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Abstract. The Saturn-Janus-Epimetheus system is a prime example of a

circular restricted three body problem. In this paper we examine the difficulties
behind the three-body problem, the assumptions that must be made in order

to solve it, the limitations behind these assumptions, and possible methods of
solving the three-body problem. Finally, we use the unique properties of the

Saturn-Janus-Epimetheus system to show that Epimetheus’ orbit traces out

a horseshoe pattern in a rotating frame in which Saturn and Janus are fixed.
The system is then numerically integrated and animated in MATLAB.

1. Introduction

The study of gravity has led to many revolutions in science, from Newtonian Dy-
namics to General Relativity to Quantum Field Theory. Despite these advances,
however, gravity continues to puzzle scientists. In the 17th century, Sir Isaac New-
ton was able to successfully model the gravitational force on a macroscopic scale,
but in the succeeding 400 years physicists have made little progress in understand-
ing the precise nature of this elusive force.1 Determining the gravitational force
exerted by an object is fairly trivial; however, trying to model gravitational inter-
actions between multiple objects quickly becomes nearly impossible. The simplest
case, the two-body problem, is the most complicated gravitational interaction that
can be fully understood without some basic and unrealistic assumptions. We ex-
amine the two-body problem now in order to compare the results to the three-body
problem. Consider two masses, m1 and m2, and let the distance from the origin to
m1 and m2 be r1 and r2, respectively. The force on m1 due to m2 is simply the
gravitational force:

F1 =
Gm1m2

r3
r

where r is the distance between the two masses, r is the vector pointing from m2

to m1, and G = 6.6726×10−11 N· m2 kg−2 is the gravitational constant. Newton’s
second law relates force to acceleration: F = ma = mr̈, where the dot notation
implies differentiation with respect to time. This enables us to write the two-body
equations of motion as

F1 =
Gm1m2

r3
r = m1r̈1

1Current theories of gravity are extremely varied: Newtonian theories predict that gravity is

an attractive force; General Relativity predicts that gravity is the curvature of space-time due

to the presence of mass; and Quantum Field Theory says that gravity is due to the exchange of
elementary particles called gravitons. Each of these theories has its own problems. The most

likely candidate, General Relativity, cannot yet be reconciled with Quantum Mechanics.
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and

F2 = −Gm1m2

r3
r = m2r̈.

Because the two forces are of equal magnitude in opposite directions,

m1r̈1 +m2r̈2 = 0.

We can integrate this result directly to obtain equations for the motion of the cen-
ter of mass of the system. Using the conservation of angular momentum, linear
momentum, and energy, we can also show that the path of one body relative to
the other and the paths of the two bodies relative to the center of mass are conic
sections. At the end of a rather lengthy derivation, we can produce a definitive
result for the position of the bodies at a given time.

The key to the two-body problem is that we know multiple relationships between
variables that enable us to reduce the number of unknowns in order to obtain an
exact solution. These relationships include the conservation of quantities such as
linear momentum, angular momentum, and energy. When we move to the three-
body problem, however, we add in six more variables (three space variables and
three velocity variables) with the extra body; moreover, we lose some of our im-
portant quantities, such as the conservation of energy, as is shown in Section 3.
For more than two bodies we end up with more unknowns than equations, which
makes the problem analytically unsolvable. However, there are some cases in which
the three-body problem can be simplified. One case occurs when the three-body
problem is restricted, meaning we assume that the third body has such little mass
compared to the other two bodies that it can be treated as a massless particle.
Another case is to consider the orbits to be circular. When we combine the two,
we have a circular restricted three-body problem.

The circular restricted three-body problem is a fairly good approximation to
the Saturn-Janus-Epimetheus system. Janus and Epimetheus are moons of Saturn,
located at orbital radii of 151, 472 km and 151, 422 km respectively. Janus has
a mass of around 1.98 × 1018 kg and a diameter of approximately 175 km, while
Epimetheus’ mass and diameter are about 5.5 × 1017 kg and 105 km [6]. Because
the orbits of Janus and Epimetheus are only 50 km apart, smaller than the radii of
the moons, a näıve analysis would suggest that the two moons would eventually col-
lide. However, we show that the gravitational interactions in the circular restricted
three body problem prevent Janus and Epimetheus from colliding with each other.
We then use numerical integration to determine and animate the trajectories of the
moon in time.

In Section 2, we derive the equations of motion for the three-body problem, both
in inertial and rotating frames of reference. Section 3 concerns the quantities that
are conserved in the three-body problem. We then locate the equilibrium points of
the three-body system in Section 4 and determine their stability in Section 5. In
Section 6 we determine adequate initial conditions for the Saturn-Janus-Epimetheus
system. We then discuss the methods, purposes, and accuracy of numerical integra-
tion Section 7. Finally, in Section 8 we animate the trajectories of the three-bodies
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in the Saturn-Janus-Epimetheus system in the rotating and inertial frames of ref-
erence. In the Appendices we include several snippets of MATLAB code that can
be used to reproduce our animations of the system.

2. The Equations of Motion

In this section we derive the equations of motion for the circular restricted three-
body problem. First we consider two masses m1 and m2 interacting via the gravi-
tational force. A particle P orbits around the two masses at distances of r1 and r2
from m1 and m2, respectively. We assume that P “feels” the gravitational force of
m1 and m2 but does not exert a gravitational force of its own. Our goal is to find
an equation that gives the position of the particle at any time t.

To begin, we set up a coordinate system in the inertial reference frame.2 Let
the origin of the coordinate system be located at the center of mass of the system.
Let ξ be the axis pointed along the line joining m1 and m2 at t = 0, let η be the
axis perpendicular to the ξ axis and in the orbital plane, and let ζ be the axis
perpendicular to the ξη-plane (see Figure 1). In the circular three-body problem
each of the masses will orbit with the same angular velocity about their center
of mass so that they have a constant separation. We define the unit mass µ =
G(m1 + m2) = µ1 + µ2 = 1, with µ1 > µ2. It then follows that µ1 = Gm1 and
µ2 = Gm2. We now use a similar approach as in the two-body problem to determine
the three dimensional equations of motion of the particle P:

ξ̈ = µ1
ξ1 − ξ
r31

+ µ2
ξ2 − ξ
r32

,(1)

η̈ = µ1
η1 − η
r31

+ µ2
η2 − η
r32

,(2)

and

ζ̈ = µ1
ζ1 − ζ
r31

+ µ2
ζ2 − ζ
r32

(3)

where (ξ1, η1, ζ1) is the position of µ1, (ξ2, η2, ζ2) is the position of µ2, and r1 and
r2, the distances from m1 and m2 to the particle P, are determined by the distance
formula:

r21 = (ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2

and

r22 = (ξ2 − ξ)2 + (η2 − η)2 + (ζ2 − ζ)2.

2According to Taylor [8], “an inertial frame is any reference frame (that is, a system of coor-

dinates x, y, z, and time t) in which all laws of physics hold in their usual form.” It is called an

inertial frame because Newton’s First Law, the Law of Inertia, holds in these frames. Though it is
hard to find a true inertial frame when everything in the universe is moving, for our purposes we

can define the inertial frame as the frame that is fixed with respect to distant background stars.
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Figure 1. The three-body problem: two masses and a particle.
Note that the z axis and the ζ axis are out of the page (from
Murray & Dermott [6]).

In this reference frame all three bodies move in time. The motion of the particle
P is dependent on the motion of the two other bodies, which makes solving the
equations particularly difficult and computationally intensive. Suppose we consider
a frame of reference that rotates with the masses so that the locations of m1 and m2

are fixed. Also suppose that the x-axis lies along the line joining the two masses,
the y-axis lies perpendicular to the x-axis in the orbital plane, and the z-axis lies
perpendicular to the xy-plane (Figure 1). We define the coordinates of m1 as
(x1, y1, z1) = (−µ2, 0, 0) and the coordinates of m2 as (x2, y2, z2) = (µ1, 0, 0). If the
particle is located at (x, y, z), then the distance formula shows that the squares of
the distances between the particle and the masses are

r21 = (x+ µ2)2 + y2 + z2(4)

and

r22 = (x− µ1)2 + y2 + z2.(5)

To obtain our equations of motion in the rotating frame, we rotate from the
inertial frame to the rotating frame with a rotation matrix below. If n is the
average angular velocity, then the relationship is found by a rotation in the xy
plane:  ξ

η
ζ

 =

 cosnt − sinnt 0
sinnt cosnt 0

0 0 1

 x
y
z


Differentiating with respect to t, we see that

ξ = x cosnt− y sinnt
η = x sinnt+ y cosnt
ζ = z
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yields

ξ̇ = ẋ cosnt− nx sinnt− ẏ sinnt− ny cosnt
η̇ = ẋ sinnt+ nx cosnt+ ẏ cosnt− ny sinnt

ζ̇ = ż.

We write this result as

 ξ̇
η̇

ζ̇

 =

 cosnt − sinnt 0
sinnt cosnt 0

0 0 1

 ẋ− ny
ẏ + nx
ż

 .

Differentiating with respect to t once again, we obtain

ξ̈ = ẍ cosnt− 2nẋ sinnt− n2x cosnt− ÿ sinnt− 2nẏ cosnt+ n2y sinnt,

η̈ = ẍ sinnt+ 2nẋ cosnt− n2x sinnt+ ÿ cosnt− 2nẏ sinnt− n2y sinnt,

and

ζ̈ = z̈,

which tells us that

 ξ̈
η̈

ζ̈

 =

 cosnt − sinnt 0
sinnt cosnt 0

0 0 1

 ẍ− 2nẏ − n2x
ÿ + 2nẋ− n2y

z̈

 .

The switch to a rotating reference frame forces us to include the Coriolis acceleration
(the terms 2nẋ and −2nẏ) and the centrifugal acceleration (the terms n2x and
n2y).3 Since we now know ξ, η, ζ, ξ̈, η̈, and ζ̈ in terms of x, y, z, ẍ, ÿ, and z̈, we
substitute these values into Equations (1), (2), and (3):

3The Coriolis acceleration occurs when an object appears to be accelerated in a curved path in
a rotating frame even though it is moving in a straight line in the inertial frame. The centrifugal

acceleration is the force that seems to push a rotating object outward from the center.
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(ẍ− 2nẏ − n2x) cosnt− (ÿ + 2nẋ− n2y) sinnt =[
µ1
x1 − x
r31

+ µ2
x2 − x
r32

]
cosnt+

[
µ1

r31
+
µ2

r32

]
y sinnt,

(ẍ− 2nẏ − n2x) sinnt+ (ÿ + 2nẋ− n2y) cosnt =[
µ1
x1 − x
r31

+ µ2
x2 − x
r32

]
sinnt−

[
µ1

r31
+
µ2

r32

]
y cosnt,

and

z̈ = −
[
µ1

r31
+
µ2

r32

]
z.

Next we multiply the first equation by cosnt and the second equation by sinnt:

(ẍ− 2nẏ − n2x) cos2 nt− (ÿ + 2nẋ− n2y) sinnt cosnt =[
µ1
x1 − x
r31

+ µ2
x2 − x
r32

]
cos2 nt+

[
µ1

r31
+
µ2

r32

]
y sinnt cosnt

and

(ẍ− 2nẏ − n2x) sin2 nt+ (ÿ + 2nẋ− n2y) cosnt sinnt =[
µ1
x1 − x
r31

+ µ2
x2 − x
r32

]
sin2 nt−

[
µ1

r31
+
µ2

r32

]
y cosnt sinnt.

Their sum is

(ẍ− 2nẏ − n2x) = µ1
x1 − x
r31

+ µ2
x2 − x
r32

.

Continuing this process and noting the values of x1, x2, etc., we derive the fol-
lowing equations of motion:

ẍ− 2nẏ − n2x = −
[
µ1
x+ µ2

r31
+ µ2

x− µ1

r32

]
,(6)

ÿ + 2nẋ− n2y = −
[
µ1

r31
+
µ2

r32

]
y,(7)

and

z̈ = −
[
µ1

r31
+
µ2

r32

]
z.(8)

These equations can be written as the gradient of a scalar function, which we
shall call U :
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ẍ− 2nẏ =
∂U

∂x
,(9)

ÿ + 2nẋ =
∂U

∂y
,(10)

and

z̈ =
∂U

∂z
(11)

where

U =
n2

2
(x2 + y2) +

µ1

r1
+
µ2

r2
and r1 and r2 are defined in Equations (4) and (5).

Notice that these second-order equations of motion are nonlinear and coupled.
For these reasons, they are essentially unsolvable. In order to determine the mo-
tion of the particle P at a time t, we must find ways to study the system without
determining exact solutions of the equations of motion.

3. The Jacobi Constant

In this section we find a constant of motion for the circular restricted three-body
problem. Suppose we multiply Equation (9) by ẋ, Equation (10) by ẏ, and Equation
(11) by ż and then add the three expressions together:

ẋẍ+ ẏÿ + żz̈ = ẋ
∂U

∂x
+ ẏ

∂U

∂y
+ ż

∂U

∂z
=
dU

dt
.

We can integrate this expression:∫
(ẋẍ+ ẏÿ + żz̈)dt =

∫
dU

ẋ2

2
+
ẏ2

2
+
ż2

2
= U + c

ẋ2 + ẏ2 + ż2 = 2U + 2c

where c is the constant of integration. We define CJ = −2c to be the Jacobi
constant.4 Since ẋ2 + ẏ2 + ż2 = v2, where v is the velocity,

v2 = 2U − CJ .
Putting everything in terms of x, y, and z, we see that

CJ = n2(x2 + y2) + 2
(
µ1

r1
+
µ2

r2

)
− ẋ2 − ẏ2 − ż2.(12)

4The Jacobi constant is also sometimes called the Jacobi integral.
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The Jacobi constant is a constant of motion. A simple guess might assume
that the Jacobi constant has something to do with the conservation of energy or
momentum, since those quantities have to be conserved. As we shall soon see, how-
ever, our simple model fails to account for all the interactions that occur, meaning
that in our model energy and momentum are not conserved—thus, our model is
not completely accurate. However, the simplifications we have made are necessary
in order to obtain a solution, and do not prevent a very basic analysis of the system.

Suppose we wish to determine CJ in the inertial frame of reference. Earlier, we
derived the equations of motion in the rotating frame by using rotation matrices to
transform the equations between reference frames. We use the same process now,
but in the opposite direction. Recall that

 x
y
z

 =

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 ξ
η
ζ


and  ẋ− ny

ẏ + nx
ż

 =

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 ξ̇
η̇

ζ̇

 .

Separating the velocity vector into two parts, we write

 ẋ− ny
ẏ + nx
ż

 =

 ẋ
ẏ
ż

+ n

 sinnt − cosnt 0
cosnt sinnt 0

0 0 1

 ξ
η
ζ

 .

Combining these results, we see that ẋ
ẏ
ż

 =

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 ξ̇
η̇

ζ̇

− n
 sinnt − cosnt 0

cosnt sinnt 0
0 0 0

 ξ
η
ζ

 .

In order to make our equations more readable, we now define the matrices A
and B as

A ≡

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 and B ≡

 sinnt − cosnt 0
cosnt sinnt 0

0 0 0

 .

Then we see that
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AT ·A =

 cosnt − sinnt 0
sinnt cosnt 0

0 0 1

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 =

 1 0 0
0 1 0
0 0 1

 ,

BT ·B =

 sinnt cosnt 0
− cosnt sinnt 0

0 0 0

 sinnt − cosnt 0
cosnt sinnt 0

0 0 0

 =

 1 0 0
0 1 0
0 0 0

 ,

AT ·B =

 cosnt − sinnt 0
sinnt cosnt 0

0 0 1

 sinnt − cosnt 0
cosnt sinnt 0

0 0 0

 =

 0 −1 0
1 0 0
0 0 0

 ,

and

BT ·A =

 sinnt cosnt 0
− cosnt sinnt 0

0 0 0

 cosnt sinnt 0
− sinnt cosnt 0

0 0 1

 =

 0 1 0
−1 0 0
0 0 0

 .

If we take the transpose of the velocity vector and dot it with the velocity vector,
we get

(ẋ ẏ ż) ·

 ẋ
ẏ
ż

 = (ξ̇ η̇ ζ̇)AT ·A

 ξ̇
η̇

ζ̇

− n(ξ̇ η̇ ζ̇)AT ·B

 ξ
η
ζ



−n(ξ η ζ)BT ·A

 ξ̇
η̇

ζ̇

+ n2(ξ η ζ)BT ·B

 ξ
η
ζ

 .

Multiplying through and simplifying, the equation becomes

ẋ2 + ẏ2 + ż2 = ξ̇2 + η̇2 + ζ̇2 + n2(ξ2 + η2) + 2n(ξ̇η − η̇ξ).

Since distances are unchanged by rotations (in non-relativistic frames of reference),
the quantity x2 + y2 + z2 = ξ2 + η2 + ζ2. Therefore, combining our expressions for
the Jacobi constant in terms of x, y, and z (Equation (12)) with our expressions
for ẋ, ẏ, and ż in terms of ξ, η, and ζ, we determine the Jacobi constant in terms
of ξ, η, and ζ:

CJ = 2
(
µ1

r1
+
µ2

r2

)
+ 2n(ξη̇ − ηξ̇)− ξ̇2 − η̇2 − ζ̇2.(13)



10 CHARLI SAKARI

Rewriting Equation (13), it becomes

1
2

(
ξ̇2 + η̇2 + ζ̇2

)
−
(
µ1

r1
+
µ2

r2

)
= h · n− 1

2
CJ .

Here, n is a normal vector pointing out of the orbital plane. The vector h is a
vector that roughly describes the angular momentum per unit mass.5 We see here
that h · n is not a constant in time—this is why energy is not conserved in the
restricted three-body problem.

How does the Jacobi constant help us in our analysis? By applying physical con-
straints on the system, we can put limits on the Jacobi constant, thus constraining
the position of the “massless” particle. In the rotating inertial frame, recall that
v2 = 2U − CJ . Velocity is a “real” quantity—it cannot be imaginary. Therefore,
2U − CJ must always be positive or zero, so 2U ≥ CJ . A special case occurs
when v = 0, or 2U = CJ . For particular values of CJ these surfaces defined by
2U − CJ , known as zero-velocity surfaces, describe boundaries for allowed regions.
If we project these surfaces into the xy-plane, we then have zero-velocity curves
(see Figure 2). The particle is forbidden from being outside of these curves.

Figure 2. Several zero-velocity curves for µ2 = 0.01. The labeled
points are the Lagrange points, which we discuss in Section 4. Note
that µ1 and µ2 are held fixed in the rotating frame of reference
(image from De Pater & Lissauer [3]).

The coupled, nonlinear nature of the equations of motion of the three-body prob-
lem prohibits us from determining exact solutions. Through the use of the Jacobi

5The vector h is a constant vector that satisfies the relation r × ṙ in the two-body problem.

The quantity h = |h| is approximately equal to the angular momentum per unit mass in the center
of mass reference frame for systems in which m2 � m1, but this is not true for systems in the

inertial frame. For more information see Murray & Dermott [6].
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constant, we can determine specific areas where the particle is not allowed. This
means that a particle orbiting within one of the zero-velocity curves in Figure 2
can never escape from the system. These zero-velocity curves can tell us some very
basic information about the system without requiring much computation.

4. The Lagrange Points

The equations of motion can be drastically simplified if we consider locations
where the position of the particle P is fixed in the rotating frame of reference. At
these locations the position and velocity of the particle do not change with time,
meaning that ẋ = ẏ = ż = ẍ = ÿ = z̈ = 0. From this we see that the Coriolis accel-
eration terms −2nẏ and 2nẋ are zero. We further simplify the equations of motion if
we assume that all motion takes place in the xy-plane, making z = 0. These points
are particularly important for our analysis, since observations have determined that
Epimetheus oscillates about two of the Lagrange points in the Saturn-Janus system.

To find the locations of the Lagrange points we first manipulate various known
quantities into other, more useful forms. First we examine the equations of motion,
Equations (9), (10), and (11). We rewrite the equations for r21 and r22 in the
following way:

r21 = (x+ µ2)2 + y2 + z2 = x2 + 2µ2x+ µ2
2 + y2 + z2(14)

and

r22 = (x− µ1)2 + y2 + z2 = x2 + 2µ1x+ µ2
1 + y2 + z2.(15)

Multiplying Equation (14) by µ1 and Equation (15) by µ2, the equations become

µ1r
2
1 = µ1x

2 + 2µ1µ2x+ µ1µ
2
2 + µ1y

2 + µ1z
2

and

µ2r
2
2 = µ2x

2 − 2µ1µ2x+ µ2
1µ2 + µ2y

2 + µ2z
2.

Adding the two equations together, factoring out µ1 + µ2, and noting that in our
system of units µ2 + µ1 = 1, we obtain

µ1r
2
1 + µ2r

2
2 = µ1x

2 + µ2x
2 + µ1µ

2
2 + µ2

1µ2 + µ1y
2 + µ2y

2 + µ1z
2 + µ2z

2

= (µ1 + µ2)x2 + (µ2 + µ1)µ1µ2 + (µ1 + µ2)y2 + (µ1 + µ2)z2

= x2 + y2 + z2 + µ1µ2.
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If all motion is in the xy-plane, then

µ1r
2
1 + µ2r

2
2 = x2 + y2 + µ1µ2.(16)

Now we examine the scalar function U . Using Equation (16) and noting that
n = 1 in our system of units, we can rewrite:

U =
n2

2
(x2 + y2) +

µ1

r1
+
µ2

r2

=
1
2

(µ1r
2
1 + µ2r

2
2 − µ1µ2) +

µ1

r1
+
µ2

r2

=
(
µ1r

2
1

2
+
µ1

r1

)
+
(
µ2r

2
2

2
+
µ2

r2

)
− µ1µ2

2

so that

U = µ1

(
1
r1

+
r21
2

)
+ µ2

(
1
r2

+
r22
2

)
− µ1µ2

2
.(17)

With all the motion constrained to the xy-plane, Equations (9) and (10) show
that

∂U

∂x
=
∂U

∂r1

∂r1
∂x

+
∂U

∂r2

∂r2
∂x

= 0

and

∂U

∂y
=
∂U

∂r1

∂r1
∂y

+
∂U

∂r2

∂r2
∂y

= 0.

Therefore, the Lagrange points are located at positions where ∂U/∂x = ∂U/∂y = 0.
To find these positions, we differentiate Equation (17) with respect to x and y:

µ1

(
− 1
r21

+ r1

)
x+ µ2

r1
+ µ2

(
− 1
r22

+ r2

)
x− µ1

r2
= 0(18)

and

µ1

(
− 1
r21

+ r1

)
y

r1
+ µ2

(
− 1
r22

+ r2

)
y

r2
= 0.(19)

The trivial solutions to Equations (18) and (19) are the simplest possible solu-
tions; they occur when the coefficients of (x− µ2), (x+ µ2) and y are zero, or
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µ1

(
− 1
r21

+ r1

)
= 0 and µ2

(
− 1

r22
+ r2

)
= 0.

Therefore, r1 = r2 = 1, so (x + µ2)2 + y2 = 1 and (x− µ1)2 + y2 = 1. Solving for
x, we get x = ±

√
1− y2−µ2 from the first equation and x = ±

√
1− y2 +µ1 from

the second. Setting these equations equal to each other the two expressions for x
must be of opposite sign. Then, solving for y:

√
1− y2 − µ2 = −

√
1− y2 + µ1√

1− y2 = −
√

1− y2 + µ1 + µ2

= −
√

1− y2 + 1

2
√

1− y2 = 1

which means that y = ±
√

3/2. Using this value of y, we determine that the
coordinates of these particular points are

x =
√

1− 3/4− µ2 =
1
2
− µ2(20)

and

y = ±
√

3
2
.(21)

We define these two points as the L4 and L5 Lagrange points, named after Joseph-
Louis Lagrange. The L4 Lagrange point, the leading point, is located at (1/2 −
µ2,
√

3/2, 0), while the L5 point, the trailing point, is located at (1/2−µ2,−
√

3/2, 0).
These points are the triangular equilibrium points.6

Equation (19) is also satisfied when y = 0. When y = 0, we have r21 = (x+ µ2)2

and r22 = (x− µ1)2, which means that r1 = ±(x+ µ2) and r2 = ±(x− µ1). On the
x axis, which runs through the the two masses, there are three Lagrange points:
L1, L2, and L3, the collinear equilibrium points. The L1 point is located between
µ1 and µ2, the L2 point is located on the opposite side of µ2 from µ1, and the L3

point is located on the opposite side of µ1 from µ2 (see Figure 3).

For each of the three collinear Lagrange points where y = 0, our goal is to deter-
mine the relationships between r1, r2, and x. We use Equation (18) to determine the
ratio µ2/µ1 in terms of x. Using Maple, we determine the series expansion of this
ratio and then following Murray and Dermott’s procedure [6], we use Lagrange’s
inversion formula to determine r2 as a function of µ1 and µ2. We then use the rela-
tionships between r1, r2, and x to determine r1. Then, for given masses µ1 and µ2

6These points are well named. If a particle is stationary at a point in its orbit, then the
sum of the gravitational forces due to m1 and m2 must exactly balance the outward centrifugal
acceleration from the origin. Simple vector calculations using Newton’s second law show that

r1 = r2 = rcm, where rcm is the distance of the particle from the center of mass of the system.
Therefore, a particle at an L4 or L5 Lagrange point must be located at the apex of an equilateral
triangle connecting the particle and the two masses.
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Figure 3. The locations of the Lagrange points (image from
Wikipedia [10]).

we can calculate the precise positions of each of the three collinear Lagrange points.

At the L1 point, we see that r1 + r2 = 1, r1 = x + µ2, and r2 = −x + µ1. We
wish to determine r1, r2, and x in terms of one common quantity. Returning to
Equation (18),

µ1

(
− 1

(1− r2)2
+ 1− r2

)
− µ2

(
− 1
r22

+ r2

)
= 0

which reduces to

µ1

(
−1 + (1− r2)3

(1− r2)3

)
− µ2

(
−1 + r32
r32

)
= 0.

Rearranging terms,

µ2

µ1
=

[−1 + (1− r2)3] r32
(1− r2)3(−1 + r32)

= − [−1 + (1− r2)(1− 2r2 + r22)] r22
(1− r2)3(r22 + r2 + 1)

= − (−3r2 + 3r22 − r32) r22
(1− r2)3(r22 + r2 + 1)
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which reduces to

µ2

µ1
= 3r32

1− r2 + r22/3
(1− r2)3(r22 + r2 + 1)

.(22)

We now define the quantity

α =
(
µ2

3µ1

)1/3

.

Using a series expansion, we then write Equation (22) as

α = r2 +
1
3
r22 +

1
3
r32 +

53
81
r42 +O(r52)

where O(r52) denotes the terms of order 5 and higher. Since µ1 > µ2, r2 and α are
pretty small; therefore, terms involving α5 should also be pretty small. Next we
follow the procedure used in Solar System Dynamics [6] to invert the series:

r2 = α− 1
3
α2 − 1

9
α3 − 23

81
α4 +O(α5).(23)

We can then solve for r1:

r1 = 1− α− 1
3
α2 − 1

9
α3 − 23

81
α4 +O(α5)(24)

and x:

x = µ1 − α−
1
3
α2 − 1

9
α3 − 23

81
α4 +O(α5).(25)

Note that α only depends on µ1 and µ2, physically observable properties of the sys-
tem. Therefore, we can determine r1, r2, and x given particular values of µ1 and µ2.

At the L2 point, µ2 is between the particle and µ1. There, r1−r2 = 1, r1 = x+µ2,
and r2 = x− µ1. We can follow a similar procedure as with L1 to obtain

r2 = α+
1
3
α2 − 1

9
α3 − 31

81
α4 +O(α5).(26)

Once again, we can solve for r1:

r1 = 1 + α+
1
3
α2 − 1

9
α3 − 31

81
α4 +O(α5)(27)

and x:

x = µ1 + α+
1
3
α2 − 1

9
α3 − 31

81
α4 +O(α5).(28)

The L3 point is located on the opposite side of µ1 from µ2, where r2 − r1 = 1,
r1 = −x− µ2, and r2 = −x+ µ1. Solving for µ2/µ1,
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µ2

µ1
=

(1− r31)(1 + r1)2

r31 (r21 + 3r1 + 3)
.(29)

We define r1 = 1 + β and r2 = 2 + β and simplify Equation (29) to get

µ2

µ1
= −12

7
β +

144
49

β2 − 1567
343

β3 +O(β4)

so that

β = − 7
12

(
µ2

µ1

)
+

7
12

(
µ2

µ1

)2

− 13223
20736

(
µ2

µ1

)3

+O
(
µ2

µ1

)4

.

Now we can find r1:

r1 = 1− 7
12

(
µ2

µ1

)
+

7
12

(
µ2

µ1

)2

− 13223
20736

(
µ2

µ1

)3

+O
(
µ2

µ1

)4

,(30)

r2:

r2 = 2− 7
12

(
µ2

µ1

)
+

7
12

(
µ2

µ1

)2

− 13223
20736

(
µ2

µ1

)3

+O
(
µ2

µ1

)4

,(31)

and x:

x = µ1 +
7
12

(
µ2

µ1

)
+

7
12

(
µ2

µ1

)2

− 13223
20736

(
µ2

µ1

)3

+O
(
µ2

µ1

)4

.(32)

Once again, given µ1 and µ2 we can determine the precise location the L3 point.

Now we know the locations of the five Lagrange equilibrium points. At these
equilibrium points, a particle should remain at rest in the rotating frame of ref-
erence. The points are more than just mathematical curiosities—objects are fre-
quently located at Lagrange points in real systems. For example, the Solar and
Heliospheric Observatory (SOHO) is located at the L1 point in the Sun-Earth sys-
tem, while the Wilkinson Microwave Anisotropy Probe (WMAP) is located at the
L2 point. At the L4 and L5 points in the Sun-Jupiter system are the Trojan aster-
oids, a bunch of rocks clustered together and orbiting the Sun with Jupiter. Finally,
Epimetheus oscillates about the L4 and L5 points in the Saturn-Janus system, as
determined by observations.

5. The Stability of the Lagrange Points

If we consider the moon Epimetheus to be massless, and “drop” it into orbit
around Saturn and Janus, the moon’s trajectory will behave differently depend-
ing on the initial position. According to our analysis of the L4 and L5 Lagrange
points, if we set Epimetheus at the point (1/2 − µ2,

√
3/2, 0), then the moon will

not move—the definition of an equilibrium point is that a particle sitting at such a
point will have zero velocity and zero acceleration. In the real world, however, any
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object sitting at an equilibrium point will eventually be perturbed, most likely due
to interactions with other orbiting bodies. When such a perturbation occurs, what
happens to the particle at the Lagrange point? There are two options:

(1) The particle could be displaced and continue to travel away from the La-
grange point. If this is the case the Lagrange point is considered to be
unstable.

(2) The particle could start to move away, but then head back toward its equi-
librium point. If this is the case the Lagrange point is said to be stable.

Unfortunately, our equations of motion are second order, nonlinear, differential
equations; therefore, a stability analysis will not be easy. Because we cannot solve
our equations analytically, we must attempt a graphical analysis. First, however,
we must linearize the equations of motion, or convert the system into a linear sys-
tem. First we develop the necessary skills to complete a stability analysis.

5.1. The Stability of Linear Differential Equations. Consider the system

dx
dt

= ẋ = Ax

where x is a 2× 1 vector and A is a 2× 2 constant matrix.7 This system is a linear
system with constant coefficients. Ideally we would like to find the eigenvalues λi
and eigenvectors vi so that we may obtain a solution of the form x = veλt. The so-
lution can be regarded as a parametric representation of a curve in the x1x2-plane.
A particle located at a particular position with a particular velocity at time t will
move through space as time goes on. We call the path of this particle the trajectory.
For our analysis, we would like to understand the behavior of the particle around
the critical points of the system.

Definition 1. A critical point, or an equilibrium point, is a point where ẋ = 0. If
A is nonsingular, then the origin is the only critical point of the system.

To understand how the system evolves, we need to examine the particle’s tra-
jectory as time progresses. If the equilibrium point is unstable then the trajectory
should head away from the critical point as t → ∞. To begin, let us define what
we mean by a stable critical point.

Definition 2. A critical point x0 of x = f(x) is stable if for every ε > 0 there
exists a δ > 0 such that the solution x = φ(t):

(1) exists for all positive t,
(2) satisfies ||φ(0) − x0|| < δ at t = 0 (in other words, the solution starts

“sufficiently close” to x0), and

7The following results generalize to nth order systems as well.
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(3) satisfies ||φ(t)− x0|| < ε for all t ≥ 0 (the solution stays “close” to x0).

If a particle has an initial position close enough to the equilibrium position, then
it will stay close to that point. Next we define a much more specific kind of stability.

Definition 3. A critical point is said to be asymptotically stable if it is stable and
if there is some δ0 > 0 such that if a solution x = φ(t) satisfies

||φ(0)− x0|| < δ0,

then
lim
t→∞

φ(t) = x0.

Since the behavior of the system depends on the nature of the eigenvalues, we need
to consider the different types of eigenvalues a system could have. There are five
separate cases we need to consider.

Case 1—Real, unequal eigenvalues of the same sign: We know the general
solution for a system with these types of eigenvalues is

x = c1v1e
λ1t + c2v2e

λ2t.

First, let us consider the case where λ1 < λ2 < 0. Then we see that x → 0 as
t→∞—all solutions approach the critical point at the origin as t→∞. Moreover,
if we rewrite the general solution as

x = eλ2t
[
c1v1e

(λ1−λ2)t + c2v2

]
then we see that if c2 6= 0 (in other words, if we are not on the line that describes
v1), then the trajectory will approach the line that describes v2. We note that λ1

is “more negative” than λ2; therefore, the term involving c1 decays slightly faster
than the term involving c2. The trajectory will approach the line that goes through
v2 as it heads toward the critical point. This can be seen in Figure 4. In this case,
the critical point at the origin is called a node, or a nodal sink. Since

lim
t→∞

x = 0,

where 0 is the critical point, this system is asymptotically stable.

Next let us consider the situation where λ1 > λ2 > 0. In this case, the exponen-
tial terms cause x→∞ as t→∞. Since λ1 > λ2, the term involving c1 gets larger
faster than the term involving c2 does. The trajectory is slower to move away from
the line through v2 than the line through v1. Therefore the trajectory looks very
similar to the one in Figure 4, except that the directions of the arrows are reversed.
Because the trajectory heads away from the critical point, the system is unstable.

Case 2—Real eigenvalues of opposite sign: Now suppose that λ1 > 0 and
λ2 < 0. The general solution will then have a positive exponential and a negative
exponential. The positive exponential will be the dominant term in this solution.
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Figure 4. An example of Case 1, where λ1 < λ2 < 0 (image
adapted from Boyce and DiPrima [2]).

Though solutions may be slow to move away from the line through v2, they will
asymptotically approach the line through v1 as they head away from the critical
point. In this configuration, the origin is called a saddle point and the system is
unstable (see Figure 5).

Figure 5. An example of Case 2, where λ1 > 0 and λ2 < 0 (image
adapted from Boyce and DiPrima [2]).

Case 3—Equal eigenvalues: First consider the case where the system has two
independent eigenvectors, but only one eigenvalue. The general solution can then
be written as

x = c1v1e
λt + c2v2e

λt.

The ratio of x2/x1 does not depend on time, only on c1, c2, v1, and v2, which
are constant in time. This means that all trajectories will follow a straight line.
If the eigenvalue is negative, then x → 0 as t → ∞, meaning that the system is
asymptotically stable (Figure 6). In this case, the critical point is a proper node, or
star point. If the eigenvalue is positive, then the system is unstable.
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Figure 6. An example of Case 3, where the system has two in-
dependent eigenvectors (image adapted from Boyce and DiPrima
[2]).

Now consider the case where the system has one independent eigenvector. We
then write the general solution as

x = c1veλt + c2
(
vteλt + weλt

)
where w is the generalized eigenvector corresponding to λ. It solves the equation

(A− λI)w = v.

As t → ∞, the dominant term is c2vteλt. The trajectory as t → ∞ is therefore
asymptotic to the line through v. As t→ −∞, c2vteλt is once again the dominant
term, meaning that the trajectory is once again asymptotic to the line through v.
A negative eigenvalue means that each trajectory will go to the critical point at the
origin as t→∞. The case where λ < 0 is therefore asymptotically stable. If λ > 0,
then the system is unstable. The critical point in these configurations is called an
improper or degenerate node. The relative orientation of the trajectory depends on
the relative positions of v and w, as seen in Figure 7.

Case 4—Complex Eigenvalues: Now assume that the eigenvalues have the form

λ = j ± ik

where j, k are real, j 6= 0, and k > 0. In general, systems with complex eigenvalues
can be written as

ẋ =
(

j k
−k j

)
x

or, in scalar form, ẋ1 = jx1 + kx2 and ẋ2 = −jx1 + kx2, where x1 and x2 are the
elements of the vector x. For simplicity we switch to polar coordinates. Recall that
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(a) (b)

Figure 7. Two examples of Case 3, where the systems have
one independent eigenvector each (image adapted from Boyce and
DiPrima [2]).

r2 = x2
1 + x2

2

and

tan θ =
x2

x1

where r is the distance from the origin to a point located at (x1, x2) and θ is the
angle between the x-axis and the vector from the origin to the point. Implicitly
differentiating these results with respect to time, we obtain

rṙ = x1ẋ1 + x2ẋ2

and

sec2 θ θ̇ =
x1ẋ2 − x2ẋ1

x2
1

.

Rearranging terms, using our definitions for ẋ1 and ẋ2 from above, and using
geometrical arguments, 8

rṙ = x1(jx1 + kx2) + x2(−kx1 + jx2)

= jx2
1 + kx1x2 − kx1x2 + jx2

2

ṙ =
k(x2

1 + x2
2)

r
= jr

8Note that for a right triangle where r is the hypotenuse and x1 is the length of the base along
the x-axis, cos θ = x1/r. This implies that sec2 θ = r2/x2

1.
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and

sec2 θ θ̇ =
x1(−kx1 + jx2)− x2(jx1 + kx2)

x2
1

=
−kx2

1 + jx1x2 − jx1x2 − kx2
2

x2
1

= −kx
2
1 + x2

2

x2
1

,

which means that

θ̇ = −kx
2
1 + x2

2

x2
1

· x
2
1

r2

= −k.

Now we know dr/dt and dθ/dt. Since ṙ = jr, the solution for r is r = cejt, where
c is a constant. Since θ̇ = −k, the solution for θ is θ = −kt+θ0, where θ0 represents
the initial value for θ. A negative value of k implies that θ decreases as t increases;
therefore the direction of motion is clockwise. If j is negative, then r goes to zero as
t→∞, meaning the trajectory asymptotically approaches the critical point. If j is
positive, then r →∞ as t→∞, meaning the system is unstable. Such trajectories
are spirals; the critical point is either a spiral sink or a spiral source depending on
the value of j (see Figure 8).

Figure 8. An example of Case 4, where the system is asymptot-
ically stable (image adapted from Boyce and DiPrima [2]).

Case 5—Pure Imaginary Eigenvalues: If the eigenvalues are purely imaginary,
then j = 0 and λ = ±ik. We already determined that r = cejt; if j = 0, then r = c,
a constant. The equation for θ is the same as given above. With a constant value
of r, the trajectory is a circle around the origin with the direction of the trajectory
determined by the value of k.
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We can generalize this result to show that any system with purely imaginary
eigenvalues must have elliptical trajectories.9 First off, we consider a system where(

ẋ
ẏ

)
=
(
a11 a12

a21 a22

)(
x
y

)
.

To find out under what conditions this system will have purely imaginary eigen-
values, we compute the determinant of A− λI, where λ is an eigenvalue of A, and
set it equal to zero:∣∣∣∣∣ a11 − λ a12

a21 a22 − λ

∣∣∣∣∣ = (a11 − λ)(a22 − λ)− a12a21

= λ2 − (a11 + a22)λ+ (a11a22 − a12a21)
= 0.

Using the quadratic formula, we see that

λ =
a11 + a22 ±

√
(a11 + a22)2 − 4(a11a22 − a12a21)

2
.

We want the eigenvalues to be purely imaginary. This means the real part of
the eigenvalue must be zero, so a11 + a22 = 0. The part under the radical must be
negative in order for the eigenvalue to be imaginary. Therefore,

(a11 + a22)2 < 4(a11a22 − a12a21).

The first quantity is zero, so we see that

a11a22 − a12a21 > 0
is the necessary condition for a system to have purely imaginary eigenvalues.

Now we return to our original system of equations. In scalar form, ẋ = dx/dt =
a11x + a12y and ẏ = dy/dt = a21x + a22y. We want to express these equations in
the form

dy

dx
=
dy/dt

dx/dt
=
a21x+ a22y

a11x+ a12y
.

If we rearrange this equation into the form

(a11x+ a12y)dy − (a21x+ a22y)dx = 0

and define N = a11x+ a12y and M = −a21x− a22y, we see that

9This is Problem 9.1.19 in Boyce and DiPrima [2]
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∂M

∂y
= −a22 =

∂N

∂x
= a11

which means this differential equation is exact. We can obtain a solution ψ(x, y)
by defining ψx(x, y) = M and ψy(x, y) = N . Then we integrate each equation and
compare them to obtain

ψ(x, y) = −a21

2
x2 − a21xy +

a12

2
y2 = k

such that

a21x
2 + 2a22xy − a12y

2 = k(33)

An ellipse is a curve defined by an equation of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0(34)

where the coefficients are real and where B2 < 4AC. In Equation (33), we see that
A = a21, B = 2a22, C = −a12, and F = −k, where all of these values are real. To
check that this system does have purely imaginary eigenvalues, we see that

B2 − 4AC = 4a2
22 + 4a12a21

= −4(a11a22 − a12a21) < 0

which satisfies

a11a22 − a12a21 > 0.

Therefore, any system with pure imaginary eigenvalues can be expressed in the
form of Equation (34) and will therefore have an elliptical trajectory (see Figure
9). In this case, the critical point is called a center.

Now we have considered the five possible scenarios for different eigenvalues. See
Table 1 for a summary of these results.

For the Saturn-Janus-Epimetheus system, we only want to consider stable so-
lutions that oscillate about the L4 and L5 points, as determined by observations.
Therefore, any eigenvalues that give unstable solutions are not allowed. The Saturn-
Janus-Epimetheus system is not as simple as the linear systems we have investigated
in this section. Because we are dealing with second order equations, we have four
differential equations even if we are dealing in only two dimensions—in fact, if we
consider all three dimensions, we have six differential equations. A system of four
differential equations means we are dealing with a 4×4 matrix and have four eigen-
values to find instead of two. The stability analysis should be similar, however, as
we need to ensure that each term in our solution gives us a stable solution. Thus,
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Figure 9. An example of Case 5, where the eigenvalues are purely
imaginary (image adapted from Boyce and DiPrima [2]).

Eigenvalues Type of Critical Point Stability

λ1 > λ2 > 0 Node Unstable
λ1 < λ2 < 0 Node Asymptotically Stable
λ2 < 0 < λ1 Saddle Point Unstable
λ1 = λ2 > 0 Proper or improper node Unstable
λ1 = λ2 < 0 Proper of improper node Asymptotically stable
λ1,2 = j ± ik Spiral point -

λ > 0 - Unstable
λ < 0 - Asymptotically stable

λ1,2 = ±ik Center Stable

Table 1. Stability Properties of Linear Systems

we cannot have exponential terms heading off to infinity as t → ∞. To determine
the stability of the system, we must linearize the system and find the eigenvalues.

5.2. Linearizing the Equations of Motion. To analyze the eigenvalues of our
equations of motion, we need to linearize the system, or put it into a form like the
systems in Section 5.1. To do so, we assume that Epimetheus has been slightly
displaced from its equilibrium position (x0, y0) so that its new position is (x0 +
X, y0 + Y ), where X and Y are variables. We now investigate motion close to
the equilibrium point, which should be approximately linear. Substituting our new
positions into Equations (9) and (10), we obtain

Ẍ − 2nẎ =
∂U

∂x
(35)
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and

Ÿ + 2nẊ =
∂U

∂y
(36)

where

U =
n2

2
[
(x0 +X)2 + (y0 + Y )2

]
+
µ1

r1
+
µ2

r2
,

r1 =
√

(x0 +X + µ2)2 + (y0 + Y )2,

and
r2 =

√
(x0 +X − µ1)2 + (y0 + Y )2.

Now we will expand the right hand sides of the Equations (35) and (36) in a
Taylor series about the equilibrium point (the subscript 0 means that we evaluate
the quantity at the critical points):

Ẍ − 2nẎ ≈
(
∂U

∂x

)
0

+X

(
∂

∂x

(
∂U

∂x

))
0

+ Y

(
∂

∂y

(
∂U

∂x

))
0

= X

(
∂2U

dx2

)
0

+ Y

(
∂2U

∂x∂y

)
0

Ÿ + 2nẊ ≈
(
∂U

∂y

)
0

+X

(
∂

∂x

(
∂U

∂y

))
0

+ Y

(
∂

∂y

(
∂U

∂y

))
0

= X

(
∂2U

∂x∂y

)
0

+ Y

(
∂2U

∂y2

)
0

.

Equations (35) and (36) show that (∂U/∂x)0 = (∂U/∂y)0 = 0 at the equilibrium
points since the acceleration and velocity of X and Y (Ẋ, Ẏ , Ẍ, and Ÿ ) are equal
to zero. Because we are only considering small displacements from the equilibrium
point, i.e. small values of X and Y , the higher order terms of the Taylor expansion
are irrelevant. Now we have two linear equations:

Ẍ − 2Ẏ = XUxx + Y Uxy

and
Ÿ + 2Ẋ = XUxy + Y Uyy

where the constants Uxx, Uxy, and Uyy are the partial derivatives evaluated at the
critical points. We can rewrite this system as four first-order differential equations
in matrix form:
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Ẋ

Ẏ

Ẍ

Ÿ

 =


0 0 1 0
0 0 0 1
Uxx Uxy 0 2
Uxy Uyy −2 0




X
Y

Ẋ

Ẏ

 .

Our equations are now in the form Ẋ = AX. We have successfully linearized
our equations of motion.

We shall now linearize the system by another method in order to verify that the
previous method works. This method is described in Boyce and DiPrima’s Elemen-
tary Differential Equations [2].

Equations (9) and (10) are two second-order differential equations that describe
the motion of the system. However, we can convert to the system to four first-order
differential equations. Define:

u1 = x

u2 = ẋ

u3 = y

and

u4 = ẏ.

Combining these results with Equations (9) and (10), we obtain

u̇1 = u2(37)

u̇2 =
∂U

∂u1
+ 2nu4(38)

u̇3 = u4(39)

and

u̇4 =
∂U

∂u3
− 2nu2.(40)

The next step is to compute the partial derivatives of Equations (37), (38), (39),
and (40) with respect to u1, u2, u3, and u4; the results are displayed in Table 2.
The horizontal quantities represent the partial derivatives of the vertical quantities
with respect to a particular quantity. Note that the scalar function U is a function
of both u1 and u3 (or of x and y).

We put these values into a matrix and convert back to x and y to express the
linearized system as
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∂
∂u1

∂
∂u2

∂
∂u3

∂
∂u4

u̇1 0 1 0 0
u̇2

∂2U
∂u2

1
0 ∂2U

∂u1∂u3
2

u̇3 0 0 0 1
u̇4

∂2U
∂u1∂u3

−2 ∂2U
∂u2

3
0

Table 2. The partial derivatives


ẋ
ẍ
ẏ
ÿ

 =


0 1 0 0
∂2U
∂x2 0 ∂2U

∂x∂y 2
0 0 0 1
∂2U
∂x∂y −2 ∂2U

∂y2 0




x
ẋ
y
ẏ

 .

The second derivatives are evaluated at a critical point because we are linearizing
the system about a critical point. Using Maple, we can evaluate these partial
derivatives of U at the chosen equilibrium. We have now forced our system into
the form

ẋ = Ax,

and thus have successfully linearized the system. The result is the same as when
we used a Taylor expansion.

5.3. Uncoupling the Equations of Motion. Unfortunately, our linearized equa-
tions of motion are still coupled. Because of this, we must either solve the equations
simultaneously or we must transform the system into an uncoupled system where
each equation depends on only one unknown. Suppose that there is some ma-
trix, B, that transforms the coupled system X into an uncoupled system Y. Then
Y = BX implies that X = B−1Y, assuming the matrix B is invertible (we shall
check the validity of this assumption momentarily). Differentiating with respect to
time, Ẋ = B−1Ẏ. Putting all of this together, we see that

B−1Ẏ = AB−1Y

or

Ẏ = BAB−1Y.

We now define Λ = BAB−1, where Λ is a diagonal matrix whose entries are the
eigenvalues of A and we see that B must be the matrix whose columns are the
linearly independent eigenvectors of A.10 We then write

10This decomposition is allowed if A is an n×nmatrix with n linearly independent eigenvectors,
which we shall assume to be true. In our system, A is a 4× 4 matrix, which is certainly a square
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Ẏ = ΛY.

Each component of this system is a first-order linear differential equation. The
solutions are

Yi = cie
λit where i = 1, 2, 3, 4.

Therefore, we can write

X = B−1


c1e

λ1t

c2e
λ2t

c3e
λ3t

c4e
λ4t

 .

A complete analysis of the system requires that we determine the eigenvectors.
For our purposes (determining the stability of the L4 and L5 Lagrange points), it
is not necessary to determine the eigenvectors. Instead, we simply note that x, ẋ,
y, and ẏ can be expressed as

x =
4∑
j=1

ᾱje
λjt,

ẋ =
4∑
j=1

ᾱjλje
λjt

y =
4∑
j=1

β̄je
λjt,

and

ẏ =
4∑
j=1

β̄jλje
λjt

where the ᾱj and β̄j are constants. Following the analysis in Section 5.1, our next
step is to calculate the eigenvalues.

5.4. Finding the Eigenvalues. In order to calculate the eigenvalues of our matrix
A, we need to solve the equation

det(A− λI) = 0

which means we need to solve

matrix. Furthermore, we also see that since the columns of B are linearly independent and since
B is a square matrix, B must be invertible, supporting our previous assumption.



30 CHARLI SAKARI

∣∣∣∣∣∣∣∣
−λ 1 0 0
Uxx −λ Uxy 2

0 0 −λ 1
Uxy −2 Uyy −λ

∣∣∣∣∣∣∣∣ = 0

for λ. Note that we have abbreviated the partial second derivatives using the
subscript notation—also recall that these second derivatives are evaluated at a
critical point. Evaluating the determinant, we see that∣∣∣∣∣∣∣∣
−λ 1 0 0
Uxx −λ Uxy 2

0 0 −λ 1
Uxy −2 Uyy −λ

∣∣∣∣∣∣∣∣ = −λ

∣∣∣∣∣∣
−λ Uxy 2
0 −λ 1
−2 Uyy −λ

∣∣∣∣∣∣−
∣∣∣∣∣∣
Uxx Uxy 2

0 −λ 1
Uxy Uyy −λ

∣∣∣∣∣∣
= λ2

∣∣∣∣ −λ 1
Uyy −λ

∣∣∣∣+ 2λ
∣∣∣∣ Uxy 2
−λ 1

∣∣∣∣− Uxx ∣∣∣∣ −λ 1
Uyy −λ

∣∣∣∣− Uxy ∣∣∣∣ Uxy 2
−λ 1

∣∣∣∣
= λ2(λ2 − Uyy) + 2λ(Uxy + 2λ)− Uxx(λ2 − Uyy)− Uxy(Uxy + 2λ)

= λ4 − λ2Uyy + 2λUxy + 4λ2 − Uxxλ2 + UxxUyy − Uxy2 − 2λUxy

= λ4 + (4− Uyy − Uxx)λ2 + (UxxUyy − U2
xy).

Since this determinant must equal zero, we obtain the biquadratic equation

λ4 + (4− Uyy − Uxx)λ2 + (UxxUyy − U2
xy) = 0(41)

Using the quadratic formula on Equation (41), we can solve for λ2:

λ2 =
1
2

[
− 4 + Uyy + Uxx ±

√
(4− Uyy − Uxx)2 − 4(UxxUyy − U2

xy)

]
.

From this, we see that the four eigenvalues are

λ1,2 = ±
[

1
2

(−4 + Uyy + Uxx) +
1
2

√
(Uyy + Uxx − 4)2 − 4(UxxUyy − U2

xy)
]1/2

and

λ3,4 = ±
[

1
2

(−4 + Uyy + Uxx)− 1
2

√
(Uyy + Uxx − 4)2 − 4(UxxUyy − U2

xy)
]1/2

.

The general form of the eigenvalues is λ1,2 = ±(a1 + b1i) and λ3,4 = ±(a2− b2i).
Looking at our general solution for x, we see that because we have four eigenval-
ues with four real parts, two positive and two negative, there will always be some
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positive real term in the exponential term. Therefore, the solution will grow ex-
ponentially if j 6= 0. Section 5.1 shows that solutions that grow exponentially are
unstable. Thus, the only stable solutions are ones where the eigenvalues are purely
imaginary.

Recall that x = 1/2 − µ2 and y = ±
√

3/2 at the L4 and L5 Lagrange points.
Using Maple to determine the partial derivatives Uxx, Uxy, and Uyy and evaluate
them at the L4 and L5 points, we get

Uxx =
3
4

Uyy =
9
4

and

Uxy = ±3
√

3 (1− 2µ2)
4

.

Using these values in our equations for the eigenvalues, we see that

λ1,2 = ±

√
−1−

√
1− 27(1− µ2)µ2
√

2
and

λ3,4 = ±

√
−1 +

√
1− 27(1− µ2)µ2
√

2
.

In order for the solution to be purely imaginary,

1− 27(1− µ2)µ2 ≥ 0
or

µ2 ≤
27−

√
621

54
≈ 0.0385.

Recall that in our system of units

µ2 = Gm2

=
Gm2

G(m1 +m2)

=
m2

m1 +m2

and µ1 = 1 − µ2. Since the mass of Saturn is m1 = 568.47e24 kg and the mass
of Janus is m2 = 1.98e18 kg, we can say that µ2 = 3.48e − 9 and µ1 = 1 − µ2

for the Saturn-Janus-Epimetheus system. We see that this value of µ2 satisfies our
requirements for a stable system.
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6. The Initial Conditions

The previous sections have sought to determine positions where a particle re-
mains stationary in the rotating frame of reference. The L4 and L5 Lagrange points
are stable equilibrium points in the rotating frame of reference—if the particle re-
ceives a small displacement from one of these points it should oscillate about that
point. We wish to create a computer animation of this trajectory for the Saturn-
Janus-Epimetheus system. From observations, we know that in a rotating frame
where Janus and Saturn are stationary, Epimetheus oscillates about both the L4

and L5 points in a type of orbit known as a horseshoe orbit (see Figure 10). In
order to animate this orbit, however, we must have some initial conditions for the
system, both for position and velocity.

Figure 10. An example of a horseshoe orbit. The large and small
dots are m1 and m2 respectively. This trajectory occurs in the ro-
tating frame, where m1 and m2 are fixed (image from www.exo.net
[4]).

6.1. The Rotating Frame. Recall that on the zero-velocity curves, we have 2U =
CJ , or

(x2 + y2) + 2
(
µ1

r1
+
µ2

r2

)
= CJ .(42)

Using a series expansion on these terms, inserting the appropriate values of r1,
r2, and x (Equations (23), (24), (25), (26), (27), (28), (30), (31), and (32)), and
disregarding terms with higher powers than µ1

2, we can write the values of CJ at
the Lagrange points:
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CL1 ≈ 3 + 34/3µ
2/3
2(43)

CL2 ≈ 3 + 34/3µ
2/3
2(44)

CL3 ≈ 3 + µ2(45)

CL4 ≈ 3− µ2(46)

and

CL5 ≈ 3− µ2.(47)

Now consider a generic horseshoeing orbit. Such an orbit periodically oscillates
about the L3 point as it moves between the L4 and L5 points. When the orbit
is as elongated as possible, then the “massless” particle reaches the L1 and L2

points. A real horseshoe orbit will orbit between these two extremes. We can thus
parametrize the Jacobi constant for a horseshoeing system as

CJ = 3 + ζµ
2/3
2(48)

where 0 ≤ ζ ≤ 34/3. The lowest possible value of ζ corresponds to the Jacobi
constant at the L3 point, while the highest possible value corresponds to the Jacobi
constant at the L1 and L2 points.

We wish to consider locations where the velocity of the particle is nonzero. Notice
that the positions of the L4 and L5 points (Equations (20) and (21)) lie on the unit
circle. Consider a small displacement δr from the unit circle centered on the center
of mass of the system. Also assume that that the orbit is circular where the radius
of the orbit is r = 1 + δr. The motion of a circular body in this situation should
be “near-Keplerian,” which implies that v ≈ − 3

2δr, from Kepler’s third law. Again
using series expansions, we determine that

2U = 3 + 3δr2 + µ2

(
2
r2

+ r22 − 4
)

= CJ .

Using a series of algebraic manipulations, we can solve for the small displacement
δr in terms of ζ and µ2:

δr = 2
(
ζ

3

)1/2

µ
1/3
2 .

An observable property of the Saturn-Janus-Epimetheus system is the value of
δr. If we assume that δr = 3e− 4, then

ζ = 3

(
δr

2µ1/3
2

)2

(49)

= 1.0715e− 5.(50)

Using this value of ζ, we now calculate the value of the Jacobi constant, CJ . Then,
picking a position, we determine U and therefore determine a value for v. Using
this method, we determine possible initial conditions with which we can animate
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the system. For example suppose we choose an initial position on the −x-axis, at
x = −1 + δr = −1 + 3e− 4 = −0.9997 and y = 0. We know that µ2 = 3.48× 10−9

and µ1 = 1− µ2. We can then calculate

r1 =
√

(x+ µ2)2 + y2 ≈ 0.9997

and
r2 =

√
(x− µ1)2 + y2 ≈ 1.9997.

The value of the scalar function U is therefore

U =
1
2

(x2) +
µ1

r1
+
µ2

r2
≈ 1.5000.

The value of ζ is

ζ = 3

(
3× 10−4

2µ1/3
2

)2

≈ 0.02308

which means that the value of the Jacobi constant is

CJ = 3 + ζµ
2/3
2 ≈ 3.00000.

Our initial velocity is therefore

v =
√

2U − CJ ≈ 4.5559× 10−4.

6.2. The Inertial Frame. Using the same sort of process as in the rotating frame,
we can animate the trajectory of Epimetheus in the inertial frame. However, the
trajectory of the particle in the inertial frame depends on the position of Janus,
which is also moving in time. We know that Janus orbits about Saturn (which for
all intents and purposes we can consider to be stationary, since it is so massive)
with an angle t between Janus, Saturn, and the original location of Janus, where t
is a unitless, arbitrary quantity of time. Therefore, Janus moves about the origin
in a circle, with the equations of motion

x = cos(t), y = sin(t), and z = 0

and with an initial position of [1, 0] and a constant velocity of 1. Epimetheus’
initial velocity then is the same value as before, but with the velocity of Janus sub-
tracted. We also take care that they are moving in the same direction. Therefore,
Epimetheus must have an initial velocity in the −y direction while Janus must have
an initial velocity in the +y direction.

In the inertial frame, Epimetheus does not undergo this horseshoe motion.
Rather, its radius changes as it swaps the inner and outer positions with Janus.

7. Numerical Integration

Recall that the equations of motion, Equations (6), (7), and (8), are coupled,
nonlinear, second order differential equations. We cannot analytically solve these
equations. In order to animate the system with respect to time we must numerically
integrate the equations of motion using MATLAB. To begin, we consider a simpler
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case than the Saturn-Janus-Epimetheus system. Suppose we have the differential
equation

y′ = f(t, y)(51)

with the initial condition y(t0) = y0. Suppose we wish to solve this differential
equation over the interval [t0,M ]. The following are several methods for numeri-
cally integrating Equation (51).

7.1. Euler’s Method. The basic idea of Euler’s Method is to divide the interval
[a, b] into M equal subintervals, so that the stepsize is h = (b − a)/M . We then
calculate the derivative at the beginning of each subinterval and use that slope
to extrapolate forward to determine the next point. Thus, Euler’s Method is an
iterative process. We start with the initial point, y(t0) = y0. The derivative at y0
is y′ = f(t0, y0). We can then write

y1 = y0 + hf(t0, y0).

For the next point we can write

y2 = y1 + hf(t1, y1)

where f(t1, y1) is the slope of the function at the point (t1, y1). Therefore,

ek = y(tk)− yk for k = 1, 2, ...,M.

We define the global discretization error, ek, to be the difference between the actual
solution and the approximate solution:

ek = y(tk)− yk for k = 1, 2, ...,M.

To sum up this process, we use the differential equation and the initial conditions
to create a series of line segments that approximate the solution (see Figure 11).

Figure 11. An example of Euler’s Method (image from Wikipedia [9]).
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Is Euler’s Method accurate or efficient? The following theorem examines the
precision of Euler’s Method.

Theorem 7.1. Assume that y(t) is the solution to the initial value problem y′ =
f(t, y) over the interval [t0, tM ] with y(t0) = y0. If y(t) ∈ C2[t0, b], where C2[t0, b] is
the set of all twice-differentiable functions whose second derivatives are continuous
on the interval [t0, b], and (tk, yk)Mk=0 is the sequence of approximations generated
by Euler’s method, then

|ek| = |y(tk)− yk| = O(h)

is the error accumulated in each step of the iteration. The error at the end of the
interval is called the final global error, or F.G.E.:

E(y(tM ), h) = |y(TM )− yM | = O(h)

where O(h) represents terms of order h.

The F.G.E. is proportional to h. Thus, large step sizes will cause large errors.
This agrees with intuition—smaller step sizes will keep the approximation from
deviating too much from the actual solution. Smaller step sizes, however, could be
computationally intensive.

7.2. The Taylor Method. Recall Taylor’s Theorem:

Theorem 7.2 (Taylor’s Theorem). Assume that y(t) ∈ CN+1[t0, b]. Then y(t) has
a Taylor series expansion of order N about the fixed value t = tk ∈ [t0, b]:

y(tk + h) = y(tk) + hTN (tk, y(tk)) + O(hN+1)
where

TN (tk, y(tk)) =
N∑
j=1

f (j−1)(t, y(t))
j!

hj−1.

In order to obtain an approximation to y(t), we find a solution to the differential
equation by finding the Taylor series representation of y(t) on each subinterval
[tk, tk+1]. We can write out the Taylor Series

yk+1 = yk + hy′(tk) + h2 y
′′(tk)
2!

+ h3 y
′′′(tk)
3!

+ · · ·+ hNy(N)(tk)
N !

for each step k = 0, 1, ...,M . The final global error is given by

E(y(b), h) = |y(b)− yM | = O(hN ).

If we are using a fourth order Taylor series with a step size of h = 1/2, the F.G.E.
will be O(1/16). Compared to Euler’s Method, which would give an F.G.E. O(1/2),
the Taylor Method is more precise for this step size. In fact, the Taylor Method
will be more precise as long as N > 1 and h < 1. It is possible to choose N as
small as is necessary to minimize error while retaining efficiency.

Despite the advantages of the Taylor Method, there are some drawbacks. We
need to have some idea of what value ofN to use before beginning our computations.
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We also have to compute higher derivatives, which may be quite tedious. The next
method is more suited for our purpose.

7.3. The Runge-Kutta Method. The basic concept of the Runge-Kutta Method
is similar to Euler’s Method. Whereas Euler’s Method uses one derivative at the
beginning of the interval to extrapolate forward, the Runge-Kutta method uses
derivatives from N different locations in each subinterval. If N = 4, for example,
we use a derivative from the beginning, the end, and two from the middle (see
Figure 12).

Figure 12. The slopes used in the RK4 method (image from Press
et al. [7]).

The main advantage to the Runge-Kutta Method is that it has the same F.G.E.
order, O(hN ), as the Taylor Method, meaning that we can choose a specific N
to minimize the error; generally a common choice is N = 4. This provides four
derivatives, which will help to make the approximation more accurate; however, it
does not use more derivatives than necessary so as to save computing time.

Like we did with Euler’s Method, we wish to create a series of line segments to
approximate the solution. To use the Runge-Kutta Method, we compute

yk+1 = yk + w1k1 + w2k2 + w3k3 + w4k4

where w1, w2, w3, w4 are constants and

k1 = hf(tk, yk)

k2 = hf(tk + a1h, yk + b1k1)

k3 = hf(tk + a2h, yk + b2k1 + b3k2)

k4 = hf(tk + a3h, yk + b4k1 + b5k2 + b6k3).
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Comparing these coefficients with the Taylor series coefficients, we determine
that

b1 = a1

b2 + b3 = a2

b4 + b5 + b6 = a3

w1 + w2 + w3 + w4 = 1

w2a1 + w3a2 + w4a3 =
1
2

w2a
2
1 + w3a

2
2 + w4a

2
3 =

1
3

w2a
3
1 + w3a

3
2 + w4a

3
3 =

1
4

w3a1b3 + w4(a1b5 + a2b6) =
1
6

w3a1a2b3 + w4a3(a1b5 + a2b6) =
1
8

w3a
2
1b3 + w4(a2

1b5 + a2
2b6) =

1
12

w4a1b3b6 =
1
24

If we choose a1 = 1/2 and b2 = 0, then a2 = 1/2, a3 = 1, b1 = 1/2, b3 = 1/2,
b4 = 0, b5 = 0, b6 = 1, w1 = 1/6, w2 = 1/3, w3 = 1/3, and w4 = 1/6. Using these
values, we can write

yk+1 = yk +
h(f1 + 2f2 + 2f3 + f4)

6
where

f1 = f(tk, yk),

f2 = f

(
tk +

h

2
, yk +

h

2
f1

)
,

f3 = f

(
tk +

h

2
, yk +

h

2
f2

)
,

and

f4 = f(tk + h, yk + hf3).

7.4. A Comparison of the Euler and Runge-Kutta Methods. 11

Consider the initial value problem

y′ = 1− t+ 4y, where y(0) = 1.

Suppose we select a stepsize of h = 0.2. Then we can calculate

11This example is from Elementary Differential Equations, 8th Edition [2]
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f1 = f(0, 1) = 5,

f2 = f(0 + 0.1, 1 + 0.5) = 6.9,

f3 = f(0 + 0.1, 1 + 0.69) = 7.66,

and

f4 = f(0 + 0.2, 1 + 1.532) = 10.928.

Therefore,

y1 = 1 +
0.2
6

(5 + 2(6.9) + 2(7.66) + 10.928) = 2.5016.

We produce a table comparing the numerical approximations using various meth-
ods:

Euler Runge-Kutta Exact
t h=0.025 h=0.2 h=0.1 h=0.05
0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
0.1 1.6079462 1.6089333 1.6090338 1.6090418
0.2 2.5020619 2.5016000 2.5050062 2.5053060 2.5053299
0.3 3.8228282 3.8294145 3.8300854 3.301388
0.4 5.7796888 5.7776358 5.7927853 5.7941197 5.7942260
0.5 8.6849039 8.7093175 8.7118060 8.7120041
1.0 64.497931 64.441579 64.858107 64.894875 64.897803
1.5 474.83402 478.81928 479.22674 479.25919
2.0 3496.6702 3490.5574 3535.8667 3539.8804 3540.2001

The table clearly shows that the Runge-Kutta Method is far more precise than
Euler’s Method, even when comparing a step size of h = 0.025 with Euler to a step
size of h = 0.1 with Runge-Kutta.

7.5. An Example of Numerical Integration: The Lorenz Equations. In
order to become familiar with MATLAB and its ability to solve differential equa-
tions, we examine a system of equations that is simpler than the equations of motion
for the restricted three-body problem. The Lorenz Equations were developed by
Edward N. Lorenz, an American meteorologist who wished to study the Earth’s
atmosphere. The temperature of the atmosphere is not constant with altitude; this
difference in temperature causes warm air to rise and low air to sink, an effect
known as convection. For large temperature differences the convection is complex
and turbulent.

To model this effect, Lorenz developed his equations:
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dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= −bz + xy

where x, y, and z are spatial coordinates and the terms σ, r, and b are constants.12

These equations are nonlinear, first order differential equations. We know σ and b
fairly accurately for the Earth, since they depend on the composition and geometri-
cal properties of the atmosphere. In this example, we let σ = 10 and b = 8/3. The
constant r, however, depends on the temperature difference in the various layers of
the atmosphere, which enables us to choose different values.

We can solve the Lorenz equations using numerical approximations. Suppose
we wish to use the Runge-Kutta method. MATLAB has a special command called
ode45; this command uses the fourth order Runge-Kutta method with a given step
size and compares it to the fifth order Runge-Kutta method with the same step
size. If the accuracy is below a set desirability, then the methods are performed
again with smaller step sizes.

Suppose we choose a solution interval from t = 0 to t = 22 and let the initial
conditions be x = 5, y = 5, and z = 5. We wish to plot the solution for x versus t.
As is evident in Figure 13, the solution is rather erratic. It jumps between positive
and negative values, without any evident pattern.

Now suppose we use a different initial condition, say x = 5.01, y = 5, and z = 5.
We compare the two results in Figure 14. Until approximately t = 12, the two
paths follow a similar pattern. After t = 12, they become extremely different. It
is interesting to note that such a large change becomes evident from such a small
difference in initial position.

Now suppose we wish to adjust the value of r. To do so we can create another
function and generate more solutions. If we wish to compare the graphs, we can
plot them up together, as in Figure 15.

Now suppose we wish to examine the behavior of x, y, and z together, as time
evolves. The natural way to do this is with an animation. We animate the system
using Euler’s Method (see the Appendix). The result is shown in Figure 16. Our
animation agrees well with the built-in Lorenz script in MATLAB (see Figure 17).

When animating the Saturn-Janus-Epimetheus system, we will use the Runge-
Kutta Method through the ode45 command.

12The constant σ is the Prandtl number, a “dimensionless number approximating the ratio

of momentum diffusivity and thermal diffusivity” [1] while r is the Rayleigh number, “associated

with buoyancy driven flow (also known as free convection or natural convection)” [11] and b is a
physical proportion.
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Figure 13. A graph of x vs. t, with r = 28 (image created in MATLAB).

8. The Animations

In the previous section we use the Lorenz Equations to test the animation capa-
bilities of MATLAB. Using Euler’s Method, we generate an animation that agrees
well with MATLAB’s built-in Lorenz animation. This animation is a “live” anima-
tion, meaning it numerically integrates to determine the next point in real time as
it animates. This process is not very efficient, especially given the large amounts
of data we are working with in the Saturn-Janus-Epimetheus system. For this rea-
son, we use a built-in MATLAB command called comet. The comet command
displays a three-dimensional plot of a curve that goes through certain points at cer-
tain times. This creates an animation of the particle that moves forward in time.
Each successive point is calculated beforehand and the particle heads to that point.
We use this tool to model the Saturn-Janus-Epimetheus system (see the MATLAB
code in the Appendix).

A still image of the animation in the rotating frame is given in Figure 18. Do
the results make sense? In the animation we see that Epimetheus clearly traces out
a horseshoe orbit. However, the minimum distance between Janus and Epimetheus
is extremely small compared to the distance between Saturn and Janus, making it
difficult to see the horseshoe pattern in a still image. If we increase the mass of
Janus, we get a much clearer picture of what is going on (see Figure 19). Now the
horseshoe orbit is evident. Furthermore, we see that Epimetheus swaps orbits with
Janus, alternating between being interior and being exterior. We also see libration
in the looped pattern that Epimetheus makes as it moves through its horseshoe
orbit. This is to be expected as Epimetheus does not lie exactly at the epicenter of



42 CHARLI SAKARI

Figure 14. A graph of x vs. t, with r = 28. The dotted line
corresponds to an initial position of (5, 5, 5) while the solid line
corresponds to an initial position of (5.01, 5, 5) (image created in
MATLAB).

its orbit. Also, we see that Saturn and Janus are fixed, as expected in the rotating
frame.

We now turn to the inertial frame of reference. In the inertial frame of reference
we see that the system no longer produces a visible horseshoe pattern (see Figure
20); however, the same behavior still occurs. Over the course of the animation it is
evident that Epimetheus appears to catch up to Janus. Then, just before the two
meet, Epimetheus seems to fall behind and slow down. Just as Janus is about to
crash into Epimetheus, Epimetheus speeds up and moves away from Janus. This
is precisely the horseshoe behavior that we would expect.

9. Conclusion

We have successfully animated an idealized version of the Saturn-Janus-Epimetheus
system. During this process we made two important assumptions. We assumed that
Saturn and Janus were in circular orbits about their common center of mass and
that Epimetheus was massless. Clearly the second assumption is false—Epimetheus
does have mass, enough to have a slight effect on the motion of Janus. As it turns
out the first assumption is not valid either; the orbits of Janus and Epimetheus are
both slightly eccentric, as determined by observation. These facts require modifica-
tions to our simple model of the circular restricted three-body problem. However,
the basic concept of the horseshoe orbit still applies to the system. In January 2006,
Janus and Epimetheus swapped orbital positions, Janus moving to the inner orbit
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Figure 15. A graph of x vs. t, with the initial position 5, 5, 5. The
solid line corresponds to r = 21 while the dotted line corresponds
to r = 28 (image created in MATLAB).

Figure 16. A still shot of an animation of the Lorenz Equations,
using Euler’s Method with r = 28 and with the initial position
[5, 5, 5] (image created in MATLAB).

and Epimetheus to the outer orbit. This shows that our simple model qualitatively
predicts the exchange fairly accurately.
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Figure 17. MATLAB’s built-in animation of the Lorenz Equa-
tions (image created in MATLAB).

Figure 18. A still frame from an animation of the horseshoeing
Saturn-Janus-Epimetheus system in the rotating frame of refer-
ence. Saturn is the larger circle at the origin, while the smaller
circle is Janus (image created in MATLAB).

The Saturn-Janus-Epimetheus system is not the only system we know of that has
a horseshoe orbit. Several asteroids have similar interactions with the Sun-Earth
system, including 3753 Cruithne, 54509 YORP, (85770) 1998 UP1, 2002 AA29,
and 2003 YN107. As more extrasolar planets are discovered, it is possible that one
day we will discover two planets in horseshoe orbits about their common star. For
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Figure 19. A still frame from an animation of the horseshoeing
Saturn-Janus-Epimetheus system in the rotating frame of reference
with a larger value of µ2 = 5e− 4. The representations of Saturn
and Janus are similar to Figure 18 (image created in MATLAB).

Figure 20. A still frame from an animation of the horseshoeing
Saturn-Janus-Epimetheus system in the inertial frame of reference.
The largest circle is Saturn, the second largest is Janus, and the
smallest is Epimetheus (image created in MATLAB).

more information about the three-body problem and horseshoe orbits in general,
see Murray and Dermott’s Solar System Dynamics [6].
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10. Appendix

The following is the MATLAB script we use to animate the Lorenz equations.
A=[-8/3 0 0; 0 -10 10; 0 28 -1];
y=[35 -10 -7]’;
h=0.01;
p=plot3(y(1),y(2),y(3),’.’,’EraseMode’,’none’,’MarkerSize’,5);
axis([0 50 -25 25 -25 25]);
hold on
for i=1:4000
A(1,3)=y(2);
A(3,1)=-y(2);
ydot=A*y;
y=y+h*ydot;
set(p,’XData’,y(1),’YData’,y(2),’ZData’,y(3))
drawnow
end

The following is the MATLAB function we used to define the equations of motion
for the Saturn-Janus-Epimetheus system in the rotating frame of reference:
function du=eqns1(t,u)

du=zeros(6,1);
format long
m2=5e-9;
m1=1.0-m2;
n=1;
du(1)=u(2);
du(2)=-(m1*(u(1)+m2)/((u(1)+m2)^2+(u(3))^2+(u(5))^2)^1.5 +...

m2*(u(1)-m1)/((u(1)-m1)^2+(u(3))^2+(u(5))^2)^1.5)+2*n*u(4)+n^2*u(1);
du(3)=u(4);
du(4)=-(m1*u(3)/((u(1)+m2)^2+(u(3))^2+(u(5))^2)^1.5 +...

m2*u(3)/((u(1)-m1)^2+(u(3))^2+(u(5))^2)^1.5) - 2*n*u(2)+n^2*u(3);
du(5)=u(6);
du(6)=-(m1*u(5)/((u(1)+m2)^2+(u(3))^2+(u(5))^2)^1.5 +...

m2*u(5)/((u(1)-m1)^2+(u(3))^2+(u(5))^2)^1.5);

We then call the eqns1 function in the following MATLAB script.
options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4 1e-2 1e-2]);
[T,Y]=ode45(@eqns1,[0 5000],[-0.9997 0 0 4.55585096332178e-4 0 0],options);
axis([-1.25 1.25 -1.25 1.25])
hold on
plot(-5e-4,0,’bo’,’LineWidth’,3,’MarkerEdgeColor’,’b’,...

’MarkerFaceColor’,’b’,’MarkerSize’,25)
plot(1,0,’ko’,’LineWidth’,3,’MarkerEdgeColor’,’k’,...

’MarkerFaceColor’,’k’,’MarkerSize’,5)
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comet(Y(:,1),Y(:,3))
hold off

To animate the Saturn-Janus-Epimetheus system in the inertial frame of refer-
ence, we use the following function and script.
function du=eqns2(t,u)

du=zeros(8,1);
m1=1;
m2=5e-4;
n=1;
du(1)=u(2);
du(2)=m1*(-u(1))/(u(1)^2+u(3)^2+u(5)^2)^1.5 + m2*(cos(t)- ...
u(1))/((cos(t)-u(1))^2+(sin(t)-u(3))^2+u(5)^2)^1.5;
du(3)=u(4);
du(4)=m1*(-u(3))/(u(1)^2+u(3)^2+u(5)^2)^1.5 +...
m2*(sin(t)-u(3))/((cos(t)-u(1))^2+(sin(t)-u(3))^2+u(5)^2)^1.5;
du(5)=u(6);
du(6)=m1*(-u(5))/(u(1)^2+u(3)^2+u(5)^2)^1.5 +...
m2*(-u(5))/((cos(t)-u(1))^2+(sin(t)-u(3))^2+u(5)^2)^1.5;
du(7)=-sin(t);
du(8)=cos(t);

options=odeset(’RelTol’,1e-4,’AbsTol’,[1e-4 1e-4 1e-4 1e-4 1e-2 ...
1e-2 1e-2 1e-2]);
[T,Y1]=ode45(@eqns2,[0 1500],[-0.99967 0 0 -(4.55585096332178e-4+1) ...
0 0 1 0],options);
t=[0:100];
axis([-1.25 1.25 -1.25 1.25])
hold on
plot(-5e-4,0,’bo’,’LineWidth’,3,’MarkerEdgeColor’,’b’,...
’MarkerFaceColor’,’b’,’MarkerSize’,25)
mycomet(Y1(:,7),Y1(:,8),Y1(:,1),Y1(:,3))
hold off
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