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� Abstract: Neuropathic pain refers to a variety of chronic
pain conditions with differing underlying pathophysiologic
mechanisms and origins. Recent studies indicate a communi-
cation between the immune system and the nervous system.
A common underlying mechanism of neuropathic pain is the
presence of inflammation at the site of the damaged or
affected nerve(s). This inflammatory response initiates a
cascade of events resulting in the concentration and activa-
tion of innate immune cells at the site of tissue injury. The
release of immunoactive substances such as cytokines, neu-
rotrophic factors, and chemokines initiate local actions and
can result in a more generalized immune response. The
resultant neuroinflammatory environment can cause activa-
tion of glial cells located in the spinal cord and the brain,
which appear to play a prominent role in nociception. Glial
cells, also known as neuroglia, are nonconducting cells that
modulate neurotransmission at the synaptic level. Glial cells
can be subdivided into two primary categories: microglia and
macroglia, which include astrocytes and oligodendrocytes.
Astrocytes and microglia are known to play a role in the
development, spread, and potentiation of neuropathic pain.
Following peripheral nociceptive activation via nerve injury,

microglia become activated and release pro-inflammatory
cytokines such as tumor necrosis factor-a, interleukin-1b, and
interleukin-6, thereby initiating the pain process. Microglia
propagate the neuroinflammation by recruiting other micro-
glia and eventually activating nearby astrocytes, which pro-
longs the inflammatory state and leads to a chronic
neuropathic pain condition. Our review focuses on the role
of glia and the immune system in the development and
maintenance of neuropathic pain. �
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INTRODUCTION

Neuropathic pain refers to a variety of chronic pain
conditions with different underlying pathophysiologic
mechanisms. Neuropathic pain can originate from neu-
ronal tissue damage or a dysfunction in the nervous
system.1,2 The abnormal perception of neuropathic pain
is characterized as being allodynic (a typically nonpainful
stimulus is perceived as painful), hyperalgesic (a nor-
mally painful stimulus is exaggerated) or as spontaneu-
ous (shock-like, stabbing or burning pain sensations that
are unrelated to a known stimulus).3 The sensation of the
neuropathic pain may or may not be localized to the
dermatomal distribution of the affected nerve(s).
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Recent studies indicate that a communication exists
between the immune system and the nervous system4.
Although multiple conditions may generate neuropathic
pain, a common underlying mechanism is the presence
of inflammation at the site of the damaged or affected
nerve(s). This inflammatory response initiates a cascade
of events resulting in increased local perfusion,
increased capillary permeability, and concentration and
activation of innate immune cells at the site of tissue
injury, irritation, or infection. Immunoactive sub-
stances, such as cytokines, neurotrophic factors, and
chemokines, released at the site of injury have local
actions and can initiate a systemic immune response.
The resultant neuroinflammatory environment can
cause activation of microglia and astrocytes, glial cells
located in the spinal cord and brain, which appear to
play a prominent role in nociception.

THE SUPPORTING CELLS OF THE NERVOUS
SYSTEM: MICROGLIA AND ASTROCYTES

Neurons and glial cells are two cell types in the nervous
system that have close interactions on a cellular and
molecular level. Neurons are cells specialized to conduct
electrochemical impulses. Glial cells, also known as neu-
roglia, are nonconducting cells that were initially only
known to provide support; however, recent evidence has
shown that glial cells also provide nutrition, protection,
and insulation to the neurons of the central nervous
system (CNS). Some glial cells are also known to modu-
late neurotransmission at the synaptic level.5 Glial cells
constitute 70% of the total cell population in the brain
and the spinal cord.6 Glial cells can be subdivided into
two primary categories: microglia, comprising 5% to

10% of the glial population, and macroglia, which
include astrocytes and oligodendrocytes.7 Furthermore,
astrocytes and microglia are known to play a role in the
development, spread, and potentiation of neuropathic
pain.8–16

When myeloid progenitor cells migrate to the periph-
eral nervous system (PNS), they may differentiate into
dendritic cells or macrophages. However, when the
same bone marrow-derived progenitor cells travel to the
CNS, they differentiate into microglia which act simi-
larly to macrophages when they are activated.17–19

Under normal homeostatic conditions, microglia are in
a resting, sessile state and have small soma with fine or
thin-branched processes. Microglial cells migrate to the
central terminals of afferent peripheral nerves respond-
ing to pain signals and undergo activation. Upon acti-
vation microglia undergo a number of morphological
and functional changes facilitating isolation of injured
cells and eliminating potential pathogens20 (Figure 1).
These changes include mobilization and proliferation
and induce phagocytic ability of microglia.21 At the site
of injury, activated microglia can project processes,
through an adenosine 5′-triphosphate (ATP)-mediated
elongation, in order to isolate the injured cells.20

Although microglia have a homogeneous distribution in
the CNS, only microglia in the spinal cord are activated
following peripheral nerve injury.22

After peripheral nerve injury, proliferation of acti-
vated microglia was found on the ipsilateral dorsal horn
(DH), while the contralateral DH and naive animals
displayed weak microglial activation.23,24 Activated
microglia also display a change in surface markers,
membrane bound or embedded proteins, compared with

Figure 1. (A) Following a peripheral injury, the synaptic projection of a pain sensing neuron within the spinal cord releases ATP. (B)
Nearby microglial cells within 50 to 100 mm are drawn to the source of ATP and undergo morphological changes as they approach the
source and become activated. (C) Fully activated microglial cells are localized around the pain sensing neuron and begin to interact
with the neuron on a molecular level, releasing various neuroinflammatory agents. ATP, adenosine 5′-triphosphate.
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resting stage microglia. Activated surface markers can
include complement receptor 3 (also known as CD11b/
CD18, Mac-1, ITGAM or integrin alpha-M),25–28 which
is involved in phagocytosis,29 toll-like receptor 4, which
is involved in pathogen recognition,16 CD14, also
involved in pathogen recognition,16 CD44 involved with
adhesion and migration,30 and up-regulation of MHC I
and II,30 which are involved in antigen presentation to T
cells.10 These better prepare the glial cells to eliminate
invading microbes and to aid in phagocytosis. Of note,
the function and morphological changes are not always
temporally related, as it may be possible for migration
or phagocytosis to occur before or after contraction of
the processes.29 The activation of microglia additionally
triggers the secretion of a variety of signaling peptides
such as cytokines, neurotrophic factors, and chemok-
ines. The production and subsequent release of pro-
inflammatory cytokines like interleukin-1b (IL-1b),
interleukin-6 (IL-6), and tumor necrosis factor-a
(TNFa) from activated microglia cells lead to the acti-
vation of neighboring astrocytes.31

Astrocytes make up the majority of glial cells in the
CNS; however, the development and function of astro-
cytes remains largely uncharacterized.32 Astrocytes are
phagocytic cells that play an important role in neuronal
development as well as in establishing and maintaining
the blood brain barrier (BBB).32 In a resting state, astro-
cytes isolate neurons and oligodendrocytes to help
maintain the microenvironment of the CNS by regulat-
ing extracellular ion concentrations of K+ and Ca2+ as
well as neurotransmitter concentrations via uptake. In a
basal state, astrocytes have thin processes. Upon activa-
tion, these cells undergo hypertrophy, proliferate, and
increase expression of intermediate filaments such as the
glial fibrillary acidic protein, an astrocyte-specific acti-
vation marker.29,33 These functions provide important
links to antigen presentation to T cells and may aid T
cell crossing the BBB.

The activation of astrocytes results in the prolonga-
tion of a pain state. Resting astrocytes express basal
levels of cytokine receptors. IL-1b and possibly
interleukin-18 (IL-18), released from activated micro-
glial cells, bind to interleukin-1 (IL-1) receptors located
on the astrocyte membrane, inducing a series of intrac-
ellular events culminating in the activation of the astro-
cyte.34,35 TLR, expressed in microglial cells, may trigger
the synthesis of IL-18, a member of the IL-1 family, via
the activation of p38 mitogen activated protein kinase
(p38MAPK), known to induce expression of pro-
inflammatory cytokines such as IL-1b and IL-6. Miyoshi

et al. reported that intrathecal injection of IL-18 induces
tactile allodynia and astrocyte activation.34 These intra-
cellular events result in the secretion of IL-1b, IL-6, and
TNF-a by astrocytes, as well as the expression of induc-
ible nitric oxide (NO) synthetase, to further propagate
the inflammatory response and prolong the pain state.

Another unique characteristic of astrocytes is their
role in both the deactivation of glutaminergic activity by
the uptake of extracellular glutamate and the synthesis
of glutamate from glucose. Glutamate (the main excita-
tory neurotransmitter in the brain and the spinal cord)
content increases in the DH during chronic pain. Pyru-
vate carboxylase, an enzyme involved in the synthesis of
glutamate, is expressed in astrocytes but not in neuronal
cells.36 Glutamate activates several ionotropic and
metabotropic membrane receptors. Of particular inter-
est is the ionotropic N-methyl-D-aspartate receptor
because of its crucial role in central sensitization of
spinal cord nociceptive neurons as well as activation of
astrocytes via an influx of Ca2+ into the cells.37 An influx
in Ca2+ has an important role in signaling pain by pro-
moting neurotransmitter release and modulating cell
membrane excitability.38

HOW GLIAL CELLS BECOME ACTIVATED AFTER
PERIPHERAL NERVE INJURY

The activation of microglia and astrocytes can occur
following physiological changes in the body, such as
trauma in the CNS, ischemia, inflammation, and infec-
tion. The activation of these glial cells is most often
implicated in the development, spread, and potentiation
of neuropathic pain.8–16 Microglia and astrocytes are
generally activated in the DH after a peripheral nerve
injury occurs. After receiving a pain stimulus, peripheral
neurons transmit “pain” signals to the DH of the spinal
cord, releasing neurotransmitters such as calcitonin
gene-related protein (CGRP), substance P, glutamate,
gamma amino butyric acid, serotonin (released from
descending pain pathways), and ATP. These neurotrans-
mitters initiate the activation of glial cells in the area of
the synapse, further sensitizing postsynaptic neurons
(Figure 2). Various mechanisms by which glial cells are
activated have been suggested. These include

1. Chemical mediators including substance P,
CGRP, NO, purinergic agents (such as ATP),
glutamate, and endogenous opioid peptides
released at the time of injury travel through or
between afferent neurons, not only affecting syn-
aptic transmission but also activating glial
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cells.39–44 ATP released by afferent neurons causes
migration and activation of microglia within a
range of 50 to 100 mm, producing an intracellu-
lar increase in Ca2+ and brain-derived neu-
rotrophic factor (BDNF), which results in the
activation and translocation of NF-kB to the
nucleus-initiating expression for numerous pro-
inflammatory agents. NO acts similarly upon
NF-kB in astrocytes affecting gene expression
and inducing activation.39,40,45,46 Sensory neurons
undergoing painful stimuli causes release of sub-
stance P (or via NO-stimulated production of
substance P) which activate glial cells in the CNS
by activation of neurokinin-1 (NK-1) receptors.
Other chemical mediators, like purinergic agents,
glutamate, and opioid peptides, induce activation
of glial cells by direct interaction with specific
membrane receptors (Figure 3).

2. Glial activation can occur via shifts in intracellu-
lar and extracellular ion concentrations. An
increase in afferent neuronal input causing an
elevation of extracellular K+ leads to increased K+

uptake by astrocytes, resulting in membrane
depolarization, morphologic changes, and possi-
bly activation.47 Furthermore, K+ has been shown
to induce microglial activation in rat hippocampal
tissue in vitro.48 Similarly, an influx of Ca2+ results
in the activation of both astrocytes and microglia,
with concomitant changes in morphology and
cellular function. Pro-inflammatory agents gener-
ated and released by activated glial cells can
further activate nearby glial cells (Figure 4).

3. Previous studies have shown that peripheral
injury results in astrocyte activation in the

trigeminal complex of the brain stem.49,50 Inter-
estingly, proximal blockade of primary afferent
input following a peripheral nerve injury fails to
inhibit glial activation at both the spinal and
supraspinal levels. These studies suggest that
supraspinal-activated astrocytic cells may poten-
tially modulate neuropathic pain by further acti-
vation of glial cells in the spinal cord via
descending pathways.51

4. It has been shown that increased permeability of
the BBB after an injury allows peripheral mac-
rophages to migrate, proliferate, and differenti-
ate into activated glial cells in the brain.50–53 In
addition, peripherally generated inflammatory
agents, outside of the neuronal afferent pathway,
can activate glial cells in the CNS. For example,
a proximal anesthetic block fails to inhibit either
spinal cyclooxygenase gene expression or pros-
taglandin E2 release into the cerebrospinal fluid
(CSF).

Interestingly, acute pain, such as a paper cut or a needle
prick, will not activate glial cells.40 However, following a
more serious injury, glial cells exhibit dynamic plasticity
and switch from a resting state to become active in the
modulation of neuronal activity.54 Once activated, glial
cells change their morphology, via hypertrophy and
potentially retraction of the processes, and synthesize
specific cell markers and kinases, some having an active
role in initiating and potentiating an immune response.

ROLE OF GLIAL ACTIVATION

Both microglia and astrocytes are involved in neuro-
pathic pain pathways. After a threshold stimulus, acti-

Figure 2. (A) A pain sensing neuron releases ATP which draws in microglial cells and induces microglial activation. (B) Activated
microglial cells begin to release various inflammatory agents that sensitize neurons as well as activate astrocytes. (C) Astrocytes
become activated in response to microglial release of inflammatory agents, undergo hypertrophy, and begin to potentiate the chronic
pain state. ATP, adenosine 5′-triphosphate.
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vated glial cells release inflammatory stimulants such as
cytokines, prostaglandins, neurotrophic factors, ATP,
NO, d-serine, and glutamate.10,44,50,55–59 These inflam-
matory stimulants play a critical role in the development
and maintenance of central sensitization and hyperalge-

sia40 by altering the polarization characteristics of the
afferent neurons and thus modulate the transmission of
painful stimuli to the CNS.60,61 For example, astrocyte
activation leads to increasing intracellular Ca2+ which
stimulate a calcium-dependent glutamate release,

Figure 3. Noxious afferent input results in the activation of resting microglial cells that migrate to the source of ATP. ATP can bind to
the P2X4 receptors on the microglial surface, which results in an increase in intracellular Ca2+ within the cell. The influx of Ca2+ results
in the translocation of NFkB to the nucleus and induction of the p38MAPK pathway. The nuclear form of NFkB and induction of the
p38MAPK pathway initiates transcription of various neuroinflammatory agents including cytokines, neurotrophic factors, and neu-
rotransmitters. The release of these neuroinflammatory agents into the syntaptic cleft and subsequent binding to various receptors
result in an increase in intracellular ions within the neuron, such as Ca2+ and Cl–, which depolarizes the cell and thereby causing
sensitization. Two prominent receptors that are involved with Ca2+ influx into the neuron are AMPA and NMDA receptors. BDNF has
been shown to bind to the TrkB receptor and inhibits the efflux of Cl– out of the neuron. ATP, adenosine 5′-triphosphate; BDNF,
brain-derived neurotrophic factor; p38MAPK, p38 mitogen activated protein kinase.

Figure 4. (A) When activated microglial cells release neuroinflammatory agents into the synaptic cleft, local astrocytic surface
receptors bind to various agents and result in an influx of Ca.2+ Microglial cells can cause expression of nitric oxide synthase within the
postsynaptic neuron, which freely diffuses through cell membranes and can also induce astrocyte activation and result in Ca2+ influx.
High levels of intracellular Ca2+ result in translocation of NFkB from the cytoplasm to the nucleus of astrocytes, induction of the
p38MAPK pathway, as well as a dose-dependent release of glutamate. (B) Upon activation, the astrocyte undergoes hypertrophy and
increased production of neuroinflammatory agents that are secreted into the synaptic cleft. Astrocyte activation in conjunction with
microglial activation significantly depolarizes the neuron increasing its sensitivity and potentiating the neuropathic pain state. NO,
nitric oxide.
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resulting in an inward current produced in adjacent
neurons (Figure 4).62

Current research suggests that microglia are
involved in the early development, whereas astrocytes
function to sustain neuropathic pain.16,63–65 Microglial
activation leads to the release of signaling proteins,
such as IL-1b, into the cell interstitium and to some
extent the CSF. These signaling proteins bind to spe-
cific sites on the astrocyte membrane initiating cell
activation.66,67 Upon activation, a positive feedback
cycle occurs whereby astrocytes release inflammatory
mediators, e.g., TNF-a, which in turn can activate
other glial cells.66 Astrocyte activation is accompanied
by a decrease in microglial activity over time (Fig-
ure 5).68 In an animal model, intrathecal administra-
tion of activated microglial cells decreased pain
threshold while a similar application of activated
astrocytes did not,69 further demonstrating that acti-
vated astrocytes are not predominantly involved in the
development of a pathological pain state, but rather
potentiation of a pain state.

CYTOKINES AND THE
INFLAMMATORY RESPONSE

The process of inflammation resulting from an infection
or injury is a physiological response that acts as part of
the body’s defense mechanism. Inflammation is tradi-

tionally associated with various symptoms: redness,
swelling, heat, and pain. On the cellular level, inflam-
mation involves the body’s innate immune system,
including activated microglia and astrocytes, macroph-
ages of the CNS.70 Upon activation, these macrophages
and other innate immune cells release immunoactive
agents, which mediate the inflammatory response,
including pro- and anti-inflammatory cytokines.71 As
their name suggests, pro-inflammatory cytokines main-
tain an up-regulated inflamed response. In animal
models, pro-inflammatory agents such as TNF-a, carra-
geenan, or complete Freund’s adjuvant injected around
the sciatic nerve (directly or indirectly) induced
mechanical allodynia,72 supporting the crucial role of
inflammation in the development and maintenance of
neuropathic pain. TNF-a, IL-1b, and IL-6 have all been
identified as pro-inflammatory cytokines.73 Conversely,
anti-inflammatory cytokines, such as IL-10, down-
regulate the inflammatory process. In fact, research indi-
cates that IL-10 is a very potent anti-inflammatory
cytokine as demonstrated in virtually all animal models
of chronic pain.31

Cytokines are very potent small proteins produced by
either immune (macrophages or helper T cells) or non-
immune cells (endothelial cells or Schwann cells) that
function as cellular communicators at an autocrine or
paracrine level. Most cytokines are pleiotropic in

Figure 5. Expressions of glial activation markers following L5 spinal nerve transection were normalized to sham animals. Markers of
microglial activation (ITGAM, TLR4, and CD14) increased significantly relative to sham animals within the first 4 hours after nerve
transection, which peaked at 4 to 7 days and began to decline. Astrocyte activation (GFAP) lagged 1 day behind microglial activation
and continued through day 14. These trends in glial activation markers continued through day 28, although sham data were not
collected and thus not graphed. This corroborates the concept that microglia are important initiators of neuropathic pain develop-
ment, whereas astrocytes contribute to the prolongation of a pain syndrome. Data extracted from Tanga et al.68
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nature, and different cytokines may have similar func-
tions. Under inflammatory conditions, cytokines are
produced and released to act on other cells, often as part
of a cytokine cascade (Figure 2).74 Under normal condi-
tions, the production of both pro- and anti-
inflammatory cytokines aids the immune system in
destroying a pathogen and healing the damaged tissue.
However, prolonged pro-inflammatory cytokine release
may lead to a pathological response such as chronic
pain.74 Congruent to this line of evidence, cytokine
antagonists have been used to demonstrate the involve-
ment of these cytokines in the initiation of a pathologi-
cal pain state.8,12,75

Following a peripheral nerve injury, Schwann cells
and macrophages secrete cytokines to initiate the
healing process of the injured nerve. The initial inflam-
matory response requires increased localized production
of pro-inflammatory cytokines such as TNF-a, IL-1b,
and IL-6, and decreased production of anti-
inflammatory cytokines such as IL-10.74 Not only are
pro-inflammatory cytokines elevated in a pain state, but
all three aforementioned pro-inflammatory cytokines
have the ability to increase neural activity and mecha-
nosensitivity at the dorsal root ganglia (DRG).76

Mechanical allodynia and hyperalgesia in a rat pain
model have been associated with early increased levels
of TNF-a, IL-1b, and IL-6 and delayed expression levels
of IL-10.77

Cytokines may also be transported to the DRG and
must cross the BBB to reach the DH of the spinal cord,
causing activation of microglia and astrocytes. Proposed
mechanisms by which cytokines cross the BBB is by
active transport,78–80 by passage through weak areas of
the BBB,81 and by binding to blood vessel receptors that
run through the brain, thus stimulating release of sec-
ondary messengers such as prostaglandins inside the
CNS.82 For example, elevated levels of IL-1b and IL-6
have also been found in the CSF in patients with
complex regional pain syndrome.83 Upon interaction
with specific receptors, inflammatory cytokines initiate a
cascade of intracellular events that result in the produc-
tion of prostaglandins or sympathomimetic amines,
which may be the substances ultimately responsible for
the enhanced nociception.84–88

Specific functions for some of the previously men-
tioned pro-inflammatory cytokines have been identified.
TNFa is one of the most prominent pro-inflammatory
cytokines involved in the initiation of the inflammatory
response and chronic pain including thermal hyperalge-
sia.89,90 There are two TNFa receptors termed p55 and

p75. TNFa binding to the p55 receptor induces pro-
grammed cell death while binding to the p75 receptor
results in translocation of nuclear factor kappa B to the
nucleus where it binds to promoter regions in several
genes. TNFa binding stimulates production of IL-1b,
which in turn induces expression of IL-6 and other
pro-inflammatory cytokines.

Another cytokine that is known to have a crucial role
in the development of chronic pain is IL-1b. IL-1b recep-
tors (IL-1R) are located in the CNS and the PNS. The
interaction between IL-1b and its receptor induces a
series of intracellular biochemical events that involve
expression of IL-6 (another pro-inflammatory cytokine),
p38MAPK, and NFkB, which are ultimately responsible
for inducing gene expression of cyclooxygenase-2
(COX-2) and type II phospholipase A2. The main effect
of IL-1b is the transcription of COX-2 with little effect
on COX-1. After COX-2 induction, prostaglandin E2 is
produced in large amounts and mediates many of the
biological activities of IL-1b. In addition, induction of
phospholipase A2 releases arachidonic acid, which is the
rate limiting step in the synthesis of prostaglandins and
leukotrienes.91 Production of prostaglandin E2 and I2
induces sensitization of nociceptors.82 Studies showed
prostaglandin expression, induced by intraplantar injec-
tion of IL-1b, caused a dose-dependent bilateral thermal
and mechanical hyperalgesia,92–94 which was inhibited
by pre-treatment with nonsteroidal anti-inflammatory
drugs.

Typically, IL-6 is thought to be a pro-inflammatory
cytokine capable of causing hyperalgesia by induction of
arachidonic acid release. Interestingly, IL-6 has been
shown to suppress in vitro production of IL-1b by
monocytes/macrophages stimulated with lipopolysac-
charide (LPS) while in vivo it stimulates the production
of anti-inflammatory proteins IL-1b receptor antagonist
and soluble TNFa receptor; two molecules that act as
decoys preventing the binding of IL-1b or TNFa with
the cell receptors.95–99 IL-6 is discussed in more detail
under neuropoietic cytokines.

CHEMOKINES AND NEUROPATHIC PAIN

A large subfamily of cytokines are chemotactic cytok-
ines, generally referred to as chemokines. Characteris-
tics common among all chemokines include both
structural and functional features: the conservation of a
cysteine motif in the N-terminal region of the protein
and the induction of their effects via various
7-transmembrane G-protein-coupled receptors.
Chemokines play a dual role in the immune system; they
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act as chemoattractants during inflammation and as
traffickers of hematopoietic stem cells during develop-
ment and differentiation.100,101 Chemokine binding to
receptors triggers downstream signaling cascades that
ultimately result in Ca2+ influx.102–104

Chemokines can be synthesized throughout the body
from a wide variety of cells with expression being vari-
able depending on the immunological state. Some
chemokines are homeostatic, such as those that guide
lymphocytes to lymphoid tissues, while others are only
expressed to facilitate the localization of the immune
response around the site of injury or infection.105

Numerous rodent neuropathic pain models have dem-
onstrated an up-regulation of the chemokine receptors
CX3CR1 or CCR2 as well as monocyte chemoattrac-
tant protein-1 (MCP-1; recently termed CCL2) in neural
tissues after an injury occurs such as the partial ligation
of the sciatic nerve,106–108 chronic constriction injury of
the sciatic nerve,40,44,109 chronic compression of the
L4-L5 DRG,110,111 bone cancer pain,112 and zymosan-
induced inflammatory pain.40,113,114 The importance of
the chemokine receptor CCR2 in neuropathic pain may
be very significant as evidenced in genetically engineered
mice lacking the CCR2 gene. These mice failed to
display a detectable change in acute pain behavior for
mechanical hyperalgesia after partial ligation of the
sciatic nerve.106

Chemokines’ ability to alter nociception can occur
via induction by pro-inflammatory agents. For example,
chemokines were expressed by endothelial cells after
administration of either a lipopolysaccharide, IL-1b, or
TNF-a.115 Furthermore, chemokines and their receptors
have been shown to facilitate pain via injection of
stromal cell-derived factor-1a (SDF1a/CXCL12), Regu-
lation upon Activation, Normal T cell Expressed, and
Secreted (RANTES/CCL5), or macrophage inflamma-
tory protein-1a (MIP1a/CCL3) into the noninflamed
rat hindpaw inducing dose-dependent tactile allo-
dynia.103 Chemokines such as SDF1/CXCL12 acting on
neurons and/or astrocytes are believed to affect the
release of glutamate, potentially affecting neuronal exci-
tation.116,117 Application of RANTES/CCL5 or MCP-1/
CCL2 to DRG cultures have been shown to result in the
release of substance P103 and CGRP,118 respectively. Both
substance P and CGRP are potent peptides and neu-
rotransmitters with established roles in pain transmis-
sion. MCP-1/CCL2 produces membrane threshold
depolarization and action potentials in neuronal cell
bodies.110,111,119 These excitatory effects on sensory
neurons are believed to facilitate the release of CGRP.118

Furthermore, the increase in electrical activity
after a peripheral injury occurs may stimulate the release
of MCP-1/CCL2 into the DH of the spinal cord,
further activating CCR2 bearing glial cells and/or
neurons.44,106,120

NEUROTROPHIC FACTORS AND
NEUROPATHIC PAIN

Neurotrophic factors are protein molecules that
promote the survival, growth, and maintenance of
neurons. Upon tissue injury neurotrophic factors act to
prevent damaged neurons from initiating programmed
cell death. The term neurotrophic factor describes three
major families including neurotrophins, glial cell line-
derived neurotrophic factor (GDNF) family, and neu-
ropoietic cytokines.

In mammals there are only 4 members of the neu-
rotrophin family consisting of nerve growth factor
(NGF), BDNF, neurotrophin-3 (NT-3), and
neurotrophin-4 (NT-4).121 Under normal physiological
conditions, neurotrophins are secreted by peripheral
targets (such as skin, muscle, and viscera) and trans-
ported retrogradely to the neuron cell body.122,123 Both
BDNF and NT-3 also undergo anterograde transport to
neurons and target cells, thereby potentially acting as a
neuromodulator and trophic factor.124 Furthermore,
activated astrocytes within the brain have been shown
to be a source of NGF, BDNF, and NT-3 around the site
of an injury.125 NT-4 has been shown to be synthesized
by most neurons of the DRG and dorsal and ventral
horns.126

Of the neurotrophins, NGF has been the most exten-
sively studied. Aside from its role in developing nervous
tissues, NGF is most commonly known for its role as a
major regulator of inflammatory and homeostatic pain
states.89,127–132 Elevated NGF levels enhance expression
of the neuropeptides substance P and CGRP.129,133–138

Thermal hyperalgesia and mechanical allodynia, in both
animal and human studies, have been linked to elevated
NGF.89,90,139,140

Expression of NGF is often seen as biphasic with the
secondary increase seen to correlate temporally with
IL-1b expression.141 Further evidence supporting the
secondary increase correlating to IL-1b expression,
likely released by macrophages, was characterized in
three ways. First, by a temporal relationship between
macrophage invasion and the secondary increase in
NGF. Second, it was mimicked in vitro using activated
macrophages or recombinant IL-1b. Finally, inhibition
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of the secondary expression of NGF was seen when
using IL-1b antibodies.141,142

Unlike NGF, BDNF is expressed at basal levels in
sensory neurons. BDNF, once neuronally synthesized, is
transported anterogradely to the spinal cord in secre-
tory vesicles143–145 in addition to the target-derived
BDNF that is retrogradely transported to the cell
body.145 Under inflammatory conditions, BDNF is regu-
lated in an NGF-dependent fashion146–148 and appears
as an important mediator of centrally sensitized inflam-
matory pain via inhibition of chloride ion excretion
resulting in further depolarization of the neuron.144,149–

151 TNF-a up-regulates expression of BDNF in primary
astrocytes, those astrocytes activated earliest, during
inflammation.152 Studies seem to indicate that BDNF
signals through the DRG to the dorsal horn of the
spinal cord.150,153 A direct role for BDNF in the gen-
eration of neuropathic pain was demonstrated by
administration of exogenous BDNF which subse-
quently induced both thermal hyperalgesia and
mechanical allodynia.154–156

In neuropathic pain, NT-3 has an anti-inflammatory
role by modulating injury-associated increases in
BDNF,157 substance P,158,159 and IL-6.160 NT-3 also
antagonizes the NGF pro-inflammatory pathway, inhib-
iting the production of pro-inflammatory mediators
such as NO, TNF-a, and IL-1b.161–164 Furthermore,
studies have shown that nerve injury-induced pheno-
typic changes in the DRG neurons can be reversed by
exogenous NT-3 and is evidenced by decreased expres-
sion of BDNF.157

Currently, little is known about the specific role of
NT-4 in regards to glial response and the immune
system. One study showed that like BDNF, NT-4 can
sensitize sensory afferent neurons to thermal stimula-
tion.165 However, NT-4 antibodies failed to abolish
thermal hyperalgesia in a chronic pain model,166 indi-
cating that NT-4 plays a supporting role. The specific
role of NT-4 in inflammatory pain has yet to be fully
elucidated.

The GDNF family of neurotrophic factors is com-
posed of secreted proteins that are structurally related;
these are GDNF, neurturin, artemin, and persephin. In
regards to neuropathic pain, the GDNF family has not
been as intensely studied as the neurotrophins. Most
research for the GDNF family has centered on GDNF
while artemin, neurturin, and persephin are still consid-
ered a fairly new area of research. GDNF is expressed in
almost all tissue types such as spinal cord, cartilage,
stomach, intestine, and kidneys and includes every

region of the brain.167 Artemin, neurturin, and persephin
are expressed in many tissues throughout the body,
although typically at very low levels.134,168

GDNF’s primary role seems to be in the repair or
neuroprotection of nerves after an injury occurs. In one
study, GDNF was released by activated microglia
causing a restoration of locomotor function after LPS-
induced inflammation.169 A separate study showed that
administration of IL-1b, interferon-g, TNF-a, or LPS on
cultured astrocytes increases GDNF expression, indicat-
ing that GDNF in astrocytes is regulated by inflamma-
tory stimuli.125 Partial sciatic nerve ligation and spinal
nerve ligation, both established pain models, have been
shown to induce inflammation, resulting in mechanical
allodynia and thermal hyperalgesia. After either injury,
intrathecal GDNF treatment showed a significant
increase in withdrawal thresholds for mechanical and
thermal stimulation showing GDNF’s ability to attenu-
ate hyperalgesia.170 Similarly, artemin injections pro-
duced a time and dose-related reversal of tactile and
thermal hypersensitivity, which was maintained with
sustained artemin administration.171 However, conflict-
ing data have since shown that intrathecal artemin injec-
tions fail to inhibit the development of hyperalgesia
after nerve ligation.172

Interestingly, studies show that expression of GDNF,
artemin, and neurturin was enhanced after neuronal
injury173–175 or chemically induced inflamma-
tion.169,176,177 There is significant debate on the involve-
ment of GDNF, artemin, and neurturin in thermal
hyperalgesia revolving around transient receptor poten-
tial vanilloid 1 (TRPV1) expression.176–178 Both NGF, a
pro-inflammatory neurotrophic factor, and GDNF, an
anti-inflammatory neurotrophic factor, have been
shown to increase TRPV1 expression, a protein known
to facilitate thermal hyperalgesia.176 However, studies
suggest that NGF and GDNF act on distinctive neuronal
cell populations to induce TRPV1 expression.176

Very little is known regarding persephin and its role
in neuropathic pain. The entire GDNF family, with the
sole exception of persephin, showed increased gene
expression following administration of capsaicin, a
known activator of TRPV1.179 More research is needed
to determine any role that persephin plays in neuro-
pathic pain.

The neuropoeitic cytokine family consists of IL-6,
IL-11, leukeaemia inhibitory factor (LIF), oncostatin-M
(OSM), ciliary neurotrophic factor (CNTF),
cardiotrophin-1 (CT-1), cardiotrophin-like cytokine
(CLC), and neuropoietin. The neuropoietic cytokine
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family has two general unifying characteristics. First,
neuropoietic cytokines all have a degree of homology to
IL-6, and second, they share a common signal-
transducing receptor, glycoprotein 130 (gp130). Given
that all neuropoietic cytokines rely on gp130 to induce
their cellular response, it is important to note that gp130
has been shown to be up-regulated in peripheral nerves,
DRG, and spinal cord in a variety of pain models.180

Neuropoietic cytokines have both pro- and anti-
inflammatory characteristics and are major players in
hematopoiesis, acute-phase responses, and immune
responses.181 Signal transduction includes activation of
Janus kinase/signal transducers and activators of tran-
scription (JAK/STAT) pathways and MAPK cascades.181

Neuropoietic cytokines are expressed by a variety of
cells types such as skeletal muscle, neurons, microglia,
and astrocytes.

Most of the neuropoietic cytokines play a minor role
in pain or inflammation. The neuropoietic cytokine
IL-11 is primarily involved in hematopoiesis182 and fer-
tility.183,184 OSM has been linked to sensory neuron
development, and thus a deficiency in OSM has been
shown to result in a marked decrease in reactions to
thermal, mechanical, chemical, and visceral nociceptive
stimulants.185 The cytokines CLC and neuropoietin play
prominent roles involving motor neuron develop-
ment.184,186,187 CLC is involved in astrocyte differentia-
tion within the developing brain.188 CT-1 is highly
expressed in embryonic skeletal muscle and is predomi-
nantly involved with survival of motor neurons.183

However, CT-1 was recently shown to induce IL-6
mRNA and protein expression in a time- and dose-
dependent manner.189

As with almost all neuropoietic cytokines, IL-6 is
important for differentiation, survival, and nerve regen-
eration. However, it plays a significant role in chronic
pain. IL-6 represents a typical defense hormone involved
in the activation of the immune and acute-phase
responses.182 IL-6 is synthesized by mononuclear phago-
cytes, vascular endothelial cells, fibroblasts, and other
cells in response to signals such as IL-1b, TNFa,
and prostaglandins.190–193 Centrally, IL-6 is known to be
produced by neurons as well as astrocytes and
microglia.193–195

Following peripheral axotomy, the presence of IL-6
mRNA is one of the earliest changes observed in the
DRG and the brain.196,197 IL-6 is produced both locally,
at the site of peripheral nerve injury, and centrally, in
response to nerve damage.190 Following an injury, IL-6
mRNA and protein were primarily found in neurons;

however, microglia and astrocytes are also known
sources of IL-6 production.190,198 Intraplantar injection
of IL-6 into a rat induced dose-dependent mechanical
hyperalgesia.199 Within 3 hours after a sciatic nerve
crush injury, IL-6 was produced both distally and proxi-
mally to the injured site.200,201 Interestingly, a similar case
was seen when the nerve was transected, indicating a
source other than the neuronal body, such as macroph-
ages or Schwann cells at or near the injury site were
responsible for producing inflammatory cytokines.200,201

Mechanical allodynia and up-regulation of IL-6 was
observed in the sciatic nerve after 14 days following
chronic constriction injury, crush injury, and axotomy.202

After the sciatic nerve injury, IL-6 was found in both the
ipsilateral and contralateral dorsal and ventral horns
with the increase in IL-6 paralleling pain behaviors over
time.190,198,203 IL-6 is considered a pro-inflammatory
cytokine; however, it has some anti-inflammatory char-
acteristics as well. IL-6, LIF, and CNTF have been shown
to inhibit TNFa expression.204–208

LIF and CNTF are very similar structurally and are
both known to be important for motor neuron devel-
opment.183 However, LIF has been shown to increase
mechanical hyperalgesia in a dose-dependent manner,
whereas CNTF showed no effect.209 There is basal
expression of LIF in the PNS and following a nerve
injury, LIF expression increases at the site of injury as
well as within the DRG.209 LIF is retrogradely trans-
ported to the DRG following application to a peripheral
nerve or target tissue.210,211 The LIF receptor is present
on macrophages and may stimulate the release of media-
tors, such as the induction of substance P, vasoactive
intestinal polypeptide, and galanin that modulate the
excitability of sensory neurons.209

SUMMARY

Recent studies indicate that a communication exists
between the immune and nervous systems. Although
multiple conditions may generate neuropathic pain, a
common underlying mechanism is the presence of
inflammation at the site of the damaged or affected
nerve(s). Microglia and astrocytes within the CNS have
been shown to play a pivotal role in the development
and maintenance of neuropathic pain. Following
peripheral nociceptive activation (via nerve injury, infec-
tion, or inflammation), microglia become activated and
release pro-inflammatory cytokines such as TNF-a,
IL-1b, and IL-6, thereby initiating the pain process.
Microglia propagate the neuroinflammation by recruit-
ing other microglia and eventually activating nearby
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astrocytes, which prolongs the inflammatory state and
leads to a chronic neuropathic pain condition.

Many substances have been identified as mediators in
the neuropathic pain pathway. These mediators, such as
cytokines and neurotrophic factors, have been shown to
modulate pain by either direct interaction with neurons
or by activating glial cells. Although numerous investi-
gators have attempted to elucidate the role of neuroin-
flammatory agents with regard to pain, much conflicting
evidence surrounds the effects induced by these media-
tors. In some instances, an agent may inhibit a pain
pathway while serendipitously in another circumstance
that same agent may promote a pain pathway. As such,
more work needs to be done to better understand the
pathways involved in the alterations in gene expression
responsible for generating a chronic neuropathic pain
condition.

A major component in the development of this neu-
roinflammatory response is the increased electrical affer-
ent input into the dorsal horn that enhances the central
sensitization process. Traditionally, most efforts in man-
aging pain involve pharmacological intervention to
modulate release of chemical neurotransmitters. As
previously described, signal transmission within the
nervous system employs both chemical and electrical
pathways. Therefore, attenuation of these electrical
signals via external electrical signals can be of
therapeutic value.

A role of glial cells and the immune system has been
established in the development and maintenance of
chronic neuropathic pain. As activation of glial cells
appears to be a pivotal component of the neuroinflam-
matory process, therapeutic measures attenuating noci-
ceptive behaviors targeting these cells offer a prime area
for future research.
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