The RSA cryptosystem
 Part 1: encryption and signature

Jean-Sébastien Coron

University of Luxembourg

- Invented by Diffie and Hellman in 1976. Revolutionized the field.
- Each user now has two keys
- A public key
- A private key
- Should be hard to compute the private key from the public key.
- Enables:
- Asymmetric encryption
- Digital signatures
- Key exchange, identification, and many other protocols.

Key distribution issue

- Symmetric cryptography
- Problem: how to initially distribute the key to establish a secure channel ?

Public-key encryption

- Public-key encryption (or asymmetric encryption)
- Solves the key distribution issue

The RSA algorithm

- The RSA algorithm is the most widely-used public-key encryption algorithm
- Invented in 1977 by Rivest, Shamir and Adleman.
- Implements a trapdoor one-way permutation
- Used for encryption and signature.
- Widely used in electronic commerce protocols (SSL), secure email, and many other applications.

- Trapdoor one-way permutation
- Computing $f(x)$ from x is easy
- Computing x from $f(x)$ is hard without the trapdoor
- Public-key encryption
- Anybody can compute the encryption $c=f(m)$ of the message m
- One can recover m from the ciphertext c only with the trapdoor

- Key generation:
- Generate two large distinct primes p and q of same bit-size $k / 2$, where k is a parameter.
- Compute $n=p \cdot q$ and $\phi=(p-1)(q-1)$.
- Select a random integer $e, 1<e<\phi$ such that $\operatorname{gcd}(e, \phi)=1$
- Compute the unique integer d such that

$$
e \cdot d \equiv 1 \quad(\bmod \phi)
$$

using the extended Euclidean algorithm.

- The public key is (n, e).
- The private key is d.

RSA encryption

- Encryption
- Given a message $m \in[0, n-1]$ and the recipent's public-key (n, e), compute the ciphertext:

$$
c=m^{e} \quad \bmod n
$$

- Decryption
- Given a ciphertext c, to recover m, compute:

$$
m=c^{d} \bmod n
$$

- Message encoding
- The message m is viewed as an integer between 0 and $n-1$
- One can always interpret a bit-string of length less than $\left\lfloor\log _{2} n\right\rfloor$ as such a number.

Reminder: Fermat's little theorem

- Theorem
- For any prime p and any integer $a \neq 0 \bmod p$, we have $a^{p-1} \equiv 1 \bmod p$. Moreover, for any integer a, we have $a^{p} \equiv a$ $\bmod p$.
- Proof
- Follows from Euler's theorem and $\phi(p)=p-1$.
- We must show that $m^{e d}=m \bmod n$.
- Since $e \cdot d \equiv 1 \bmod \phi$, there is an integer k such that $e \cdot d=1+k \cdot \phi=1+k \cdot(p-1) \cdot(q-1)$. Therefore we must show that:

$$
m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \quad(\bmod n)
$$

- If $m \neq 0 \bmod p$, then by Fermat's little theorem $m^{p-1} \equiv 1$ $(\bmod p)$, which gives :

$$
m^{1+k \cdot(p-1) \cdot(q-1)} \equiv m \quad(\bmod p)
$$

- This is also true if $m \equiv 0(\bmod p)$.
- This gives $m^{e d} \equiv m(\bmod p)$ for all m.
- Similarly, $m^{\text {ed }} \equiv m(\bmod q)$ for all m.
- By the Chinese Remainder Theorem, if $p \neq q$, then $m^{e d} \equiv m(\bmod n)$

Decrypting with CRT

- Given the factors p and q of $n=p \cdot q$, instead of computing $m=c^{d} \bmod n$, compute:
- $m_{p}=c^{d_{p}} \bmod p$ where $d_{p}=d \bmod (p-1)$
- $m_{q}=c^{d_{q}} \bmod q$, where $d_{q}=d \bmod (q-1)$
- Using CRT, find m such that $m \equiv m_{p}(\bmod p)$ and $m \equiv m_{q}$ $(\bmod q)$:
$m=\left(m_{p} \cdot\left(q^{-1} \bmod p\right) \cdot q+m_{q} \cdot\left(p^{-1} \bmod q\right) \cdot p\right) \bmod n$
- Since exponentiation is cubic, this is roughly 4 times faster.

Implementation of RSA

- Required: computing with large integers
- more than 1024 bits.
- In software
- big integer library: GMP, NTL
- In hardware
- Cryptoprocessor for smart-card
- Hardware accelerator for PC.

Speed of RSA

- RSA much slower than AES and other secret key algorithms.
- To encrypt long messages
- encrypt a symmetric key K with RSA
- and encrypt the long message with K

Security of RSA

- The security of RSA is based on the hardness of factoring.
- Given $n=p \cdot q$, it should be difficult to recover p and q.
- No efficient algorithm is known to do that. Best algorithms have sub-exponential complexity.
- Factoring record: a 768 -bit RSA modulus n.
- In practice, one uses at least 1024-bit RSA moduli.
- However, there are many other lines of attacks.
- Attacks against textbook RSA encryption
- Low private / public exponent attacks
- Implementation attacks: timing attacks, power attacks and fault attacks

Factoring attack

- Factoring large integers
- Best factoring algorithm: Number Field Sieve
- Sub-exponential complexity

$$
\exp \left((c+\circ(1)) n^{1 / 3} \log ^{2 / 3} n\right)
$$

for n-bit integer.

- Current factoring record: 768-bit RSA modulus.
- Use at least 1024 -bit RSA moduli
- 2048-bit for long-term security.

Factoring vs breaking RSA

- Breaking RSA:
- Given (N, e) and y, find x such that $y=x^{e} \bmod N$
- Open problem
- Is breaking RSA equivalent to factoring ?
- Knowing d is equivalent to factoring
- Probabilistic algorithm (RSA, 1978)
- Deterministic algorithm (A. May 2004, J.S. Coron and A. May 2007)

Elementary attacks

- Textbook RSA encryption: dictionary attack
- If only two possible messages m_{0} and m_{1}, then only $c_{0}=\left(m_{0}\right)^{e} \bmod N$ and $c_{1}=\left(m_{1}\right)^{e} \bmod N$.
- \Rightarrow encryption must be probabilistic.
- PKCS\#1 v1.5
- $\mu(m)=0002\|r\| 00 \| m$
- $c=\mu(m)^{e} \bmod N$
- Still insufficient (Bleichenbacher's attack, 1998)

Chosen ciphertext attack against textbook RSA

- Chosen-ciphertext attack:
- Given ciphertext c to be decrypted
- Generate a random r
- Ask for the decryption of the random looking ciphertext $c^{\prime}=c \cdot r^{e}(\bmod n)$
- One gets $m^{\prime}=\left(c^{\prime}\right)^{d}=c^{d} \cdot\left(r^{e}\right)^{d}=c^{d} \cdot r=m \cdot r(\bmod n)$
- This enables to compute $m=m^{\prime} / r(\bmod n)$
- Conclusion: do not use textbook RSA encryption!
- Security notion for encryption.
- From a ciphertext c, an attacker should not be able to derive any information from the corresponding plaintext m.
- Even if the attacker can obtain the decryption of any ciphertext, c excepted.
- This is called indistinguishability against a chosen ciphertext attack (IND-CCA2).
- Security proof for encryption
- Prove that if an attacker can distinguish between the encryption of two plaintexts, then it can be used to break RSA.

IND-CCA2 security

- The attack scenario:
- The adversary \mathcal{A} receives the public key $p k$
- \mathcal{A} makes decryption queries for any ciphertexts y.
- \mathcal{A} chooses two messages M_{0} and M_{1} of identical length, and receives the encryption c of M_{b} for a random b.
- \mathcal{A} continues to make decryption queries. The only restriction is that the adversary can not obtain the decryption of c.
- \mathcal{A} outputs a bit b^{\prime}, representing its "guess" of b.
- IND-CCA2 security:
- An encryption scheme is said to be IND-CCA2 secure if for any polynomial-time bounded \mathcal{A}, the advantage
$\operatorname{Adv}(\mathcal{A})=\left|2 \cdot \operatorname{Pr}\left[b^{\prime}=b\right]-1\right|$ is a negligible function of the security parameter.

OAEP

- OAEP (Bellare and Rogaway, E'94)
- IND-CCA2, assuming that RSA is hard to invert.
- PKCS \#1 v2.1

$$
c=(s \| t)^{e} \bmod N
$$

Digital signatures

- A digital signature σ is a bit string that depends on the message m and the user's public-key $p k$
- Only Alice can sign a message m using her private-key sk

- Anybody can verify Alice's signature of the message m given her public-key $p k$

- Key generation :
- Public modulus: $N=p \cdot q$ where p and q are large primes.
- Public exponent : e
- Private exponent: d, such that $d \cdot e=1 \bmod \phi(N)$
- To sign a message m, the signer computes :
- $s=m^{d} \bmod N$
- Only the signer can sign the message.
- To verify the signature, one checks that:
- $m=s^{e} \bmod N$
- Anybody can verify the signature

Hash-and-sign paradigm

- There are many attacks on basic RSA signatures:
- Existential forgery: $r^{e}=m \bmod N$
- Chosen-message attack: $\left(m_{1} \cdot m_{2}\right)^{d}=m_{1}^{d} \cdot m_{2}^{d} \bmod N$
- To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.
- $m \longrightarrow H(m) \longrightarrow 1001 \ldots 0101 \| H(m)$
- Example: PKCS\#1 v1.5:

$$
\mu(m)=0001 \mathrm{FF} \ldots \mathrm{FF} 00\left\|\mathrm{C}_{\mathrm{SH}}\right\| \mathrm{SHA}(m)
$$

- The signature is then $\sigma=\mu(m)^{d} \bmod N$

Conclusion

- The RSA cryptosystem
- RSA encryption. Elementary attacks. IND-CCA2 security. OAEP
- RSA signatures. Elementary attacks.
- Next lectures
- More complex attacks. Coppersmith's theorem.
- Security proofs for RSA signature schemes

Appendix

- We consider the particular case $N=p q$ with $p \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$.
- Algorithm:
- Write $u=e \cdot d-1$. Therefore u is a multiple of $\phi(N)=(p-1) \cdot(q-1)$.
- Write $u=2^{r} \cdot t$ for odd t.
- Generate a random $a \in \mathbb{Z}_{N}^{*}$
- Compute $b \equiv a^{t}(\bmod N)$
- Return $\operatorname{gcd}(b+1, N)$

Analysis

- We have $t=s \cdot \frac{p-1}{2} \cdot \frac{q-1}{2}$ for some odd s.
- Let $Q_{p}=\left\{x \in \mathbb{Z}_{p}^{*} \mid x^{(p-1) / 2} \equiv 1(\bmod p)\right\}$
- Q_{p} is a subgroup of \mathbb{Z}_{p} of order $(p-1) / 2$
- therefore $(a \bmod p) \in Q_{p}$ with probability $1 / 2$
- Moreover:

$$
\begin{aligned}
& a \in Q_{p} \Rightarrow b \equiv 1 \quad(\bmod p) \\
& a \notin Q_{p} \Rightarrow b \equiv-1 \quad(\bmod p)
\end{aligned}
$$

- We obtain the factorization of N if $\left(a \in Q_{p} \wedge b \notin Q_{q}\right)$ or $\left(a \notin Q_{p} \wedge b \in Q_{q}\right)$
- This happens with probability $1 / 2$

