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Statistics

Statistics is the art/science of summarizing data 
and quantifying evidence
Better yet…summarizing data so that non-
statisticians can understand it
Scientific investigations usually involve collecting 
a lot of data.
But, at the end of your study, what you really 
want is a “punch-line:”

Did the new treatment work?
Are the two groups being compared the same or 
different?
Is the new method more precise than the old 
method?

Statistical inference is the answer!



Do you need a statistician as part of 
your research team?

YES!
Simplest reasons:  s/he will help to 
optimize

Design
Analysis
Interpretation of results
Conclusions



What if I already know how to calculate 
sample size and perform a t-test?

Statisticians might know a better approach
Trained more formally in design options
More “bang for your buck”
Tend to be less biased
Adds credibility to your grant application
Use resources that are available to you



Different Roles 
Very collaborative 

Active co-investigator
Helps develop aims and design
Brought in early in planning
Continues to input throughout trial planning and while 
study continues

Consultants
Inactive co-investigator
Often not brought in until:

You need a sample size calculation several days 
before submission
Study/paper has been criticized/rejected for lack of 
statistical input
You’ve collected all of the data and don’t know what 
to do next.

Only involved sparsely for planning or for analysis.



Find a statistician early

Your study can only benefit from inclusion 
of a statistician
Statisticians cannot always rescue a 
poorly designed study after it has begun.
“Statistical adjustment” in analysis does 
not always work.
Ignorance is not bliss:

Some investigators are trained in statistics
But usually not all aspects!
Despite inclination to choose a particular 
design or analysis method, there might be 
better ways.



Statisticians: Specific Responsibilities

Design
Choose most efficient design
Consider all aims of the study
Particular designs that might be useful

Cross-over
Pre-post
Factorial

Sample size considerations
Interim monitoring plan



Assistance in endpoint selection
Subjective vs. objective
Measurement issues

Is there measurement error that should be 
considered?
Is the outcome actually an average of 
triplicate measures?

Multiple endpoints (e.g. tumor shrinkage 
AND time to death)
Clinical benefit versus biologic/PK 
endpoint
Continuous versus categorical outcomes

Statisticians: Specific Responsibilities



Analysis Plan
Statistical method for EACH aim
Account for type I and type II errors
Stratifications or adjustments are 
included if necessary
Simpler is often better
Loss to follow-up:  plan for missing 
data

Statisticians: Specific Responsibilities 



Most common problems seen in study proposals 
when a statistician is not involved

Outcomes are not clearly defined
There is not an analysis plan for 
secondary aims of the study
Sample size calculation is too simplistic or 
absent
Assumptions of statistical methods are 
not appropriate 



Four examples today

1. Statistical analysis to quantify 
differences

2. Statistical analysis to identify 
biomarkers 

3. Sample size calculations to 
determine how many mice to 
study

4. Taking your agents to the clinic:  
phase I study design



Four examples today

1. Statistical analysis to quantify 
differences

2. Statistical analysis to identify 
biomarkers 

3. Sample size calculations to 
determine how many mice to 
study

4. Taking your agents to the clinic:  
phase I study design



Ben Ho Park et al. NEJM brief report (to appear): 
“Tamoxifen stimulated growth of breast cancer due 
to loss of p21 expression”

“Some resistant breast cancers develop a growth proliferative response to [tamoxifen], as 
evidenced by tumor regression upon its withdrawal.  We present here a patient whose 
breast cancer displayed tamoxifen growth stimulation concurrent with loss of the cyclin
dependent kinase inhibitor p21.  Our study demonstrates that loss of p21 expression in 
conjunction with Tamoxifen exposure leads to aberrant [ER] alpha phosphorylation and a 

subsequent growth proliferative response.”

“Obvious association”
But…..

What IS the level of evidence?
Reviewers require quantification 



Here is some of the data:
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How to quantify?

Comparisons of interest
Are there changes over time

Ratio of day 2 to day 0 (within lines)
Ratio of day 4 to day 0 (within lines)

Differences in ratios comparing cell lines
Day 2 to day 0 ratio comparing lines 
Day 4 to day 0 ratio comparing lines

Noted complications
There are multiple pieces of data that go into 
creating each ratio
How do we calculate the standard errors to 
make these comparisons?



Hmmmm….i don’t think a t-test will do.

Solution:  Linear regression model
Throw all the data into one big 
analytic model

“borrows strength”
Improves efficiency
Allows us to make all comparisons
Use all of the data instead of 
comparing summaries



Model

Of note:
12 parameters (β’s) to estimate
4 cell lines x 3 days = 12 combinations
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How does this model help us?

Example 1:  
Is the day 2 to day 0 ratio for cell line 2 
different than 1?
β1 + β6 = 0 ?

Example 2:
Are the day 2 to day 0 ratios different for cell 
lines 2 and 3?
β7 - β6 = 0 ?

Example 3:
Are the day 4 to day 0 ratios different than the 
day 2 to day 0 ratios for cell line 4?
β2 + β11 - β1 - β8 = 0 ?



New figure
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New Table

Cell line Day Estimated Ratio p-value 95% CI

1 Day 2 to day 0 1.12 0.002 1.04, 1.19

2 Day 2 to day 0 2.40 0.003 2.24, 2.66

3 Day 2 to day 0 2.06 <0.001 1.92, 2.20

4 Day 2 to day 0 1.81 <0.001 1.69, 1.93

1 Day 4 to day 0 1.11 <0.001 1.04, 1.19

2 Day 4 to day 0 6.51 <0.001 6.09, 6.97

3 Day 4 to day 0 5.20 <0.001 4.85, 5.58

4 Day 4 to day 0 3.94 <0.001 3.67, 4.22



Importance of this application

Very common design!
This approach can be used in many 
studies



Four examples today

1. Statistical analysis to quantify 
differences

2. Statistical analysis to identify 
biomarkers

3. Sample size calculations to 
determine how many mice to 
study

4. Taking your agents to the clinic:  
phase I study design



Example 2: Identifying Biomarkers in Pancreatic 
Cancer Samples (Jimeno, Hidalgo, et al.)

Collaboration between Hopkins and MD Anderson 
quantitating proteins in pancreatic cancer tumors
7 cases (samples)
7 treatment settings

Control, CCI-779, OSI-774, CI-1040, and 2 way 
combinations.
CCI-779 = rapamycin (mTOR inhibitor)
OSI-774 = tarceva (EGFR inhibitor)
CI-1040 = MEK inhibitor

Hence, 49 conditions (7 cases x 7 treatments)
1-3 mice (xenografts) per condition











= rapamycin

= tarceva

= CI-1040



Example 2: Identifying Biomarkers in Pancreatic 
Cancer Samples

Sampled tumors from xenografts
Measured 49 different proteins
Outcomes of interest:

Association between control levels and 
efficacy of treatment
Association between changes in proteins 
(due to treatments) and efficacy
Differences in protein expression 
under different treatment conditions



Statistical Challenges
49 markers
7 cases x 7 treatment conditions x 1-3 mice
A lot of data! >7000 data points
How to pick out which markers are inhibited in 
which conditions?

Individual analyses will have low power and will 
lead to multiple comparisons problems
Joint model will improve power and avoid 
multiple comparisons issues.
Recall that all of this data came from tumors 
grown from just SEVEN cases!



Naïve Approach:  Individual analyses
Standardize by the control mice

divide by expression in control mice
take log 
value of 0 implies no difference between 
treatment and control
Now, only 6 treatment conditions to 
consider

Look at each of the 49x6 = 294 treatment 
marker combinations
Determine whether or not there is evidence 
that standardized mean is different than 0. 
Use simple t-test (294 times!)
Problems:  low power and multiple 
comparisons



Joint model
Assumption: There are two categories for a marker 
to belong to for each treatment

Inhibited (under-expressed as compared to 
control)
Normally expressed (as compared to control)

Normally expressed:  acknowledges that there is 
some variation in “normally” expressed.  

Each of these categories can represented by a 
normal (Gaussian) distribution. 

Instead of p-values, we would like to know 
to which category each treatment-marker 
combination belongs
how strong the evidence of categorization is



Assumed model (extreme (ideal) case)

N = 600000   Bandwidth = 0.08483
Difference in protein expression, compared to control
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Empirical Evidence

Seems reasonable model to fit
Based on empirical data, relatively 
few in underexpressed component
Adjusts for “case”:  multiple mice 
have tumors from same case
treatment x marker effects are 
parameters of interest



N = 600000   Bandwidth = 0.08483

Model

η1
η2

σ1
2

σ2
2



Model
yijkm=log(trt/ctrl)
i = mouse, j = case, k = trt, m = marker

i = 1,…,≈150
j = 1,…,7
k = 1,…,6 (adjusted for control)
m = 1,…,49
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Results

“shrinkage” of 
≈7000 values (49 
markers x 150 mice = 
7350)

some of the 
extreme values are 
imprecise
hierarchical model 
uses information 
about all genes to 
better understand 
variance



Inhibited Marker Values



Inferences

Inferences are based on strength of 
evidence for which component a 
marker-treatment combination 
belongs to
Very clear-cut results here: posterior 
probabilities were very close to 0 or 1.
No p-values!  
No type I error!  
No multiple comparisons!



Markers showing inhibition



Results

Two markers show inhibition
Inhibition in these markers is observed in 
all treatment combinations involving 
rapamycin
These markers were consistent with the 
preconceived hypotheses of investigators
Statistical approach

Evidence based on naïve approach would 
have been suspect based on 294 t-tests.
Avoidance of p-values for inference 
makes conclusions simpler.



Four examples today

1. Statistical analysis to quantify 
differences

2. Statistical analysis to identify 
biomarkers 

3. Sample size calculations to 
determine how many mice to 
study

4. Taking your agents to the clinic:  
phase I study design



Sample Size and Power
The most common reason statisticians get 
contacted
Sample size is contingent on design, analysis 
plan, and outcome
With the wrong sample size, you will either

Not be able to make conclusions because the 
study is “underpowered” 
Waste time and money because your study is 
larger than it needed to be to answer the 
question of interest



Sample Size and Power
And, with wrong sample size, you might have 
problems interpreting your result:

Did I not find a significant result because the 
treatment does not work, or because my 
sample size is too small?
Did the treatment REALLY work, or is the 
effect I saw too small to warrant further 
consideration of this treatment? 
This is an issue of SCIENTIFIC versus 
STATISTICAL signficance



Sample Size and Power
Sample size ALWAYS requires the investigator 
to make some assumptions

How much better do you expect the 
experimental therapy group to perform than 
the standard therapy groups?
How much variability do we expect in 
measurements?
What would be a clinically relevant 
improvement?

The statistician CANNOT tell you what these 
numbers should be (unless you provide data)
It is the responsibility of the clinical/laboratory 
investigator to define these parameters



Sample Size and Power

Hypothesis testing:
H0: new treatment does not work
H1: new treatment works

Review of power
Power = The probability of concluding that the new 
treatment is effective if it truly is effective
Type I error = The probability of concluding that the 
new treatment is effective if it truly is NOT effective
(Type I error = alpha level of the test)
(Type II error = 1 – power)

When your study is too small, it is hard to 
conclude that your treatment is effective 



Example 3:  Cancer Stem Cells in Core Binding 
Factor Leukemias (Civin et al.)

Cancer stem cell program project grant submission
A primary goal of project:  to determine if the 
engraftment frequency is different with modified 
AML cells compared to control AML cells
Study design:

Acquire samples from 5-20 samples (banked)
Use mouse xenograft approach to produce 
tumors
Transplanted cells were either modified or not 
(controls).
Expectation is that modified cells should engraft 
less frequently.
Primary modifications involved: FLT3 and KIT













Example 3:  Cancer stem cells in Core Binding 
Factor leukemias

How many mice and samples do we need?
We considered 3, 4, or 5 mice per condition/case
Up to 20 samples available

Using samples from the same case in many mice: lose 
independence assumption.  
Standard issues to consider for power calculations:

What is expected engraftment rate in each condition?
What is the expected difference in engraftment rates?
What are the desired type I and type II error rates?

Novel things to consider:
What is the variability in engraftment 
across mice transplanted with cells from 
different cases?
Does variability of engraftment differ by 
condition?



Example 3:  Cancer stem cells in Core Binding 
Factor leukemias

Power calculations
Allow for variability in engraftment rates
Low, moderate and high degree of variability

Perform “simulations”
Situation is too complex to use predetermined sample 
size calculations
Simulate data according to varying assumed data 
conditions
Determine how large N has to be to see “significant 
differences”
Usually, large number of datasets simulated (e.g., 
10000)
Number of simulations depends primarily on time until 
grant submission (true!)



Example 3:  Cancer stem cells in Core Binding 
Factor leukemias

Table 1:  Description of correlation structure of simulated datasets

Overall 
expected rate 

of 
engraftment

Range* of 
probabilities of 

engraftment under 
LOW variability

Range* of 
probabilities of 

engraftment under 
MODERATE 
variability

Range* of 
probabilities of 

engraftment 
under HIGH 
variability

5% 3%, 8% 2%, 13% 1%, 28%
10% 6%, 15% 4%, 23% 1%, 45%
20% 13%, 29% 8%, 40% 3%, 65%
30% 21%, 41% 14%, 54% 5%, 76%
40% 29%, 52% 20%, 65% 8%, 83%
50% 38%,62% 27%, 73% 12%, 88%
60% 48%, 71% 35%, 80% 17%, 92%
80% 71%, 87% 60%, 92% 55%, 97%

* range is actually the range for which 95% of the engraftment 
probabilities are expected to fall. 



Example 3:  Cancer stem cells in Core 
Binding Factor leukemias

Table 2A: Minimum power to detect differences in engraftment rates between 
groups of mice based on experiments with N samples.  Low variability 
under control conditions, moderate variability under modified conditions. With three 
mice per group and two conditions (modified and control), the number of mice 
is six times the number of samples. Assumes two-sided alpha of 0.10 and 3 mice 
per condition per case.

Difference in 
engraftment rates

N=5
(30 mice)

N=8
(48 mice)

N=10
(60 mice)

N=15
(90 mice)

N=20
(120 mice)

0.30 0.43 0.67 0.69 0.88 0.92

0.40 0.56 0.83 0.92 0.97 0.99

0.50 0.72 0.90 0.95 0.99 >0.99

0.60 0.75 0.92 0.96 >0.99 >0.99

0.70 0.78 0.93 0.97 >0.99 >0.99



Example 3:  Cancer stem cells in Core 
Binding Factor leukemias

Table 2B: Minimum power to detect differences in engraftment rates between 
groups of mice based on experiments with N samples.  Moderate variability 
under control conditions, high variability under modified conditions. With three 
mice per group and two conditions (modified and control), the number of mice 
is six times the number of samples. Assumes two-sided alpha of 0.10 and 3 mice 
per condition per case.

Difference in 
engraftment rates

N=5
(30 mice)

N=8
(48 mice)

N=10
(60 mice)

N=15
(90 mice)

N=20
(120 mice)

0.30 0.40 0.56 0.64 0.75 0.86

0.40 0.57 0.77 0.83 0.96 0.98

0.50 0.67 0.88 0.94 0.99 >0.99

0.60 0.74 0.91 0.96 >0.99 >0.99

0.70 0.77 0.92 0.97 >0.99 >0.99



Four examples today

1. Statistical analysis to quantify 
differences

2. Statistical analysis to identify 
biomarkers 

3. Sample size calculations to 
determine how many mice to 
study

4. Taking your agents to the clinic:  
phase I study design



Phase I study design
“Standard” Phase I trials (in oncology) use what is 
often called the ‘3+3’ design

Maximum tolerated dose (MTD) is considered highest 
dose at which 1 or 0 out of six patients experiences 
DLT.
Doses need to be pre-specified
Confidence in MTD is usually poor.

Treat 3 patients at dose K
1. If 0 patients experience dose-limiting toxicity (DLT), escalate to dose K+1
2. If 2 or more patients experience DLT, de-escalate to level K-1
3. If 1 patient experiences DLT, treat 3 more patients at dose level K

A. If 1 of 6 experiences DLT, escalate to dose level K+1
B. If 2 or more of 6 experiences DLT, de-escalate to level K-1



Should we use the “3+3”?

It is terribly imprecise and inaccurate in its 
estimate of the MTD
Why?  

MTD is not based on all of the data
Algorithm-based method 

Likely outcomes:
Choose a dose that is too high

Find in phase II that agent is too toxic.
Abandon for further investigation or go back 
to phase I

Choose a dose that is too low
Find in phase II that agent is ineffective
Abandon agent

Phase I is the most critical phase of cancer 
drug development!  USE A SMARTER DESIGN!



Continual Reassessment Method (CRM)

Allows statistical modeling of optimal dose:  
dose-response relationship is assumed to behave 
in a certain way
Can be based on “safety” or “efficacy” outcome 
(or both).
Design searches for best dose given a desired 
toxicity or efficacy level and does so in an 
efficient way.
This design REALLY requires a statistician 
throughout the trial.
ADAPTIVE
Example:  Phase I/II trial of Samarium 153 in 
High Risk Osteogenic Sarcoma (Schwartz)



CRM history in brief

Originally devised by O’Quigley, Pepe and 
Fisher (1990) where dose for next 
patient was determined based on 
responses of patients previously 
treated in the trial

Due to safety concerns, several authors 
developed variants

Modified CRM (Goodman et al. 1995)
Extended CRM [2 stage] (Moller, 1995)
Restricted CRM (Moller, 1995)
and others….



Basic Idea of CRM
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Carry-overs from standard 
CRM 

Mathematical dose-toxicity 
model must be assumed
To do this, need to think 
about the dose-response 
curve and get preliminary 
model.
We CHOOSE the level of 
toxicity that we desire 
for the MTD (e.g., p = 
0.30)
At end of trial, we can 
estimate dose response 
curve.

Modified CRM 
(Goodman, Zahurak, and Piantadosi, Statistics in Medicine, 1995)



Modified CRM by 
Goodman, Zahurak, and Piantadosi
(Statistics in Medicine, 1995)

Modifications by Goodman et al.
Use ‘standard’ dose escalation model until first toxicity 
is observed:

Choose cohort sizes of 1, 2, or 3
Use standard ‘3+3’ design (or, in this case, ‘2+2’)

Upon first toxicity, fit the dose-response model 
using observed data

Estimate α
Find dose that is closest to toxicity of 0.3.

Does not allow escalation to increase by more than 
one dose level.
De-escalation can occur by more than one dose level.



• Estimated α = 0.77

• Estimated dose 
is 1.4mCi/kg
for next cohort.

Example Samarium in pediatric osteosarcoma:
2 patients treated at dose 1 with 0 toxicities
2 patients treated at dose 2 with 1 toxicity

Fit CRM using equation below
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• Estimated α = 0.71

• Estimated dose 
for next patient 
is 1.2 mCi/kg

Example Samarium study with cohorts of size 2:
2 patients treated at 1.0 mCi/kg with no toxicities
4 patients treated at 1.4 mCi/kg with 2 toxicities

Fit CRM using equation on earlier slide
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• Estimated α = 0.66

• Estimated dose 
for next patient 
is 1.1 mCi/kg

Example Samarium study with cohorts of size 2:
2 patients treated at 1.0 mCi/kg with no toxicities
4 patients treated at 1.4 mCi/kg with 2 toxicities
2 patients treated at 1.2 mCi/kg with 1 toxicity

Fit CRM using equation on earlier slide
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• Estimated α = 0.72

• Estimated dose for
next patient is 
1.2 mCi/kg
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Example Samarium study with cohorts of size 2:
2 patients treated at 1.0 mCi/kg with no toxicities
4 patients treated at 1.4 mCi/kg with 2 toxicities
2 patients treated at 1.2 mCi/kg with 1 toxicity
2 patients treated at 1.1 mCi/kg with no toxicities

Fit CRM using equation on earlier slide



When does it end?

Prespecified stopping rule
Can be fixed sample size
Often when a “large” number have 
been assigned to one dose.
This study should enroll at least two 
more cohorts.



Concluding Remarks

Get your statistician involved as soon 
as you begin to plan your study
Try to avoid:

Contacting statistician only several days before 
grant/protocol/proposal is due
Asking statisticians to rewrite rejected 
statistical sections
Asking statisticians to analyze data that have 
arisen from a poorly designed trial

Statisticians have a lot to add
“Fresh” perspective to your study
Study will be more efficient!
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