
Chapter 3

The Schrödinger Equation

3.1 Derivation of the Schrödinger Equation

We will consider now the propagation of a wave function ψ(~r, t) by an infinitesimal time step ε. It
holds then according to (2.5)

ψ(~r, t+ ε) =
∫

Ω
d3r0 φ(~r, t+ ε|~r0, t)ψ(~r0, t) . (3.1)

We will expand the l.h.s. and the r.h.s. of this equation in terms of powers of ε and we will
demonstrate that the terms of order ε require that ψ(~r, t) satisfies a partial differential equation,
namely the Schrödinger equation. For many situations, but by no means all, the Schrödinger
equation provides the simpler avenue towards describing quantum systems than the path ingral
formulation of Section 2. Notable exceptions are non-stationary systems involving time-dependent
linear and quadratic Lagrangians.
The propagator in (3.1) can be expressed through the discretization scheme (2.20, 2.21). In the
limit of very small ε it is sufficient to employ a single discretization interval in (2.20) to evaluate
the propagator. Generalizing (2.20) to R3 one obtains then for small ε

φ(~r, t+ ε|~r0, t) =
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2πi~ε

] 3
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ε
− ε U(~r, t)
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. (3.2)

From this follows

ψ(~r, t+ ε) =
∫

Ω
d3r0
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ψ(~r0, t) . (3.3)

In order to carry out the integration we set ~r0 = ~r + ~s and use ~s as the new integration variable.
We will denote the components of ~s by (x1, x2, x3)T . This yields

ψ(~r, t+ ε) =
∫ +∞
−∞ dx1

∫ +∞
−∞ dx2

∫ +∞
−∞ dx3

[
m
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] 3
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1 + x2
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ε
− ε U(~r, t)

)
︸ ︷︷ ︸

even in x1, x2, , x3

ψ(~r + ~s, t) . (3.4)
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It is important to note that the integration is not over ~r, but over ~s = (x1, x2, x3)T , e.g. U(~r, t) is a
constant with respect to this integration. The integration involves only the wave function ψ(~r+~s, t)
and the kinetic energy term. Since the latter contributes to (3.4) only for small x2

1 +x2
2 +x2

3 values
we expand

ψ(~r + ~s, t) = ψ(~r, t) +
3∑
j=1

xj
∂

∂xj
ψ(~r, t) +

1
2

3∑
j,k=1

xjxk
∂2

∂xj∂xk
ψ(~r, t) + . . . (3.5)

assuming that only the leading terms contribute, a supposition which will be examined below. Since
the kinetic energy contribution in (3.4) is even in all three coordinates x1, x2, x3, only terms of the
expansion (3.5) which are even separately in all three coordinates yield non-vanishing contributions.
It is then sufficient to consider the terms
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ψ(~r, t) ; . . . (3.6)

of the expansion of ψ(~r + ~s, t).
Obviously, we need then to evaluate integrals of the type

In(a) =
∫ +∞

−∞
dx x2n exp

(
i a x2

)
, n = 0, 1, 2 (3.7)

According to (2.36) holds

I0(a) =

√
iπ

a
(3.8)

Inspection of (3.7) shows

In+1(a) =
1
i

∂

∂a
In(a). (3.9)

Starting from (3.8) one can evaluate recursively all integrals In(a). It holds

I1(a) =
i

2a

√
iπ

a
; I2(a) = − 3

4a2

√
iπ

a
, . . . (3.10)

It is now important to note that in case of integral (3.4) one identifies

1
a

=
2 ε ~
m

= O(ε) (3.11)

and, consequently, the terms collected in (3.6) make contributions of the order

O(ε
3
2 ) , O(ε

5
2 ) , O(ε

7
2 ) , O(ε

7
2 ) . (3.12)

Here one needs to note that we are actually dealing with a three-fold integral. According to (3.11)
holds [ m

2πi~ε

] 3
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= 1 (3.13)
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and one can conclude, using (3.10),

ψ(~r, t+ ε) = exp
[
− iε
~

U(~r, t)
] [

ψ(~r, t) +
1
4

2iε~
m
∇2ψ(~r, t) + O(ε2)

]
. (3.14)

This expansion in terms of powers of ε suggests that we also expand

ψ(~r, t+ ε) = ψ(~r, t) + ε
∂

∂t
ψ(~r, t) + O(ε2) (3.15)

and

exp
[
− iε
~

U(~r, t)
]

= 1 − iε

~

U(~r, t) + O(ε2) . (3.16)

Inserting this into (3.14) results in

ψ(~r, t) + ε ∂∂tψ(~r, t) = ψ(~r, t) − iε

~

U(~r, t)ψ(~r, t)

+
iε

~

~
2

2m
∇2ψ(~r, t) + O(ε2) . (3.17)

Obviously, this equation is trivially satisfied to order O(ε0). In order O(ε) the equation reads

i~
∂

∂t
ψ(~r, t) =

[
− ~

2

2m
∇2 + U(~r, t)

]
ψ(~r, t) . (3.18)

This is the celebrated time-dependent Schrödinger equation. This equation is often written in the
form

i~
∂

∂t
ψ(~r, t) = Ĥ ψ(~r, t) (3.19)

where

Ĥ = − ~
2

2m
∇2 + U(~r, t) . (3.20)

3.2 Boundary Conditions

The time-dependent Schrödinger equation is a partial differential equation, 1st order in time, 2nd
order in the spatial variables and linear in the solution ψ(~r, t). The following general remarks can
be made about the solution.
Due to its linear character any linear combination of solutions of the time-dependent Schrödinger
equation is also a solution.
The 1st order time derivative requires that for any solution a single temporal condition needs to be
specified, e.g., ψ(~r, t1) = f(~r). Usually, one specifies the so-called initial condition, i.e., a solution
is thought for t ≥ t0 and the solution is specified at the intial time t0.
The 2nd order spatial derivatives require that one specifies also properties of the solution on a
closed boundary ∂Ω surrounding the volume Ω in which a solution is to be determined. We will
derive briefly the type of boundary conditions encountered. As we will discuss in Chapter 5 below
the solutions of the Schrödinger equation are restricted to particular Hilbert spaces H which are
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linear vector spaces of functions f(~r) in which a scalar product between two elements f, g ∈ H is
defined as follows

〈f |g〉Ω =
∫

Ω
d3rf∗(~r)g(~r) (3.21)

This leads one to consider the integral

〈f |H |g〉Ω =
∫

Ω
d3rf∗(~r) Ĥ g(~r) (3.22)

where Ĥ is defined in (3.20). Interchanging f∗(~r) and g(~r) results in

〈g|H |f〉Ω =
∫

Ω
d3r g(~r) Ĥf∗(~r) . (3.23)

Since Ĥ is a differential operator the expressions (3.22) and (3.23), in principle, differ from each
other. The difference between the integrals is

〈g|H |f〉Ω = − 〈g|H |f〉Ω

=
∫

Ω
d3rf∗(~r)

(
− ~

2

2m
∇2

)
g(~r) −

∫
Ω
d3rg(~r)

(
− ~

2

2m
∇2

)
f∗(~r)

+
∫

Ω
d3rf∗(~r)U(~r, t) g(~r) −

∫
Ω
d3rg(~r)U(~r, t), f∗(~r)

= − ~
2

2m

∫
Ω
d3rf∗(~r)

(
∇2

)
g(~r) −

∫
Ω
d3rg(~r)

(
∇2

)
f∗(~r) (3.24)

Using Green’s theorem1 ∫
Ω d

3r
(
f∗(~r)∇2 g(~r) − g(~r)∇2 f∗(~r)

)
=
∫
∂Ω d~a · ( f∗(~r)∇g(~r) − g(~r)∇f∗(~r) ) (3.25)

one obtains the identity

〈f | Ĥ |g〉Ω = 〈g| Ĥ |f〉Ω +
∫
∂Ω
d~a · ~P (f∗, g|~r) (3.26)

where
∫
∂Ω d~a · ~A(~r) denotes an integral over the surface ∂Ω of the volume Ω, the surface elements

d~a pointing out of the surface in a direction normal to the surface and the vector–valued function
~A(~r) is taken at points ~r ∈ ∂Ω. In (3.26) the vector–valued function ~P (f∗, g|~r) is called the
concomitant of Ĥ and is

~P (f∗, g|~r) = − ~
2

2m
( f∗(~r)∇g(~r) − g(~r)∇f∗(~r) ) (3.27)

We will postulate below that Ĥ is an operator in H which represents energy. Since energy is a real
quantity one needs to require that the eigenvalues of the operator Ĥ are real and, hence, that Ĥ is
hermitian2. The hermitian property, however, implies

〈f | Ĥ |g〉Ω = 〈g| Ĥ |f〉Ω (3.28)
1See, for example, Calssical Electrodynamics, 2nd Ed., J. D. Jackson, (John Wiley, New York, 1975), Chapter 1.
2The reader is advised to consult a reference text on ‘Linear Algebra’ to follow this argument.
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and, therefore, we can only allow functions which make the differential d~a · ~P (f∗, g|~r) vanish on
∂Ω. It must hold then for all f ∈ H

f(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.29)

or
d~a · ∇f(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.30)

Note that these boundary conditions are linear in f , i.e., if f and g satisfy these conditions than
also does any linear combination αf + βg. Often the closed surface of a volume ∂Ω is the union
of disconnected surfaces3 ∂Ωj , i.e., ∂Ω = ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3 ∩ . . . In this case one can postulate
both conditions (3.29, 3.30) each condition holding on an entire surface ∂Ωj . However, to avoid
discontinuities in ψ(~r, t) on a single connected surface ∂Ωj only either one of the conditions (3.29,
3.30) can be postulated.
A most common boundary condition is encountered for the volume Ω = ~R3 in which case one
postulates

lim
|~r|→∞

f(~r) = 0 “natural boundary condition” . (3.31)

In fact, in this case also all derivatives of f(~r) vanish at infinity. The latter property stems from
the fact that the boundary condition (3.31) usually arises when a particle existing in a bound state
is described. In this case one can expect that the particle density is localized in the area where the
energy of the particle exceeds the potential eenrgy, and that the density decays rapidly when one
moves away from that area. Since the total probability of finding the particle anywhere in space is∫

d3r|f(~r)|2 = 1 (3.32)

the wave function must decay for |~r| → ∞ rapidly enough to be square integrable, i.e., obey (3.32),
e.g., like exp(−κr), κ > 0 or like r−α, α > 2. In either case does f(~r) and all of its derivatives
vanish asymptotically.

3.3 Particle Flux and Schrödinger Equation

The solution of the Schrödinger equation is the wave function ψ(~r, t) which describes the state of
a particle moving in the potential U(~r, t). The observable directly linked to the wave function is
the probability to find the particle at position ~r at time t, namely, |ψ(~r, t)|2. The probability to
observe the particle anywhere in the subvolume ω ⊂ Ω is

p(ω, t) =
∫
ω
d3r |ψ(~r, t)|2 . (3.33)

The time derivative of p(ω, t) is

∂tp(ω, t) =
∫
ω
d3r [ψ∗(~r, t)∂tψ(~r, t) + ψ(~r, t)∂tψ∗(~r, t) ] . (3.34)

3An example is a volume between two concentric spheres, in which case ∂Ω1 is the inner sphere and ∂Ω2 is the
outer sphere.
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Using (3.19) and its conjugate complex4

− i~ ∂
∂t
ψ∗(~r, t) = Ĥ ψ∗(~r, t) (3.35)

yields

i~∂tp(ω, t) =
∫
ω
d3r

[
ψ∗(~r, t) Ĥ ψ(~r, t) − ψ(~r, t) Ĥ ψ∗(~r, t)

]
. (3.36)

According to (3.26, 3.27) this can be written

i~∂tp(ω, t) =
∫
∂ω
d~a · ~P (ψ∗(~r, t), ψ(~r, t)~r, t) . (3.37)

If one applies this identity to ω = Ω one obtains according to (3.29, 3.30) ∂tp(Ω, t) = 0. Accord-
ingly the probability to observe the particle anywhere in the total volume Ω is constant. A natural
choice for this constant is 1. One can multiply the solution of (3.18) by any complex number and
accordingly one can define ψ(~r, t) such that∫

Ω
d3r|ψ(~r, t)|2 = 1 (3.38)

holds. One refers to such solution as normalized. We will assume in the remainder of this Section
that the solutions discussed are normalized. Note that for a normalized wave function the quantity

ρ(~r, t) = |ψ(~r, t)|2 (3.39)

is a probability density with units 1/volume.
The surface integral (3.37) can be expressed through a volume integral according to∫

∂ω
d~a · ~A(~r) =

∫
ω
d3r∇ · ~A(~r) (3.40)

One can rewrite then (3.37) ∫
ω
d3r

(
∂tρ(~r, t) + ∇ ·~j(~r, t)

)
= 0 (3.41)

where
~j(~r, t) = ~P (ψ∗, ψ|~r, t) . (3.42)

Using (3.27) one can express this

~j(~r, t) =
~

2mi
[ψ(~r, t)∇ψ∗(~r, t) − ψ∗(~r, t)∇ψ(~r, t) ] . (3.43)

Since (3.41) holds for any volume ω ⊂ Ω one can conclude

∂tρ(~r, t) + ∇ ·~j(~r, t) = 0 . (3.44)
4Note that the Hamiltonian Ĥ involves only real terms.
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The interpretation of ~j(~r, t) is that of density flux. This follows directly from an inspection of
Eq. (3.41) written in the form

∂t

∫
ω
d3r ρ(~r, t) = −

∫
∂ω
d~a ·~j(~r, t) . (3.45)

Obviously, ~j(~r, t) gives rise to a descrease of the total probability in volume ω due to the disap-
pearence of probability density at the surface ∂ω. Note that ~j(~r, t) points in the direction to the
outside of volume ω.
It is of interest to note from (3.43) that any real wave function ψ(~r, t) has vanishing flux anywhere.
One often encounters wave functions of the type

φ(~r) = f(~r) ei~k·~r , for f(~r) ∈ R. (3.46)

The corresponding flux is

~j(~r) =
~~k

m
f2(~r) , (3.47)

i.e., arises solely from the complex factor exp(i~k · ~r). Such case arose in Sect. 2 for a free parti-
cle [c.f. (2.48, 2.71)], and for particles moving in a linear [c.f. (2.105, 2.125)] and in a quadratic
[c.f. (2.148, 2.167)] potential. In Sect. 2 we had demonstrated that a factor exp(ipoxo/~) induces
a motion of 1-dimensional wave packets such that po/m corresponds to the initial velocity. This
finding is consistent with the present evaluation of the particle flux: a factor exp(ipoxo/~) gives rise
to a flux po/m, i.e., equal to the velocity of the particle. The generalization to three dimenisons
implies then that the factor exp(i~k ·~r) corresponds to an intial velocit ~~k/m and a flux of the same
magnitude.

3.4 Solution of the Free Particle Schrödinger Equation

We want to consider now solutions of the Schrödinger equation (3.18) in Ω∞ = R
3 in the case

U(~r, t) = 0

i~
∂

∂t
ψ(~r, t) = − ~

2

2m
∇2 ψ(~r, t) (3.48)

which describes the motion of free particles. One can readily show by insertion into (3.48) that the
general solution is of the form

ψ(~r, t) = [2π]−
3
2

∫
Ω∞

d3k φ̃(~k) exp
(
i(~k · ~r − ωt)

)
(3.49)

where the dispersion relationship holds

ω =
~k2

2m
. (3.50)

Obviously, the initial condition at ψ(~r, t0) determines φ̃(~k). Equation (3.49) reads at t = t0

ψ(~r, t0) = [2π]−
3
2

∫
Ω∞

d3k φ̃(~k) exp
(
i(~k · ~r − ωt0)

)
. (3.51)
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The inverse Fourier transform yields

φ̃(~k) = [2π]−
3
2

∫
Ω∞

d3r0 exp(−i~k · ~r0)ψ(~r0, t0) . (3.52)

We have not specified the spatial boundary condition in case of (3.49). The solution as stated is
defined in the infinte space Ω∞ = R

3. If one chooses the initial state f(~r) defined in (3.51) to
be square integrable it follows according to the properties of the Fourier–transform that ψ(~r, t) as
given by (3.49) is square integrable at all subsequent times and, hence, that the “natural boundary
condition” (3.31) applies. The ensuing solutions are called wave packets.

Comparision with Path Integral Formulation

One can write solution (3.49, 3.51, 3.52) above

ψ(~r, t) =
∫

Ω∞

d3r0 φ(~r, t|~r0, t0)ψ(~r0, t0) (3.53)

where

φ(~r, t|~r0, t0) =
[

1
2π

]3 ∫
Ω∞

d3k exp
(
i~k · (~r − ~r0) − i

~

~
2k2

2m
(t − t0)

)
. (3.54)

This expression obviously has the same form as postulated in the path integral formulation of Quan-
tum Mechanics introduced above, i.e., in (2.5). We have identified then with (3.54) an alternative
representation of the propagator (2.47). In fact, evaluating the integral in (3.54) yields (2.47). To
show this one needs to note

1
2π

∫ +∞

−∞
dk1 exp

(
i~k1(x − x0) − i

~

~
2k2

1

2m
(t − t0)

)
=
[

m

2πi~(t− t0)

] 1
2

exp
[
im

2~
(x− x0)2

t− t0

]
. (3.55)

This follows from completion of the square

i~k1(x − x0) − i

~

~
2k2

1

2m
(t − t0)

= −i ~(t− to)
2m

[
k1 −

m

~

x− xo
t− to

]2

+
i

~

m

2
(x− xo)2

t− to
(3.56)

and using (2.247).
Below we will generalize the propagator (3.54) to the case of non-vanishing potentials U(~r), i.e.,
derive an expression similar to (3.54) valid for this case. The general form for this propagator
involves an expansion in terms of a complete set of eigenfunctions as in (3.114) and (4.70) derived
below for a particle in a box and the harmonic oscillator, respectively. In case of the harmonoc
oscillator the expansion can be stated in a closed form given in (4.81)
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Free Particle at Rest

We want to apply solution (3.49, 3.52) to the case that the initial state of a 1-dimensional free
particle ψ(x0, t) is given by (??). The 1-dimensional version of (3.53, 3.54) is

ψ(x, t) =
∫ +∞

−∞
dx0 φ(x, t|x0, t0)ψ(x0, t) (3.57)

where

φ(x, t|x0, t0) =
1

2π

∫ +∞

−∞
dk exp

(
ik (x − x0) − i

~

~
2k2

2m
(t − t0)

)
. (3.58)

Integration over x0 leads to the integral∫ +∞

−∞
dx0exp

(
−ikx0 +

i

~

pox0 −
x2

0

2δ2

)
=
√

2πδ2 exp
(
−

(k − po
~

)2δ2

2

)
(3.59)

which is solved through completion of the square in the exponent [c.f. (3.55, (3.56)]. The remaining
integration over k leads to the integral∫ +∞

−∞ dk exp
[
ikx − 1

2 (k − po
~

)2 δ2 − i ~k
2

m (t− t0)
]

=???? (3.60)

Combining (3.57–3.60) yields with t0 = 0

ψ(x, t) =

[
1 − i ~t

mδ2

1 + i ~t
mδ2

] 1
4
[

1
πδ2 (1 + ~2t2

m2δ4 )

] 1
4

× (3.61)

× exp

[
−

(x − po
m t)2

2δ2(1 + ~2t2

m2δ4 )
(1 − i

~t

mδ2
) + i

po
~

x − i

~

p2
o

2m
t

]
.

a result which is identical to the expression (??) obtained by means of the path integral propagator
(2.46). We have demonstrated then in this case that the Schrödinger formulation of Quantum
Mechanics is equivalent to the Feynman path integral formulation.

Stationary States

We consider now solutions of the time-dependent Schrödinger equation (3.19, 3.20) which are of
the form

ψ(~r, t) = f(t)φ(~r) . (3.62)

We will restrict the space of allowed solutions to a volume Ω such that the functions also make the
concomitant (3.27) vanish on the surface ∂Ω of Ω, i.e., the functions obey boundary conditions of
the type (3.29, 3.30). Accordingly, the boundary conditions are

φ(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.63)

or
d~a · ∇φ(~r) = 0 ∀~r, ~r ∈ ∂Ω (3.64)
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and affect only the spatial wave function φ(~r). As pointed out above, a common case is Ω = Ω∞
and the ‘natural boundary condition’ (3.31). We will demonstrate that solutions of the type (3.62)
do exist and we will characterize the two factors of the solution f(t) and φ(~r). We may note in
passing that solutions of the type (3.62) which consist of two factors, one factor depending only on
the time variable and the other only on the space variables are called separable in space and time.
It is important to realize that the separable solutions (3.62) are special solutions of the time-
dependent Schrödinger equation, by no means all solutions are of this type. In fact, the solutions
(3.62) have the particular property that the associated probability distributions are independent
of time. We want to demonstrate this property now. It follows from the observation that for the
solution space considered (3.27) holds and, hence, according to (3.42) the flux ~j(~r, t) vanishes on
the surface of ∂Ω. It follows then from (3.45) that the total probability∫

Ω
d3r ρ(~r, t) =

∫
Ω
d3r |ψ(~r, t)|2 = |f(t)|2

∫
Ω
d3r |φ(~r)|2 (3.65)

is constant. This can hold only if |f(t)| is time-independent, i.e., if

f(t) = eiα, α ∈ R . (3.66)

One can conclude that the probability density for the state (3.62) is

|ψ(~r, t)|2 = |φ(~r)|2 , (3.67)

i.e., is time-independent. One calls such states stationary states.
In order to further characterize the solution (3.62) we insert it into (3.19). This yields an expression

g1(t)h1(~r) = g2(t)h2(~r) (3.68)

where g1(t) = i~∂tf(t), g2(t) = f(t), h1(~r) = φ(~r), and h2(~r) = Ĥ φ(~r). The identity (3.68) can
hold only for all t and all ~r if g1(t) = E g2(t) and E h1(~r) = h2(~r) for some E ∈ C. We must
postulate therefore

∂t f(t) = E f(t)
Ĥ φ(~r) = E φ(~r) . (3.69)

If these two equations can be solved simultaneously a solution of the type (3.62) exists.
It turns out that a solution for f(t) can be found for any E, namely

f(t) = f(0) exp
(
− i

~

E t

)
. (3.70)

The task of finding solutions φ(~r) which solve (3.69) is called an eigenvalue problem. We will
encounter many such problems in the subsequent Sections. At this point we state without proof
that, in general, for the eigenvalue problems in the confined function space, i.e., for functions
required to obey boundary conditions (3.63, 3.64), solutions exist only for a set of discrete E
values, the eigenvalues of the operator Ĥ. At this point we will accept that solutions φ(~r) of the
type (3.69) exist, however, often only for a discrete set of values En, n = 1, 2, . . . We denote the
corresponding solution by φE(~r). We have then shown that

ψ(~r, t) = f(0) exp
(
− i

~

E

)
φE(~r) where Ĥ φE(~r) = E φE(~r) . (3.71)
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is a solution of the time-dependent Schrödinger equation (3.19, 3.20).
According to (3.66) E must be real. We want to prove now that the eigenvalues E which arise in
the eigenvalue problem (3.71) are, in fact, real. We start our proof using the property (3.28) for
the special case that f and g in (3.28) both represent the state φE(~r), i.e.,∫

Ω
d3r φ∗E(~r) Ĥ φE(~r) =

∫
Ω
d3r φE(~r) Ĥ φ∗E(~r) . (3.72)

According to (3.71) this yields

E

∫
Ω
d3r φ∗E(~r)φE(~r) = E∗

∫
Ω
d3r φE(~r)φ∗E(~r) . (3.73)

from which follows E = E∗ and, hence, E ∈ R. We will show in Section 5 that E can be
interprerted as the total energy of a stationary state.

Stationary State of a Free Particle

We consider now the stationary state of a free particle described by

ψ(~r, t) = exp
(
− i
~

E t

)
φE(~r) , − ~

2

2m
∇2 φ(~r) = E φ(~r) . (3.74)

The classical free particle with constant energy E > 0 moves without bounds in the space Ω∞. As
a result we cannot postulate in the present case that wave functions are localized and normalizable.
We will wave this assumption as we always need to do later whenever we deal with unbound
particles, e.g. particles scattered of a potential.
The solution φE(~r) corresponding to the eigenvalue problem posed by (3.74) is actually best labelled
by an index ~k, ~k ∈ R3

φ~k(~r) = N exp
(
i~k · ~r

)
,
~

2k2

2m
= E . (3.75)

One can ascertain this statement by inserting the expression for φ~k(~r) into the eigenvalue problem

posed in (3.74) using ∇exp
(
i~k · ~r

)
= i~k exp

(
i~k · ~r

)
. The resulting total energy values E are

positive, a property which is to be expected since the energy is purely kinetic energy which, of
course, should be positive.
The corresponding stationary solution

ψ(~r, t) = exp
(
− i
~

~
2k2

2m
t

)
exp

(
i~k · ~r

)
(3.76)

has kinetic energy ~2k2/2m. Obviously, one can interpret then ~k as the magnitude of the momen-
tum of the particle. The flux corresponding to (3.76) according to (3.43) is

~j(~r, t) = |N |2 ~
~k

m
. (3.77)

Noting that ~k can be interpreted as the magnitude of the momentum of the particle the flux is
equal to the velocity of the particle ~v = ~~k/m multiplied by |N |2.
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3.5 Particle in One-Dimensional Box

As an example of a situation in which only bound states exist in a quantum system we consider the
stationary states of a particle confined to a one-dimensional interval [−a, a] ⊂ R assuming that the
potential outside of this interval is infinite. We will refer to this as a particle in a one-dimensional
‘box’.

Setting up the Space F1 of Proper Spatial Functions

The presence of the infinite energy wall is accounted for by restricting the spatial dependence of the
solutions to functions f(x) defined in the domain Ω1 = [−a, a] ⊂ R which vanish on the surface
∂Ω1 = {−a, a}, i.e.,

f ∈ F1 = {f : [−a, a] ⊂ R → R, f continuous, f(±a) = 0} (3.78)

Solutions of the Schrödinger Equation in F1

The time–dependent solutions satisfy

i~∂tψ(x, t) = − ~
2

2m
d2

dx2
ψ(x, t) . (3.79)

The stationary solutions have the form ψ(x, t) = exp(−iEt/~)φE(x) where φE(x) is determined
by

− ~
2

2m
d2

dx2
φE(x) = E φE(x) , φ(±a) = 0 . (3.80)

We note that the box is symmetric with respect to the origin. We can expect, hence, that the
solutions obey this symmetry as well. We assume, therefore, two types of solutions, so-called even
solutions obeying φ(x) = φ(−x)

φ
(e)
E (x) = A coskx ,

~
2k2

2m
= E (3.81)

and so-called odd solutions obeying φ(x) = −φ(−x)

φ
(o)
E (x) = A sinkx; ,

~
2k2

2m
= E . (3.82)

One can readily verify that (3.81, 3.82) satisfy the differential equation in (3.80).
The boundary conditions which according to (3.80) need to be satisfied are

φ
(e,o)
E (a) = 0 and φ

(e,o)
E (−a) = 0 (3.83)

The solutions (3.81, 3.82) have the property that either both boundary conditions are satisfied or
none. Hence, we have to consider only one boundary condition, let say the one at x = a. It turns
out that this boundary condition can only be satisfied for a discrete set of k–values kn, n ∈ N. In
case of the even solutions (3.81) they are

kn =
nπ

2a
, n = 1, 3, 5 . . . (3.84)
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since for such kn
cos(kna) = cos

(nπa
2a

)
= cos

(nπ
2

)
= 0 . (3.85)

In case of the odd solutions (3.82) only the kn–values

kn =
nπ

2a
, n = 2, 4, 6 . . . (3.86)

satisfy the boundary condition since for such kn

sin(kna) = sin
(nπa

2a

)
= sin

(nπ
2

)
= 0 . (3.87)

(Note that, according to (3.86), n is assumed to be even.)

The Energy Spectrum and Stationary State Wave Functions

The energy values corresponding to the kn–values in (3.84, 3.86), according to the dispersion
relationships given in (3.81, 3.82), are

En =
~

2π2

8ma2
n2 , n = 1, 2, 3 . . . (3.88)

where the energies for odd (even) n–values correspond to the even (odd) solutions given in (3.81)
and (3.82), respectively, i.e.,

φ(e)
n (a;x) = An cos

nπx

2a
, n = 1, 3, 5 . . . (3.89)

and
φ(o)
n (a;x) = An sin

nπx

2a
, n = 2, 4, 6 . . . . (3.90)

The wave functions represent stationary states of the particle in a one-dimensional box. The wave
functions for the five lowest energies En are presented in Fig. (3.1). Notice that the number of
nodes of the wave functions increase by one in going from one state to the state with the next
higher energy En. By counting the number of their nodes one can determine the energy ordering
of the wave functions.
It is desirable to normalize the wave functions such that∫ +a

−a
dx |φ(e,o)

n (a;x)|2 = 1 (3.91)

holds. This condition implies for the even states

|An|2
∫ +a

−a
dx cos2nπx

2a
= |An|2 a = 1 , n = 1, 3, 5 . . . (3.92)

and for the odd states

|An|2
∫ +a

−a
dx sin2nπx

2a
= |An|2 a = 1 , n = 2, 4, 6 . . . (3.93)

The normalization constants are then

An =

√
1
a
. (3.94)
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Figure 3.1: Eigenvalues En and eigenfunctions φ(e,o)
n (a;x) for n = 1, 2, 3, 4, 5 of particle in a box.
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The Stationary States form a Complete Orthonormal Basis of F1

We want to demonstrate now that the set of solutions (3.89, 3.90, 3.94)

B1 = {φn(a;x) , n = 1, 2, 3, . . .} (3.95)

where

φn(a;x) =

√
1
a

{
cosnπx2a for n = 1, 3, 5 . . .
sinnπx2a for n = 2, 4, 6 . . .

(3.96)

together with the scalar product5

〈f |g〉Ω1 =
∫ +a

−a
dxf(x) g(x) , f, g ∈ F1 (3.97)

form an orthonormal basis set, i.e., it holds

〈φn|φm〉Ω1 = δnm . (3.98)

The latter property is obviously true for n = m. In case of n 6= m we have to consider three cases,
(i) n,m both odd, (ii) n,m both even, and (iii) the mixed case. The latter case leads to integrals

〈φn|φm〉Ω1 =
1
a

∫ +a

−a
dx cos

nπx

2a
sin

mπx

2a
. (3.99)

Since in this case the integrand is a product of an even and of an odd function, i.e., the integrand
is odd, the integral vanishes. Hence we need to consider only the first two cases. In case of n,m
odd, n 6= m, the integral arises

〈φn|φm〉Ω1 = 1
a

∫ +a
−a dx cosnπx2a cosmπx2a =

1
a

∫ +a
−a dx

[
cos (n−m)πx

2a + cos (n+m)πx
2a

]
(3.100)

The periods of the two cos-functions in the interval [−a, a] are N, N ≥ 1. Obviously, the integrals
vanish. Similarly, one obtains for n,m even

〈φn|φm〉Ω1 = 1
a

∫ +a
−a dx sinnπx2a sinmπx2a =

1
a

∫ +a
−a dx

[
cos (n−m)πx

2a − cos (n+m)πx
2a

]
(3.101)

and, hence, this integral vanishes, too.
Because of the property (3.98) the elements of B1 must be linearly independent. In fact, for

f(x) =
∞∑
n=1

dn φn(a;x) (3.102)

holds according to (3.98)

〈f |f〉Ω1 =
∞∑
n=1

d2
n . (3.103)

5We will show in Section 5 that the property of a scalar product do indeed apply. In particular, it holds:
〈f |f〉Ω1 = 0 → f(x) ≡ 0.
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f(x) ≡ 0 implies 〈f |f〉Ω1 = 0 which in turn implies dn = 0 since d2
n ≥ 0. It follows that B1

defined in (3.95) is an orthonormal basis.
We like to show finally that the basis (3.95) is also complete, i.e., any element of the function space
F1 defined in (3.78) can be expressed as a linear combination of the elements of B1 defined in
(3.95, 3.96). Demonstration of completeness is a formidable task. In the present case, however,
such demonstration can be based on the theory of Fourier series. For this purpose we extend the
definition of the elements of F1 to the whole real axis through

f̃ : R → R ; ~f(x) = f([x+ a]a − a) (3.104)

where [y]a = ymod2a. The functions f̃ are periodic with period 2a. Hence, they can be expanded
in terms of a Fourier series, i.e., there exist real constants {an, n = 0, 1, 2, . . .} and {bn, n = 1, 2, . . .}
such that

f̃ =
∞∑
n=0

an cos
nπx

2a
+

∞∑
n=1

an sin
nπx

2a
(3.105)

The functions f̃ corresponding to the functions in the space F1 have zeros at x = ±ma, m =
1, 3, 5 . . . Accordingly, the coefficients an, n = 2, 4, . . . and bn, n = 1, 3, . . . in (3.105) must vanish.
This implies that only the trigonometric functions which are elements of B1 enter into the Fourier
series. We have then shown that any f̃ corresponding to elements of F1 can be expanded in terms
of elements in B1. Restricting the expansion (3.105) to the interval [−a, a] yields then also an
expansion for any element in F1 and B1 is a complete basis for F1.

Evaluating the Propagator

We can now use the expansion of any initial wave function ψ(x, t0) in terms of eigenfunctions
φn(a;x) to obtain an expression for ψ(x, t) at times t > t0. For this purpose we expand

ψ(x, t0) =
∞∑
n=1

dn φn(a;x) . (3.106)

Using the orthonormality property (3.98) one obtains∫ +a

−a
dx0φm(a;x0)ψ(x0, t0) = dm . (3.107)

Inserting this into (3.106) and generalizing to t ≥ t0 one can write

ψ(x, t) =
∞∑
n=1

φn(a;x) cn(t)
∫ +a

−a
dx0φn(a;x0)ψ(x0, t0) (3.108)

where the functions cn(t) are to be determined from the Schrödinger equation (3.79) requiring the
initial condition

cn(t0) = 1 . (3.109)

Insertion of (3.108) into the Schrödinger equation yields∑∞
n=1 φn(a;x) ∂tcn(t)

∫ +a
−a dx0φn(a;x0)ψ(x0, t0) =∑∞

n=1

(
− i
~
En
)
φn(a;x) cn(t)

∫ +a
−a dx0φn(a;x0)ψ(x0, t0) . (3.110)
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Multiplying both sides by φm(a;x) and integrating over [−a, a] yields, according to (3.98),

∂t cm(t) = − i
~

Em cm(t) , cm(t0) = 1 . (3.111)

The solutions of these equations which satisfy (3.109) are

cm(t) = exp
(
− i
~

Em (t − t0)
)
. (3.112)

Equations (3.108, 3.112) determine now ψ(x, t) for any initial condition ψ(x, t0). This solution can
be written

ψ(x, t) =
∫ +a

−a
dx0 φ(x, t|x0, t0)ψ(x0, t0) (3.113)

where

φ(x, t|x0, t0) =
∞∑
n=1

φn(a;x) exp
(
− i
~

En (t − t0)
)
φn(a;x0) . (3.114)

This expression has the same form as postulated in the path integral formulation of Quantum
Mechanics introduced above, i.e., in (2.5). We have identified then with (3.114) the representation
of the propagator for a particle in a box with infinite walls.
It is of interest to note that φ(x, t|x0, t0) itself is a solution of the time-dependent Schrödinger
equation (3.79) which lies in the proper function space (3.78). The respective initial condition
is φ(x, t0|x0, t0) = δ(x − x0) as can be readily verified using (3.113). Often the propagator
φ(x, t|x0, t0) is also referred to as a Greens function. In the present system which is composed
solely of bound states the propagator is given by a sum, rather than by an integral (3.54) as in the
case of the free particle system which does not exhibit any bound states.
Note that the propagator has been evaluated in terms of elements of a particular function space F1,
the elements of which satisfy the appropriate boundary conditions. In case that different boundary
conditions hold the propagator will be different as well.

Example of a Non-Stationary State

As an illustration of a non-stationary state we consider a particle in an initial state

ψ(x0, t0) =
[

1
2πσ2

] 1
4

exp
(
− x2

0

2σ2
+ i k0 x0

)
, σ =

a

4
, k0 =

15
a
. (3.115)

This initial state corresponds to the particle being localized initially near x0 = 0 with a velocity
v0 = 15~/ma in the direction of the positive x-axis. Figure 3.2 presents the probability distribution
of the particle at subsequent times. One can recognize that the particle moves first to the left and
that near the right wall of the box interference effects develop. The particle moves then to the
left, being reflected at the right wall. The interference pattern begins to ‘smear out’ first, but the
collision with the left wall leads to new interference effects. The last frame shows the wave front
reaching again the right wall and the onset of new interference.
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Figure 3.2: Stroboscopic views of the probability distribution |ψ(x, t)|2 for a particle in a box
starting in a Gaussian distribution with momentum 15~/a.
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Summary: Particle in One-Dimensional Box

We like to summarize our description of the particle in the one-dimensional box from a point of
view which will be elaborated further in Section 5. The description employed a space of functions
F1 defined in (3.78). A complete basis of F1 is given by the infinite set B1 (3.95). An important
property of this basis and, hence, of the space F1 is that the elements of the basis set can be
enumerated by integer numbers, i.e., can be counted. We have defined in the space F1 a scalar
product (3.97) with respect to which the eigenfunctions are orthonormal. This property allowed us
to evaluate the propagator (3.114) in terms of which the solutions for all initial conditions can be
expressed.

3.6 Particle in Three-Dimensional Box

We consider now a particle moving in a three-dimensional rectangular box with side lengths
2a1, 2a2, 2a3. Placing the origin at the center and aligning the x1, x2, x3–axes with the edges
of the box yields spatial boundary conditions which are obeyed by the elements of the function
space

F3 = {f : Ω → R, f continuous, f(x1,x2,x3) = 0 ∀ (x1,x2,x3)T ∈ ∂
} . (3.116)

where Ω is the interior of the box and ∂Ω its surface

Ω = [−a1, a1]⊗ [−a2, a2]⊗ [−a3, a3] ⊂ R3

∂Ω = {(x1, x2, x3)T ∈ Ω, x1 = ±a1} ∪ {(x1, x2, x3)T ∈ Ω, x2 = ±a2}
∪ {(x1, x2, x3)T ∈ Ω, x3 = ±a3} . (3.117)

We seek then solutions of the time-dependent Schrödinger equation

i~∂tψ(x, t) = Ĥ ψ(x1, x2, x3, t) , Ĥ = − ~
2

2m
(
∂2

1 + ∂2
2 + ∂2

3

)
(3.118)

which are stationary states. The corresponding solutions have the form

ψ(x1, x2, x3, t) = exp
(
− i
~

E t

)
φE(x1, x2, x3) (3.119)

where φE(x1, x2, x3) is an element of the function space F3 defined in (3.116) and obeys the partial
differential equation

Ĥ φE(x1, x2, x3) = E φE(x1, x2, x3) . (3.120)

Since the Hamiltonian Ĥ is a sum of operators O(xj) each dependent only on a single variable, i.e.,
Ĥ = O(x1) +O(x2) +O(x3), one can express

φ(x1, x2, x3) =
3∏
j=1

φ(j)(xj) (3.121)

where

− ~
2

2m
∂2
j φ

(j)(xj) = Ej φ
(j)(xj) , φ(j)(±aj) = 0 , j = 1, 2, 3 (3.122)
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and E1 + E2 + E3 = E. Comparing (3.122) with (3.80) shows that the solutions of (3.122) are
given by (3.96) and, hence, the solutions of (3.120) can be written

φ(n1,n2,n3)(a1, a2, a3;x1, x2, x3) = φn1(a1;x1)φn2(a2;x2)φn3(a3;x3)
n1, n2, n3 = 1, 2, 3, . . . (3.123)

and

E(n1,n2,n3) =
~

2π2

8m

(
n2

1

a2
1

+
n2

2

a2
2

+
n2

3

a2
3

)
, n1, n2, n3 = 1, 2, 3, . . . (3.124)

The same considerations as in the one-dimensional case allow one to show that

B3 = {φ(n1,n2,n3)(a1, a2, a3;x1, x2, x3) , n1, n2, n3 = 1, 2, 3, . . .} (3.125)

is a complete orthonormal basis of F3 and that the propagator for the three-dimensional box is

φ(~r, t|~r0, t0) =
∞∑

n1,n2,n3=1

φ(n1,n2,n3)(a1, a2, a3;~r) (3.126)

exp
(
− i
~

E(n1n2n3) (t − t0)
)
φ(n1,n2,n3)(a1, a2, a3;~r0) .

Symmetries

The three-dimensional box confining a particle allows three symmetry operations that leave the box
unchanged, namely rotation by π around the x1, x2, x3–axes. This symmetry has been exploited
in deriving the stationary states. If two or all three orthogonal sides of the box have the same
length further symmetry operations leave the system unaltered. For example, if all three lengths
a1, a2, a3 are identical, i.e., a1 = a2 = a3 = a then rotation around the x1, x2, x3–axes by π/2
also leaves the system unaltered. This additional symmetry is also reflected by degeneracies in the
energy levels. The energies and corresponding degeneracies of the particle in the three-dimensional
box with all side lengths equal to 2a are given in the following Table:

n1 n2 n3 E/[~2π2/8ma2] degeneracy
1 1 1 3 single
1 1 2 6 three-fold
1 2 2 9 three-fold
1 1 3 11 three-fold
2 2 2 12 single
1 2 3 14 six-fold
2 2 3 17 three-fold
1 1 4 18 three-fold
2 3 3 22 three-fold
3 3 3 27 single
1 1 5 27 three-fold

One can readily verify that the symmetry of the box leads to three-fold and six-fold degeneracies.
Such degeneracies are always a signature of an underlying symmetry. Actually, in the present case
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‘accidental’ degeneracies also occur, e.g., for (n1, n2, n3) = (3, 3, 3) (1, 1, 5) as shown in the Table
above. The origin of this degeneracy is, however, the identity 32 + 32 + 32 = 12 + 12 + 52.
One particular aspect of the degeneracies illustrated in the Table above is worth mentioning. We
consider the degeneracy of the energy E122 which is due to the identity E122 = E212 = E221. Any
linear combination of wave functions

φ̃(~r) = αφ(1,2,2)(a, a, a;~r) + β φ(2,1,2)(a, a, a;~r) + γ φ(2,2,1)(a, a, a;~r) (3.127)

obeys the stationary Schrödinger equation Ĥ φ̃(~r) = E122 φ̃(~r). However, this linear combination
is not necessarily orthogonal to other degeneraste states, for example, φ(1,2,2)(a, a, a;~r). Hence,
in case of degenerate states one cannot necessarily expect that stationary states are orthogonal.
However, in case of an n–fold degeneracy it is always possible, due to the hermitian character of
Ĥ, to construct n orthogonal stationary states6.

6This is a result of linear algebra which the reader may find in a respective textbook.
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