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ABSTRACT 
We report a novel attack on two CAPTCHAs that have been 
widely deployed on the Internet, one being Google's home design 
and the other acquired by Google (i.e. reCAPTCHA). With a 
minor change, our attack program also works well on the latest 
ReCAPTCHA version, which uses a new defence mechanism that 
was unknown to us when we designed our attack. This suggests 
that our attack works in a fundamental level. Our attack appears 
to be applicable to a whole family of text CAPTCHAs that build 
on top of the popular segmentation-resistant mechanism of 
"crowding character together" for security. Next, we propose a 
novel framework that guides the application of our well-tested 
security engineering methodology for evaluating CAPTCHA 
robustness, and we propose a new general principle for 
CAPTCHA design. 

Categories and Subject Descriptors 
D.4.6 Security and Protection, H.1.2 User/Machine Systems. 

General Terms 
Security, Human factors 

Keywords 
CAPTCHA, robustness, segmentation attack 

1. INTRODUCTION 
A CAPTCHA (Completely Automated Public Turing Test to Tell 
Computers and Humans Apart), also known as a human 
interaction proof, is a program that generates and grades tests that 
are human solvable but intended to be beyond the capabilities of 
current computer programs [1]. CAPTCHA makes use of a hard, 
open problem in AI, and is now a standard technology to defend 
against undesirable or malicious computer bot programs. The 
most widely deployed CAPTCHAs are text-based schemes, which 
require a user to recognize distorted characters, a task that state-
of-the-art AI programs supposedly cannot do.  

CAPTCHAs’ robustness is the strength of their resistance to AI 
programs written to automatically solve CAPTCHA tests. It is 
well known that the robustness of a text CAPTCHA should rely 
on the difficulty of finding where each character is rather than 
what it is. The rationale is the following. Computers perform 
better than humans in recognizing individual characters, even 
under severe distortion [6]. However, locating individual 
characters in the right order (i.e. segmentation) is in general a 
computationally expensive and combinatorially hard problem for 
computers. Therefore, a text CAPTCHA should be segmentation-
resistant; if a scheme is vulnerable to a segmentation attack, then 
it is effectively broken. A commonly accepted goal for 
CAPTCHA design is that automated attacks should not be more 

than 0.01% successful but that the human success rate should be 
at least 90%. 

Various segmentation-resistant mechanisms have been proposed 
(some representative ones are shown in Figure 1), but many of 
them were broken, including those developed by major companies 
such as Microsoft, Yahoo and Megaupload [3, 10]. A 
segmentation-resistant mechanism known as “crowding character 
together” or CCT, initially adopted by Google to let adjacent 
characters touch or overlap with each other at a random 
intersection (see Figure 1 for illustrations), was shown to be more 
resistant to known attacks [3]. This mechanism has been used by 
Google until now, and it has gained wide popularity and been in 
use by a large number of different text CAPTCHAs.  

       

     
Figure 1.  CAPTCHAs designed by Microsoft, Yahoo, 

Megauplad and Google (clock wise), each using a different 
segmentation-resistant mechanism. 

This paper first answers an open problem that has intrigued the 
CAPTCHA community for years: Is the CCT mechanism 
vulnerable to novel attacks? Our analysis of a Google’s 
CAPTCHA, as currently deployed by Gmail, Blogger.com and 
BlogSpot, suggests that a simple but novel attack can break its 
CCT mechanism. This is to date the most effective attack against 
this scheme (For convenience, we will refer to this CAPTCHA as 
the Google scheme in this paper).  

Our attack is also applicable to ReCAPTCHA, a scheme that is 
widely used by millions of users of Facebook, Twitter and other 
Internet services on a daily basis (used by over 100,000 websites), 
and that was recently acquired by Google. Our attack was 
implemented for a ReCAPTCHA version that was active in May 
2010. To our surprise, our attack, without any significant change, 
also works well on the latest ReCAPTCHA version, which uses a 
new defence mechanism that was unknown to us when we 
designed our attack. This suggests that our attack works in a 
fundamental level. 

Our attack exploits shape patterns found in individual characters 
(such as the “loop” shape in characters “a” and “p”, and the cross 
shape in characters ‘f’ and ‘t’), as well as connection patterns of 
adjacent characters. The key insight is that these features and 
patterns largely stay invariant under various distortions and 
transformations applied by the CAPTCHA generators, and can be 
exploited to segment connected characters.  

Given the CCT mechanism’s popularity, the impact of our attack 
is beyond the Google scheme and ReCAPTCHA. We urge the 



 
 

designers of other captcha schemes that rely on the CCT 
mechanism to carefully check how vulnerable their designs are to 
our attack or its variants.  

In the recent years, we have been working to establish a novel 
security engineering approach to the evaluation of CAPTCHA 
robustness through a series of work, including [3, 4, 7, 10] and 
this paper. In contrast to a parallel approach developed primarily 
in the computer vision, document analysis and pattern recognition 
communities, where sophisticated objection recognition 
algorithms are often the design goal, our approach applies 
adversarial thinking skills searching for and exploiting 
vulnerabilities hidden in CAPTCHAs.  

In this paper, we will summarise our approach, and for the first 
time provide a detailed framework that classifies CAPTCHA 
vulnerabilities into major categories. This framework provides 
key insights on security vulnerabilities that text CAPTCHAs 
should account for. It can be used to examine a CAPTCHA’s 
robustness, as well as to guide the design of next generation 
CAPTCHAs. We will also summarise general principles for the 
design of robust text CAPTCHAs. We not only revisit established 
principles, but also propose a new one.  

The rest of this paper is organized as follows. Section 2 discusses 
related work. Section 3 presents our attack on the Google scheme, 
and Section 4 shows that a variant of our attack works on 
ReCAPTCHA. Section 5 discusses further applicability of our 
attack and its defence. Section 6 introduces our framework for 
understanding Captcha vulnerabilities, and Section 7 focuses on 
general principles for CAPTCHA design. 

2. RELATED WORK 
CAPTCHA has been an active field in the research communities. 
Due to space limit, we only review the literature that is most 
relevant to this paper. Kurt’s thesis [18] provided a good review 
of CAPTCHA research. 

Chellapillas’ et al [5] attacked a number of early CAPTCHAs 
using machine learning algorithms, and they achieved 4.89% 
success on an early version of Google’s CAPTCHA (around year 
2004. In 2007, we developed a technique that exploited gaps 
(whit e space) between characters in Google’s CAPTCHA at the 
time, and our attack achieved 12% success [3]. It was reported in 
[14] that some spammers succeeded in breaking the Google 
CAPTCHA using two compromised zombie hosts, with each host 
using a variation of their attack. This attack claimed a success rate 
of 20%, yet no technical details have been revealed. An attack on 
ReCAPTCHA using a combination of image processing and OCR 
techniques was reported with a success rate of 17.5% [13].  At 
DEFCON’18, Houck presented another attack on ReCAPTCHA; 
using both character segmentation and character template 
matching technique, his attack achieved 10% success on an early 
version of ReCAPTCHA and 31% success on a more recent 
version [8].  

Other notable attacks on (image recognition) CAPTCHAs include 
[3, 12]. 

3. A SEGMENTATION ATTACK on the 
GOOGLE SCHEME 
In this section, we first review key features of the Google scheme, 
and then present a novel segmentation attack.  

Google have tweaked their CAPTCHA from time to time in order 
to improve its robustness. Figure 2(a) shows a version of the 
Google scheme that is not user-friendly. For example, it is 
difficult for users to tell between “d” and “cl”, “ri” and “n”, “rn” 
and “m”, and “w” and “vv”. We did not choose to work on this 
version of Google CAPTCHA, because even human cannot 
decode them properly with a high accuracy. For such captchas, 
users’ complaint will soon become a major issue or even push 
them offline, just as we have seen it again and again. Figure 2(b) 
shows another version of Google CAPTCHA, which still adopts 
the CCT mechanism but is easier for humans to solve than the 
other version, and therefore has been deployed most of the time in 
our experience. We have chosen to develop our attack based on 
the second version.  

   

  
(a) 

 

 
(b) 

Figure 2.  Google CAPTCHA. (a) a user-unfriendly version; 
(b) a usable version. 

We studied a hundred samples that was randomly collected from 
the Internet1, and observed the following features.  

• Each challenge uses only two colours: Red, Green, or Blue 
for the challenge text, and White for the background.  

• CCT is the main segmentation-resistant mechanism so that 
characters connect or touch with one another horizontally.  

• Global warping is applied to add randomized distortion. 

• The thickness of characters varies much; even different 
portions of the same character differ in thickness with each 
other. This is a powerful feature for defending against 
potential segmentation attacks.   

• Random text strings are used; a text string’s length varies 
between 5 and 8 characters; only lower-case letters are used.  

• Multiple font typefaces and styles (such as bold, italics and 
regular) are used. 

The key insight behind our attack is that although the Google 
CAPTCHA uses different font typefaces and styles, and uses 
heavy distortions, shape patterns in some characters remain 
invariant, e.g. the “loop” in characters “a” and “p”, and the cross 
shape in ‘f’ and ‘t’. Our main idea is to first detect distinctive 
shape patterns, identify their associated characters, and then cut 
out these characters. It turns out that once these detectable 

                                                                 
1 All samples we used for this paper were randomly collected 

from Google email registration page and Blogger.com, where 
the CAPTCHA was used whenever one attempted to create an 
account or post a comment. 



 
 

characters are cut out, most often a whole challenge text is also 
properly segmented already.  

Our attack includes the following sequential steps: 

• Pre-processing – A set of standard techniques is applied to 
prepare each challenge image.  

• Pattern based detection of characters – A set of algorithms is 
used to locate characters with their detectable shape patterns.   

• Character segmentation – A set of rules and heuristics is used 
to segment detected characters.  

3.1 Preprocessing 
We first perform image up-sampling, which enlarges the image, 
increases its pixel details, and thus smoothes the embedded text. 
Then, we convert the up-sampled image into a black-and-white 
image. This binarising process is done via the standard 
thresholding method: all the pixels with a color value above a 
heuristically predetermined threshold is converted to black and 
those bellow it to white. Next, we apply Zhangs’ algorithm [16] to 
thin the image. Thinning is the process of identifying a binary 
image’s skeleton. Figure 3 shows the output of our preprocessing 
on a sample image. 

The main advantages of using thinning in our attack are: 
1)Thinning normalizes the character thickness, which varied very 
much in a random way, to a uniformed one-pixel thickness. This 
greatly simplifies our attack, as it does not have to account for 
different character thicknesses. 2) It is much faster to process a 
thinned image than an un-thinned one, as the former contains far 
fewer pixels that matter. Clearly thinning does not segment 
characters – connected characters stay connected after thinning. 

 
Figure 3.  After preprocessing (the image is not in its actual 

size due to space concerns; the original image is in Figure 
2(b)) 

3.2 Pattern Based Characters Detection 
In this step, we aim to detect categories of characters in a thinned 
image using shape patterns found in their generic shape. We 
identified four shape patterns and each belongs to a category of 
characters as follows. 

• Dot shape: “i” and “j”. 

• Loop shape:  “a”, “b”, “d”, “e”, “g”, “o”, “p”, “q”. 

• Cross shape: “t” and “f”. 

• S shape or “S Vertical Histogram”: Characters that contain 
three vertically juxtaposed lines, the character “s” 

Detecting Characters that contains a Dot Shape. We first use 
“Color Filling” segmentation on the foreground components (on 
the thinned version of an image). A foreground component 
contains a single character, a group of connected characters, or a 
part of a character, and has a black color. “Color Filling” 
Segmentation or CFS is effectively like using a distinct color to 
flood each component, and it could be used to segment against 
any color, so we call it “Color Filling” segmentation, more about 

CFS in [3] . In Figure 4, each foreground component is segmented 
by CFS and is identified by its unique color. 

 
Figure 4.  Segmentation of connecting component using CFS. 

Each component is indentified by a different color. 

Characters such as “i” and “j” consist of a dot and a body part 
underneath the dot. We detect both parts as follows:  

a) To detect the dot part:  We use its relatively small pixel 
count (i.e., pixel count is the number of pixels in an 
component).  

b) To detect the body part: we apply a series of steps as 
follows:  

First, using the position of the dot, we locate all foreground 
components underneath it. In Figure 5 (a), only the component 
“spi” is positioned underneath the dot.  

Second, we use a modified version of CFS (flood up and down 
only) to ignore all parts of the components with a horizontal 
orientation. Figure 5 (b) shows the remaining components having 
a vertical orientation.  

Third, for each of the remaining components, we calculate the 
equation of a line representing its orientation (components far 
from the dot are ignored). In this case, only two lines are plotted 
as shown in figure 5 (c). 

Finally, the component with the line path closest to the dot 
component is considered as the body part of either “i” or “j”. 
Figure 5 (d) shows the only remaining component; in this case the 
body part of “i”.  

 
(a)      (b) 

 
(c)      (d) 

Figure 5.  Detecting characters with a dot shape: (a) a 
connected component located under the dot .(b) components 
with a vertical orientation. (c) Plotting the line equation for 
the remaining thinned components underneath the dot. (c) 

The body part of “i”.  
Detecting Characters with a Loop Component. We adopted a 
loop detection method that we used in [3], and which involves 
two steps as follows: 

First, CFS is applied to the background color (i.e., white) of the 
image. As shown in Figure 6 (a), background components are 
now segmented and identified by different colors. Second, the 
above step return two types of loop components, “character 
loops” and “connection loops”.  Connection loops are created as a 
result of the crowding of characters together. Characteristics of 
connection loops are: 1) a relatively small pixel count, or 2) a 



 
 

relatively large pixel count if vertically overlapping and in close 
proximity with character loop(s). We developed heuristics based 
on the pixel count and the relative position of loops to detect and 
remove connection loops. Figure 6 (b) shows a different example 
containing a “connection loop” before and after removal. 

 
(a) 

             
(b) 

Figure 6.  Detection of characters with a loop shape. (a) CFS 
on the background color is used for loop detection. (b) An 

example of a connection loop before and after removal. 
Detecting Characters with a Cross. A unique characteristic of a 
cross shape is having four sides; upper, lower, left and right sides. 
We observed that drawing an imaginary box around the cross 
shape must intersect with the box once from each side, with each 
intersection representing one of the cross shape four sides.  

 We detect the cross as follows.   a) We traverse the image using 
the imaginary box, and if each of the four sides of the box 
intersects with one and only one foreground colored pixel, then 
the box position is labeled as a possible cross shape component. 
After that, we shift the box position and continue searching for 
other cross shapes, until the entire image is traversed.  b) We filter 
through all the possible cross shapes, and we keep only those 
satisfying these conditions. First, the position of the cross shape is 
in the upper side of its foreground component. Second, all the 
foreground pixels covered by the box area are connected with 
each other (we used CFS to verify this condition), this condition 
is needed as all the pixels in a valid cross shape are connected 
with each other  Finally, the cross shape must not overlap 
vertically with a loop shape. In Figure 7, the red box indicates the 
imaginary box and thus the location of a cross shape. 

 
Figure 7.  Detecting characters with a cross shape (the 

detected cross shapes are highlighted by a red box). 
S Vertical Histogram. The unique shape characteristic of the 
character “s” is that it contains three vertically overlapping 
strokes in its shape. We detect it as follows.  First, we map the 
image against a vertical histogram that represents the total number 
of foreground pixels in each column. Then we ignore all parts of 
the histogram that intersects with other character shapes (this is 
done to insure no false detection of characters having three 
vertically overlapping strokes, such as “a” or “e”). Second, we 
search the histogram for consecutive occurrence of columns with 
the value of three or more pixels in each column; we call such 
occurrence of columns as the “s-span”. Finally,  if an “s-span” has 
a width larger that 25 pixels (a threshold for the character “s” 
minimum width; i.e., the component under analysis has a width 
large enough to contain an “s”), then we use the s-span’s left-most 
and right-most columns as a reference to draw a bounding box 
around the characters “s”. Figure 8 shows the histogram 
(magnified by a factor of 4) and the “s” character bounding box.  

 
Figure 8.  S Vertical Histogram. Identification of the 

character “s” location, as highlighted by a bounding box. 

3.3 Segmentation  
In this step, we cut out characters that have a shape pattern 
detected in the previous step. We use the examples used in the 
previous section to show how we separate ‘i’ from ‘sp’, and how 
to split ‘sp’, ‘ut’ and ‘ws’ – four examples illustrate how to 
segment a character with a dot, a character with a loop, a 
character with a cross, and a character with “s” shape, 
respectively. 

We first convert the detected shape pattern’s color to white (i.e. 
the image background color). This effectively hides the detected 
shape, and breaks connected characters into separate components, 
as shown in Figure 9. Note: for a character with dot, the detected 
shape includes the dot, and the vertical part of the body.  

All visible components in Figure 9 can be classified into two 
types. The first type belongs to only one character, and we call 
them private components. For example, in Figure 9(a), the 
component in green color and the component in red were 
previously both connected to the body of the character “i”. They 
belong to this character only, and therefore are private 
components. The second type of components occurs as the result 
of connected characters; these components do not belong to a 
single character alone, and we call them shared components. In 
Figure 9 (a), the component in brown color is a shared 
component, since it consists of a stroke that was previously 
connecting characters ‘p’ and ‘i’. 

Similarly, in Figure 9(b), private components are the blue one and 
the red one, and the green component is a shared one. In Figure 
9(c), the green component is a shared one, and all others are 
private components. In Figure 9(d), the blue component is a 
shared one, and all others are private components. 

It is simple to automatically differentiate between private and 
shared components: a shared component connects with other 
characters, and therefore has a much larger pixel count than a 
private component does.  

 
(a)      (b) 

 
(c)      (d) 

Figure 9.  Locating shared and private components.  
As such, the task for segmenting a detected character becomes 
identifying where to cut in shared components. The properly cut 
shared components, a detected shape pattern and its associated 
private components will form a complete character. 



 
 

Identifying Cutting Points. The location of a cutting point on a 
shared component is dependent on the nature of the character, 
which the component connects to.  

For a shared component that connects with a character with a dot 
shape, the cutting point is close to the character in terms of 
horizontal distance. The reason is that such a character has a small 
width, and if we cut far away from the character, we will likely 
destroy its connect character(s). The cutting point we choose will 
make sure that we preserve both the dot character and its adjacent 
characters. The identification of cutting points for shared 
components that connect with a character with a cross pattern is 
similar, and for the same reason.  

For a shared component that connects with a character with a 
loop, the cutting point is farther way from the character in terms 
of horizontal distance. The reason is this: a loop shape typically is 
inside a character; if we cut too close to the character, we will 
destroy it. Similarly, for a shared component that connects with 
an ‘s’ shape, we cut at a point that is far away from the character 
with ‘s” shape.  

Figure 10 gives an example of identifying the cutting point. Since 
the shared component, connecting characters “u” and “t”, is 
positioned to the left of the cross shape and starts from the lower 
side of the cross shape, the cutting point is estimated at 15 pixels 
in horizontal distance to the left of the cross shape. The arrow 
indicates a distance of 15 pixels, and a red circle highlights the 
cutting point. 

 
Figure 10.  Locating a cutting point in a shared component. 

Cutting. Cutting points are identified in a thinned image, but our 
real cutting is done in the image’s un-thinned version. We could 
do the segmentation in the thinned image. However, cutting the 
non-thin version has advantages. First, we can reuse the rate of 
recognizing individual characters in Google CAPTCHA reported 
in the literature for estimating our overall success (segmentation 
and then recognition) of breaking the Google scheme. It is useful 
future work to check whether recognizing thinned individual 
characters works better than recognizing un-thinned ones, but not 
important for this paper. Second, the un-thinned version preserves 
original character shapes, which as discussed later allow further 
improvements to our attack. 

We first copy cutting points from a thinned image to its un-
thinned version. This is done, as illustrated in Figure 11, by 
superimposing two images, since they have the exact same width 
and height. Then, we draw an imaginary box (6x15 pixels in 
dimension, illustrated in red in Figure 11) around the cutting 
point, and within this box, we try to find the shortest path that can 
cut through a character stroke. If such path exists, then we cut 
through it, else we cut vertically at the location of the cutting 
point.  

The shortest cutting path exists in the case shown in Figure 11, 
and is identified as follows. The green color represents a set of 
points S1, located in the upper side of the imaginary box. The 
blue color represents a set of points S2, located in the lower side 

of the box. To find the shortest path that can cut through the 
character stroke shared by “u” and “t”, we compute the distance 
between every point in S1 to every point in S2. The points with 
the shortest distance are then used to cut through the character 
stroke. In Figure 11, both of the upper and the lowers sides of the 
imaginary box extended outside the area of the character stroke. 
But, in some cases, the upper side, the lower side, or both upper 
and lower sides of the imaginary box remains inside the character 
stroke. In such cases, the character stroke is cut vertically at the 
position of the cutting point.  

Figure 12 shows the output of cutting the shared components in 
the non-thin version of the characters, where each segmented 
character is highlighted with a distinct color.  

 

Figure 11.  An example of segmenting a shared components.  

3.4 Tuning 
The order of character detection and segmentation is about 
which shape character is to be detected and segmented first (when 
multiple options exists), and this has an impact on our attack’s 
success rate. The optimal order we found is to first process (detect 
and segment) characters with a dot, then characters with a loop, 
next characters with a cross, and finally “s”-shape characters.  

This is mainly a decreasing ranking order in terms of false 
positive rates introduced by each method. For instance, the dot 
shape has a unique shape, and its detection method has only 1% 
false positive. As a result, its order was first.  

On the other hand, the arrangement of characters and their 
connection patterns resembled character shapes in some cases. 
For example, we found that some of the connection patterns 
between characters resembled a cross shape, leading to a false 
detection of the cross shape. For example, the connection pattern 
between the characters “e” and “s” in Figure 12. In addition, 
horizontally overlapping italic font in connected characters could 
be confused with the character “s”. For this, we decided to use the 
loop method second in order, as the segmentation of loop 
character lowers the chance of false “cross” and “s” shape 
patterns.  

Since the “s” detection method is restricted to the analysis of wide 
characters only, we decided to use it last after the cross detection 
method, thus lowering the chances of confusing horizontally 
overlapping connected characters with the “s” shape. 

Among our segmentation results in Figure 12, in “perspi”, the 
connection between “pi” was segmented first using the dot 
segmentation method, followed by the segmentation of the 
connection between “er” and “sp” using the loop 
detection/segmentation algorithm; in “phautta”, the connection 



 
 

between “ha”, “au” and “ta” was segmented first using the loop 
segmentation method as no dots were detected in this case and the 
connection between “ut” was segmented using the cross 
segmentation method; in “cowsi”, the connection between “co” 
was segmented using the loop segmentation method first, 
followed by the segmentation of the connection between “ws”, 
and finally, in “reses”, only the loop segmentation method was 
used. 

  

   
Figure 12.  Segmentation results of the Google scheme: each 

segmented character is highlighted with a distinct color. 
Up-sampling has an impact on both our attack’s success rate and 
speed. We tested with different up-sampling ratios such as 1, 2, 3 
and 4. The higher the up-sampling ratio is, the higher success rate 
our segmentation attack can achieve, and the slower the attack is. 
The explanation is simple: up-sampling enlarges an image, and 
therefore it slows down the attack; up-sampling also smoothes 
characters and their connection areas, reducing segmentation 
errors. We identify that the optimal up-sampling ratio is 3, which 
achieved a reasonably good balance between the attack success 
and speed. Measurements reported in this paper are based on this 
configuration.  

3.5 Attack Success and Speed 
Our attack achieved a success rate of 68% on a sample-set of 100 
challenges. Following a common practice in the areas of computer 
vision and machine learning, we tested our attack on 400 
independent samples from a test-set and achieved a success rate of 
62%2. We did not use any of the test-set samples in our attack 
design, as the test-set aims to generalize our attack on 
independent samples. That is the attack is generic enough to all 
challenges generated by this version of Google CAPTCHA. 
Given that the state-of-the-art can achieve a success rate of 95% 
in recognizing individual segmented characters [6], and an 
average number of characters in Google CAPTCHA of 5.5 
characters, our attack implies that it could lead to an overall 
(segmentation and then recognition) success rate of 46.75% (62 * 
0.95^5.5) for breaking this Google CAPTCHA. 

We implemented our attack using Java, and tested it on a desktop 
computer with a 2.4 GHz Intel Core 4 CPU and 4 GB RAM. We 
ran the attack 10 times on both the sample and test sets to 
compute its speed and on average our attack took 7 seconds to 
segment a challenge.   

3.6 Further Enhancements 
It is important to note that when more connection patterns 
between adjacent characters are considered, we can significantly 
improve our attack’s success. We designed an algorithm to detect 
an interesting connection pattern between characters such as “cy”, 
“oo”, “bc” and “bd”. This connection pattern is called “double v”, 
as it (shown in Figure 13(a)) resembles a “v” shape in the upper 
side, and a reversed “v” shape in the lower side.   
                                                                 
2 Our sample set was collected in June 2009, and the test set in 

August 2010; both dates were random choices. 

Our algorithm work as follows: First, the contour of suspicious 
components (i.e., components with a width that could 
accommodate more than one character) is mapped to a coordinate 
plane. We analyze the plane points from left to right. To detect a 
“v” shape, we search for consecutive points that have an 
increasing Y value and then a decreasing Y value – The higher 
the value of Y, the lower the point position in the image. To 
detect a “reverse v” shape, we search for consecutive points that 
have a decreasing Y value and then an increasing Y value. Then, 
we compare the position of the “v” and the “reversed v” shapes, 
and a double v pattern is detected if any of them overlaps 
vertically.  

To segment the “double v” connection, we simply cut from the 
lowest point in the “v” shape, to the highest point in the “reversed 
v” shape. Figure 13(b) shows a segmentation result. 

  
(a)       (b) 

Figure 13.  Google CAPTCHA: (a) A “double v” connection 
pattern. (b) Segmenting result.  

With this “double v” enhancement, our attack has achieved a 
segmentation success rate of 74% in the sample-set, and 69% on 
the test-set. This is so far the most successful attack on a usable 
version of Google CAPTCHA. 

4. THE ROBUSTNESS OF RECAPTCHA 
ReCAPTCHA is similar to Google CAPTCHA since both the 
schemes deploy the “crowding characters” mechanism and both 
lack defenses against attacks exploiting character shape patterns 
and connection patterns.  In addition to its functionality as a 
human verification tool, ReCAPTCHA is utilized as a crowd-
sourcing system for digitizing books, i.e., a text “labeling” tool. 
As shown in Figure 14, a ReCAPTCHA challenge employs two 
text strings where the answer to one of those is known to the 
server and thus functions as a CAPTCHA, whereas the answer to 
the second one is unknown and it is used for labeling 
functionality. The other crucial difference in ReCAPTCHA can 
be found in its text challenges in which, unlike Google’s, its 
character set includes numbers. Moreover, some of its challenge 
strings are dictionary words. 

 

Figure 14.  ReCAPTCHA: a challenge sample.  
To show that our attack on Google CAPTCHA is applicable to 
other schemes, we developed a variant of the attack for 
ReCAPTCHA, and it works as follows.  

4.1 Preprocessing 
In this step we first divide a challenge into two images, each 
containing a challenge string. This is done by mapping the 
challenge against a vertical histogram representing the total 
number of black pixels in each column. Then, we search the 
histogram for a column satisfying two conditions: first, it contains 
no black pixels and, second, its position along the x-axis is the 
closest to the mid value of the image width. We cut through this 
column to divide the challenge into two images.  Next, each of the 
two images is up-sampled by a factor of three and then binarised.  



 
 

Unlike the Google scheme (where its text challenges are 
automatically generated and don’t contain characters with 
deformalities), in ReCAPTCHA the characters were less smooth 
and often contained missing parts. This quality degradation is 
likely introduced by the scanning process, as ReCAPTCHA 
makes use of text materials from old books (that cannot be 
recognized by OCR systems).  Missing parts of characters make 
thinning of little use, since many irregular strokes would be 
created in a thinned image.  

4.2 Pattern Based Detection of Characters 
In this step we aim at locating individual characters using shape 
patterns found in characters and their connections.  

We classified three categories of characters in ReCAPTCHA as 
follows:   

• Characters containing a dot 

• Characters that are detectable by our “S Vertical Histogram” 
algorithm, such as “S”, “3”, “e” and “E”; 

• Characters containing a loop, e.g. “o”, “b”, “0”, “6” and “8”  

Cross detection is not needed for this attack.  

Detecting Characters with Dots. We first apply CFS on the 
foreground components (black color). A component is considered 
to be a dot if it is located in the upper middle part of the image 
and has a small pixel count. Unlike Google’s version of this 
algorithm, we do not attempt to detect the body part of dot 
characters, as it is often directly under the dot, and thus it is 
segmented in a similar manner to other shape characters. Figure 
16(a) shows an example. 

Detecting Characters using the “S Vertical Histogram”. We 
use an algorithm similar to the one used in Google attack but, 
since no thinning was applied on ReCAPTCHA, the algorithm 
was modified to function with non-thin characters. Instead of 
counting the number of foreground pixels in each column, the 
algorithm search for, and count, a pattern found in consecutive 
pixels of each column. The pattern is a pixel with a background 
color having its upper neighbor pixel with a foreground color. 
Moreover, we applied fewer constraints for this algorithm. For 
example, the algorithm can analyze and detect components that 
contain loop(s). The idea of using this algorithm against “loop” 
characters is aimed at addressing the limitation of our loop 
detection algorithm in which, even if some “loop” characters 
contain broken loop(s) and are not detectable by our loop 
detection algorithm, they still could be detected by the “S vertical 
histogram”. This enables the algorithm to detect characters such 
as “a”, “e”, “g”, “z”, “B”, “E”, “2”, “3”, “5”, “6”, “8”, and “9”. 
For example, in Figure 15 (b), in addition to the detection of the 
character “s”, the characters “a”, and “e” were also detected. 

Detecting Characters with Loops. We use the same loop 
detection method we used for our attack on the Google scheme. 
For example, it detects characters such as “b”, “p”, “q”, “0”, “A”, 
“O”, and “4”. In addition, we added a method to analyze loops 
resembling the shape of a connection pattern between adjacent 
characters. For instance, we considered loop shapes with a small 
width compared to its height to be connection pattern loops. 
Figure 15 (c) shows an example of a connection pattern loop 
between the first character “u” and the second character “n”, 
which is highlighted in red.  

Note: the order of applying these three detection algorithms and 
their associated segmentation operation does not matter, as 
explained in Appendix. 

  
(a) 

  
(b) 

  
(c) 

Figure 15.  ReCAPTCHA shapes detection:  (a) Detecting “i” 
using the dot shape. (b) Detecting “a”, “e”, and “s”  using the  

“S vertical histogram”. (c) Detecting a connection loop. 

4.3 Segmentation  
4.3.1 Segmenting Detected Characters 
A vertical segmentation method is applied to segment detected 
characters. This process of vertical segmentation starts by 
mapping the image to a histogram that represents the number of 
foreground pixels per column in the image. Using the position of 
every detected character shape pattern as a reference, (we 
heuristically picked 8 columns from each side of the shape 
patterns in the search as it produced a better segmentation output 
in comparison to other values). Columns with the lowest number 
of pixels indicate the position of the left or the right side of a 
character. For detected characters, a chunk is located between the 
left and the right vertical lines of a detected shape and contains 
one character.  Figure 16 (a) shows an example of vertically 
segmenting the character “i”, in (b) the characters “a”, “a”, “e” 
and “s”.  In the case of connection pattern loops, we simply cut 
vertically through their middle.  Figure 16 (d) shows such an 
example of segmenting a connection pattern loop between the 
first character “u” and the second character “n”. 

4.3.2 Segmenting Undetected Characters 
If the horizontal distance, denoted by d, between the boundaries 
of two detected characters is large enough, we know there are 
undetected characters between the detected characters. These 
undetected characters define a new chunk of a width d. 

We also calculate average width of detected characters in a word, 
denoted by w. By comparing d and w, we can guess with a high 
probability how many undetected characters there are between the 
two detected characters, and segment them properly. We use the 
following heuristics:  

If d is larger than or equals to w but smaller than or equal to 2w, 
then the chunk of undetected characters is analyzed using CFS.  If 
CFS algorithm returns two foreground components with a 
relatively large pixel count, then we split the chunk into two 
characters. This method is directed at segmenting overlapping 
small characters with no shape patterns, such as the characters “r” 
and “l” in Figure 16 (e).  

If d is larger than 2w, then the bounding box of the chunk 
contents is analyzed. If the bounding box is double or more of its 
width, then we split the contents evenly into two chunks, each 
containing one character. This method exploits the overall shape 
of connected characters and it is directed at connected characters 
with no shape patterns, such as the connection of “th”.  



 
 

Otherwise, the chunk is assumed to contain only one character. 

Drawbacks of this approach are the troublemaker characters with 
a large width, such as the characters “m” and “w”, and chunks 
containing a combination of connected characters with a small 
width, such as “ll”, “rr”, “rt”, “ln”.  Figure 16 (e) and (f) shows 
chunks containing un-detected character(s) (highlighted by a 
rectangle under them). In this case, only one chunk has a width 
larger than the average width and contains two large components 
(“r” and “l”) as shows in Figure 16 (e), where as the characters 
“n” and “t” have a width smaller than the average. Figure 16 (g) 
and (h) show the final segmentation output. 

     
(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

  
(g)       (h) 

Figure 16.   The final output of ReCAPTCHA segmentation 
attack:  (a) “dot” segmentation., (b) “S vertical histogram”. 
(c) “S vertical histogram”. (d) “loop” connection pattern. (e) 

and (f) chunks segmentation. (g) and (h) shows the final 
output. 

4.4 Results 
To evaluate our attack, we downloaded 100 random 
ReCAPTCHA samples as a sample set, and another 100 random 
samples as a test set. We manually identified via online tests 
which are known (verification) and the unknown words in each 
sample. Our attack successfully segmented 53 known words in the 
sample set, and 46 known words in the test set. This indicates that 
our attack can effectively achieve a segmentation success rate of 
at least 46%.  

We ran the attack 10 times on both sample sets and on average 
our attack took 0.85 seconds to segment a challenge consisting of 
two words. The significant difference in time between the attack 
on Google and that on ReCAPTCHA is due to the use of less 
pattern detection and, a much simpler segmentation algorithm in 
ReCAPTCHA attack. 

Given that the state-of-the-art can achieve a success rate of 95% 
in recognizing heavily distorted individual characters [6], and 
with the average number of characters in ReCAPTCHA of 6.41 
characters per word, and the segmentation success rate of 46% on 
the known words, our attack implies that it could lead to an 
overall (segmentation and then recognition) success rate of 33% 
(46*0.95^6.41).  

Many of the cases which we treated as a failed segmentation in 
the above attack had, in fact, achieved a good partial 
segmentation. We counted 30 failures in the sample-set (12 
known words) and 28 failures in the test-set (9 known words) 
with only one un-segmented chunk containing two or three 
characters. Therefore, a dictionary attack would complement well 
with our segmentation attack; a partial segmentation will lead to a 

partial recognition result, which can be used to derive a string 
pattern such as ‘**xxxx’ (* represents an unrecognized character). 
With the aid of a dictionary, the overall success would be 
significantly better than the rate we estimated above. For 
example, we tested the chunks returned by our segmentation 
algorithm in Figure 17 using the Tesseract OCR engine, the OCR 
returned the following output for each chunk respectively: “a” 
,“n” , “o”, “ch”, “e” and “r”.  Then we crossed referenced the 
output with a dictionary list of words, only one word that starts 
with “ano” and ends with “er” was matched, that is “another”.  

With the above dictionary attack as an enhancement, our 
theoretical estimate of the attack success can be boosted by 9%. 
This implies that theoretically an attacker can break this 
reCAPTCHA about 42% of the time. We tested our attack, with 
the Tesseract OCR engine being used for individual character 
recognition, and the success rate for the attack is about 24.7%. 
The gap between the empirical and theoretical estimate is caused 
by the quality of OCR engine, which achieved only 84.6% 
success for character recognition.  

 

Figure 17.  An example of a partial segmentation. The 
adjacent characters “t” and “h” are not segmented. 

4.5 Implications  
Our attack on reCAPTCHA reveals the weaknesses of the 
scheme, e.g., we found a pattern that correlate between the 
horizontal spacing of connected characters and their number; this 
allowed us to exploit ReCAPTCHA using simple tools such as 
even cut. In addition, we found a pattern in the shape of 
connected characters: the bounding box of such connection shape 
helped us to differentiate wide horizontal spacing characters such 
as “m”, and the connection of small horizontal spacing characters 
such “th”.  

Our attack also reveals insights on the defcon attack, as 
summarized in Appendix. First, the “wave distortion” removal in 
[8] is not a necessary step. Second, the core weakness of 
reCAPTCHA is still in its segmentation resistance mechanism. 

5. Discussions  
5.1 Attack Applicability to other CAPTCHAs  
In early May 2011, we noticed that ReCAPTCHA has rolled out a 
new protection for known words to increase their robustness to 
attacks, see Figure 18 (a), in which the heavily distorted are 
known words. We downloaded 100 random samples from the 
Internet, and tested the attack we developed in the previous 
section. We only tuned the loop detection algorithm to reject loop 
shapes that are small in size and to reject loops that are too wide - 
the new distortion mechanism often creates false loops with a 
small pixel count or with a large ratio of width to height. All other 
parts of the source code stayed unchanged. The results are 
amazing: our program achieved a segmentation success rate of 
29% on known words; that is, 29 out of 100 samples were 
completely segmented. Figure 18 (b) shows example output of our 
attack. On average, it took 0.6 seconds for our computer to 
segment a known word.  



 
 

 

 
(a) 

           
(b) 

Figure 18.  ReCAPTCHA as of early May 2011. (a) two 
sample challenges (b) completely segmented known words. 

Other major CCT-based CAPTCHAs such as those from Yahoo, 
E-Bay, MySpace and Baidu (see Figure 19) also appear to be 
vulnerable to our attack or its variants, for two reasons. First, all 
of them are easy to pre-process, and second, all of them contain 
exploitable shape patterns. We suspect such an attack will 
successfully segment Baidu, E-Bay, MySpace, and Yahoo, but 
with a decreasing order for the success rate. We urge these 
companies to evaluate how vulnerable their designs are to our 
attack or its variants.  

   

            
Figure 19.  Other CCT-based CAPTCHAs from Yahoo, 

MySpace, E-Bay and Baidu (clock-wise). 

5.2 Defense  
Perhaps the simplest defense against our attack is to exclude 
characters with known exploitable shape patterns. For instance, 
challenge strings such as “mrnucly” will be less likely to be 
vulnerable to our attack. To make this method work, it is also 
necessary to not only examine connection patterns of adjacent 
characters, but also get rid of those exploitable ones. An 
additional issue to consider is usability, and therefore a careful 
control of the distortion level caused by CCT is required.  

The above method appears to be applicable to all CCT-based 
schemes that use random text strings. However, it is inapplicable 
to schemes such as reCAPTCHA that use English words.  

Some other possible defenses include the following. Increasing 
the number of false loops and breaking some of the valid loops 
could confuse a loop detection method. Adding random dots in 
the upper side of challenge images could confuse the dot 
detection algorithm. The use of font that does not render a cross 
shape in the characters “t” and “f” could complicate a cross 
detection algorithm; a similar effect could be achieved by adding 
random crosses. 

6. CAPTCHA ROBUSTNESS 
EVALUATION: A METHODOLOGY 
In the recent years, we have examined numerous CAPTCHAs 
(including both high-profile ones and less-known ones) and found 
effective attacks on virtually all of these schemes. In this process, 
we have been establishing a novel security engineering approach 
to CAPTCHA robustness evaluation. Our approach applies 
adversarial thinking skills searching for and exploiting 
vulnerabilities hidden in CAPTCHAs. In essence, all of our 
attacks have exploited invariance hidden in the CAPTCHAs, 

which the distortion and transformation process of each of the 
Captcha generators failed to eradicate. Exploiting invariants is a 
classic strategy often used in cryptanalysis. For example, 
differential cryptanalysis works by observing that a subset of 
plaintext pairs has an invariant relationship preserved through 
numerous cipher rounds. Our work demonstrates that exploiting 
invariants is also effective for examining Captcha robustness. 

A brief discussion of selected invariants we have identified in 
CAPTCHAs was reported in our previous work [7].Our work on 
the Google scheme and ReCAPTCHA, as reported in this paper, 
shows for the first time that exploiting shape invariants inherent 
in characters (such as loops, dots and crosses) and connecting 
patterns of adjacent characters leads to a novel attack to an entire 
family of CAPTCHAs that is based on CCT. This work 
significantly extends our previous understanding of exploitable 
invariants by identifying some novel invariants and demonstrating 
how to exploit them.  

Here we attempt to provide the first detailed exposition of our 
“search for invariance” methodology, which has proven effective 
in practice to reveal critical design flaws and to improve captcha 
robustness. In particular, we propose a systematic framework that 
classifies the exploitable invariants that we have identified so far 
into major categories. Defined in Table 1, our framework 
provides key insights on security vulnerabilities that text 
CAPTCHAs should account for. 

At the top level, our framework has two categories: pixel-level 
invariants and string-level invariants. Pixel-level invariants are 
all about structural features of challenge images, and they are 
exploitable by image processing techniques at the pixel level. On 
the other hand, string-level invariants are about syntax and 
semantic features of text strings in challenge images, and are 
independent of any pixel-level features. Typically string-level 
invariants are created by the linguistic model that a CAPTCHA 
employs to generate text strings.  

Table 1: A framework of exploitable invariants 

Category Invariant Type 

Pixel count 

Color pattern (among pixels) 

Shape of character component (or part) 

Shape and position of a whole 
character (as defined by its bounding 

box) 

Connection patterns between adjacent 
characters 

Shape of connected characters (as 
defined by a bounding box 

surrounding them) 

Pixel-level 
(structural 
features of 

images) 
Shape 

 

Overall geometric features of a 
challenge string 

Characters set 

String length 
String-level 
(syntax and 

semantic 
features) Random string or dictionary word? 

 



 
 

Pixel-level invariants. We have identified three types of pixel-
level invariants. The first type is pixel count, which is the number 
of foreground pixels of a connected component (such as a 
character, a character’s part, or a distortion element) in a Captcha 
image. In our earlier work [4], we identified that in some 
Captchas, character pixel counts were usually distinct among 
different characters but remained constant for the same character 
under different distortions. A simple pixel count attack turned out 
to effectively break many CAPTCHA schemes at the time. In our 
attack on the Googe scheme reported in this paper, we exploited 
pixel counts to differentiate between shared and non-shared 
components of characters, in order to segment some connected 
characters. This pixel-count method also helped us to break 
Microsoft and Yahoo Captchas by differentiating between valid 
characters and random distortion noise. 

The second type of pixel-level invariants is color pattern of 
pixels. Many designers used fancy color schemes for foreground 
and background pixels in their Captchas to improve usability, to 
defend against automated attacks, or to do both. The regularity of 
color patterns in Captcha images helped us to successfully break 
many designs. A range of case studies is given in our previous 
work [16].  

The third type of pixel-level invariance is shape invariants, which 
are about geometric features of Captcha text strings as rendered in 
challenge images. Shape invariants can be classified into the 
following five categories, according to different granularity 
ranging from a character’s part to a text string as a whole.  

The first category is geometric features of character components 
(i.e., parts) such as “loops”, “dots”, and “crosses”. Our attack on 
the Google scheme and ReCAPTCHA heavily exploited such 
invariants. 

The second type of shape invariants is identified from the overall 
shape of a whole character (as defined by its bounding box), 
sometimes along with the character’s relative position in a 
challenge image. For example, in our attack on Microsoft Captcha 
[3], we exploited the shape and position of random arcs (i.e. fake 
characters) to differentiate them from valid characters. The shape 
of an arc was either too wide or too long to resemble the shape of 
a valid character. Or an arc often had a relative position different 
than valid characters did – typically, an arc was closer to the 
image’s boundary. Figure 20 (a) illustrates such scenarios with 
real examples taken from our previous attack on a Microsoft 
CAPTCHA: the arcs in the 4th and 6th chunks were discriminated 
through their relative position with respect to the image 
boundaries and other characters, and the arc in the last chunk was 
identified through its overall shape (as defined by its bounding 
box, which is not drawn in this figure though). 

In our attack on the Google scheme, the knowledge of relative 
position of the shape invariants with respect to their 
corresponding character category aided the attack’s segmentation 
steps.  For example, we knew that the body of the character “i” 
must be underneath its dot part.  

Our attack on ReCAPTCHA exploited such invariants, too. For 
example, a bounding box with a large width together with a large 
width-to-height ratio indicated a character such as “m” and “w”. 

The third category of shape invariants is connection patterns 
between adjacent characters. Our attack on the Google scheme 
and ReCAPTHCHA exploited this type of invariants, e.g. the 
“double v” connection pattern for character pairs “oo”, “bc”, 

“bd”, and “cy” (see Figure 13) in the Google scheme, and the 
loop shape connecting adjacent characters in ReCAPTCHA. Also, 
loops with deformed none-circular shapes aided our attack by 
indicating a connection between characters, for example, in the 
case of the connection between “ss” (see Figure 6 (b)). On the 
other hand, white space (gaps) between unconnected adjacent 
characters can be considered as a special case in this invariant 
category.  

The fourth category of shape invariants is features identified in 
the shape of connected characters as defined by a bounding box 
surrounding them. Our attack on ReCAPTCHA exploited such 
invariants. For example, a bounding box with a large width but a 
small width-to- height ratio indicated connected characters such 
as “th”. We used this pattern to properly segment the characters. 
Figure 20 (b) shows such an example.  

The fifth category of shape invariants is structural features 
identified in the overall shape of a CAPTCHA challenge string. 
For example, a Yahoo CAPTCHA generated only two types of 
challenges, either regular or angular (with almost a fixed angle), 
as shown in Figure 20 (c). We successfully broke this scheme by 
exploiting such shape invariants [3]. The difference in overall 
shape between known and the unknown words in the latest 
ReCAPTCHA (as of May 2011, see Figure 18) allows attackers to 
customize their attacks only on known words, without bothering 
with unknown words. 

String-level invariants. We have identified three types of string-
level invariants. The first is character set, which is the set of 
characters used to compose challenge strings. A Captcha that uses 
a small character set is more vulnerable to automated attacks than 
a counterpart using a large character set. 

The second type of string-level invariants is text length, the length 
of text strings used in a Captcha. A notable example of this type 
of invariant occurred in a Microsoft Captcha, which used a fixed 
length of 8 characters for its text strings. This invariant aided our 
successful attack [3]. On the other hand, if the text length in a 
Captcha is fixed and short, and its character set is also small, then 
this scheme is very likely vulnerable to random guessing attacks. 
In general, the knowledge of a string length increases the success 
chance of a segmentation attack based on character estimations. 

    
(a)       (b) 

  
(c) 

Figure 20.   Some examples of shape invariants. (a) the second 
type, (b) the fourth type, and (c) the fifth type  

The third type of string-level invariants is that text strings are 
always dictionary words, which allows a dictionary attack. A 
dictionary aided our attack on reCAPTCHA in Section 4, and 
aided our early attacks on other Captchas [4]. 

All the invariant types identified in our framework are 
independent of each other, yet they complement each other. 
Often, an effective attack has to exploit multiple types of 
invariants in combination, just as the current paper and our earlier 
work such as [3, 4] have demonstrated. It’s interesting to note that 
in our defeat of a Yahoo CAPTCHA in [3], exploiting a 



 
 

correlation between the width of the bounding box of a 
CAPTCHA challenge string (i.e. the fifth type of shape 
invariants) and the number of characters in the string (i.e. the 
second type of string-level invariant) was key to our attack’s 
success.  

It is an open problem whether the list of invariants and categories 
in our framework is complete. We encourage people to identify 
new types of exploitable invariants, and to extend and refine our 
framework. 

7. GENERAL DESIGN PRINCIPLES 
The success of our “search for invariance” methodology in 
identifying critical vulnerabilities in many deployed CAPTHCAs 
evidently suggests a new general principle for CAPTCHA design:  

A good CAPTCHA should avoid exploitable invariants, which 
provide shortcuts for effective attacks. The effective methods of 
identifying exploitable invariants include 1) a manual inspection 
of randomly chosen challenge images, walking through Table 1 to 
identify suspicious invariants, 2) automated identification of 
suspicious invariants by running software tools such as the attacks 
we have developed, and 3) perhaps more importantly, following 
the rationale with which we structure our framework might be 
able to guide the identification of new exploitable invariants. An 
effective method for removing exploitable invariants in a Captcha 
is to employ proper randomization techniques in its generator so 
that the process of distortion and transformation can be refined.  

Our extensive study of CAPTCHA robustness also suggests that 
two general principles established before, as summarized as 
follows for completeness, still hold.  

A good CAPTCHA should be segmentation-resistant. This 
principle has been established by [5] since 2005 and still holds. 
However, it is unclear whether it is possible to find a perfect 
design that is indeed segmentation-resistant and at the same time 
achieves a good balance between security and usability.  

A good CAPTCHA should disable machine-learning attacks 
or at least make it hard to perform such attacks. This principle 
was first proposed by one of us -- the second author - and 
collaborators [12]. Although the principle was initially proposed 
in the context of image-recognition CAPTCHAs (which require a 
user to solve an image recognition task), it is also applicable to 
text CAPTCHAs. For the sake of completeness, we reiterate here 
some insights that we discussed in [12].  

“An intrinsic feature for all machine learning attacks is that they 
typically rely on empirical data to learn effective discriminative 
features and decision criteria before becoming effective. The most 
fundamental solution to deal with these attacks is, therefore, to 
disable machine learning by making the past challenges 
uncorrelated with the current or future challenges. In this way, 
the discriminative features or decision criteria learned from the 
past challenges would be ineffective to solve the current or a 
future challenge. This can be achieved by randomly selecting a 
type and an object of the type to generate a challenge, with both 
the number of types and the number of individual objects of each 
type being sufficiently large, infinite ideally, so that it is 
intractable for the current computing capability.  

It is interesting future work to explore whether we can create an 
unlimited number of segmentation-resistant mechanisms for text 
CAPTCHAs; or an unlimited number of combinations of 

segmentation-resistant mechanisms and text-distortion methods. 
In the meanwhile, an immediate improvement to the robustness of 
current CAPTCHAs is the following. We can significantly 
increase the number of segmentation-resistant mechanisms and 
variants, text distortion methods and fonts that a CAPTCHA 
generator supports. When a challenge is created, the generator 
should randomly select one or more fonts, a segmentation-
resistance mechanism and a text distortion method. The idea is 
simple: making it harder for an attacker to do machine learning, 
we will have a CAPTCHA that is more robust than the state-of-
the-art. 
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APPENDIX 
9. The Order of ReCAPTCHA Attack 
The order of ReCAPTCHA attack was chosen intuitively as 
follows. First are dot characters, followed by characters detectable 
by the “s vertical histogram”, and finally loop characters. The dot 
character was chosen first because we are confident of its high 
success rate. Then, we decided to use the “s vertical histogram” 
algorithm, since many of the characters are detectable using this 
method, including those with loops such as “e” and “9”, in 
addition, this algorithm detects characters with broken loops. Last 
in the order is the detection of loop character, in particular,  
characters that has a loop but not detectable by the “s vertical 
histogram” algorithm, such as the characters “o”, “0”, “D”, “A”, 
and the detection of the connection pattern loop between 
connected characters. 

However, because in ReCAPTCHA attack we are interested in the 
left and the right sides of characters shapes, rather than the shapes 
connected components, swapping the order of the loop and the “s 
vertical histogram” method would not change the success of the 
attack. This is because the “s vertical histogram” functions similar 
to the loop detection method and both methods effectively detect 
the loop left and right side only. As highlighted in Figure 15 (b). 

10. The DEFCON Attack 
A brief description of the DEFCON attack [8] is as follows. First, 
we have the image preprocessing including standard binarization, 
and “wave distortion” removal. The “waving” of the words is 

removed using the so-called “blanket algorithm”. The blanket 
algorithm uses a word’s upper and lower contour to estimate the 
waving; this is done by comparing the slope of neighboring pixels 
along the contours, and plotting a series of tangents along the 
top/bottom side of the word. The tangents are then used to 
estimate the severity of each column along the x-axis. Then, the 
position of each column in the word is interpolated up or down to 
straighten the words, additional parameters were used to insure 
smooth straightening. In Figure 21 (a) (taken from [8]), the red 
lines above and below the words, represent the series of tangent 
points, and thus an estimation of each word waving. In Figure 21 
(b), show the output after straightening the words. Second, the 
characters used in ReCAPTCHA are compiled into templates: 
each template contains the average feature of a character, such as 
its average width, its average height and the location of its pixels. 
Third, the image is segmented into multiple “dips” (i.e., chunks in 
comparison to our attack) using a variation of the “blanket 
algorithm” [8], again, the word’s upper and lower contours are 
plotted using the blanket algorithm, then the algorithm searches 
for valleys in the upper contour, and for peaks in the lower 
contour, and a vertical line is drawn at each valley or peak 
location. Figure 21 (c) shows an illustration of the segmentation 
output, every vertical line represents a “dip”. Fourth, the content 
between adjacent dips is compared with the character templates. 
The template matching algorithm could return more than one 
character with high resemblance for combination of adjacent dips, 
but initially the character with the highest resemblance is 
assumed. Finally, a dictionary comparison algorithm is used to 
verify that the sequence of characters returned by the character 
templates matching algorithm is an actual dictionary word (other 
combinations of characters with lower resemblance probability 
could be used to obtain a dictionary based word). 
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(b) 
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Figure 21.  Defcon attack. An illustration of the “dips”, each 
vertical line represents a dip. 

 

 
 


