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Little is known on how different levels of population heterogeneity and different patterns of human mobi-

lity affect the course of pandemic influenza in terms of timing and impact. By employing a large-scale

spatially explicit individual-based model, founded on a highly detailed model of the European popu-

lations and on a careful analysis of air and railway transportation data, we provide quantitative

measures of the influence of such factors at the European scale. Our results show that Europe has to

be prepared to face a rapid diffusion of a pandemic influenza, because of the high mobility of the popu-

lation, resulting in the early importation of the first cases from abroad and highly synchronized local

epidemics. The impact of the epidemic in European countries is highly variable because of the marked

differences in the sociodemographic structure of European populations. R0, cumulative attack rate and

peak daily attack rate depend heavily on sociodemographic parameters, such as the size of household

groups and the fraction of workers and students in the population.
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1. INTRODUCTION
The spread of an infectious disease epidemic is driven by

the interplay of two factors: the transmissibility of the

pathogen responsible for the infection and the character-

istics of the host population. When the role of host is

played by a human population, predicting the spread of

an epidemic is difficult owing to the complexity of

modern human societies. It is well established that the

spatial structure of the population has an impact on the

diffusion of an epidemic: measles waves in England and

Wales, spreading from large cities to small towns, are

determined by the spatial hierarchy of the host population

structure (Grenfell et al. 2001), and the spatial distri-

bution of farms influences the regional variability of

foot-and-mouth outbreaks in United Kingdom (Keeling

et al. 2001). The heterogeneity of the population itself

can play an important role in the spread of an epidemic

(Dushoff & Levin 1995). It is also well known that

human mobility patterns affect the spatiotemporal

dynamics of an epidemic: the role played by the airline

transportation network has been analysed in Colizza

et al. (2006), and it has been shown that the high

degree of predictability of the worldwide spread of infec-

tious diseases is caused by the strong heterogeneity of the

transport network (Hufnagel et al. 2004).

Large-scale individual-based spatially explicit trans-

mission models of infectious diseases (Riley 2007) have

become an important tool to evaluate the intervention

options for containing (Ferguson et al. 2005; Longini

et al. 2005) or mitigating (Longini et al. 2004; Ferguson

et al. 2006; Germann et al. 2006; Ciofi degli Atti et al.
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2008; Halloran et al. 2008; Merler et al. 2009) an influ-

enza pandemic. Because of their complexity, these

models have been developed only at the country level,

also including some European countries (Ferguson et al.

2006; Ciofi degli Atti et al. 2008).

However, Europe has never been analysed as a whole

and thus it is still uncertain how pandemic influenza

could spread in Europe. Europe comprises countries

characterized by completely different social and economi-

cal backgrounds that result in different levels of

population heterogeneity, in terms of both socio-

demographic structure and mobility. As it is reasonable

to assume that the epidemiological characteristics of the

virus do not vary among the European countries, we

expect that the high variability in the sociodemographic

structure of the European countries results in a high

variability in the impact of a pandemic influenza in the

different European countries. This is the first key issue

we want to address. To what extent the heterogeneity of

mobility patterns affects the spread in Europe is the

second key issue we want to address.
2. MATERIAL AND METHODS
(a) The model

We developed a stochastic, spatially explicit, individual-based

simulation model of the spread of influenza pandemic in 37

European countries (515 million individuals). In each

country, individuals are explicitly represented in the model

and can transmit the infection to household members, to

school/work colleagues (on the basis of the employment)

and in the general population (where the force of infection

is assumed to depend explicitly on the geographical

distance). The epidemic can spread from one country to

another through cross-borders diffusion (individuals living

close to the borders can transmit the infection outside the
This journal is q 2009 The Royal Society

mailto:merler@fbk.eu
http://dx.doi.org/10.1098/rspb.2009.1605
http://dx.doi.org/10.1098/rspb.2009.1605
http://dx.doi.org/10.1098/rspb.2009.1605
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org/


558 S. Merler & M. Ajelli Mobility and heterogeneity in epidemics

 on April 27, 2016http://rspb.royalsocietypublishing.org/Downloaded from 
country by random contacts with individuals living in other

countries) and because of international travel (taken by indi-

viduals). The infection is continuously sustained in the study

area by the importation of cases from countries outside

Europe. Sociodemographic data were used to generate

highly detailed synthetic populations of individuals in

Europe, explicitly grouped in households, schools and work-

places. Data on air and railway transportation data were used

to simulate long-distance travel across the countries of the

study area and to simulate importation of cases. Details are

given in the electronic supplementary material.

(b) Population heterogeneity

By analysing data on the sociodemographic structure

of 37 European countries (see figure 1a) provided by the Stat-

istical Office of the European Communities (Eurostat) and

integrated with data provided by the National Statistical Offices

for countries not covered by Eurostat, we found that the fre-

quencies of household type and size (figure 1b,c), the age

structure (figure 1e), the schools size (figure 1d), the rates of

school attendance and employment by age (figure 1f ) are

highly variable across Europe. The age structure of countries

like Ireland, which is one of the youngest European countries

(with 31% of the population aged less than or equal to 20

years), differs drastically from that of countries like Germany

and Italy (where only 22% and 20.5% of the population is

aged less than or equal to 20 years, respectively), which are

characterized by very low fertility rates (United Nations

2007). This results in largely different frequencies of household

type and size. The fraction of households with children ranges

from 0.3 in Denmark to 0.6 in Sweden and the average house-

hold size ranges from 2.1 in Denmark to three in Cyprus. By

restricting our attention to households with children, a large

variability in the number of children per household is also

observable (see electronic supplementary material, figure S1),

with countries such as Ireland and Cyprus, where households

have several children, opposite to countries like Germany and

Bulgaria. We have also observed a large difference in terms of

employment rates in the population aged over 15 years (the

legal working age in Europe is 15 or 16, with some exceptions):

the fraction of workers ranges from 0.39 in Bulgaria to 0.67 in

Lichtenstein. The fraction of students in the population aged

over 15 years ranges from 0.04 in Denmark to 0.12 in

Cyprus. According to the PIRLS 2001 and PISA 2000 and

2003 international surveys, as elaborated in European Com-

mission (2005), the average size of primary schools ranges

from 200 to 750 and the average size of secondary schools

ranges from 270 to 1000. We used an independent dataset

providing information on all the Italian schools to validate the

surveys data (see electronic supplementary material,

figure S2). Data concerning workplaces in Italy and United

Kingdom do not highlight significant differences in the size of

workplaces (see electronic supplementary material, figure S3).

We used the sociodemographic data described above to generate

a highly detailed synthetic population of individuals, explicitly

grouped in households, schools and workplaces, for simulating

the populations in the different countries of the study area.

Details on the analysis of the European sociodemographic

structure are given in the electronic supplementary material.

(c) Human mobility

We analysed air and railway transportation data as provided

by Eurostat. We found that in 2007, more than 360 million

passengers took international trips across EU27
Proc. R. Soc. B (2010)
(see figure 1a), 323 million of whom travelled by airplane

and 37 million travelled by train. In the same year, more

than 135 million passengers entered EU27 from countries

outside EU27. The great majority of these trips are from

and to the Western part of Europe (see figure 2a,b),

namely United Kingdom, Germany, France, Italy and

Spain (about 85% of the trips were from and to these

countries). The probability density function of travel dis-

tances is shown in figure 2c. As shown in Matsumoto

(2004) and Grosche et al. (2007), international travel flows

are related to economic factors. By considering only the tra-

vels across EU27, we found that the flow from country i to

country j can be explained by a gravity model depending

on the gross domestic product (GDP) per capita, the popu-

lation and the distance: Fij ¼ u(gj
tt gi

tf )/(dij
r), where gi is a

normalized GDP of country i (gi ¼ pi Gi /G* where Gi is

the GDP per capita of country i, G* is the average GDP

per capita of EU27 and pi is the population of country i)

and dij is the distance between the two countries. tf and tt

tune the dependence of dispersal on donor and recipient

sizes, r tunes the dependence on the distance and u is a pro-

portionality constant. To show this, we generated a synthetic

population of travellers travelling according to a gravity

model whose masses are given by the normalized GDPs

(model A), by the population sizes, as in Viboud et al.

(2006) (model B), and travelling by choosing a random des-

tination (model C). We found that model A explains the

origin–destination matrix (figure 2d) and the distance distri-

bution (figure 2e) better than models B and C (see electronic

supplementary material, figure S5). This considered, we

used model A for simulating long-distance trips across

the study area. As for the internal commuting, i.e. daily

trips to school and workplace, we adopted the following pro-

cedure. First, schools and workplaces of the proper size were

spatially distributed proportionally to the population (see

electronic supplementary material, figure S2). Afterward,

students and workers were randomly assigned to a school

or a workplace, in such a way that the resulting distance to

school/work distribution complies with a truncated power-

law distribution (see figure 2f ), as proposed in Gonzalez

et al. (2008) for the radius of gyration of mobile phone

users, extending the precursor work presented in Brockmann

et al. (2006) on the circulation of banknotes in the United

States. Electronic supplementary material, figure S6 shows

how well the proposed model of internal commuting com-

pares with a gravity model previously developed on Italian

commuting data. Details on the analysis of human mobility

patterns are given in the electronic supplementary material.
3. RESULTS AND DISCUSSION
The transmission rates, defined as the product of the con-

tacts rate times the probability of transmitting the

infection, of a new influenza pandemic are unknown. By

looking at past pandemics, we can only make assumptions

on its transmissibility potential, which can be summarized

by the reproductive number R0 (essentially, the number of

secondary infections that results from a single infectious

individual in a fully susceptible population (Anderson &

May 1992)). Therefore, according to the recent estimates

of the reproductive number for recent influenza pandemics

(Mills et al. 2004; Ferguson et al. 2005; Chowell &

Nishiura 2008), plausible transmissibility scenarios on R0

are drawn: the investigated values range from 1.6 to 2.4.

http://rspb.royalsocietypublishing.org/
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Figure 1. Sociodemographic structures. (a) The study area includes 37 countries and accounts for about 515 million individ-
uals (details are provided in table S1, electronic supplementary material). Colours from yellow to brown indicate the increasing
density of population. Black labels refer to countries belonging to EU27 while red labels refer to countries that do not belong to
EU27. (b) Variability in the frequencies of household type at European level. A1 represents single persons, A1_CH single
parents with children, CPL_NCH couples without children, CPL_CH couples with children. More than 95 per cent of Euro-

pean households are structured as one of the four abovementioned types. (c) Variability in the frequencies of household size. (d)
Variability in schools size (primary schools in cyan, secondary schools in blue). Horizontal lines identify the percentiles 25 and
75, the points represent the median values. The two boxplots represent the distributions of the average school size. (e) Varia-
bility in the age structure. ( f ) Variability in the employment and school attendance rates. Only individuals aged over 15 years
are considered. In the model, individuals aged 15 years or younger are assumed to attend schools.
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Moreover, following Ferguson et al. (2006), the model is

parametrized so that in the United Kingdom 30 per cent

of transmission occurs in households, 37 per cent in

schools and workplaces and 33 per cent in the general

community. As the contact rates are determined by the
Proc. R. Soc. B (2010)
sociodemographic structure of the population, we are

somehow setting the probability of transmitting the infec-

tion in the different social contexts. After having

parametrized the model in the United Kingdom (i.e. by

simulating an epidemic spreading in the United Kingdom

http://rspb.royalsocietypublishing.org/
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Figure 2. Population movement patterns. (a) Network of yearly airplane travellers across Europe (colours are defined as follows:
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airplane (blue points) and total (red points). Solid lines represent the smooth interpolations of data. (d) Model A (described in the
main text; parameters: tf ¼ 0.53, tt ¼ 1.18 and r ¼ 0.13): comparison between the observed and the modelled origin–destination

matrix. Points compare the generic entries of the two matrix and the solid black line represents a smooth interpolation. The model
tends to overestimate the number of travellers when the actual yearly number of travellers is less than 1000; it is in good agreement
with the data on the most important links. Red circle, UK; blue circle, DE; green circle, SI; and yellow circle, MA. (e) Model A:
resulting probability density function of travel distances compared with that resulting from the analysis of the observed data
(shown in c) (red points) and blue points show the model. ( f ) Internal commuting: probability density function of travel distances

to school/workplace (in the model, red points), compared with that proposed in Gonzalez et al. (2008) for the radius of gyration of
mobile phone users (black points). In the model, students are assumed to attend schools no more than 100 km from home.
This results in a change in the slope of the probability curve (blue circle). Solid line, p(rg) ¼ (rg þ rg

0) exp(2rg /k).
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without considering connections with the rest of the

world), the same transmission rates are assumed in the

rest of the study area. From now on, unless otherwise

specified, we assume R0 ¼ 2 (as discussed, it means
Proc. R. Soc. B (2010)
R0 ¼ 2 in the United Kingdom and it represents the

in-country estimate of R0). We assume that the latent

period is 1.5 days and the infectious period is

2 days. Infected individuals are assumed to have a

http://rspb.royalsocietypublishing.org/
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Figure 3. Spatiotemporal dynamics of a new pandemic influenza (R0 ¼ 2). (a) Probable destination of the first case imported in
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probability of 0.5 of developing clinical symptoms. In

the electronic supplementary material, we provide

sensitivity analysis on all the abovementioned modelling

choices.

We found that the probability of importing the first

case is higher in Western countries (the first case is

imported in United Kingdom or Germany in almost
Proc. R. Soc. B (2010)
50% of simulations, see figure 3a). The distributions of

the timing of the first case differ largely from country to

country (see figure 3b, its cartographic representation is

shown in figure 3a): on average, the first case occurs 44

(95% CI 30–60) and 79 (95% CI 66–92) days after

the first world case in the United Kingdom and the

Principality of Monaco, respectively. By ignoring

http://rspb.royalsocietypublishing.org/
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the less populous countries, a west–east gradient is clearly

observable. The variability in the peak day in the different

countries (see figure 3c) is less remarkable (on average, it

ranges from 106, 95% CI 96–119, days in Cyprus to 122,

95% CI 112–135, in Romania) as long-distance travels

tend to synchronize the national epidemics and these

are much faster in less populous countries. In general,

we have observed that the high mobility inside the

countries (internal commuting) and the long-distance

travels tend to synchronize, thus fastening, the epidemic.

The average peak day in a country is positively correlated

with the longitude of the country (Spearman test,

r ¼ 0.55, p ¼ 0.0003), as confirmed by the clear spatial

trend observable in the time sequence of the simulated

epidemic shown in figure 3e (see also the electronic

supplementary material, video M2). This finding is sup-

ported by the results presented in Paget et al. (2007),

where a spatial analysis revealed a significant west–east

pattern in the timing of peak influenza activity across

Europe in four winters from 1999 to 2007. The average

peak day in a country is negatively correlated with the

yearly number of passengers entering the country from

other countries in the study area (Spearman test,

r ¼ 20.59, p ¼ 0.001), supporting the hypothesis that

the observed pattern of epidemic spread is related to the

patterns of human mobility. When the first European

case is observed in the United Kingdom, the delay in epi-

demic onset in other countries is much shorter in the

Western part of Europe, compared to the Eastern and

small countries (see figure 4a, other scenarios are shown

in electronic supplementary material, figure S14). At

the national scale, spatial heterogeneity in population

density results in a relevant delay in epidemic onset

between urban and rural areas (see figure 4b). These

last results allow the identification of the top risk areas

during the initial phase of the epidemic. The expected

pattern of spread in Europe is shown in figure 3d. The

epidemic peaks some 110 days after the first world case

and the epidemic lasts about 3 months. We remark that

figure 3d reports the expected number of new cases in

time. As the national epidemics are not synchronized in

time, the actual peak incidence will be much higher

than the value corresponding to the peak day as reported

in the figure (it will be closer to the upper 95% confidence

limit, see also figure 5c).

On average, the cumulative attack rate in the different

countries ranges from 31.2 per cent (95% CI 31.2–31.2)

in Bulgaria to 37.8 per cent (95% CI 37.6–37.9) in

Cyprus (see figure 5a, its cartographic representation is

shown in figure 5b). By looking at the study area as a

whole, the average cumulative attack rate is 33.7 per cent

(95% CI 33.7–33.7). Among the most populous

countries, the cumulative attack rate is expected to

be 31.7 per cent (95% CI 31.7–31.7) in Germany,

33.5 per cent (95% CI 33.5–33.5) in the United

Kingdom, 33.5 per cent (95% CI 33.5–33.6) in Italy,

34.6 per cent (95% CI 34.5–34.6) in France and

35.5 per cent (95% CI 35.5–35.6) in Spain. It is worth

noting that the value obtained for the United Kingdom

is very similar to that obtained in Ferguson et al.

(2006). The standard deviations of the distributions of

the national cumulative attack rates are very small,

except for the less populous countries. The average

cumulative attack rate in a country is positively correlated
Proc. R. Soc. B (2010)
with the average household size (Spearman test, r ¼ 0.77,

p , 0.0001) (see figure 5d) and with the fraction of stu-

dents in the population (Spearman test, r ¼ 0.77, p ,

0.0001), and negatively correlated with the fraction of

inactive individuals in the population (Spearman test,

r ¼ 20.38, p ¼ 0.02) (see figure 5h). It is worth noticing

that a simple linear regression model whose independent

variables are the average household size, the fraction of

students and the fraction of inactive individuals in the

population predicts very well the average cumulative

attack rate in the different countries (coefficient of deter-

mination R2 ¼ 0.985, root mean square error (r.m.s.e.) ¼

0.17). The cumulative attack rate is positively correlated

with the basic reproduction number R0
E (Spearman test,

r ¼ 0.8, p , 0.0001, see the inset in figure 5e). Thus,

we also observed a high variability in R0
E, ranging from

1.9 (95% CI 1.63–2.23) in the Principality of Monaco

to 2.27 (95% CI 1.99–2.47) in Croatia (see figure 5e).

We used the apex E since the above estimates of R0
E

were obtained by analysing the national epidemics as

obtained by simulating the spread at European level,

and thus additionally considering cases generated through

http://rspb.royalsocietypublishing.org/
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Figure 5. Impact of a new pandemic influenza (R0 ¼ 2). (a) Distributions of the cumulative attack rate. (b) Cartographic rep-
resentation of the cumulative attack rate. (c) Distributions of the peak daily attack rate. (d) Average cumulative attack rate as a
function of the average household size. (e) Distribution of R0

E (pink boxplots), compared to the in-country estimates of R0 (red
points). The two insets show the relationship between R0

E, household size and cumulative attack rate. ( f ) Distributions of the
percentage of cases owing to transmission among household members. (g) Cumulative attack rates by age as observed during

the 1918–1919 Spanish influenza in the United States (red line) (Glezen 1996) and the average European values as predicted
by the model with R0 ¼ 1.6 (blue line) and R0 ¼ 2 (green line). (h) Average cumulative attack rate as a function of the fraction
of inactive (neither students nor workers) individuals.
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cross-border diffusion and long-distance travels and sub-

sequent secondary infections. Therefore, R0
E may differ

from the in-country estimates (see the electronic sup-

plementary material for details on the computation of

the reproduction number). It is worth noticing that we

obtained the estimates of R0
E systematically larger than

2, United Kingdom included. This can be explained by
Proc. R. Soc. B (2010)
considering that imported cases give rise to chains of

infections not synchronized in time that contribute

cumulatively to increase the estimate of R0
E compared to

the in-country estimate (this effect is less relevant in

small countries where the number of imported cases is

very low). In-country estimates of R0 are much closer to

2, though variable from country to country, as the

http://rspb.royalsocietypublishing.org/
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importation of cases is not considered at all (see

figure 5e). The peak daily attack rate in the different

countries is also highly variable. It ranges from 1.5 per

cent (95% CI 1.5–1.6) in Bulgaria to 2.3 per cent

(95% CI 2.2–2.4) in Cyprus (see figure 5c). As the

national epidemics are not synchronized, the average

peak daily attack rate of the whole study is similar to

the value observed in Bulgaria, namely 1.5 per cent

(95% CI 1.4–1.6). In the United Kingdom we obtained

a lower peak daily attack rate, 1.8 per cent (95% CI

1.7–1.8) with respect to the 2.1 per cent as reported in

Ferguson et al. (2006). This is due to different modelling

choices for the infective period. We assume an exponen-

tial distribution for both latent and infectious period (as

in the classical mathematical models of infectious dis-

eases) and infectiousness is assumed to be constant

during the infectious period (2 days). In Ferguson

et al. (2006) individuals transmit more at the very begin-

ning of the infectious period, giving rise to faster

simulated epidemics and to higher peak daily attack

rates. While these different modelling choices can

affect the evaluation of some containment strategies

(e.g. antiviral treatment) and can lead to differences in

the timing of the simulated epidemics, they do not

affect the results presented in this work. Electronic sup-

plementary material, figure S12 shows the dependence

of the timing of the epidemic and of the peak daily inci-

dence on the length of the infectious period: given R0,

the shorter the infectious period is, the faster the epi-

demic spreads and the higher the peak daily attack rate

is. The cumulative attack rate does not depend on the

length of the infectious period. Values of peak day and

peak daily attack rate in the United Kingdom similar

to that reported in Ferguson et al. (2006) were obtained

by assuming an infectious period of 1.5 days (see the

electronic supplementary material). The effects of vary-

ing the probability of developing symptoms is

discussed in the electronic supplementary material (see

figure S13). We found that the peak daily attack rate

in a country is positively correlated with the average

household size (Spearman test, r ¼ 0.72, p , 0.0001)

and with the fraction of students in the total population

(Spearman test, r ¼ 0.79, p , 0.0001), and slightly

negatively correlated with the fraction of inactive individ-

uals in the total population (Spearman test, r ¼ 20.31,

p ¼ 0.06). Moreover, it is negatively correlated with the

number of inhabitants (Spearman test, r ¼ 20.51, p ¼

0.001) as national epidemics tend to be less spatially

synchronized in larger countries. It is also relevant to

analyse where transmission occurs. We found that the

transmission in households in the different countries

ranges from 28.7 per cent (95% CI 28.6–28.7) in

Denmark to 34.8 per cent (95% CI 34.7–34.9)

in Croatia (see figure 5f ). Our assumptions on the

level of transmission in the different social contexts,

which result in the attack rates by age as shown in

figure 5g, are discussed in the electronic supplementary

material (see figures S10 and S11).

By examining the results for the values of R0 in the

range 1.6–2.4, we did not find significant qualitative differ-

ences (of course, the timing and the impact of the

epidemics are drastically different; see figures S8, S9 and

the electronic supplementary material, videos M1

and M3). The model was validated by comparing its
Proc. R. Soc. B (2010)
predictions to outcomes seen in the ongoing A(H1N1)

pandemic (see electronic supplementary material, figure

S15) and by comparing the attack rates by age with

those observed during the 1918–1919 Spanish influenza

in the Unites States (Glezen 1996) (see electronic

supplementary material, figure S16).
4. CONCLUSIONS
Because of the high mobility of the population, resulting

in an early importation of the first cases from abroad

and highly synchronized local epidemics, European

countries have to be prepared to face a rapid diffusion

of a pandemic influenza. Importation of the first cases

is much more likely to occur in the Western part of

Europe, and a stable west–east pattern in the timing

of peak influenza activity across Europe can be pre-

dicted which is independent of R0. The in-country

timing of influenza activity is affected by the spatial het-

erogeneity of population density—epidemic reaches

urban areas much earlier than rural areas. Countries

characterized by large household groups and by a

large fraction of students in the population (notably, Ire-

land) would face more severe epidemics than countries

such as Germany and Bulgaria. In fact, R0 (whose esti-

mates depend on the importation of cases), cumulative

attack rate and peak daily attack rate depend heavily

on sociodemographic parameters, such as the size of

household groups and the fraction of workers and stu-

dents in the population, mostly because they affect the

contact rates in the population. The proposed model

confirms the widely held theories; remarkably, it also

gives insight into the quantitative aspects never analysed

before at this level of detail (differences and similarities

between the proposed and the previously published

models are discussed in the electronic supplementary

material). Finally, let us remark that by assuming

R0 ¼ 1.6, the predicted attack rates by age comply

with those observed during the 1918–1919 Spanish

influenza in the Unites States, and that by assuming

R0 ¼ 1.2 the predicted time course of the epidemic

reflects that of the current A(H1N1) pandemic in

Europe.
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