accurate estimate than one large 

study. Again, this intuition is wrong when there is publication bias. Because a small study 

contains more bias than a large study, the weighted average (2) of the effect sizes in a large and 

a small study is more biased than the estimate in a single large study. 

The right panel of Figure 3 shows the bias in a combination of two small studies. The 

responses to the questionnaire indicate that researchers believe a combination of two small 

published studies yields a more accurate estimate than one large published study. This intuition 

is not correct. Our analytical results show that the bias in the total effect size estimate does not 

change if effect size estimates of replication studies of the same size as the original study are 

synthesized with the effect size estimate of the original study. This means that the comparison 



between one large and two small studies is equivalent to a comparison between one large and 

one small study. Hence, the bias is larger in the combination of two small studies than in one 

large study, even though the sample size of the combination is larger than that of the large study.  

In summary, in none of the three replication scenarios did the bias in the effect size 

estimate decrease by synthesizing the published replication with the large original published 

study. This means that both intuitions (1) the larger the total sample size, the higher the accuracy, 

and (2) any replication, however small, improves accuracy, are false when publication bias exists. 

General Implications 

Our examples and questionnaire refer to situations in which a published study is combined with a 

published exact replication. Our analysis shows that synthesizing a published original study with a 

published replication study generally does not decrease bias in the effect size estimate, yet may 

even increase bias if the replication study is smaller (in terms of sample size) than the original 

study. Our analysis has implications for more general situations such as combining effect size 

estimates of (i) an original study and a larger replication study (ii) published conceptual replication 

studies, (iii) conceptual replication studies within one single published article, (iv) many published 

studies on the same phenomenon, as in meta-analysis, and (v) for determining whether an effect 

exists or not. 

In the light of recent calls for high-powered replication studies (see e.g., Brandt et al., 

2014), we encounter more and more situations in which the replication study is actually larger 

than the original study. In those cases, the combined effect size estimate will have less bias than 

the effect size estimate of just the smaller, original study. Note, however, that in these cases 

incorporating the smaller original study in the estimation increases bias. Hence, evaluating only 

the large replication study would provide the most accurate effect size estimate (see also 

Kraemer et al., 1998). 

 The conclusion of our analysis holds for any situation in which two or more published 

effect sizes are combined to obtain an overall effect size (in a meta-analysis), when there is 

publication bias. This principle generally holds for all sample sizes, and any number of studies. 

The smaller the study, the larger the bias. So just like combining one small study with one larger 



study will increase bias in the effect size estimate, combining multiple smaller studies with 

multiple larger studies will also increase bias, as opposed to combining only large studies.  

 The same problem applies to situations in which conceptual (published) replications are 

combined to estimate one underlying (or average) effect size. If both the original study and its 

conceptual replication estimate the same population effect size and are subject to publication 

bias, both effect sizes will be inflated, and combining the two studies to obtain a new effect size 

will result in an overestimation of the population effect size, exactly in the same way as in our 

analysis. Similarly, the overestimation increases as the studies become smaller.  

Multi-study papers are similarly affected by the paradox. Multiple studies within a single 

paper are also susceptible to publication bias (Francis, 2012b, 2012c, 2013; Francis, Tanzman, & 

Matthews, 2014), which means that an overall effect size based on the effects within one multi-

study paper will be inflated as well. Our analysis generalizes straightforwardly to situations in 

which many published effect size estimates are combined, as in meta-analysis, which are also 

affected by publication bias (see e.g.,Fanelli & Ioannidis, 2013; Ferguson & Brannick, 2012; 

Nuijten et al., 2014). Here, too, overestimation gets worse whenever more small or underpowered 

published studies are included. What is even more problematic in meta-analysis is that precision 

of the effect size is increased (i.e., standard error of the estimate is decreased) by including more 

studies, thereby providing a false sense of security in the combined (biased) effect size estimate.  

 Publication bias also affects analyses used to establish whether an effect exists or not. It 

has been argued that replication may uncover false positives (e.g., Diekmann, 2011; Open 

Science Collaboration, 2012; Simmons et al., 2011), but this only holds if studies with non-

significant results are accessible to researchers (see also Ferguson & Heene, 2012). Similarly, it 

has been argued that even though multi-study papers can inflate the effect size estimate, they 

can still decrease the rate of false positives (Murayama et al., 2013). The reasoning is that it is 

implausible that a research team generates, say, five false positive findings, since on average 

5/.05 = 100 studies are needed to obtain five false positives. However, a problem in this 

argument is that the Type I error is typically much larger than .05, because of the use of so-called 

questionable research practices (QRP). For instance, Simmons et al. (2011) show that Type I 

error may even increase to .5 or higher after simultaneous use of some QRPs that are often used 



by researchers (John, Loewenstein, & Prelec, 2012; Simmons et al., 2011). Assuming a Type I 

error of about .5, five positive findings are no longer implausible, since only about ten studies 

need to be run. Both publication bias and QRP affect effect size estimates of smaller studies 

more than larger studies (Bakker et al., 2012; Fanelli & Ioannidis, 2013; Nuijten et al., 2014). This 

means that even if the goal is not to obtain an overall effect size, but to determine whether an 

effect exists, multiple underpowered published studies can still distort conclusions. 

Does the problem of overestimation of population effect size also hold for unpublished 

research? We have to distinguish two different types of unpublished studies. First, there are 

unpublished studies, statistically significant or not, of which the results were subject to biases 

such as QRP. These biases result in overestimation of population effect size, even when a 

study’s outcome was not statistically significant (Bakker et al., 2012). This implies that 

incorporating these unpublished studies into meta-analyses may not decrease bias in effect size, 

particularly if their sample size is similar or smaller to those of published studies. Furthermore, 

this implication begs the question of the validity of publication bias tests that compare the effects 

of published and unpublished studies. These tests suggest there is no publication bias if the 

average effect sizes of published and unpublished studies are similar. Although this publication 

bias test addresses the effect of publication or not, a non-significant difference between the 

effects of published and unpublished studies does not imply that the published studies do not 

yield an overestimated effect size. Ferguson and Brannick (2012, p.126) even concluded that 

unpublished studies should not be included in meta-analyses, because searches for unpublished 

studies may be ineffective and unintentionally biased, and these studies may be inherently flawed. 

The second type of unpublished studies concerns studies that are not affected by biases such as 

QRP. Incorporating these studies into meta-analysis should generally decrease bias. However, 

these studies cannot or can hardly be distinguished from those unpublished studies affected by 

QRP as long as none of these studies are preregistered (see below). Because it is also unknown 

what proportion of unpublished studies is affected by QRP, it is impossible to tell to what extent 

unpublished studies yield overestimated effect sizes, both absolutely and relative to published 

studies.   

Discussion 



At the beginning of this article we presented results from a questionnaire that showed that 

psychology students, social scientists, and experts have the intuition that a published replication, 

independent of its sample size, improves accuracy of an estimated effect size. We also presented 

quotes from the published literature suggesting that replications are considered a tool to uncover 

false positives and to strengthen belief in true positives. We have shown that these intuitions do 

not hold in a publication system with substantial bias against non-significant results. The present 

system seems to be of this type, although some signs of improvement have recently emerged 

(e.g., Klein et al., 2014; Open Science Collaboration, 2012). We investigated the effect of 

replication on the bias in effect size estimate as a function of publication bias, sample size, and 

population effect size. We found that synthesizing a published original study with a published 

replication study can even add bias if the replication study’s sample size is smaller than that of 

the original study, but only when there is publication bias. One implication of these findings is that 

replication studies are not necessarily the ultimate solution to false positives in the literature, as is 

sometimes implied, but should be evaluated with caution in the current publication system. Our 

results also hold more generally, i.e., for published conceptual replication studies, conceptual 

replication studies within one single published article, and many published studies on the same 

phenomenon, as in meta-analysis.  

Our findings are based on the assumption that publication bias affects replication studies 

in the same way as it affects original studies. However, it is possible that this is not or no longer 

the case. For instance, publication bias might affect replications even more strongly than it affects 

original studies. Even though more and more psychologists have started to emphasize the 

advantages of replication studies, papers containing only one of more replications may still have 

a low probability of getting published (Giner-Sorolla, 2012; Makel, Plucker, & Hegarty, 2012; 

Neuliep & Crandall, 1990, 1993). Replications with non-significant results are easily dismissed 

with the argument that the replication might contain a confound that caused the null finding 

(Stroebe & Strack, 2014).  

On the other hand, it is also possible that publication bias affects replications in the 

opposite way in some fields. That is, replications could have a higher chance of getting published 

if they contain non-significant results while a seminal study contains significant results, because 



this would be a controversial and thus an interesting finding. In that case, the next study would be 

controversial again if it were significant. What could follow is an alternation of effect sizes in 

opposite directions that eventually converge to – possibly – the true effect size. This is known as 

the Proteus phenomenon (Ioannidis & Trikalinos, 2005). If the Proteus phenomenon holds in 

practice, biased effect size estimates will cancel each other out over time and the overall effect 

size estimate will be close to unbiased (De Winter & Happee, 2013). Although the Proteus 

phenomenon may lead to unbiased effect size estimation, neglecting to publish studies with non-

significant results is a very inefficient scientific enterprise with problems for statistical modeling of 

effect sizes (Van Assen, Van Aert, Nuijten, & Wicherts, 2014a, 2014b). Furthermore, even though 

there are occurrences of the Proteus phenomenon in some fields (Ioannidis, 2011), in psychology 

the vast majority of studies test if an effect is significantly different from zero, rather than if an 

effect is significantly different from a previously estimated effect (Fanelli, 2010, 2012; Van Assen, 

Van Aert, et al., 2014a).  

Our analysis also assumes that there are no QRPs that affect the estimated effect size. 

Considering the seemingly widespread prevalence of QRPs (see e.g.,John et al., 2012), this 

might not be a realistic assumption. QRPs will likely also result in overestimation of effect sizes. 

Direct or close replication studies have generally less room for QRPs, since design, procedure, 

and measures are fixed by the original study. Hence less overestimation of effect size because of 

QRPs can be expected in direct replication studies. We must stress, however, that there exist 

only few studies of the effects of QRPs on effect size estimation, alone or in combination with 

publication bias (but see Bakker et al., 2012). Problematic is that QRPs are not well-defined and 

most likely have diverse effects on effect size estimation (cf. Lakens, in press).   

There are several potential solutions to the problem of overestimation of effect sizes. The 

first solution is to only evaluate studies (and replications) with high precision or sample size 

(Stanley, Jarrell, & Doucouliagos, 2010) or, equivalently, high power. As our results showed, 

studies with high power will contain less bias in their effect size (see also Bakker et al., 2012; 

Button et al., 2013; Ioannidis, 2008; Kraemer et al., 1998). A related strategy is not only to 

evaluate, but also to conduct studies and replications with high power (Asendorpf et al., 2013; 

Brandt et al., 2014). Each of the studies with high power has little bias, and combining them will 



increase the precision of the final estimate. A complication with this solution, however, is that the 

power calculations cannot be based on the (previously) published effect size, because that 

published effect size is likely to be overestimated (see also Tversky & Kahneman, 1971). In order 

to perform an unbiased power calculation, the published effect size needs to be corrected for 

publication bias (Perugini, Galucci, & Constantini, 2014; Van Assen, Van Aert, & Wicherts, 2014; 

Vevea & Hedges, 1995).  

A second solution is to eliminate publication bias altogether: without publication bias there 

is no bias in the effect size estimate. Many researchers have emphasized the importance of 

eliminating publication bias, and there are many proposals with plans of action. For instance, it 

has been proposed to split up the review process: reviewers should base their decision to accept 

or reject an article solely on the introduction and method section to ensure that the decision is 

independent of the outcome (Chambers, 2013; De Groot, 2014; Newcombe, 1987; Smulders, 

2013; Walster & Cleary, 1970). A related method to eliminate publication bias is to evaluate 

submissions on their methodological rigor and not on their results. There are journals that 

evaluate all submissions according to these standards (see for instance PLoS ONE), journals 

with special sections for both “failed and successful” replication attempts (e.g., Journal of 

Experimental Social Psychology, Journal of Personality and Social Psychology, Psychological 

Science; Brandt et al., 2014), or websites like Psych File Drawer (http://psychfiledrawer.org) on 

which researchers can upload replication attempts. Furthermore, there have been large scale, 

preregistered replication attempts of different psychological experiments (Klein et al., 2014; Open 

Science Collaboration, 2012; see also Wagenmakers, Wetzels, Borsboom, Maas, & Kievit, 2012). 

However, even though these proposals and solutions show a high motivation to eliminate 

publication bias, finding and implementing the best strategy will take time. 

What can we do with studies that are already published, and that most likely were subject 

to publication bias? Following upon others (e.g., Banks, Kepes, & Banks, 2012), we recommend 

publication bias analyses on past (as well as future) meta-analytic studies in an attempt to 

evaluate whether publication bias affected the estimated effect size in a field. Many different 

procedures exist that test for signs of publication bias (see e.g., Banks et al., 2012; Rothstein, 

Sutton, & Borenstein, 2005). A weakness of statistical procedures that test for publication bias, 

http://psychfiledrawer.org/


such as the rank correlation test (Begg & Mazumdar, 1994), Egger’s test (Egger, Davey Smith, 

Schneider, & Minder, 1997), the trim and fill method (Duval & Tweedie, 2000a, 2000b), or 

Ioannidis and Trikalinos’ test for an excess of significant findings (Ioannidis & Trikalinos, 2007; for 

an extensive discussion about this test and its usage see e.g., Ioannidis, 2013; Morey, 2013; 

Simonshon, 2013; Vandekerckhove, Guan, & Styrcula, 2013), is that their statistical power is 

usually low for meta-analyses with a typical number of studies. Consequently, when these 

procedures do not signal publication bias, publication bias may still be present and the meta-

analysis’ effect size estimate biased. On the other hand, these tests could also signal publication 

bias whenever there is none (a type I error). When this happens in a multi-study paper, the test 

would falsely imply that the author left out one or more studies, which may have unwarranted 

harmful consequences for the author. 

Another option besides testing for publication bias is estimating an effect size that is 

robust against publication bias or one that is corrected for it. An often used procedure is the trim 

and fill method (Duval & Tweedie, 2000a, 2000b). However, the trim and fill method does not 

perform well with heterogeneous meta-analyses (Moreno et al., 2009; Terrin, Schmid, Lau, & 

Olkin, 2003) and its performance also depends strongly on assumptions about why studies are 

missing (Borenstein, Hedges, Higgins, & Rothstein, 2009). Another procedure that can be used to 

obtain unbiased effect sizes in the presence of publication bias is selection models (Copas, 2013; 

Hedges & Vevea, 1996, 2005; Vevea, Clements, & Hedges, 1993; Vevea & Hedges, 1995; 

Vevea & Woods, 2005). Selection models use the estimated or a priori probability that a study 

with a certain p-value is published, to estimate the influence of publication bias and to calculate 

an adjusted effect size. Selection models can deal with heterogeneous effect sizes (Hedges & 

Vevea, 2005), but may require many studies (e.g., 100 or more) to perform well (Field & Gillett, 

2010). Furthermore, selection models are difficult to implement and depend on sophisticated 

choices and assumptions (Borenstein et al., 2009). A third procedure is to obtain an unbiased 

effect size by using only studies with statistically significant effects (Hedges, 1984; Simonsohn, 

Nelson, & Simmons, 2014; Van Assen, Van Aert, & Wicherts, 2014). Van Assen et al. (2014) 

show that their procedure, called p-uniform, provides unbiased effect size estimates, even with 

the relatively small number of eight studies in a meta-analysis, when the population effect size is 



homogenous. p-uniform also outperformed the standard fixed-effects meta-analysis, the trim and 

fill method, and the test of excess significance, when publication bias was present. Although we 

recognize the merits of all aforementioned procedures for testing and correcting for publication 

bias, they often lack power and/or require rather strong assumptions we believe these procedures 

do not provide the ultimate solution to problems resulting of publication bias. 

Although we cannot establish the exact influence of publication bias on effect sizes 

estimates in published scientific articles, evidence suggests that publication bias affects many 

fields. To solve the problem of overestimated effect sizes, mere replication is not enough. Until 

there are ways to eliminate publication bias or correct for overestimation because of publication 

bias, researchers are wise to only incorporate and perform studies with high power, whether they 

are replications or not. 

  



Footnotes 

1. For more details about the sample and procedure, the original survey, the Dutch translation 

of the survey, and the full data set, see the Open Science Framework page 

https://osf.io/973mb/. 

2. Estimated given a two independent samples comparison, assuming an effect size of d = .50 

(based on estimates from meta-analyses) and a total sample size of 40, the median total 

sample size in psychology (Marszalek et al., 2011). 

3. Based on 697 papers from 10 behavioral journals, assuming a medium effect size of r = .30. 

The authors report the estimated power for a small (r = .1), medium (r = .30), or large (r = .50) 

effect size. We report the power based on r = .30, because it is closest to the average 

estimated effect size in ecological or evolutionary studies of r = .18-.19 (based on 44 meta-

analyses, Jennions & Moller, 2002). The average power we report here is therefore likely to 

be an optimistic estimate. 

4. Based on data from 49 meta-analyses, using the estimated effect sizes in the meta-analyses 

as true effect sizes. 

5. Equations and results for the t test can be found at the Open Science Framework page 

https://osf.io/rumwi/. 

 

  

https://osf.io/973mb/
https://osf.io/rumwi/
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Appendix 1: The survey including introduction text 

The aim of this research is to examine how researchers value exact replications. 

More precisely, using five questions we assess your evaluation of the effect of exact 

replication on the accuracy of the estimation of a population effect. Accuracy is 

the closeness of the estimate to the population effect, and is inversely related to the 

bias of an estimate. 

Introduction to questions: please read carefully 

Imagine yourself being in the following situation. You want to estimate the effect of a 

treatment. To estimate this effect, you carry out a literature search. You only include 

articles published in scientific journals in your search. Additionally, you only 

include exact replications in your search. That is, the population, designs and 

procedures of the included studies are identical; the only difference between the 

exact replications may be their sample size. After your search you use the available 

empirical evidence to estimate the treatment effect in the population. 

 In the questions below you are asked to compare two situations. Your task in 

each question is to answer the question ‘Which situation yields the most accurate 
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estimate of the effect of the treatment in the population?’. In both situations the 

same treatment effect is estimated. Hence, the question can also be formulated as 

‘Which situation would you prefer when your goal is to obtain an accurate 

estimate of the effect of the treatment in the population?’. 

A situation either involves one published scientific article (that is, no exact 

replications were found) or two published scientific articles. A published article is 

based on either 40 (Small sample size) or 70 (Large) observations. In the five 

questions below each situation is summarized by one or two letters. For instance, ‘L’ 

indicates that only one article was found with a sample size of 70. And ‘L+S’ indicates 

two studies were found that were exact replications of each other, one with 70 and 

the other with 40 observations.  

Instruction for answering the questions 

The table below contains both situations A and B of the questions (first columns) and 

the answers to the questions (last three columns). Answer the question by crossing 

precisely one of the three answering categories. For instance, consider Question 0 in 

the first row. Question 0 compares situation A and situation B, both with a small 

sample of 40 participants. The cross in the last column indicates that the respondent 

believes that both situations yield an equally accurate estimate of the effect of the 

treatment in the population. 

 

 

Questions 

 

Which situation (A or B) yields the most accurate estimate of the effect of the 

treatment in the population? 

 Question Answer 

 Situation A Situation B Situation 

A more 

accurate 

Situation  

B more 

accurate 

Situation A and B 

equally 

accurate 

Question 0 S S   X 

Question 1 L S    

Question 2 L L+S    

Question 3 L S+S    

Question 4 L L+L    

Question 5 L+S S+S    

S = Small study with 40 observations; L = Large study with 70 observations 

 

Thank you for your participation. Any questions or remarks about this research can 

be sent to Michèle Nuijten (m.b.nuijten@tilburguniversity.edu).  

 

mailto:m.b.nuijten@tilburguniversity.edu
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Appendix 2: Calculation of the Effect of Publication Bias and True Effect Size on the 

Accuracy on Effect Size Estimate When Using a z-test 

The following equations show the influence of the proportion of non-significant results published 

(pub) on the accuracy of the effect size estimate in a single study, using a z-test comparing the 

means of two independent samples, with σ = 1 (see also Figure 1 for a schematic representation 

of these equations): 

1) What is the critical value cv of the test? 

 

𝑐𝑣 = 1.645 ∙  √2
𝑁,⁄  

where N is the number of observations per group. 

 

2) What is the z-value z1 of the critical value under the alternative hypothesis? 

 

𝑧1 = (𝑐𝑣 − 𝑑) ∙  √𝑁
2⁄ , 

where d is the standardized true mean difference between the groups. The probability 

that Z>z1 is the power of the test, 1-β. 

 

3) What is the expected value D1 of the mean difference, conditional on a rejection of H0? 

 

𝐷1 =
𝑓(𝑧1)

(1 − 𝛽) ∙  √𝑁
2⁄

+ 𝑑, 

 

where f(z1) is the density of the standardized normal distribution at z1. The formula is 

based on the fact that the expected value of a truncated standardized normal distribution, 

truncated at probability p, equals f(zp)/(1-p). 

 

4) What is the expected value D0 of the mean difference, conditional on acceptation of H0? 
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𝐷0 = 𝑑 −
𝑓(𝑧1)

𝛽 ∙  √𝑁
2⁄

 

 

Note that βD0 + (1-β)D1 = d, as it should. 

 

5) What is the expected value D of the estimate of d? 

 

𝐷 =
𝑝𝑢𝑏 𝛽𝐷0 + (1 − 𝛽)𝐷1

𝑝𝑢𝑏 𝛽 + (1 − 𝛽)
 

The derivations of our results using a t-test comparing the means of two independent samples 

are presented in an online Appendix at Open Science Framework: https://osf.io/rumwi/. 
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Appendix 3: Estimation of the Amount of Publication Bias in the Literature 

We can make a rough estimate of the amount of publication bias in the literature based on the 

number of significant findings in the literature. We used the following equations (Van Assen, Van 

Aert, & Wicherts, 2014): 

 

P("H1"|published) =
P("H1" ∩ published)

P(published)
=

P("H1" ∩ published)

P("H0" ∩ published) + P("H1" ∩ published)
 

 

=
(1 − β)P(H1) + α P(H0)

𝑝𝑢𝑏[β P(H1) + (1 − α)P(H0)] + (1 − β)P(H1) + α P(H0)
, 

 

where P("H1") and P("H0") are the proportion of significant and non-significant findings in the 

literature respectively, P(H1) and P(H0) are the proportion of effects that are truly non-null or null, 

respectively, α represents type I error,  represents type II error (and (1-) represents power). 

Furthermore, pub < 1 represents the relative proportion of non-significant findings that are 

published, i.e. proportions of significant and insignificant findings that get published are assumed 

to be q and × q, respectively. 

Following Ioannidis (2005), we assume that P(H1) is .50, which is perhaps an optimistic 

assumption, considering the exploratory nature of much psychological research. Furthermore, 

assume a power of .50 and α = .05. If we insert these values into the equation, and we assume 

that pub is .05, we get the following: 

 

P("H1"|published) =
. 5 ∗ .5 + .05 ∗ .5

. 05[. 5 ∗ .5 + (1 − .05). 5] + .5 ∗ .5 + .05 ∗ .5
= .88. 

 

This result is in line with the research of Fanelli (2010) who found that between 84% and 91.5% 

of the papers in social and behavioral sciences report positive results. This would mean that the 

proportion of non-significant findings published lies around .05. 

 Of course this estimate of the amount of publication bias depends heavily on our 

assumptions. For instance, we could also consider a scenario in which α is not the nominal .05, 
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but as high as .50. Simmons et al. (2011) indeed report that the actual α may increase from .05 

to .5 when researchers employ several questionable research practices (QRP). When redoing our 

analysis with α = .5, with assuming these QRP will also boost power from .5 to .9, we obtain 88% 

reported positive results for pub = .32. To conclude, even when assuming scientists heavily use 

QRP, publication bias is estimated to be substantial. 
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Appendix 4: Calculation of Relative Bias in Effect Size Estimate 

We can calculate the relative bias in effect size estimate compared to the situation where only 

significant results are published. Subtracting d from 𝐷 =
𝑝𝑢𝑏𝛽𝐷0+(1−𝛽)𝐷1

𝑝𝑢𝑏𝛽+(1−𝛽)
 yields the bias. Denote the 

bias for pub = 0, which equals  𝐷1 –  𝑑, by q. Note that 𝐷0 –  𝑑 = −
1−𝛽

𝛽
 q, since d is the weighted 

average of D0 and D1, with type II error and power as weights, respectively.  

Generally, for pub ≥ 0, bias 𝐷 –  𝑑 can then be rewritten as  

 

𝑝𝑢𝑏𝛽𝐷0+(1−𝛽)𝐷1

𝑝𝑢𝑏𝛽+(1−𝛽)
− d =

−𝑝𝑢𝑏(1−𝛽)(𝐷1−d)+(1−𝛽)(𝐷1−d)

𝑝𝑢𝑏𝛽+(1−𝛽)
= q

1−p𝑢𝑏

1+p𝑢𝑏 β
1−β

, 

where 
1−p𝑢𝑏

1+p𝑢𝑏 β
1−β

 denotes relative bias. This formula for relative bias also holds for the t-test. 

 

 

 

 

 

 

 

 

 

 

 


