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The seesaw mechanism
This section deals with a model to explain the triflingly small neutrino mass (< 2 eV),
which is much smaller than that of other fermions such as the next lightest one, the elec-
tron (0.5 MeV). In the standard model neutrinos and antineutrinos are different (Dirac)
particles. The chirality of the neutrino is negative, that of the antineutrino positive (see
*15.79*). The neutrinos and antineutrinos involved in the weak interaction with other
particles are represented by the spinors

ψL =

(
1− γ5

2

)
ψ and (ψc)R =

(
1 + γ5

2

)
ψc, (1)

respectively, where ψ and ψc are solution of the Dirac equation (chapter *15*). The
spinors

ψR =

(
1 + γ5

2

)
ψ and (ψc)L =

(
1− γ5

2

)
ψc (2)

correspond to sterile neutrinos and antineutrinos.
The following discussion deals with only one flavour of neutrinos, say νe, but is ap-

plicable to νµ and ντ as well. We shall denote the neutrino spinor by ψ and that of the
charge conjugated antineutrino by ψc. We have shown in section *15.5* that

ψc = Cψ
T

= iγ2γ0ψ
T
. (3)

Table 1 lists a few useful relations satisfied by the charge conjugation C, which are easily
verified by using the properties of γ matrices derived in chapter *15*.

Table 1: Some properties of the charge conjugation.

C† = CT = −C
C2 = −1
CC† = 1
CCT = 1
Cγ0C = γ0

γ0Cγ0 = −C

We have seen e.g. in section *14.4* that the neutrino is observed to be left-handed and
the corresponding antineutrino right-handed. As discussed in section *15.3* the spinors
(1) and (2) are eigenstates of the chirality operator γ5, but chirality is equivalent to han-
dedness in the limit of vanishing masses, hence the subscripts L and R in (1) and (2).
However, a massive neutrino can be brought to rest and become right-handed by a suitable
Lorentz boost, thus interacting nevertheless with other fermions. This is the mechanism at
work in the hypothetical neutrinoless double β-decay in which neutrinos and antineutrinos
are identical (Majorana) particles (section *14.5*).

Let us now interpret the spinor ψ as a field and write for the energy of a Dirac neutrino
with mass MD in its rest frame, following the Dirac equation,

H = ψ†βMDψ = ψ†γ0MDψ = MDψψ = MDψRψL +MDψLψR, (4)
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because only terms with opposite chiralities contribute to H: indeed, ψ can be decom-
posed into L and R fields

ψ = ψL + ψR =

(
1− γ5

2

)
ψ +

(
1 + γ5

2

)
ψ. (5)

The products ψLψL and ψRψR vanish,

ψLψL = ψ
1

4

1−(γ5)2=0︷ ︸︸ ︷
(1 + γ5)(1− γ5)ψ = 0, (6)

and likewise for ψRψR. Furthermore,

ψLψR = ψ†γ0
[

1 + γ5

2

]
ψR = ψ†

[
1− γ5

2

]
γ0ψR = [ψ†Rγ

0

[
1− γ5

2

]
ψ]† = [ψRψL]†,

(7)
so that H becomes simply

H = MDψRψL + h.c., (8)

where h.c. stands for “hermitian conjugate”.
Further terms can be added to the Hamiltonian when including charge conjugated L

and R fields. The following fields

ψL, ψR (ψc)L, (ψc)R and ψL, ψR, (ψc)L, (ψc)R (9)

are available. The charge conjugated L and R fields satisfy the useful relations

(ψL)c = (ψc)R and (ψR)c = (ψc)L. (10)

The proof uses the properties of γ matrices listed in chapter *15*. One gets, e.g. for the
L field,

(ψL)c =

[
1− γ5

2
ψ

]c
= C

[
1− γ5

2
ψ

]T
= C

[(
1− γ5

2
ψ

)†
γ0

]T
= C

[
ψ†
(

1− γ5

2

)
γ0
]T

= C

[
γ0
(

1− γ5

2

)
ψ†T
]

= C

[(
1 + γ5

2

)
γ0ψ†T

]
= C

[(
1 + γ5

2

)
(ψ†γ0)T

]
=

(
1 + γ5

2

)
Cψ̄T =

(
1 + γ5

2

)
ψc = (ψc)R,

(11)

and similarly for (ψR)c. Keeping only the pairs of fields in (9) with opposite chiralities
leaves the contributions to H

ψRψL, (ψc)RψL, ψR(ψc)L, (ψc)R(ψc)L (12)
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and their corresponding hermitian conjugates. However, the fourth term is not indepen-
dent. By using the relations listed in table 1 one finds that

(ψc)L(ψc)R = (ψR)c(ψL)c = (Cψ̄TR)Cψ̄TL
= (Cψ̄TR)†γ0Cψ̄TL = (Cγ0ψ∗R)†γ0Cψ̄TL

= ψ∗†R γ
0

−γ0︷ ︸︸ ︷
C†γ0C ψ̄TL = −ψTRψ̄TL = ψ̄LψR, (13)

since fermion fields anticommute.
The most general expression for the Hamiltonian is therefore

H = MDψRψL +
1

2
ML(ψc)RψL +

1

2
MRψR(ψc)L + h.c. (14)

= MDψRψL +
1

2
ML(ψL)cψL +

1

2
MRψR(ψR)c + h.c. (15)

where we have used the equalities (10). The first term conserves lepton number and
endows the neutrino with a Dirac mass MD. The second and last terms violate lepton
number conservation by ∆L = ±2 and contribute Majorana masses ML and MR, as
illustrated in figure 1.

Figure 1: Contributions to the Hamiltonian from Dirac neutrino fields (a) and Majorana fields (b), (c). (The
mass MD is due to direct coupling (×) to the Higgs field, in contrast to ML and MR, which require more
complicated mass generation mechanisms, such as loops.)

So far, we have listed the contributions to the Hamiltonian with the couplingsMD,ML and
MR, which are not the physical neutrino masses. Let us therefore identify the eigenstates
of the Hamiltonian (the physically observed states) and the corresponding eigenvalues
(the observable neutrino masses). Let us define the fields

f ≡ ψL + (ψL)c√
2

=
ψL + (ψc)R√

2
and F ≡ ψR + (ψR)c√

2
=
ψR + (ψc)L√

2
. (16)

These fields are of the Majorana type because f c = f and F c = F . This can be seen by
conjugating ψL and ψR twice, e.g. for ψL:

(ψcL)c = CψcL
T

= CCψ̄L
T
T

= C[Cγ0ψ∗L]T = C[(Cγ0ψ∗L)†γ0]T

= C[ψTL

C︷ ︸︸ ︷
γ0C†γ0]TC = CCTψL = ψL (17)
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(see table 1). By keeping only terms with opposite chiralities we can rewrite the Hamil-
tonian (14) as

H = MLf̄f +MRF̄F +MD(f̄F + F̄ f)

= (f̄ , F̄ )

(
ML MD

MD MR

)(
f
F

)
. (18)

The eigenvalues m and eigenstates φ are found by diagonalizing the matrix, that is by and
solving (

ML −m MD

MD MR −m

)
φ = 0. (19)

The secular equation
(ML −m)(MR −m)−M2

D = 0 (20)

leads to

m1,2 =
MR +ML

2
∓
√

(MR −ML)2

4
+M2

D. (21)

Consider first the purely Dirac neutrino scenario with MR = ML = 0, hence m1 = −MD

and m2 = MD. The normalized eigenfunctions in the (f, F ) basis are

φ1 =
1√
2

(
1
1

)
≡ ν =

f + F√
2
, and φ2 =

1√
2

(
1
−1

)
≡ N =

F − f√
2
. (22)

The Hamiltonian now reads in terms of ν and N :

H = −MDν̄ν +MDN̄N = −MDν̄(

=1︷︸︸︷
γ5)2 ν +MDN̄N = MDν̄ ′ν

′ +MDN̄N, (23)

where we have redefined the field ν as ν ′ = γ5ν to obtain a positive mass. Our Majorana
fields ν ′ and N are superpositions of ψL, (ψc)R, (ψc)L and ψR with degenerate masses
MD. The first two fields occur in the weak interaction where they couple to the known 80
GeV W± boson (section *16.7*), while the last two ones correspond to sterile neutrinos.

In another hypothetical scenario, a gauge boson W±
R might exist, which couples to

R fermions or L antifermions. So far WR has not been observed, being too massive and
therefore beyond reach of present accelerators. Let us assume that this boson decays into
heavy neutrinos and set

ML = 0, MR >> MD. (24)

Then from (21)

m1 =
MR

2
−
√
M2

R

4
+M2

D '
MR

2
− MR

2

(
1 + 2

M2
D

M2
R

)
= −M2

D/MR. (25)

The corresponding eigenstate in the (f ,F ) basis is found by solving the equation(
−m1 MD

MD MR −m1

)( √
1− b2
b

)
= 0, (26)
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hence
b ' MD

MR

, (27)

and therefore
ν ' f +

MD

MR

F ' f. (28)

We get a light Majorana neutrino ν with mass M2
D/MR. (A positive mass is again

obtained by the substitution ν → γ5ν in the Hamiltonian.) The neutrino ν is essentially
the superposition of a Dirac L neutrino and Dirac R antineutrino (see (16)) which couple
to the 80 GeV W± boson. This is would be our familiar neutrino, a Majorana particle.

The second solution of (21) is

m2 =
MR

2
+

√
M2

R

4
+M2

D '
MR

2
+
MR

2

(
1 + 2

M2
D

M2
R

)
'MR. (29)

The corresponding eigenstate is orthogonal to ν:

N = F − MD

MR

f ' F, (30)

a heavy Majorana neutrino with mass MR. According to (16) N is essentially a superpo-
sition of a Dirac R neutrino and Dirac L antineutrino which couple to the very massive
WR boson.

Figure 2: The seesaw mechanism would explain the tiny mass of the left-handed neutrino by the existence
of a heavy specie with opposite chirality.

From (28) and (30) one finds that

m1m2 = MνMR 'M2
D . (31)

This is the essence of the seesaw mechanism originally proposed by [1]. The tiny mass
of the neutrino is compensated by the very high mass of a neutrino with opposite chirality
(figure 2). For example, with a typical mass of Dirac fermions of MD ' 1 MeV and
a neutrino mass Mν = 0.1 eV one finds with (31) a neutrino mass MR ' 10 TeV. This
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heavy neutrino would decay e.g. into a lepton ` and the charged Higgs introduced in
section *7.4*, that is N → `−H+ or N → `+H−. A difference between the two partial
decay widths would induce CP violation, leading to the observed asymmetry of about
10−6 between antimatter and matter in the universe. This leptogenesis[2] mechanism
of matter-antimatter asymmetry is an alternative to the CP violating baryogenesis [3]
mechanism of Grand Unified Theories (section *7.4*).

The seesaw mechanism will gain credence once the Majorana nature of neutrinos has
been established experimentally by the observation of neutrinoless double β-decay or the
discovery of a heavy WR boson.
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