

The Robustness of Google CAPTCHAs
Ahmad S El Ahmad, Jeff Yan, Mohamad Tayara

School of Computer Science
Newcastle University, UK

{Ahmad.Salah-El-Ahmad, Jeff.Yan, Mohomad.Tayara}@ncl.ac.uk
May 8, 2011

ABSTRACT
We report a novel attack on two CAPTCHAs that have been
widely deployed on the Internet, one being Google's home design
and the other acquired by Google (i.e. reCAPTCHA). With a
minor change, our attack program also works well on the latest
ReCAPTCHA version, which uses a new defence mechanism that
was unknown to us when we designed our attack. This suggests
that our attack works in a fundamental level. Our attack appears
to be applicable to a whole family of text CAPTCHAs that build
on top of the popular segmentation-resistant mechanism of
"crowding character together" for security. Next, we propose a
novel framework that guides the application of our well-tested
security engineering methodology for evaluating CAPTCHA
robustness, and we propose a new general principle for
CAPTCHA design.

Categories and Subject Descriptors
D.4.6 Security and Protection, H.1.2 User/Machine Systems.

General Terms
Security, Human factors

Keywords
CAPTCHA, robustness, segmentation attack

1. INTRODUCTION
A CAPTCHA (Completely Automated Public Turing Test to Tell
Computers and Humans Apart), also known as a human
interaction proof, is a program that generates and grades tests that
are human solvable but intended to be beyond the capabilities of
current computer programs [1]. CAPTCHA makes use of a hard,
open problem in AI, and is now a standard technology to defend
against undesirable or malicious computer bot programs. The
most widely deployed CAPTCHAs are text-based schemes, which
require a user to recognize distorted characters, a task that state-
of-the-art AI programs supposedly cannot do.

CAPTCHAs’ robustness is the strength of their resistance to AI
programs written to automatically solve CAPTCHA tests. It is
well known that the robustness of a text CAPTCHA should rely
on the difficulty of finding where each character is rather than
what it is. The rationale is the following. Computers perform
better than humans in recognizing individual characters, even
under severe distortion [6]. However, locating individual
characters in the right order (i.e. segmentation) is in general a
computationally expensive and combinatorially hard problem for
computers. Therefore, a text CAPTCHA should be segmentation-
resistant; if a scheme is vulnerable to a segmentation attack, then
it is effectively broken. A commonly accepted goal for
CAPTCHA design is that automated attacks should not be more

than 0.01% successful but that the human success rate should be
at least 90%.

Various segmentation-resistant mechanisms have been proposed
(some representative ones are shown in Figure 1), but many of
them were broken, including those developed by major companies
such as Microsoft, Yahoo and Megaupload [3, 10]. A
segmentation-resistant mechanism known as “crowding character
together” or CCT, initially adopted by Google to let adjacent
characters touch or overlap with each other at a random
intersection (see Figure 1 for illustrations), was shown to be more
resistant to known attacks [3]. This mechanism has been used by
Google until now, and it has gained wide popularity and been in
use by a large number of different text CAPTCHAs.

Figure 1. CAPTCHAs designed by Microsoft, Yahoo,

Megauplad and Google (clock wise), each using a different
segmentation-resistant mechanism.

This paper first answers an open problem that has intrigued the
CAPTCHA community for years: Is the CCT mechanism
vulnerable to novel attacks? Our analysis of a Google’s
CAPTCHA, as currently deployed by Gmail, Blogger.com and
BlogSpot, suggests that a simple but novel attack can break its
CCT mechanism. This is to date the most effective attack against
this scheme (For convenience, we will refer to this CAPTCHA as
the Google scheme in this paper).

Our attack is also applicable to ReCAPTCHA, a scheme that is
widely used by millions of users of Facebook, Twitter and other
Internet services on a daily basis (used by over 100,000 websites),
and that was recently acquired by Google. Our attack was
implemented for a ReCAPTCHA version that was active in May
2010. To our surprise, our attack, without any significant change,
also works well on the latest ReCAPTCHA version, which uses a
new defence mechanism that was unknown to us when we
designed our attack. This suggests that our attack works in a
fundamental level.

Our attack exploits shape patterns found in individual characters
(such as the “loop” shape in characters “a” and “p”, and the cross
shape in characters ‘f’ and ‘t’), as well as connection patterns of
adjacent characters. The key insight is that these features and
patterns largely stay invariant under various distortions and
transformations applied by the CAPTCHA generators, and can be
exploited to segment connected characters.

Given the CCT mechanism’s popularity, the impact of our attack
is beyond the Google scheme and ReCAPTCHA. We urge the

designers of other captcha schemes that rely on the CCT
mechanism to carefully check how vulnerable their designs are to
our attack or its variants.

In the recent years, we have been working to establish a novel
security engineering approach to the evaluation of CAPTCHA
robustness through a series of work, including [3, 4, 7, 10] and
this paper. In contrast to a parallel approach developed primarily
in the computer vision, document analysis and pattern recognition
communities, where sophisticated objection recognition
algorithms are often the design goal, our approach applies
adversarial thinking skills searching for and exploiting
vulnerabilities hidden in CAPTCHAs.

In this paper, we will summarise our approach, and for the first
time provide a detailed framework that classifies CAPTCHA
vulnerabilities into major categories. This framework provides
key insights on security vulnerabilities that text CAPTCHAs
should account for. It can be used to examine a CAPTCHA’s
robustness, as well as to guide the design of next generation
CAPTCHAs. We will also summarise general principles for the
design of robust text CAPTCHAs. We not only revisit established
principles, but also propose a new one.

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 presents our attack on the Google scheme,
and Section 4 shows that a variant of our attack works on
ReCAPTCHA. Section 5 discusses further applicability of our
attack and its defence. Section 6 introduces our framework for
understanding Captcha vulnerabilities, and Section 7 focuses on
general principles for CAPTCHA design.

2. RELATED WORK
CAPTCHA has been an active field in the research communities.
Due to space limit, we only review the literature that is most
relevant to this paper. Kurt’s thesis [18] provided a good review
of CAPTCHA research.

Chellapillas’ et al [5] attacked a number of early CAPTCHAs
using machine learning algorithms, and they achieved 4.89%
success on an early version of Google’s CAPTCHA (around year
2004. In 2007, we developed a technique that exploited gaps
(whit e space) between characters in Google’s CAPTCHA at the
time, and our attack achieved 12% success [3]. It was reported in
[14] that some spammers succeeded in breaking the Google
CAPTCHA using two compromised zombie hosts, with each host
using a variation of their attack. This attack claimed a success rate
of 20%, yet no technical details have been revealed. An attack on
ReCAPTCHA using a combination of image processing and OCR
techniques was reported with a success rate of 17.5% [13]. At
DEFCON’18, Houck presented another attack on ReCAPTCHA;
using both character segmentation and character template
matching technique, his attack achieved 10% success on an early
version of ReCAPTCHA and 31% success on a more recent
version [8].

Other notable attacks on (image recognition) CAPTCHAs include
[3, 12].

3. A SEGMENTATION ATTACK on the
GOOGLE SCHEME
In this section, we first review key features of the Google scheme,
and then present a novel segmentation attack.

Google have tweaked their CAPTCHA from time to time in order
to improve its robustness. Figure 2(a) shows a version of the
Google scheme that is not user-friendly. For example, it is
difficult for users to tell between “d” and “cl”, “ri” and “n”, “rn”
and “m”, and “w” and “vv”. We did not choose to work on this
version of Google CAPTCHA, because even human cannot
decode them properly with a high accuracy. For such captchas,
users’ complaint will soon become a major issue or even push
them offline, just as we have seen it again and again. Figure 2(b)
shows another version of Google CAPTCHA, which still adopts
the CCT mechanism but is easier for humans to solve than the
other version, and therefore has been deployed most of the time in
our experience. We have chosen to develop our attack based on
the second version.

(a)

(b)

Figure 2. Google CAPTCHA. (a) a user-unfriendly version;
(b) a usable version.

We studied a hundred samples that was randomly collected from
the Internet1, and observed the following features.

• Each challenge uses only two colours: Red, Green, or Blue
for the challenge text, and White for the background.

• CCT is the main segmentation-resistant mechanism so that
characters connect or touch with one another horizontally.

• Global warping is applied to add randomized distortion.

• The thickness of characters varies much; even different
portions of the same character differ in thickness with each
other. This is a powerful feature for defending against
potential segmentation attacks.

• Random text strings are used; a text string’s length varies
between 5 and 8 characters; only lower-case letters are used.

• Multiple font typefaces and styles (such as bold, italics and
regular) are used.

The key insight behind our attack is that although the Google
CAPTCHA uses different font typefaces and styles, and uses
heavy distortions, shape patterns in some characters remain
invariant, e.g. the “loop” in characters “a” and “p”, and the cross
shape in ‘f’ and ‘t’. Our main idea is to first detect distinctive
shape patterns, identify their associated characters, and then cut
out these characters. It turns out that once these detectable

1 All samples we used for this paper were randomly collected

from Google email registration page and Blogger.com, where
the CAPTCHA was used whenever one attempted to create an
account or post a comment.

characters are cut out, most often a whole challenge text is also
properly segmented already.

Our attack includes the following sequential steps:

• Pre-processing – A set of standard techniques is applied to
prepare each challenge image.

• Pattern based detection of characters – A set of algorithms is
used to locate characters with their detectable shape patterns.

• Character segmentation – A set of rules and heuristics is used
to segment detected characters.

3.1 Preprocessing
We first perform image up-sampling, which enlarges the image,
increases its pixel details, and thus smoothes the embedded text.
Then, we convert the up-sampled image into a black-and-white
image. This binarising process is done via the standard
thresholding method: all the pixels with a color value above a
heuristically predetermined threshold is converted to black and
those bellow it to white. Next, we apply Zhangs’ algorithm [16] to
thin the image. Thinning is the process of identifying a binary
image’s skeleton. Figure 3 shows the output of our preprocessing
on a sample image.

The main advantages of using thinning in our attack are:
1)Thinning normalizes the character thickness, which varied very
much in a random way, to a uniformed one-pixel thickness. This
greatly simplifies our attack, as it does not have to account for
different character thicknesses. 2) It is much faster to process a
thinned image than an un-thinned one, as the former contains far
fewer pixels that matter. Clearly thinning does not segment
characters – connected characters stay connected after thinning.

Figure 3. After preprocessing (the image is not in its actual

size due to space concerns; the original image is in Figure
2(b))

3.2 Pattern Based Characters Detection
In this step, we aim to detect categories of characters in a thinned
image using shape patterns found in their generic shape. We
identified four shape patterns and each belongs to a category of
characters as follows.

• Dot shape: “i” and “j”.

• Loop shape: “a”, “b”, “d”, “e”, “g”, “o”, “p”, “q”.

• Cross shape: “t” and “f”.

• S shape or “S Vertical Histogram”: Characters that contain
three vertically juxtaposed lines, the character “s”

Detecting Characters that contains a Dot Shape. We first use
“Color Filling” segmentation on the foreground components (on
the thinned version of an image). A foreground component
contains a single character, a group of connected characters, or a
part of a character, and has a black color. “Color Filling”
Segmentation or CFS is effectively like using a distinct color to
flood each component, and it could be used to segment against
any color, so we call it “Color Filling” segmentation, more about

CFS in [3] . In Figure 4, each foreground component is segmented
by CFS and is identified by its unique color.

Figure 4. Segmentation of connecting component using CFS.

Each component is indentified by a different color.

Characters such as “i” and “j” consist of a dot and a body part
underneath the dot. We detect both parts as follows:

a) To detect the dot part: We use its relatively small pixel
count (i.e., pixel count is the number of pixels in an
component).

b) To detect the body part: we apply a series of steps as
follows:

First, using the position of the dot, we locate all foreground
components underneath it. In Figure 5 (a), only the component
“spi” is positioned underneath the dot.

Second, we use a modified version of CFS (flood up and down
only) to ignore all parts of the components with a horizontal
orientation. Figure 5 (b) shows the remaining components having
a vertical orientation.

Third, for each of the remaining components, we calculate the
equation of a line representing its orientation (components far
from the dot are ignored). In this case, only two lines are plotted
as shown in figure 5 (c).

Finally, the component with the line path closest to the dot
component is considered as the body part of either “i” or “j”.
Figure 5 (d) shows the only remaining component; in this case the
body part of “i”.

(a) (b)

(c) (d)

Figure 5. Detecting characters with a dot shape: (a) a
connected component located under the dot .(b) components
with a vertical orientation. (c) Plotting the line equation for
the remaining thinned components underneath the dot. (c)

The body part of “i”.
Detecting Characters with a Loop Component. We adopted a
loop detection method that we used in [3], and which involves
two steps as follows:

First, CFS is applied to the background color (i.e., white) of the
image. As shown in Figure 6 (a), background components are
now segmented and identified by different colors. Second, the
above step return two types of loop components, “character
loops” and “connection loops”. Connection loops are created as a
result of the crowding of characters together. Characteristics of
connection loops are: 1) a relatively small pixel count, or 2) a

relatively large pixel count if vertically overlapping and in close
proximity with character loop(s). We developed heuristics based
on the pixel count and the relative position of loops to detect and
remove connection loops. Figure 6 (b) shows a different example
containing a “connection loop” before and after removal.

(a)

(b)

Figure 6. Detection of characters with a loop shape. (a) CFS
on the background color is used for loop detection. (b) An

example of a connection loop before and after removal.
Detecting Characters with a Cross. A unique characteristic of a
cross shape is having four sides; upper, lower, left and right sides.
We observed that drawing an imaginary box around the cross
shape must intersect with the box once from each side, with each
intersection representing one of the cross shape four sides.

 We detect the cross as follows. a) We traverse the image using
the imaginary box, and if each of the four sides of the box
intersects with one and only one foreground colored pixel, then
the box position is labeled as a possible cross shape component.
After that, we shift the box position and continue searching for
other cross shapes, until the entire image is traversed. b) We filter
through all the possible cross shapes, and we keep only those
satisfying these conditions. First, the position of the cross shape is
in the upper side of its foreground component. Second, all the
foreground pixels covered by the box area are connected with
each other (we used CFS to verify this condition), this condition
is needed as all the pixels in a valid cross shape are connected
with each other Finally, the cross shape must not overlap
vertically with a loop shape. In Figure 7, the red box indicates the
imaginary box and thus the location of a cross shape.

Figure 7. Detecting characters with a cross shape (the

detected cross shapes are highlighted by a red box).
S Vertical Histogram. The unique shape characteristic of the
character “s” is that it contains three vertically overlapping
strokes in its shape. We detect it as follows. First, we map the
image against a vertical histogram that represents the total number
of foreground pixels in each column. Then we ignore all parts of
the histogram that intersects with other character shapes (this is
done to insure no false detection of characters having three
vertically overlapping strokes, such as “a” or “e”). Second, we
search the histogram for consecutive occurrence of columns with
the value of three or more pixels in each column; we call such
occurrence of columns as the “s-span”. Finally, if an “s-span” has
a width larger that 25 pixels (a threshold for the character “s”
minimum width; i.e., the component under analysis has a width
large enough to contain an “s”), then we use the s-span’s left-most
and right-most columns as a reference to draw a bounding box
around the characters “s”. Figure 8 shows the histogram
(magnified by a factor of 4) and the “s” character bounding box.

Figure 8. S Vertical Histogram. Identification of the

character “s” location, as highlighted by a bounding box.

3.3 Segmentation
In this step, we cut out characters that have a shape pattern
detected in the previous step. We use the examples used in the
previous section to show how we separate ‘i’ from ‘sp’, and how
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to
segment a character with a dot, a character with a loop, a
character with a cross, and a character with “s” shape,
respectively.

We first convert the detected shape pattern’s color to white (i.e.
the image background color). This effectively hides the detected
shape, and breaks connected characters into separate components,
as shown in Figure 9. Note: for a character with dot, the detected
shape includes the dot, and the vertical part of the body.

All visible components in Figure 9 can be classified into two
types. The first type belongs to only one character, and we call
them private components. For example, in Figure 9(a), the
component in green color and the component in red were
previously both connected to the body of the character “i”. They
belong to this character only, and therefore are private
components. The second type of components occurs as the result
of connected characters; these components do not belong to a
single character alone, and we call them shared components. In
Figure 9 (a), the component in brown color is a shared
component, since it consists of a stroke that was previously
connecting characters ‘p’ and ‘i’.

Similarly, in Figure 9(b), private components are the blue one and
the red one, and the green component is a shared one. In Figure
9(c), the green component is a shared one, and all others are
private components. In Figure 9(d), the blue component is a
shared one, and all others are private components.

It is simple to automatically differentiate between private and
shared components: a shared component connects with other
characters, and therefore has a much larger pixel count than a
private component does.

(a) (b)

(c) (d)

Figure 9. Locating shared and private components.
As such, the task for segmenting a detected character becomes
identifying where to cut in shared components. The properly cut
shared components, a detected shape pattern and its associated
private components will form a complete character.

Identifying Cutting Points. The location of a cutting point on a
shared component is dependent on the nature of the character,
which the component connects to.

For a shared component that connects with a character with a dot
shape, the cutting point is close to the character in terms of
horizontal distance. The reason is that such a character has a small
width, and if we cut far away from the character, we will likely
destroy its connect character(s). The cutting point we choose will
make sure that we preserve both the dot character and its adjacent
characters. The identification of cutting points for shared
components that connect with a character with a cross pattern is
similar, and for the same reason.

For a shared component that connects with a character with a
loop, the cutting point is farther way from the character in terms
of horizontal distance. The reason is this: a loop shape typically is
inside a character; if we cut too close to the character, we will
destroy it. Similarly, for a shared component that connects with
an ‘s’ shape, we cut at a point that is far away from the character
with ‘s” shape.

Figure 10 gives an example of identifying the cutting point. Since
the shared component, connecting characters “u” and “t”, is
positioned to the left of the cross shape and starts from the lower
side of the cross shape, the cutting point is estimated at 15 pixels
in horizontal distance to the left of the cross shape. The arrow
indicates a distance of 15 pixels, and a red circle highlights the
cutting point.

Figure 10. Locating a cutting point in a shared component.

Cutting. Cutting points are identified in a thinned image, but our
real cutting is done in the image’s un-thinned version. We could
do the segmentation in the thinned image. However, cutting the
non-thin version has advantages. First, we can reuse the rate of
recognizing individual characters in Google CAPTCHA reported
in the literature for estimating our overall success (segmentation
and then recognition) of breaking the Google scheme. It is useful
future work to check whether recognizing thinned individual
characters works better than recognizing un-thinned ones, but not
important for this paper. Second, the un-thinned version preserves
original character shapes, which as discussed later allow further
improvements to our attack.

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by
superimposing two images, since they have the exact same width
and height. Then, we draw an imaginary box (6x15 pixels in
dimension, illustrated in red in Figure 11) around the cutting
point, and within this box, we try to find the shortest path that can
cut through a character stroke. If such path exists, then we cut
through it, else we cut vertically at the location of the cutting
point.

The shortest cutting path exists in the case shown in Figure 11,
and is identified as follows. The green color represents a set of
points S1, located in the upper side of the imaginary box. The
blue color represents a set of points S2, located in the lower side

of the box. To find the shortest path that can cut through the
character stroke shared by “u” and “t”, we compute the distance
between every point in S1 to every point in S2. The points with
the shortest distance are then used to cut through the character
stroke. In Figure 11, both of the upper and the lowers sides of the
imaginary box extended outside the area of the character stroke.
But, in some cases, the upper side, the lower side, or both upper
and lower sides of the imaginary box remains inside the character
stroke. In such cases, the character stroke is cut vertically at the
position of the cutting point.

Figure 12 shows the output of cutting the shared components in
the non-thin version of the characters, where each segmented
character is highlighted with a distinct color.

Figure 11. An example of segmenting a shared components.

3.4 Tuning
The order of character detection and segmentation is about
which shape character is to be detected and segmented first (when
multiple options exists), and this has an impact on our attack’s
success rate. The optimal order we found is to first process (detect
and segment) characters with a dot, then characters with a loop,
next characters with a cross, and finally “s”-shape characters.

This is mainly a decreasing ranking order in terms of false
positive rates introduced by each method. For instance, the dot
shape has a unique shape, and its detection method has only 1%
false positive. As a result, its order was first.

On the other hand, the arrangement of characters and their
connection patterns resembled character shapes in some cases.
For example, we found that some of the connection patterns
between characters resembled a cross shape, leading to a false
detection of the cross shape. For example, the connection pattern
between the characters “e” and “s” in Figure 12. In addition,
horizontally overlapping italic font in connected characters could
be confused with the character “s”. For this, we decided to use the
loop method second in order, as the segmentation of loop
character lowers the chance of false “cross” and “s” shape
patterns.

Since the “s” detection method is restricted to the analysis of wide
characters only, we decided to use it last after the cross detection
method, thus lowering the chances of confusing horizontally
overlapping connected characters with the “s” shape.

Among our segmentation results in Figure 12, in “perspi”, the
connection between “pi” was segmented first using the dot
segmentation method, followed by the segmentation of the
connection between “er” and “sp” using the loop
detection/segmentation algorithm; in “phautta”, the connection

between “ha”, “au” and “ta” was segmented first using the loop
segmentation method as no dots were detected in this case and the
connection between “ut” was segmented using the cross
segmentation method; in “cowsi”, the connection between “co”
was segmented using the loop segmentation method first,
followed by the segmentation of the connection between “ws”,
and finally, in “reses”, only the loop segmentation method was
used.

Figure 12. Segmentation results of the Google scheme: each

segmented character is highlighted with a distinct color.
Up-sampling has an impact on both our attack’s success rate and
speed. We tested with different up-sampling ratios such as 1, 2, 3
and 4. The higher the up-sampling ratio is, the higher success rate
our segmentation attack can achieve, and the slower the attack is.
The explanation is simple: up-sampling enlarges an image, and
therefore it slows down the attack; up-sampling also smoothes
characters and their connection areas, reducing segmentation
errors. We identify that the optimal up-sampling ratio is 3, which
achieved a reasonably good balance between the attack success
and speed. Measurements reported in this paper are based on this
configuration.

3.5 Attack Success and Speed
Our attack achieved a success rate of 68% on a sample-set of 100
challenges. Following a common practice in the areas of computer
vision and machine learning, we tested our attack on 400
independent samples from a test-set and achieved a success rate of
62%2. We did not use any of the test-set samples in our attack
design, as the test-set aims to generalize our attack on
independent samples. That is the attack is generic enough to all
challenges generated by this version of Google CAPTCHA.
Given that the state-of-the-art can achieve a success rate of 95%
in recognizing individual segmented characters [6], and an
average number of characters in Google CAPTCHA of 5.5
characters, our attack implies that it could lead to an overall
(segmentation and then recognition) success rate of 46.75% (62 *
0.95^5.5) for breaking this Google CAPTCHA.

We implemented our attack using Java, and tested it on a desktop
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We
ran the attack 10 times on both the sample and test sets to
compute its speed and on average our attack took 7 seconds to
segment a challenge.

3.6 Further Enhancements
It is important to note that when more connection patterns
between adjacent characters are considered, we can significantly
improve our attack’s success. We designed an algorithm to detect
an interesting connection pattern between characters such as “cy”,
“oo”, “bc” and “bd”. This connection pattern is called “double v”,
as it (shown in Figure 13(a)) resembles a “v” shape in the upper
side, and a reversed “v” shape in the lower side.

2 Our sample set was collected in June 2009, and the test set in

August 2010; both dates were random choices.

Our algorithm work as follows: First, the contour of suspicious
components (i.e., components with a width that could
accommodate more than one character) is mapped to a coordinate
plane. We analyze the plane points from left to right. To detect a
“v” shape, we search for consecutive points that have an
increasing Y value and then a decreasing Y value – The higher
the value of Y, the lower the point position in the image. To
detect a “reverse v” shape, we search for consecutive points that
have a decreasing Y value and then an increasing Y value. Then,
we compare the position of the “v” and the “reversed v” shapes,
and a double v pattern is detected if any of them overlaps
vertically.

To segment the “double v” connection, we simply cut from the
lowest point in the “v” shape, to the highest point in the “reversed
v” shape. Figure 13(b) shows a segmentation result.

(a) (b)

Figure 13. Google CAPTCHA: (a) A “double v” connection
pattern. (b) Segmenting result.

With this “double v” enhancement, our attack has achieved a
segmentation success rate of 74% in the sample-set, and 69% on
the test-set. This is so far the most successful attack on a usable
version of Google CAPTCHA.

4. THE ROBUSTNESS OF RECAPTCHA
ReCAPTCHA is similar to Google CAPTCHA since both the
schemes deploy the “crowding characters” mechanism and both
lack defenses against attacks exploiting character shape patterns
and connection patterns. In addition to its functionality as a
human verification tool, ReCAPTCHA is utilized as a crowd-
sourcing system for digitizing books, i.e., a text “labeling” tool.
As shown in Figure 14, a ReCAPTCHA challenge employs two
text strings where the answer to one of those is known to the
server and thus functions as a CAPTCHA, whereas the answer to
the second one is unknown and it is used for labeling
functionality. The other crucial difference in ReCAPTCHA can
be found in its text challenges in which, unlike Google’s, its
character set includes numbers. Moreover, some of its challenge
strings are dictionary words.

Figure 14. ReCAPTCHA: a challenge sample.
To show that our attack on Google CAPTCHA is applicable to
other schemes, we developed a variant of the attack for
ReCAPTCHA, and it works as follows.

4.1 Preprocessing
In this step we first divide a challenge into two images, each
containing a challenge string. This is done by mapping the
challenge against a vertical histogram representing the total
number of black pixels in each column. Then, we search the
histogram for a column satisfying two conditions: first, it contains
no black pixels and, second, its position along the x-axis is the
closest to the mid value of the image width. We cut through this
column to divide the challenge into two images. Next, each of the
two images is up-sampled by a factor of three and then binarised.

Unlike the Google scheme (where its text challenges are
automatically generated and don’t contain characters with
deformalities), in ReCAPTCHA the characters were less smooth
and often contained missing parts. This quality degradation is
likely introduced by the scanning process, as ReCAPTCHA
makes use of text materials from old books (that cannot be
recognized by OCR systems). Missing parts of characters make
thinning of little use, since many irregular strokes would be
created in a thinned image.

4.2 Pattern Based Detection of Characters
In this step we aim at locating individual characters using shape
patterns found in characters and their connections.

We classified three categories of characters in ReCAPTCHA as
follows:

• Characters containing a dot

• Characters that are detectable by our “S Vertical Histogram”
algorithm, such as “S”, “3”, “e” and “E”;

• Characters containing a loop, e.g. “o”, “b”, “0”, “6” and “8”

Cross detection is not needed for this attack.

Detecting Characters with Dots. We first apply CFS on the
foreground components (black color). A component is considered
to be a dot if it is located in the upper middle part of the image
and has a small pixel count. Unlike Google’s version of this
algorithm, we do not attempt to detect the body part of dot
characters, as it is often directly under the dot, and thus it is
segmented in a similar manner to other shape characters. Figure
16(a) shows an example.

Detecting Characters using the “S Vertical Histogram”. We
use an algorithm similar to the one used in Google attack but,
since no thinning was applied on ReCAPTCHA, the algorithm
was modified to function with non-thin characters. Instead of
counting the number of foreground pixels in each column, the
algorithm search for, and count, a pattern found in consecutive
pixels of each column. The pattern is a pixel with a background
color having its upper neighbor pixel with a foreground color.
Moreover, we applied fewer constraints for this algorithm. For
example, the algorithm can analyze and detect components that
contain loop(s). The idea of using this algorithm against “loop”
characters is aimed at addressing the limitation of our loop
detection algorithm in which, even if some “loop” characters
contain broken loop(s) and are not detectable by our loop
detection algorithm, they still could be detected by the “S vertical
histogram”. This enables the algorithm to detect characters such
as “a”, “e”, “g”, “z”, “B”, “E”, “2”, “3”, “5”, “6”, “8”, and “9”.
For example, in Figure 15 (b), in addition to the detection of the
character “s”, the characters “a”, and “e” were also detected.

Detecting Characters with Loops. We use the same loop
detection method we used for our attack on the Google scheme.
For example, it detects characters such as “b”, “p”, “q”, “0”, “A”,
“O”, and “4”. In addition, we added a method to analyze loops
resembling the shape of a connection pattern between adjacent
characters. For instance, we considered loop shapes with a small
width compared to its height to be connection pattern loops.
Figure 15 (c) shows an example of a connection pattern loop
between the first character “u” and the second character “n”,
which is highlighted in red.

Note: the order of applying these three detection algorithms and
their associated segmentation operation does not matter, as
explained in Appendix.

(a)

(b)

(c)

Figure 15. ReCAPTCHA shapes detection: (a) Detecting “i”
using the dot shape. (b) Detecting “a”, “e”, and “s” using the

“S vertical histogram”. (c) Detecting a connection loop.

4.3 Segmentation
4.3.1 Segmenting Detected Characters
A vertical segmentation method is applied to segment detected
characters. This process of vertical segmentation starts by
mapping the image to a histogram that represents the number of
foreground pixels per column in the image. Using the position of
every detected character shape pattern as a reference, (we
heuristically picked 8 columns from each side of the shape
patterns in the search as it produced a better segmentation output
in comparison to other values). Columns with the lowest number
of pixels indicate the position of the left or the right side of a
character. For detected characters, a chunk is located between the
left and the right vertical lines of a detected shape and contains
one character. Figure 16 (a) shows an example of vertically
segmenting the character “i”, in (b) the characters “a”, “a”, “e”
and “s”. In the case of connection pattern loops, we simply cut
vertically through their middle. Figure 16 (d) shows such an
example of segmenting a connection pattern loop between the
first character “u” and the second character “n”.

4.3.2 Segmenting Undetected Characters
If the horizontal distance, denoted by d, between the boundaries
of two detected characters is large enough, we know there are
undetected characters between the detected characters. These
undetected characters define a new chunk of a width d.

We also calculate average width of detected characters in a word,
denoted by w. By comparing d and w, we can guess with a high
probability how many undetected characters there are between the
two detected characters, and segment them properly. We use the
following heuristics:

If d is larger than or equals to w but smaller than or equal to 2w,
then the chunk of undetected characters is analyzed using CFS. If
CFS algorithm returns two foreground components with a
relatively large pixel count, then we split the chunk into two
characters. This method is directed at segmenting overlapping
small characters with no shape patterns, such as the characters “r”
and “l” in Figure 16 (e).

If d is larger than 2w, then the bounding box of the chunk
contents is analyzed. If the bounding box is double or more of its
width, then we split the contents evenly into two chunks, each
containing one character. This method exploits the overall shape
of connected characters and it is directed at connected characters
with no shape patterns, such as the connection of “th”.

Otherwise, the chunk is assumed to contain only one character.

Drawbacks of this approach are the troublemaker characters with
a large width, such as the characters “m” and “w”, and chunks
containing a combination of connected characters with a small
width, such as “ll”, “rr”, “rt”, “ln”. Figure 16 (e) and (f) shows
chunks containing un-detected character(s) (highlighted by a
rectangle under them). In this case, only one chunk has a width
larger than the average width and contains two large components
(“r” and “l”) as shows in Figure 16 (e), where as the characters
“n” and “t” have a width smaller than the average. Figure 16 (g)
and (h) show the final segmentation output.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16. The final output of ReCAPTCHA segmentation
attack: (a) “dot” segmentation., (b) “S vertical histogram”.
(c) “S vertical histogram”. (d) “loop” connection pattern. (e)

and (f) chunks segmentation. (g) and (h) shows the final
output.

4.4 Results
To evaluate our attack, we downloaded 100 random
ReCAPTCHA samples as a sample set, and another 100 random
samples as a test set. We manually identified via online tests
which are known (verification) and the unknown words in each
sample. Our attack successfully segmented 53 known words in the
sample set, and 46 known words in the test set. This indicates that
our attack can effectively achieve a segmentation success rate of
at least 46%.

We ran the attack 10 times on both sample sets and on average
our attack took 0.85 seconds to segment a challenge consisting of
two words. The significant difference in time between the attack
on Google and that on ReCAPTCHA is due to the use of less
pattern detection and, a much simpler segmentation algorithm in
ReCAPTCHA attack.

Given that the state-of-the-art can achieve a success rate of 95%
in recognizing heavily distorted individual characters [6], and
with the average number of characters in ReCAPTCHA of 6.41
characters per word, and the segmentation success rate of 46% on
the known words, our attack implies that it could lead to an
overall (segmentation and then recognition) success rate of 33%
(46*0.95^6.41).

Many of the cases which we treated as a failed segmentation in
the above attack had, in fact, achieved a good partial
segmentation. We counted 30 failures in the sample-set (12
known words) and 28 failures in the test-set (9 known words)
with only one un-segmented chunk containing two or three
characters. Therefore, a dictionary attack would complement well
with our segmentation attack; a partial segmentation will lead to a

partial recognition result, which can be used to derive a string
pattern such as ‘**xxxx’ (* represents an unrecognized character).
With the aid of a dictionary, the overall success would be
significantly better than the rate we estimated above. For
example, we tested the chunks returned by our segmentation
algorithm in Figure 17 using the Tesseract OCR engine, the OCR
returned the following output for each chunk respectively: “a”
,“n” , “o”, “ch”, “e” and “r”. Then we crossed referenced the
output with a dictionary list of words, only one word that starts
with “ano” and ends with “er” was matched, that is “another”.

With the above dictionary attack as an enhancement, our
theoretical estimate of the attack success can be boosted by 9%.
This implies that theoretically an attacker can break this
reCAPTCHA about 42% of the time. We tested our attack, with
the Tesseract OCR engine being used for individual character
recognition, and the success rate for the attack is about 24.7%.
The gap between the empirical and theoretical estimate is caused
by the quality of OCR engine, which achieved only 84.6%
success for character recognition.

Figure 17. An example of a partial segmentation. The
adjacent characters “t” and “h” are not segmented.

4.5 Implications
Our attack on reCAPTCHA reveals the weaknesses of the
scheme, e.g., we found a pattern that correlate between the
horizontal spacing of connected characters and their number; this
allowed us to exploit ReCAPTCHA using simple tools such as
even cut. In addition, we found a pattern in the shape of
connected characters: the bounding box of such connection shape
helped us to differentiate wide horizontal spacing characters such
as “m”, and the connection of small horizontal spacing characters
such “th”.

Our attack also reveals insights on the defcon attack, as
summarized in Appendix. First, the “wave distortion” removal in
[8] is not a necessary step. Second, the core weakness of
reCAPTCHA is still in its segmentation resistance mechanism.

5. Discussions
5.1 Attack Applicability to other CAPTCHAs
In early May 2011, we noticed that ReCAPTCHA has rolled out a
new protection for known words to increase their robustness to
attacks, see Figure 18 (a), in which the heavily distorted are
known words. We downloaded 100 random samples from the
Internet, and tested the attack we developed in the previous
section. We only tuned the loop detection algorithm to reject loop
shapes that are small in size and to reject loops that are too wide -
the new distortion mechanism often creates false loops with a
small pixel count or with a large ratio of width to height. All other
parts of the source code stayed unchanged. The results are
amazing: our program achieved a segmentation success rate of
29% on known words; that is, 29 out of 100 samples were
completely segmented. Figure 18 (b) shows example output of our
attack. On average, it took 0.6 seconds for our computer to
segment a known word.

(a)

(b)

Figure 18. ReCAPTCHA as of early May 2011. (a) two
sample challenges (b) completely segmented known words.

Other major CCT-based CAPTCHAs such as those from Yahoo,
E-Bay, MySpace and Baidu (see Figure 19) also appear to be
vulnerable to our attack or its variants, for two reasons. First, all
of them are easy to pre-process, and second, all of them contain
exploitable shape patterns. We suspect such an attack will
successfully segment Baidu, E-Bay, MySpace, and Yahoo, but
with a decreasing order for the success rate. We urge these
companies to evaluate how vulnerable their designs are to our
attack or its variants.

Figure 19. Other CCT-based CAPTCHAs from Yahoo,

MySpace, E-Bay and Baidu (clock-wise).

5.2 Defense
Perhaps the simplest defense against our attack is to exclude
characters with known exploitable shape patterns. For instance,
challenge strings such as “mrnucly” will be less likely to be
vulnerable to our attack. To make this method work, it is also
necessary to not only examine connection patterns of adjacent
characters, but also get rid of those exploitable ones. An
additional issue to consider is usability, and therefore a careful
control of the distortion level caused by CCT is required.

The above method appears to be applicable to all CCT-based
schemes that use random text strings. However, it is inapplicable
to schemes such as reCAPTCHA that use English words.

Some other possible defenses include the following. Increasing
the number of false loops and breaking some of the valid loops
could confuse a loop detection method. Adding random dots in
the upper side of challenge images could confuse the dot
detection algorithm. The use of font that does not render a cross
shape in the characters “t” and “f” could complicate a cross
detection algorithm; a similar effect could be achieved by adding
random crosses.

6. CAPTCHA ROBUSTNESS
EVALUATION: A METHODOLOGY
In the recent years, we have examined numerous CAPTCHAs
(including both high-profile ones and less-known ones) and found
effective attacks on virtually all of these schemes. In this process,
we have been establishing a novel security engineering approach
to CAPTCHA robustness evaluation. Our approach applies
adversarial thinking skills searching for and exploiting
vulnerabilities hidden in CAPTCHAs. In essence, all of our
attacks have exploited invariance hidden in the CAPTCHAs,

which the distortion and transformation process of each of the
Captcha generators failed to eradicate. Exploiting invariants is a
classic strategy often used in cryptanalysis. For example,
differential cryptanalysis works by observing that a subset of
plaintext pairs has an invariant relationship preserved through
numerous cipher rounds. Our work demonstrates that exploiting
invariants is also effective for examining Captcha robustness.

A brief discussion of selected invariants we have identified in
CAPTCHAs was reported in our previous work [7].Our work on
the Google scheme and ReCAPTCHA, as reported in this paper,
shows for the first time that exploiting shape invariants inherent
in characters (such as loops, dots and crosses) and connecting
patterns of adjacent characters leads to a novel attack to an entire
family of CAPTCHAs that is based on CCT. This work
significantly extends our previous understanding of exploitable
invariants by identifying some novel invariants and demonstrating
how to exploit them.

Here we attempt to provide the first detailed exposition of our
“search for invariance” methodology, which has proven effective
in practice to reveal critical design flaws and to improve captcha
robustness. In particular, we propose a systematic framework that
classifies the exploitable invariants that we have identified so far
into major categories. Defined in Table 1, our framework
provides key insights on security vulnerabilities that text
CAPTCHAs should account for.

At the top level, our framework has two categories: pixel-level
invariants and string-level invariants. Pixel-level invariants are
all about structural features of challenge images, and they are
exploitable by image processing techniques at the pixel level. On
the other hand, string-level invariants are about syntax and
semantic features of text strings in challenge images, and are
independent of any pixel-level features. Typically string-level
invariants are created by the linguistic model that a CAPTCHA
employs to generate text strings.

Table 1: A framework of exploitable invariants

Category Invariant Type

Pixel count

Color pattern (among pixels)

Shape of character component (or part)

Shape and position of a whole
character (as defined by its bounding

box)

Connection patterns between adjacent
characters

Shape of connected characters (as
defined by a bounding box

surrounding them)

Pixel-level
(structural
features of

images)
Shape

Overall geometric features of a
challenge string

Characters set

String length
String-level
(syntax and

semantic
features) Random string or dictionary word?

Pixel-level invariants. We have identified three types of pixel-
level invariants. The first type is pixel count, which is the number
of foreground pixels of a connected component (such as a
character, a character’s part, or a distortion element) in a Captcha
image. In our earlier work [4], we identified that in some
Captchas, character pixel counts were usually distinct among
different characters but remained constant for the same character
under different distortions. A simple pixel count attack turned out
to effectively break many CAPTCHA schemes at the time. In our
attack on the Googe scheme reported in this paper, we exploited
pixel counts to differentiate between shared and non-shared
components of characters, in order to segment some connected
characters. This pixel-count method also helped us to break
Microsoft and Yahoo Captchas by differentiating between valid
characters and random distortion noise.

The second type of pixel-level invariants is color pattern of
pixels. Many designers used fancy color schemes for foreground
and background pixels in their Captchas to improve usability, to
defend against automated attacks, or to do both. The regularity of
color patterns in Captcha images helped us to successfully break
many designs. A range of case studies is given in our previous
work [16].

The third type of pixel-level invariance is shape invariants, which
are about geometric features of Captcha text strings as rendered in
challenge images. Shape invariants can be classified into the
following five categories, according to different granularity
ranging from a character’s part to a text string as a whole.

The first category is geometric features of character components
(i.e., parts) such as “loops”, “dots”, and “crosses”. Our attack on
the Google scheme and ReCAPTCHA heavily exploited such
invariants.

The second type of shape invariants is identified from the overall
shape of a whole character (as defined by its bounding box),
sometimes along with the character’s relative position in a
challenge image. For example, in our attack on Microsoft Captcha
[3], we exploited the shape and position of random arcs (i.e. fake
characters) to differentiate them from valid characters. The shape
of an arc was either too wide or too long to resemble the shape of
a valid character. Or an arc often had a relative position different
than valid characters did – typically, an arc was closer to the
image’s boundary. Figure 20 (a) illustrates such scenarios with
real examples taken from our previous attack on a Microsoft
CAPTCHA: the arcs in the 4th and 6th chunks were discriminated
through their relative position with respect to the image
boundaries and other characters, and the arc in the last chunk was
identified through its overall shape (as defined by its bounding
box, which is not drawn in this figure though).

In our attack on the Google scheme, the knowledge of relative
position of the shape invariants with respect to their
corresponding character category aided the attack’s segmentation
steps. For example, we knew that the body of the character “i”
must be underneath its dot part.

Our attack on ReCAPTCHA exploited such invariants, too. For
example, a bounding box with a large width together with a large
width-to-height ratio indicated a character such as “m” and “w”.

The third category of shape invariants is connection patterns
between adjacent characters. Our attack on the Google scheme
and ReCAPTHCHA exploited this type of invariants, e.g. the
“double v” connection pattern for character pairs “oo”, “bc”,

“bd”, and “cy” (see Figure 13) in the Google scheme, and the
loop shape connecting adjacent characters in ReCAPTCHA. Also,
loops with deformed none-circular shapes aided our attack by
indicating a connection between characters, for example, in the
case of the connection between “ss” (see Figure 6 (b)). On the
other hand, white space (gaps) between unconnected adjacent
characters can be considered as a special case in this invariant
category.

The fourth category of shape invariants is features identified in
the shape of connected characters as defined by a bounding box
surrounding them. Our attack on ReCAPTCHA exploited such
invariants. For example, a bounding box with a large width but a
small width-to- height ratio indicated connected characters such
as “th”. We used this pattern to properly segment the characters.
Figure 20 (b) shows such an example.

The fifth category of shape invariants is structural features
identified in the overall shape of a CAPTCHA challenge string.
For example, a Yahoo CAPTCHA generated only two types of
challenges, either regular or angular (with almost a fixed angle),
as shown in Figure 20 (c). We successfully broke this scheme by
exploiting such shape invariants [3]. The difference in overall
shape between known and the unknown words in the latest
ReCAPTCHA (as of May 2011, see Figure 18) allows attackers to
customize their attacks only on known words, without bothering
with unknown words.

String-level invariants. We have identified three types of string-
level invariants. The first is character set, which is the set of
characters used to compose challenge strings. A Captcha that uses
a small character set is more vulnerable to automated attacks than
a counterpart using a large character set.

The second type of string-level invariants is text length, the length
of text strings used in a Captcha. A notable example of this type
of invariant occurred in a Microsoft Captcha, which used a fixed
length of 8 characters for its text strings. This invariant aided our
successful attack [3]. On the other hand, if the text length in a
Captcha is fixed and short, and its character set is also small, then
this scheme is very likely vulnerable to random guessing attacks.
In general, the knowledge of a string length increases the success
chance of a segmentation attack based on character estimations.

(a) (b)

(c)

Figure 20. Some examples of shape invariants. (a) the second
type, (b) the fourth type, and (c) the fifth type

The third type of string-level invariants is that text strings are
always dictionary words, which allows a dictionary attack. A
dictionary aided our attack on reCAPTCHA in Section 4, and
aided our early attacks on other Captchas [4].

All the invariant types identified in our framework are
independent of each other, yet they complement each other.
Often, an effective attack has to exploit multiple types of
invariants in combination, just as the current paper and our earlier
work such as [3, 4] have demonstrated. It’s interesting to note that
in our defeat of a Yahoo CAPTCHA in [3], exploiting a

correlation between the width of the bounding box of a
CAPTCHA challenge string (i.e. the fifth type of shape
invariants) and the number of characters in the string (i.e. the
second type of string-level invariant) was key to our attack’s
success.

It is an open problem whether the list of invariants and categories
in our framework is complete. We encourage people to identify
new types of exploitable invariants, and to extend and refine our
framework.

7. GENERAL DESIGN PRINCIPLES
The success of our “search for invariance” methodology in
identifying critical vulnerabilities in many deployed CAPTHCAs
evidently suggests a new general principle for CAPTCHA design:

A good CAPTCHA should avoid exploitable invariants, which
provide shortcuts for effective attacks. The effective methods of
identifying exploitable invariants include 1) a manual inspection
of randomly chosen challenge images, walking through Table 1 to
identify suspicious invariants, 2) automated identification of
suspicious invariants by running software tools such as the attacks
we have developed, and 3) perhaps more importantly, following
the rationale with which we structure our framework might be
able to guide the identification of new exploitable invariants. An
effective method for removing exploitable invariants in a Captcha
is to employ proper randomization techniques in its generator so
that the process of distortion and transformation can be refined.

Our extensive study of CAPTCHA robustness also suggests that
two general principles established before, as summarized as
follows for completeness, still hold.

A good CAPTCHA should be segmentation-resistant. This
principle has been established by [5] since 2005 and still holds.
However, it is unclear whether it is possible to find a perfect
design that is indeed segmentation-resistant and at the same time
achieves a good balance between security and usability.

A good CAPTCHA should disable machine-learning attacks
or at least make it hard to perform such attacks. This principle
was first proposed by one of us -- the second author - and
collaborators [12]. Although the principle was initially proposed
in the context of image-recognition CAPTCHAs (which require a
user to solve an image recognition task), it is also applicable to
text CAPTCHAs. For the sake of completeness, we reiterate here
some insights that we discussed in [12].

“An intrinsic feature for all machine learning attacks is that they
typically rely on empirical data to learn effective discriminative
features and decision criteria before becoming effective. The most
fundamental solution to deal with these attacks is, therefore, to
disable machine learning by making the past challenges
uncorrelated with the current or future challenges. In this way,
the discriminative features or decision criteria learned from the
past challenges would be ineffective to solve the current or a
future challenge. This can be achieved by randomly selecting a
type and an object of the type to generate a challenge, with both
the number of types and the number of individual objects of each
type being sufficiently large, infinite ideally, so that it is
intractable for the current computing capability.

It is interesting future work to explore whether we can create an
unlimited number of segmentation-resistant mechanisms for text
CAPTCHAs; or an unlimited number of combinations of

segmentation-resistant mechanisms and text-distortion methods.
In the meanwhile, an immediate improvement to the robustness of
current CAPTCHAs is the following. We can significantly
increase the number of segmentation-resistant mechanisms and
variants, text distortion methods and fonts that a CAPTCHA
generator supports. When a challenge is created, the generator
should randomly select one or more fonts, a segmentation-
resistance mechanism and a text distortion method. The idea is
simple: making it harder for an attacker to do machine learning,
we will have a CAPTCHA that is more robust than the state-of-
the-art.

8. REFERENCES
[1] von Ahn, L., Blum, M., and Langford, J. 2004. Telling

humans and computers apart automatically. Commun. ACM
47, 2 (Feb. 2004), 56-60. http://doi.acm.org/10.1145/966389.

[2] K Chellapilla, K Larson, P Simard and M Czerwinski,
“Designing human friendly human interaction proofs”, ACM
CHI’05, 2005.

[3] J Yan and A S El Ahmad. “A Low-cost Attack on a
Microsoft CAPTCHA”, 15th ACM Conference on Computer
and Communications Security (CCS’08). Virginia, USA, Oct
27-31, 2008. ACM Press. pp. 543-554.

[4] J Yan and A S El Ahmad. “Breaking Visual CAPTCHAs
with Naïve Pattern Recognition Algorithms”, in Proc. Of the
23rd Annual Computer Security Applications Conference
(ACSAC’07). FL, USA, Dec 2007. IEEE computer society.
pp 279-291.

[5] K Chellapilla, K Larson, P Simard and M Czerwinski,
“Building Segmentation Based Human-friendly Human
Interaction Proofs”, 2nd Int’l Workshop on Human
Interaction Proofs, Springer-Verlag, LNCS 3517, 2005.

[6] K Chellapilla, K Larson, P Simard and M Czerwinski,
“Computers beat humans at single character recognition in
reading-based Human Interaction Proofs”, 2nd Conference
on Email and Anti-Spam (CEAS), 2005.

[7] Jeff Yan, Ahmad Salah El Ahmad, "Captcha Robustness: A
Security Engineering Perspective," Computer, pp. 54-60,
February, 2011.

[8] Chad Houck, Decoding ReCAPTCHA ,
http://n3on.org/projects/reCAPTCHA/

[9] http://www.theregister.co.uk/2009/12/14/google_recaptcha_
busted/

[10] Ahmad Salah El Ahmad, Jeff Yan, and Lindsay Marshall.
“The robustness of a new CAPTCHA”. In Proceedings of the
Third European Workshop on System Security (EUROSEC
'10). ACM, New York, NY, USA, pp36-41.

[11] Jeff Yan, Ahmad Salah El Ahmad. “Usability of
CAPTCHAs or usability issues in CAPTCHA design. In
Proceedings of the 4th symposium on Usable privacy and
security (SOUPS '08). ACM, New York, NY, USA, pp44-52.

[12] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, K.
Cai, “Attacks and Design of Image Recognition
CAPTCHAs,” ACM CCS 2010, pp. 187-200.

[13] Jonathan Wilkins, “Strong CAPTCHA Guidelines” ,
http://www.bitland.net/captcha.pdf

[14] “Spammers crack Gmail Captcha”
”http://www.theregister.co.uk/2008/02/25/gmail_captcha_cra
ck/

[15] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for
thinning digital patterns. Commun. ACM 27, 3 (March
1984), pp236-239.

[16] Ahmad Salah El Ahmad and Jeff Yan. Colour, usability and
security : a case study. Technical Report Series, Newcastle
University, England. 2010.

[17] Philippe Golle. “Machine learning attacks against the Asirra
CAPTCHA”. In Proceedings of the 15th ACM conference on
Computer and communications security (CCS '08). ACM,
New York, NY, USA, pp535-542.

[18] Kurt Alfred Kluever. Evaluating the Usability and Security
of a Video CAPTCHA. Master’s thesis, Rochester Institute
of Technology, Rochester, NY, August 2008.

APPENDIX
9. The Order of ReCAPTCHA Attack
The order of ReCAPTCHA attack was chosen intuitively as
follows. First are dot characters, followed by characters detectable
by the “s vertical histogram”, and finally loop characters. The dot
character was chosen first because we are confident of its high
success rate. Then, we decided to use the “s vertical histogram”
algorithm, since many of the characters are detectable using this
method, including those with loops such as “e” and “9”, in
addition, this algorithm detects characters with broken loops. Last
in the order is the detection of loop character, in particular,
characters that has a loop but not detectable by the “s vertical
histogram” algorithm, such as the characters “o”, “0”, “D”, “A”,
and the detection of the connection pattern loop between
connected characters.

However, because in ReCAPTCHA attack we are interested in the
left and the right sides of characters shapes, rather than the shapes
connected components, swapping the order of the loop and the “s
vertical histogram” method would not change the success of the
attack. This is because the “s vertical histogram” functions similar
to the loop detection method and both methods effectively detect
the loop left and right side only. As highlighted in Figure 15 (b).

10. The DEFCON Attack
A brief description of the DEFCON attack [8] is as follows. First,
we have the image preprocessing including standard binarization,
and “wave distortion” removal. The “waving” of the words is

removed using the so-called “blanket algorithm”. The blanket
algorithm uses a word’s upper and lower contour to estimate the
waving; this is done by comparing the slope of neighboring pixels
along the contours, and plotting a series of tangents along the
top/bottom side of the word. The tangents are then used to
estimate the severity of each column along the x-axis. Then, the
position of each column in the word is interpolated up or down to
straighten the words, additional parameters were used to insure
smooth straightening. In Figure 21 (a) (taken from [8]), the red
lines above and below the words, represent the series of tangent
points, and thus an estimation of each word waving. In Figure 21
(b), show the output after straightening the words. Second, the
characters used in ReCAPTCHA are compiled into templates:
each template contains the average feature of a character, such as
its average width, its average height and the location of its pixels.
Third, the image is segmented into multiple “dips” (i.e., chunks in
comparison to our attack) using a variation of the “blanket
algorithm” [8], again, the word’s upper and lower contours are
plotted using the blanket algorithm, then the algorithm searches
for valleys in the upper contour, and for peaks in the lower
contour, and a vertical line is drawn at each valley or peak
location. Figure 21 (c) shows an illustration of the segmentation
output, every vertical line represents a “dip”. Fourth, the content
between adjacent dips is compared with the character templates.
The template matching algorithm could return more than one
character with high resemblance for combination of adjacent dips,
but initially the character with the highest resemblance is
assumed. Finally, a dictionary comparison algorithm is used to
verify that the sequence of characters returned by the character
templates matching algorithm is an actual dictionary word (other
combinations of characters with lower resemblance probability
could be used to obtain a dictionary based word).

(a)

(b)

(c)

Figure 21. Defcon attack. An illustration of the “dips”, each
vertical line represents a dip.

