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Among the architectures and algorithms suggested for artificial 
neural networks, the Self-Organizing Map has the special property 
of effectively creating spatially organized "internal representa- 
tions" of various features of input signals and their abstractions. 
One novel result is that the self-organization process can also dis- 
cover semantic relationships in sentences. In this respect the 
resulting maps very closely resemble the topographically orga- 
nized maps found in the cortices of the more developed animal 
brains. After supervised fine tuning of its weight vectors, the Self- 
Organizing Map has been particularly successful in various pattern 
recognition tasks involving very noisy signals. In particular, these 
maps have been used in practical speech recognition, and work is 
in progress on their application to robotics, process control, tele- 
communications, etc. This paper contains a survey of several basic 
facts and results. 

I. INTRODUCTION 

A. On the Role o f  the Self-organizing Map Among Neural 
Network Models 

The network architectures and signal processes used to 
model nervous systems can roughly be divided into three 
categories, each based on a different philosophy. Feedfor- 
wardnetworks [94] transform sets of input signals into sets 
of output signals. The desired input-output transformation 
i s  usually determined by external, supervised adjustment 
of the system parameters. In  feedback networks [27], the 
input information defines the initial activity state of a feed- 
back system, and after state transitions the asymptotic final 
state is identified as theoutcomeof the computation. In the 
third category, neighboring cells in a neural network com- 
pete in their activities by means of mutual lateral interac- 
tions, and develop adaptively into specific detectors of dif- 
ferent signal patterns. In  this category learning is called 
competitive, unsupervised, or self-organizing, 

The Self-organizing Map discussed in this paper belongs 
to the last category. It i s  a sheet-like artificial neural net- 
work, the cells of which become specifically tuned to var- 
ious input signal patterns or classes of patterns through an 
unsupervised learning process. In the basic version, only 
one cell or local group of cells at a time gives the active 
response to  the current input. The locations of the 
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responses tend to become ordered as if some meaningful 
coordinate system for different input features were being 
created over the network. The spatial location or coordi- 
natesof acell in the network then correspond toa particular 
domain of input signal patterns. Each cell or local cell group 
acts like a separate decoder for the same input. It is thus 
the presence or absence of an active response at that loca- 
tion, and not so much the exact input-output signal trans- 
formation or magnitude of the response, that provides an 
interpretation of the input information. 

The Self-organizing Map was intended as a viable alter- 
native to more traditional neural network architectures. It 
i s  possibletoaskjust how"neura1"the map is. Itsanalytical 
description has already been developed further in the tech- 
nical than in the biological direction. But the learning results 
achieved seem very natural, at least indicating that the 
adaptive processes themselves at work in the map may be 
similar to  those encountered in  the brain. There may there- 
fore be sufficient justification for calling these maps "neural 
networks" in the same sense as their traditional rivals. 

Self-organizing Maps, or systems consisting of several 
map modules, have been used for tasks similar to those to  
which other more traditional neural networks have been 
applied: pattern recognition, robotics, process control, and 
even processing of semantic information. The spatial seg- 
regation of different responses and their organization into 
topologically related subsets results in  a high degree of effi- 
ciency in typical neural network operations. 

Although the largest map we have used in  practical appli- 
cations has only contained about 1000 cells, its learning 
speed, especially when using computational shortcuts, can 
be increased to orders of magnitude greater than that of 
many other neural networks. Thus much larger maps than 
those used so far are quite feasible, although it also seems 
that practical applications favor hierarchical systems made 
up of many smaller maps. 

It may be appropriate to  observe here that if the maps are 
used for pattern recognition, their classification accuracy 
can be multiplied if the cells are fine-tuned using super- 
vised learning principles (cf. Sec. Ill). 

Although the Self-organizing Map principle was intro- 
duced in early 1981, no complete review has appeared in 
compact form, except perhaps in [44], which does not con- 
tain the latest results. I have therefore tried to  collect a vari- 
ety of basic material in the present paper. 
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B. Brain Maps 

As much as a hundred years ago, a quite detailed top- 
ographical organization of the brain, and especially of the 
cerebral cortex, could be deduced from functional deficits 
and behavioral impairments induced by various kinds of 
lesion, or by hemorrhages, tumors, or malformations. Dif- 
ferent regions in  the brain thereby seemed to be dedicated 
to specific tasks. One modern systematic technique for 
causing controllable, reversible simulated lesions is to stim- 
ulate a particular site with small electric currents, thereby 
eventually inducing both excitatory and inhibitory effects 
and disturbing the assumed local function [75]. If such a 
spatially confined stimulus then disrupts a specific cog- 
nitiveabilitysuch as namingofobjects, it givesat least some 
indication that this site i s  essential to that task. 

One straightforward method for locating a response is 
to record the electric potential or train of neural impulses 
associated with it. Many detailed mappings, especiallyfrom 
the primary sensory and associative areas of the brain, have 
been made using various electrophysiological recording 
techniques. 

Direct evidence for any localization of brain functions 
can also beobtained using modern imaging techniques that 
display the strength and spatial distribution of neural 
responses simultaneously over a large area, with a spatial 
resolution of a few millimeters. The two principal methods 
which use radioactive tracers are positron emission tomog- 
raphy (PET) [80] and autoradiography of the brain through 
very narrow collimators (gamma camera). PET reveals 
changes in oxygen uptake and phosphate metabolism. The 
gammacamera method directlydetectschanges in cerebral 
blood flow. Both phenomena correlate with local neural 
activity, but they are unable to monitor rapid phenomena. 
In magnetoencephalography (MEG), the low magnetic field 
caused by electrical neural responses i s  detected, and by 
computing i ts  sources, quite rapid neural responses can be 
directly analyzed, with a spatial resolution of a few milli- 
meters. The main drawback of MEG is that only current 
dipoles parallel to the surface of the skull are detectable; 
and since the dipoles are oriented perpendicular to the cor- 
tex, onlythe sulci can be studied with this method. A review 
of experimental techniques and results relating to these 
studies can be found in [32]. 

Aftera largenumber of such observations,afairlydetailed 
organizational view of the brain has evolved [32]. Especially 
in higher animals, thevariouscortices in thecell mass seem 
to contain many kinds of "map" [33], such that a particular 
location of the neural response in the map often directly 
corresponds to a specific modality and quality of sensory 
signal. The field of vision i s  mapped "quasiconformally" 
onto the primaryvisual cortex. Someof the maps, especially 
those in the primary sensory areas, are ordered according 
to some feature dimensions of the sensory signals; for 
instance, in the visual areas, there are line orientation and 
color maps [Il l ,  [116], and in the auditory cortex there are 
the so-called tonotopic maps [91], [103], [104], which rep- 
resent pitches of tones in terms of the cortical distance, or 
other auditory maps [98]. One of the sensory maps i s  the 
somatotopic map [29], [30] which contains a representation 
of the body, i.e., the skin surface. Adjacent to it i s  a motor 
map [70] that i s  topographically almost identically orga- 
nized. Its cells mediate voluntary control actions on mus- 
cles. Similar maps exist in other parts of the brain [97]. O n  
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the higher levels the mapsare usuallyunordered, orat most 
the order i s  a kind of ultrametric topological order that is 
not easily interpretable. There are also singular cells that 
respond to rather complex patterns, such as the human face 
PI, P31. 

Some maps represent quite abstract qualities of sensory 
and other experiences. For instance, in the word-process- 
ing areas, neural responses seem to beorganized according 
to categories and semantic values of words ([6], [15], [65], 
[671, [106-1091, and [114]; cf. also Sec. V). 

It thus seems as if the internal representations of infor- 
mation in the brain are generally organized spatially. 
Although there i s  only partial biological evidence for this, 
enough data are already available to justify further theo- 
retical studies of this principle. Artificial self-organizing 
maps and brain maps thus have many features in common, 
and what is even more intriguing, we now fully understand 
the processes by which such artificial maps can be formed 
adaptively and completely automatically. 

C. Early Work on Competitive Learning 

The basic idea underlying what is called competitive 
learning is roughly as follows: Assume a sequence of sta- 
tistical samples of a vectorial observablex = x(t) E El", where 
tis the time coordinate, and a set of variable reference vec- 
tors {m,(t): m, E .d", i = 1,2,  . * , k } .  Assume that the m,(O) 
have been initialized in some proper way; random selection 
will often suffice. If x(t) can somehow be simultaneously 
compared with each m,(t) at each successive instant of time, 
taken here to be an integer t = 1 , 2 , 3 ,  . . . , then the best- 
matching ml(t) i s  to be updated to match even more closely 
the current x(t). If the comparison i s  based on some dis- 
tance measure d(x, m,), altering m, must be such that, if i = 
c i s  the index of the best-matching reference vector, then 
d(x, m,) is decreased, and all the other reference vectors m,, 
with i # c, are left intact. In this way the different reference 
vectors tend to become specifically "tuned" to different 
domains of the input variable x. It will be shown below that 
i fp is the probabilitydensityfunction ofthesamplesx, then 
the m, tend to be located in the input space S" in such a 
way that they approximate to p in the sense of some min- 
imal residual error. 

Vector Quantization (VQ) (cf., e.g., [19], [54], [58]) is a clas- 
sical method, that produces an approximation to a contin- 
uous probability density function p(x) of the vectorial input 
variable x using a finite number of codebook vectors m,, i 
= 1,2,  . . . , k. Once the "codebook" is chosen, the approx- 
imation of xinvolvesfinding the referencevectorm,closest 
to x. One kind of optimal placement of the m, minimizes 
E, the expected r th  power of the reconstruction error: 

E = j IIX - m,ll'p(x) dx (1 1 

where dx i s  the volume differential in the x space, and the 
index c = c(x) of the best-matching codebook vector ("win- 
ner") i s  a function of the input vector x: 

(2) 

In general, no closed-form solution for the optimal place- 
ment of the m, is possible, and iterative approximation 
schemes must be used. 

It has been pointed out in [14], [64], and [I151 that (1) 

IIx - m,ll = min {llx - mllll. 
I 
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defines a placement of the codebookvectors into the signal 
space such that their point density function i s  an approx- 
imation to [p(x)]"""+'), where n i s  the dimensionality of x 
and m,. We usually consider the case r = 2. In most practical 
applications n >> r, and then the optimal VQ can be shown 
to approximate p(x). 

Using the square-error criterion ( r  = 2), it can also be 
shown that the following stepwise "delta rule," in  the dis- 
crete-time formalism (t = 0,1,2, . . ), defines the optimal 
values asymptotically. Let m, = m,(t) be the closest code- 
bookvector t ox  = x( t )  i n  the Euclidean metric.The steepest- 
descent gradient-step optimization of € in the m, space 
yields the sequence 

m,(t + 1) = m,(t) + a(t) [x(t) - m,(t)l, 

m,(t + 1) = m,(t) for i # c (3) 

with a(t) being a suitable, monotonically decreasing 
sequence of scalar-valued gain coefficients, 0 < a(t) < 1. 
This i s  then the simplest analytical description of compet- 
itive learning. 

In general, if we express the dissimilarity of x and m, in 
terms of a general distance function d(x, m,), we have first 
to identify the "winner" m, such that 

(4) 

After that an updating rule should be used such that d 
decreases monotonically: the correction 6m, of m, must be 
such that 

(5) 

If (1) is used for signal approximation, it often turns out to 
be more economical to first observe a number of training 
samples x( t ) ,  which are "classified" (labeled) on the basis 
of (2) according to the closest codebook vectors m,, and then 
to perform the updating operation in  a single step. For the 
new codebook vector m,, the average i s  taken of those x ( t )  
that were identified with codebook vector i. This algorithm, 
termed the k-means algorithm is  widely used in digital tele- 
communications engineering [58]. 

The m,(t), i n  the above processes, actually develop into 
a set of feature-sensitive detectors. Feature-sensitive cells 
arealso known to becommon in  the brain. Neural modelers 
like Nass and Cooper [72], Perez et a/. [79], and Grossberg 
[21] have been able to suggest how such feature-sensitive 
cells can emerge from simplified membrane equations of 
model neurons. 

In the above process and i t s  biophysical counterparts, all 
the cells act independently. Therefore the order in which 
they are assigned to the different domains of input signals 
i s  more or less haphazard, most strongly depending on the 
initial values of the m,(O). In fact, in 1973, v.d. Malsburg [59] 
had already published a computer simulation in which he 
demonstrated localordering of feature-sensitive cells, such 
that in  small subsets of cells roughly corresponding to the 
so-called columns of the cortex, the cells were tuned more 
closely than were more remote cells. Later, Amari [I] for- 
mulated and analyzed the corresponding system of differ- 
ential equations, relating them to  spatially continuous two- 
dimensional media. Such continuous layers interacted in  
the lateral direction; the arrangement was called a nerve 
field. The above studies are of great theoretical importance 
because they involve a self-organizing tendency. The order- 

d(x, m,) = min {d(x,  m, ) } .  
I 

[grad,, d(x, mJIT . Am, < 0. 

ing power they demonstrated was, however, still weak as 
nerve-field type equations only describe this tendency as 
a marginal effect. In spite of numerous attempts, no "maps" 
of practical importance could be produced; ordering was 
either restricted to a one-dimensional case, or confined to 
small parcelled areas of the network [601, [77, [78], [99], [loo], 
[IIO], [ I l l ] .  

Indeed it later transpired that system equations have to 
involve much stronger, idealized self-organizing effects, 
and that the organizing effect has to be maximized in every 
possibleway beforeuseful global maps can becreated.The 
present author, in early 1981, was experimenting with var- 
ious architectures and system equations, and found a pro- 
cess description [34]-[36] that seemed generally t o  produce 
globally well-organized maps. Because all the other system 
models known at that time only yielded results that were 
significantly more "brittle" with respect to the selection of 
parameters and to success in achieving the desired results, 
we may skip them here and concentrate on  the compu- 
tationally optimized algorithm known as the Self-Organiz- 
ing Map algorithm. 

I I .  AN ALGORITHM THAT ORDERS RESPONSES SPATIALLY 

Readers who are not yet familiar with the Self-organizing 
Maps may benefit from a quick look at Figs. 5 and 6 or Fig. 
9 to find out what spatial ordering of output responses 
means. 

The Self-organizing Map algorithm that I shall now 
describe has evolved during a long series of computer 
experiments. The background to this research has been 
expounded in [ a ] .  While the purpose of each detail of the 
final equations may be clear in concrete simulations, it has 
proved extremely difficult, in spite of numerous attempts, 
to express the dynamic properties of this process in math- 
ematical theorems. Strict mathematical analysis only exists 
for simplified cases. And even they are too lengthy to be 
reviewed here: cf. [q, [8], [24], [57, [83], [86], [89], [go]. It i s  
therefore hoped that the simulation experiments and prac- 
tical applications reported below in Secs. 11-C, 11-E, IV, V, 
and VI will suffice to convince the reader about the utility 
of this algorithm. 

It may also be necessary to emphasize again that for prac- 
tical purposes we are trying to extract or explain the self- 
organizing function in i ts  purest, most effective form, 
whereas in genuine biological networks this tendency may 
be more or less disguised by other functions. It may thus 
be conceivable, as has been verified by numerous simu- 
lation experiments, that the two essential effects leading to 
spatially organized maps are: 1) spatialconcentration of the 
network activityon thecell (or i ts  neighborho0d)that i s  best 
tuned to the present input, and 2) further sensitization or 
tuning of the best-matching cell and its topological neigh- 
bors to the present input. 

A. Selection of  the Best-Matching Cell 

Consider the two-dimensional network of cells depicted 
in Fig. 1. Their arrangement can be hexagonal, rectangular, 
etc. Let (in matrix notation) x = [x,, x2, . , x,]' E 8" be the 
input vector that, for simplicity and computational effi- 
ciency, i s  assumed to be connected in  parallel to all the neu- 
Tons i in this network, (We have also shown that subsets of 
the same input signals can be connected at random to the 
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Fig. 1. Cell arrangement for the map and definition of 
variables. 

cells; cf. the “tonotopic map” discussed in [35] and [ U ] .  
Experiments are in progress in which the input connections 
to  the cells can be made in a cascade.) The weight vector 
of cell i shall henceforth be denoted by m, = [m,,, m,2r 
* . . , m,,,lJ E R”. 

The simplest analytical measure for the match of x with 
them, may be the inner product x‘m,. If, however, the self- 
organizing algorithm is  to  be used for, say, natural signal 
patterns relating to  metric vector spaces, a better and more 
convenient (cf. the adaptation law below) matching crite- 
rion may be used, based on the Euclidean distances 
between xand m,. The minimum distance defines the “win- 
ner” m, (cf. (2)). A shortcut algorithm to  find m, has been 
presented in [49]. 

Comment. Definition of the input vector,x, asan ordered 
set of signal values i s  only possible if the interrelation 
between the signals i s  simple. In  many practical problems, 
such as image analysis (cf. Discussion, Sec. VII) it will gen- 
erally be necessary to  use some kind of preprocessing to  
extract a set of invariant features for the components of x. 

B. Adaptation (Updating) of the Weight Vectors 

It iscrucial totheformation ofordered mapsthatthecells 
doing the learning are not affected independently of each 
other (cf. competitive learning in  Sec. I-C), but as topo- 
logically related subsets, on each of which a similar kind of 
correction is imposed. During the process, such selected 
subsets will then encompass different cells. The net cor- 
rections at each cell will thus tend to  be smoothed out in 
the long run. An even more intriguing result from this sort 
of spatially correlated learning is that the weight vectors 
tend to attain values that are ordered along the axes of the 
network. 

In biophysically inspired neural network models, cor- 
related learning byspatiallyneighboringcells can be imple- 
mented using various kinds of lateral feedback connection 
and other lateral interactions. In  the present process we 
want to enforce lateral interaction directly in a general form, 
for arbitrary underlying network structures, by defining a 
neighborhood set N, around cell c. At each learning step, 
all the cells within N,are updated, whereas cells outside N, 
are left intact. This neighborhood is centered around that 
cell for which the best match with input x i s  found: 

Fig. 2. Examples of topological neighborhood N,(t), where 
t ,  < t, < t,. 

shrink monotonicallywith time (Fig. 2). The explanation for 
this may be that a wide initial N,, corresponding to a coarse 
spatial resolution in the learning process, first induces a 
rough global order in them, values, after which narrowing 
the N, improves the spatial resolution of the map; the 
acquired global order, however, i s  not destroyed later on. 
It i s  even possible to end the process with N, = {c}, that 
is, finally updating the best-matching unit (”winner”) only, 
in which case the process i s  reduced to  simple competitive 
learning. Before this, however, the ”topological order” of 
the map would have to  be formed. 

The updating process (in discrete-time notation) may read 

(6) 

where a(t) i s  a scalar-valued “adaptation gain” 0 < a(t) < 
1. It i s  related to a similar gain used in the stochastic approx- 
imation processes [49], [92], and as in these methods, a(t) 
should decrease with time. 

An alternative notation i s  to introduce a scalar ”kernel” 
function h,, = h,,(t), 

m,(t)  + a(t)[x(t) - m,(t) if i E NCO), 1 if i $ N,(t), i,,,t) 
m,(t + 1) = 

m,(t + 1) = m,W + h,,(t)[x(t) - m,(t)l (7) 

whereby,above, h,,(t) = a(t)within N,,and h,,(t) = Ooutside 
N,. On theother hand, thedefinition of h,,can also be more 
general; a biological lateral interaction often has the shape 
of a “bell curve”. Denoting the coordinates of cells c and 
i by the vectors rc and r,, respectively, a proper form for h,, 
might be 

h,, = ho exp ( -  llr, - r,l12/a2), (8) 

with bo = h,(t) and U = o(t) as suitable decreasing functions 
of time. 

C. Demonstrations of the Ordering Process 

The first computer simulations presented here are 
intended to  illustrate the effect that the weight vectors tend 
to approximate to the density function of the input vectors 
in an orderly fashion. In  these examples, the input vectors 
were chosen to be two-dimensional for visual display pur- 
poses, and their probability density function was arbitrarily 
selected to be uniform over the areademarcated bythe bor- 
derlines (square or triangle). Outside the frame the density 
was zero. The vectors x(t) were drawn from this density 

1Ix - mcll = min {Ilx - m,ll}. (2’) 

The width or radius of N, can be time-variable; in fact, for 
good global ordering, it has experimentally turned out to 
beadvantageousto let N,beverywide in the beginning and 

function independently and at random, after which they 
caused adaptive changes in the weight vectors m,. 

The m, vectors appear as points in the same coordinate 
system as that in which the x(t) are represented; in order 
to indicate to which unit each m, value belongs, the points 

I 
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Fig. 3. Weight vector 
dimensional array. 

seee  !P0000  

during the ordering process, two- 

corresponding to the m, vectors have been connected by 
a lattice of lines conforming to  the topology of the pro- 
cessing unit array. In other words, a line connecting two 
weight vectors m, and m, i s  only used to indicate that the 
corresponding units iand ja re  adjacent in  the array. In Fig. 
3 the arrangement of the cells i s  rectangular (square), 
whereas in Fig. 4 the cells are interconnected in a linear 
chain. 

Fig. 4. Weight vectors during the ordering process, one- 
dimensional array. 

Examples of intermediate phases during the self-orga- 
nizing process are given in Figs. 3 and 4. The initial values 
m,(O) were selected at random from a certain domain of val- 
ues. 

As stated above, in Fig. 3 the array was two-dimensional. 
The results, however, are particularly interesting if the dis- 
tribution and the array have different dimensionalities: Fig. 
4 illustrates a case in  which the distribution of x i s  two- 
dimensional, but the array i s  one-dimensional (linear row 
of cells). The weight vectors of linear arrays tend to  approx- 
imate to higher-dimensional distributions by Peano curves. 
A two-dimensional network representing three-dimen- 
sional "bodies" (uniform-densityfunction) i s  shown in Fig. 
5. 

In  practical applications, the input and output weight 
vectors are usually high-dimensional; e.g., in speech rec- 
ognition, the dimensionality n may be 15 to 100. 

1468 

. ? . _ _ _ _ 8  

> I .  . .~ ...-- : ..... >._._.I , 

. . . . . . . . . . . 

(b) 
Fig. 5.  Representation of three-dimensional (uniform) den- 
sity functions by two-dimensional maps. 

Since no factor present defines a particular orientation 
in the output map, the latter can be realized in  the process 
in any mirror or point-symmetric inversion, mainlydepend- 
ing on the initial values m,(O). If a particular orientation i s  
to be favored, the easiest way to  achieve this result i s  by 
asymmetric choice of the initial values m,(O). 

D. Some Practical Hints for the Application of the 
Algorithm 

When applying the map algorithm, (2) or (2') and (6) alter- 
nate. Input x is  usually a random variable with a density 
function p(x), from which the successive values x(t) are 
drawn. In real-world observations, such as speech recog- 
nition,thex(t)can simply be successivesamplesofthe input 
observables in their natural order of occurrence. 

The process may be started by choosing arbitrary, even 
random, initial valuesforthem,(O), theonlyrestriction being 
that they should be different. 

We shall give numerical examples of efficient process 
parameters with the simulation examples. It may also be 
helpful to  emphasize the following general conditions. 
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1) Since learning is a stochastic process, the final sta- 
tistical accuracy of the mapping depends on the number 
of steps, which must be reasonably large; there i s  no way 
to circumvent this requirement. A “rule of thumb” i s  that, 
for good statistical accuracy, the number of steps must be 
at least500timesthenumberof networkunits.Ontheother 
hand, the number of components in x has no effect on the 
number of iteration steps, and if hardware neural com- 
puters are used, a very high dimensionality of input i s  
allowed. Typically we have used up to  100 000 steps in our 
simulations, but for “fast learning,” e.g., in speech rec- 
ognition, 10000 steps and even less may sometimes be 
enough. Note that the algorithm i s  computationally 
extremely light. If onlya small number of samples are avail- 
able,theymust be recycled forthedesired numberof steps. 

2) For approximately the first 1000 steps, a(t) should 
startwith avalue that i s  close to  unity, thereafter decreasing 
monotonically. An accurate rule i s  not important: a! = a(t) 
can be linear, exponential, or inversely proportional to  t .  
For instance, a(t) = 0.9(1 - t/IOOO) may be a reasonable 
choice. The ordering of the rn, occurs during this initial 
period, while the remaining steps are only needed for the 
fine adjustment of the map. After the ordering phase, a! = 
a(t) should attain small values (e.g., of the order of or less 
than .01) over a long period. Neither i s  it crucial whether 
the law for a(t) decreases linearly or exponentially during 
the final phase. 

3) Special caution i s  required in the choice of N, = 
N,(t). If the neighborhood is too small to  start with, the map 
will not be ordered globally. Instead various kinds of mo- 
saic-like parcellations of the map are seen, between which 
the ordering direction changes discontinuously. This phe- 
nomenon can be avoided by starting with a fairly wide N, 
= N,(O) and letting it shrink with time. The initial radius of 
N,can even be more than half the diameter of the network! 
During the first 1000 steps or so, when the proper ordering 
takes place, and a! = a(t) i s  fairly large, the radius of N, can 
shrink linearly to, say, one unit; during the fine-adjustment 
phase, N, can s t i l l  contain the nearest neighbors of cell c. 

Parallel implementations of the algorithm have been dis- 
cussed in [251 and [611. 

E. Example: Taxonomy (Hierarchical Clustering) of 
Abstract Data 

Although the more practical applications of the Self- 
Organizing Maps are available, for example, in pattern rec- 
ognition and robotics, it may be interesting to  apply this 
principle first to  abstract data vectors consisting of hypo- 
thetical attributes or characteristics. We will look at an 
example with implicitly defined (hierarchical) structures in 
the primary data, which the map algorithm i s  then able to  
reveal. Although this system i s  a single-level network, it can 

Table 1 Input Data Matrix 

produce a hierarchical representation of the relations 
between the primary data. 

The central result in self-organization i s  that if the input 
signals have a well-defined probability density function, 
then theweightvectorsof thecells t ryto imitateit, however 
complex i ts  form. It i s  even possible to perform a kind of 
numerical taxonomy on this model. Because there are no 
restrictions on the semantic content of the input signals, 
they can be regarded as arbitrary attributes, with discrete 
or continuous values. In  Table 1, 32 items, each with five 
hypothetical attributes, are recorded in a data matrix. (This 
example is completely artificial.) Each of the columns rep- 
resents one item, and for later inspection the items are 
labeled “A” through “6“, although these labels were not 
referred to during the learning. 

The attribute values (a,, a2, . . . ,a,) constitute the pattern 
vector x which acts as a set of signal values at the inputs to  
the network of the type shown in Fig. 1. During training, 
the vectors x were selected from Table 1 at random. Sam- 
pling and adaptation were continued iteratively until the 
asymptotic state could be considered stationary. Such a 
“learned” network was then calibrated using the items from 
Table 1 and labeling the best-matching mapcells according 
to the different calibration items. Such a labeled map is  
shown in Fig. 6. It can be seen that the”images”of different 
items are related according to  a taxonomic graph where the 
different branches are visible. For comparison, Fig. 7 illus- 

Fig. 6. Self-organized map of the data matrix of Table 1. 

A B C D E  T 
b b  

Fig. 7. Minimal spanning tree corresponding to Table 1. 

Item 
A B C D E F C H I J K L M N O P Q R S T U V W X Y Z I 2 3 4 5  6 

Attribute 
a, 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
a2 0 0 0 0 0 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
a3 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 3 3 3 3 6 6 6 6 6 6 6 6 6 6  
a4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4 2 2 2 2 2 2  
a, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6  
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trates the minimal spanning tree (where the most closely 
similar pairs of items are linked) describing the similarity 
relations of the items in  Table 1. The system parameters in  
this process were: 

a = a(t): During the first IO00 steps, cy decreased linearly 
with time from .5 to .04 (the initial value could have been 
closer to unity, say, .9). During the subsequent 10 000 
steps, a decreased from .04 to  zero linearly with time. 

N, = N,(t): The lattice was hexagonal, 7 by 10 units, and 
during the first IOOOsteps, theradiusof N,decreasedfrom 
the value six (encompassing the majority of cells in the 
network) to one (encompassing neuron c and its six 
neighbors) linearlywith time, thereafter keeping thevalue 
one. 

F. Another Variant o f  the Algorithm 

One further remark may be necessary. I t  has sometimes 
been suggested that x be normalized before it i s  used in  the 
algorithm. Normalization i s  not necessary in principle, but 
it may improve numerical accuracy because the resulting 
reference vectors then tend to have the same dynamic 
range. 

Another aspect, as mentioned above, i s  that it i s  also pos- 
sible to apply a general distance measure in the matching; 
then, however, the matching and updating laws should be 
mutually compatible with respect to the same metric. For 
instance, i f  the inner-product measure of similarity were 
applied, the learning equations should read: 

xT(t)m,(t) = max {x ‘(t)m;(t)}, (9) 
I 

if i $ N,(t), 

and 0 < cy’(t) < OD; for instance, d ( t )  = 1001t. This process 
normalizes the reference vectors at each step. The nor- 
malization computations slow down the training algorithm 
significantly. On the other hand, the linear matching cri- 
terion applied during recognition i s  very simple and fast, 
and amenableto many kindsof simpleanalog computation, 
both electronic and optical. 

1 1 1 .  FINE TUNING OF THE MAP BY LEARNING VECTOR 
QUANTIZATION (LVQ) METHODS 

If the Self-organizing Map is  to  be used as apattern clas- 
sifier in which the cells or their responses are grouped into 
subsets, each of which corresponds to a discrete class of 
patterns, then the problem becomesadecision processand 
must be handled differently. Theoriginal Map, likeanyclas- 
sicalVector Quantization (VQ) method (cf. Sec. I-D) is mainly 
intended to  approximate input signal values, or their prob- 
ability density function, by quantized “codebook” vectors 
that are localized in the input space to minimize a quan- 
tization error functional (cf. Sec. Ill-A below). On the other 
hand, if the signal sets are to be classified into a finite num- 
berof categories, then several codebookvectorsare usually 
made to represent each class, and their identity within the 
classes is no longer important. In fact, only decisions made 
at class borders count. It i s  then possible, as shown below, 
to define effective values for the codebook vectors such 

that they directly define near-optimal decision borders 
between the classes, even in the sense of classical Bayesian 
decision theory. These strategies and learning algorithms 
were introduced by the present author [38], [43], [45] and 
called Learning Vector Quantization (LVQ). 

A. Type One Learning Vector Quantization (LVQI) 

If several codebook vectors mi are assigned to each class, 
and each of them is  labeled with the corresponding class 
symbol, the class regions in thexspace are defined by sim- 
ple nearest-neighbor comparison of x with them,; the label 
of the closest mi defines the classification of x. 

TO define the optimal placement of mi in an iterative 
learning process, initial values for them must first be set 
using any classical VQ method or by the Self-organizing 
Map algorithm. The initial values in both cases roughly cor- 
respond to the overall statistical densityfunction p(x) of the 
input. The next phase i s  to determine the labels of the code- 
book vectors, by presenting a number of input vectors with 
known classification, and assigning the cells to different 
classes by majority voting, according to the frequency with 
which each mi is closest to the calibration vectors of a par- 
ticular class. 

The classification accuracy is improved if the m, are 
updated according to the following algorithm [411, [431-[451. 
The idea isto pull codebookvectorsaway from thedecision 
surfaces to demarcate the class borders more accurately. 
Let m, be the codebook vector closest to x in the Euclidean 
metric (cf. (2), (2’)); this then also defines the classification 
of x. Apply training vectors x the classification of which i s  
known. Update the mi = mi@) as follows: 

m,(t + 1) = m,(t) + cy(t)tx(t) - m,(t)l 

if x is classified correctly, 

m,(t + 1) = m,W - cy(t)[x(t) - m,(t)l 

if the classification of x is incorrect, 

mj(t + 1) = mj(t) for i # c. (11) 

Here a(t) is a scalar gain (0 < a(t) < I), which i s  decreasing 
monotonically in time, as in earlier formulas. Since this is 
a fine-tuning method, one should start with a fairly small 
value, say a(0) = 0.01 or 0.02 and let it decrease to zero, say, 
in 100 000 steps. 

This algorithm tends to reduce the point density of the 
mi around the Bayesian decision surfaces. This can be 
deduced as follows. The minus sign in the second equation 
may be interpreted as defining corrections in the same 
direction as i f (IO) were used for the class to which m, 
belongs, but with the probability density function of the 
neighboring (overlapping) class subtracted from that of m,. 
In other words, we would perform a classical Vector Quan- 
tization of the function )p(xlC;)P(C;) - p(x)Cj)P(C,)l where C; 
and Cjare the neighboringclasses,p(xlC,) is theconditional 
probabilitydensityfunction of samplesx belonging to class 
Ci, and P(CJ i s  the apriori probability of occurrences of the 
class C, samples. The difference between the density func- 
tions of the neighboring classes, by definition, drops tozero 
at the Bayes border, inducing the above ”depletion layer” 
of the codebook vectors. 

After training, them, will have acquired values such that 
classification using the “nearest neighbor” principle, by 
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t 
x2 

Fig. 8. (a) An illustrative example in which x i s  two-dimensional and the probability den- 
sity functions of the classes substantially overlap. (a) The probability density function of 
x = [x , ,  x J r  i s  represented here by i t s  samples, the small dots. The superposition of two 
symmetric Gaussian density functions corresponding to two different classes C, and Cz, 
with their centroids shown by the white and the dark cross, respectively, i s  shown. Solid 
curve: the theoretically optimal Bayes decision surface. (b) Large black dots: reference 
vectorsof class C,. Open circles: referencevectors of class Cz. Solid curve: decision surface 
in the Learning Vector Quantization. Broken curve: Bayes decision surface. 

comparing of xwith the mi, already rather closely coincides 
with that of the Bayes classifier. Figure 8 represents an illus- 
trative example in which x i s  two-dimensional, and the 
probability density functions of the classes substantially 
overlap. The decision surface defined by this classifier 
seems to  be near-optimal, although piecewise linear, and 
the classification accuracy in this rather difficult example 
i s  within a fraction of a percent of that achieved with the 
Bayes classifier. For practical applications of the LVQI, cf. 
[12], [76]. A rigorous mathematical discussion of the LVQI, 
and suggestions to  improve its stability, have been rep- 
resented in  [SI]. 

B. Type Two Learning Vector Quantization (LVQ2) 

The previous algorithm can easily be modified to  comply 
even better with Bayes’ decisionmaking philosophy [43]- 
[45]. Assume that two codebook vectors m, and m, that 
belong to different classes and are closest neighbors in the 
vector spaceare initially in awrong position.The(incorrect) 
discrimination surface, however, i s  always defined as the 
midplane of m, and m,. Let us define a symmetric window 
of nonzero width around the midplane, and stipulate that 
corrections to m, a n d  m, shal l  only be made if x falls into 
the window on the wrong side of the midplane (cf. Fig. 9). 

window 
Fig. 9. Illustration of the “window” used in the LVQZ and 
LVQ3 algorithms. The curves represent class distributions 
of x samples. 

If the corrections are made according to (12), it i s  easy to  
see that for vectors falling into the window, the corrections 
of both m, and m,, on average, have such a direction that 
the midplane moves towards the crossing surface of the 
class distributions, and thus asymptotically coincides with 
the Bayes decision border. 

if C, is the nearest class, but x belongs 

to C, # C, where C, i s  the next-to-nearest 

class (“runner-up”); furthermore x must 

fall into the “window”. In  all the 

other cases, 

mk(t + 1) = mk(t). (12) 

The optimal width of the window must be determined 
experimentally, and it depends on the number of available 
samples. With a relatively small number of training sam- 
ples, a width 10 to 20% of the difference between m, and 
m, seems to be proper. 

One question concerns the practical definition of the 
“window“. If we are working in a high-dimensional signal 
space, it seems reasonable to  define the “window” in terms 
of relative distances d, and d, from m, and m,, respectively, 
having constant ratios. In  this way the borders of the “win- 
dow“ are Apollonian hyperspheres. The vector x i s  defined 
to lie in the “window” if 

min (d,/d,, d,/d,) > s.  (1 3) 

If w is  the relative width of the window in i t s  narrowest 
point, then s = (1 - w)/(l + w). The optimal size of the win- 
dow depends on the number of available training samples. 
If we had a large number of samples, a narrow window 
would guarantee the most accurate location of the border; 
but for good statistical accuracy the number of samples fall- 
ing into the window must be sufficient, too, so a 20% win- 
dow seems a good compromise, at least in the experiments 
reported below. 

For reasons explained in the next section, the classifi- 
cationaccuracyofthe LVQZ i s  first improvedwhen thedeci- 
sion surface i s  shifted towards the Bayes limit; after that, 
however, the m, continue “drifting away”. Therefore this 
algorithm ought to  be applied for a relatively short time only, 
say, starting with a = 0.02 and letting it to decrease to zero 
in at most 10 000 steps. 
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C. Type Three Learning Vector Quantization (LVQ3) 

The LVQ2 algorithm was based on the idea of differentially 
shifting the decision borders towards the Bayes limits, while 
no attention was paid towhat might happen to  the location 
of the m, i n  the long run if this process were continued. 
Thus, although researchers have reported good results, 
some have had problems, too. It turns out that at least two 
different kinds of detrimental effect must be taken into 
account. First, because corrections are proportional to  the 
difference of x and m,, or x and m,, the correction on m, 
(correct class) is of larger magnitude than that on m, (wrong 
class); this results in  monotonically decreasing distances 
IIm, - m, 11. One remedy i s  to  compensate for this effect, 
approximately at least, by accepting all the training vectors 
from the “window,” and the only condition is that one of 
m, and m, must belong to the correct class, and the otherto 
the incorrect class. The second problem arises from the fact 
that if the process in (12) iscontinued, it may lead to another 
asymptotic equilibrium of m, that i s  no longer optimal. 
Therefore it seems necessary to include corrections that 
ensure that the m, continue approximating the class dis- 
tributions,at least roughly. Combiningthese ideas, we now 
obtain an improved algorithm that may be called LVQ3: 

m,(t + 1) = m,(t) - c.u(t)[x(t) - m,(t)], 

m,(t + 1) = m,(t) + c.u(t)[x(t) - m,(t)l, 

where m, and m, are the two closest codebook 

vectors to  x, and x and m, belong to  the same 

class, while x and m, belong to different classes; 

furthermore x must fall into the “window”; 

mk(t + 1) = mk(t) + E(Y(t)[X(f) - mk(t)] 

for k E { i ,  j } ,  if x, m,, and m, belong to  the 

same class. (14) 

In  a series of experiments, applicable values for E between 
0.1 and 0.5 were found. The optimal value of E seems to 
depend on the size of the window, being smaller for nar- 
rower windows. This algorithm seems to  be self-stabilizing, 
i.e., the optimal placement of the m, does not change in  
continued learning. 

Noticethatwhereas in LVQI onlyoneof them,valueswas 
changed at each step, LVQ2 and LVQ3 change two code- 
book vectors simultaneously. 

Iv. APPLICATION O F  THE MAP TO SPEECH RECOGNITION 

When artificial neural networks are to  be used for a prac- 
tical pattern recognition application such as speech rec- 
ognition, the first task is to  make clear whether it i s  desir- 
able to  perform the complete chain of processing 
operations starting, e.g., from the pre-analysis of the micro- 
phone signal and leading on to  some form of linguistic 
encoding of speech using “all-neural” operations, or 
whether “neural networks” should only be applied at the 
most critical stage, whereby the rest of the processingoper- 
ations can be implemented on standard computing equip- 
ment.Thischoice mainlydependsonwhethertheobjective 
is commercial or academic. 

Another issue i s  whether the aim is to  demonstrate the 
ultimate capabilities of “neural networks” in the analysis 

of dynamical speech information, or whether it is only to 
replace some of the traditional ”spectral” and “vector 
space” pattern recognition algorithms by highly adaptive, 
learning “neural network” principles. 

In  a speech recognizer, a proper place for artificial neural 
networks is in the phonemic recognition stage where exact- 
ing statistical analysis is needed. It should be remembered 
that if phonemes, i.e., classes of different phonological real- 
izations of vowels and consonants, are selected for the basic 
phonetic units, then account has to  be taken of their trans- 
formations due to  coarticulation effects. In  other words, the 
spectral properties of the phonemes are changed in the 
context or frame of other phonemes. In  an ”all-neural” 
speech recognizer it may not be necessary to distinguish 
or consider phonemes at all, because interpretation of 
speech i s  then regarded as an integral, implicit process. 
Introduction of the phoneme concept already implies that 
the system must be able to automatically identify them in 
one form or another and to label the corresponding time 
interval. Correction of coarticulation effects may then 
already be implemented in  the acoustic analysis itself, by 
regarding the speech states as Markov processes, and ana- 
lyzing the state transitions statistically [53]. A different 
approach altogether is first to apply some vector quanti- 
zation classification, whereby the speech waveform i s  only 
labeled by class symbols of stationary phonemes, as if no 
coarticulation effects were being taken into account. Cor- 
rections can then be made afterwards in a separate post- 
processing stage, in symbolic form. We have used the latter 
approach. 

We have implemented a practical “phonetic typewriter” 
for unlimited speech input using the Self-organizing Map 
to spot and recognize phonemes in continuous speech (Fin- 
nish and Japanese) [42], [46], [48]. The “network” was fine- 
tuned for optimal decision accuracy by the Learning Vector 
Quantization. After that, in the postprocessing stage we 
applied a self-learning grammar that corrects the majority 
of coarticulation errors and derives its numerous transfor- 
mation rules automatically from given examples. This prin- 
ciple, termed “Dynamically Expanding Context” [37 ,  [40], 
actually belongs to the category of learning Artificial Intel- 
ligence methods, and thus falls outside the scope of this 
article (cf. Sec. IV-D below). 

A. Acoustic Preprocessing o f  the Speech Signal 

It is known that biological sensory organs such as the 
inner ear are usually able to adapt to  signal transients in a 
fast, nonlinear way. Nonetheless, we decided to apply con- 
ventional frequency analysis to  the preprocessing of 
speech. The main reason for this was that digital Fourier 
analysis i s  both accurate and fast, and the fundamentals of 
digital filtering are well understood. Deviations from phys- 
iological reality are not essential since the self-organizing 
neural network can accept many alternative kinds of pre- 
processing and can compensate for minor imperfections. 

The technical details of the acoustic preprocessing stage 
are briefly as follows: 1 )  5.3-kHz low-pass switched-capac- 
itor filter, 2) 12-bit A/D-converter with 13.02-kHz sampling 
rate, 3) 256-point FFT formed every 9.83 ms using a Ham- 
ming window, 4) logarithmization and smoothing of the 
power spectrum, 5) combination of spectral channels from 
the frequency range 200 Hz-5 kHz into a 15-component pat- 
tern vector, 6) subtraction of the average from the com- 
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ponents, 7) normalization of the pattern vectors. Except for 
steps 1) and 2), an integrated-circuit signal processor, 
TMS32010, i s  used for the computation. 

B. Phoneme Map 

The simplest type of speech maps formed by self-orga- 
nization i s  the static phoneme map. There are 21 phonemes 
in Finnish: /U, 0, a, ce, 0, y, e, i, s, m, n, t, I, r, j ,  v, h, d, k, 
p, tl. For their representation we used short-time spectra as 
the input patterns x( t ) .  The spectra were evaluated every 
9.83 ms. They were computed by the 256-point FFT, from 
which a 15-component spectral vector was formed by 
grouping of the channels. In the present study all the spec- 
tral samples, even those from the transitory regions, were 
employed and presented to the algorithm in the natural 
order of their utterance. During learning, the spectra were 
not segmented or labeled in any way: any features present 
in the speech waveform contributed to  the self-organized 
map. After adaptation, the map was calibrated using known 
stationary phonemes (Fig. IO). The map resembles the well- 
known formant maps used in phonetics; the main differ- 
ence is that in  our maps complete spectra, not just two of 
their resonant frequencies as in formant maps, are used to 
define the mapping. 

Recognition of discrete phonemes is a decision-making 
process in which the final accuracy only depends on the 
rate of misclassification errors. It i s  therefore necessary to  
try to  minimize them using a decision-controlled (super- 
vised) learning scheme, using a training set of speech spec- 
tra with known classification. 

In  practice, for a new speaker, it will be sufficient to  dic- 
tate 200 to  300 words which are then analyzed by an auto- 
matic segmentation method. The latter picks up  the train- 
ing spectra that are applied in the supervised learning 
algorithm. The finite set of training spectra (of the order of 
2000) must be repeated in the algorithm either cyclically or 
in a random permutation. LVQI, LVQ2, or LVQ3 can be used 
as the fine tuning algorithm. A map created for a typical 
(standard) speaker can then be modified for a new speaker 
very quickly, using 100 more dictated words, and LVQ fine 
tuning only. 

C. Specific Problems with Transient Phonemes 

Generally, the spectral properties of consonants behave 
more dynamically than those of vowels. Especially in the 
case of stop consonants, it seems to be better to pay atten- 
tion to the plosive burst and transient region between the 
consonant and the subsequent vowel in order to  identify 
the consonant. In our system transient information i s  coded 
in additional "satellite" maps (called transient maps) and 
they are trained, using transient spectral samples alone, to 
describe the dynamic features with higher resolution [48]. 
Our system was in fact developed in two versions: one for 
Finnish and one for Japanese. In the Japanese version, four 
transient maps have been constructed to distinguish the 
following cases: 

1) voiceless stops /k, p, t/ and glottal stop (vowel at the 
beg inning of utterance), 

2) voiceless stops /k, p, t/ without comparison with the 
glottal stop, 

3) voiced stops /b, d, g/, 
4) nasals Im, n, 71, 

Only one transient map has been adopted for the Finnish 
version, making the distinction between /k, p, t/ and the 
glottal stop. (/b/ and /g/ do not exist in original Finnish.) 

D. Compensation for Coarticulation Effects using the 
"Dynamically Expanding Context" 

Because of coarticulation effects, i.e., transformation of 
the speech spectra due to neighboring phonemes, system- 
atic errors appear in phonemic transcriptions. For instance, 
the Finnish word "hauki" (meaning pike) i s  almost in- 
variably recognized as the phoneme string Ihaoukil by our 
acoustic processor. It may then be suggested that if a trans- 
formation rule /sou/ + /au/ i s  introduced, this error will be 
corrected. It might also be imagined that it i s  possible to 
list and take into account all such variations. However, there 
may be hundreds of different frames or contexts of neigh- 
boring phonemes in which a particular phoneme may 
occur, and in many cases such empirical rules are contra- 
dictory; they are only statistically correct. The frames may 

Fig. 10. An exampleof aphonememap. Natural Finnish speech was processed bya model 
of the inner ear which performs its frequency analysis. The resulting signals were then 
connected to an artificial neural network, the cells of which are shown in this picture as 
circles. The cells were tuned automatically, without any supervision or extra information 
given, to the acoustic units of speech known as phonemes. The cells are labeled by the 
symbols of those phonemes to which they "learned" to give responses; most cells give 
a unique answer, whereas the double labels show which cells respond to two phonemes. 
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also be erroneous. In order to find an optimal and very large 
system of rules, the Dynamically Expanding Context gram- 
mar mentioned abovewas applied [37], [40]. Its rules or pro- 
ductionscan be used to  transform erroneous symbol strings 
into correct ones, and even into orthographic text. 

Because the correction rules are made accessible in 
memory using a softwarecontent-addressing method (hash 
coding), they can be applied very quickly, such that the 
overall operation of the grammar, even with 15 000 rules, 
is almost in real time. This algorithm is able to correct up  
to 70% of the errors left by the phoneme map recognizer. 

E. Performance o f  the “Phonetic Typewriter“ 

In  order to get some idea of the accuracy of the map algo- 
rithm, we first show a comparative benchmarking of five 
different methods, namely, classification of manually 
selected phonemic spectra bythe classical parametric Bayes 
classification, the well-known k-Nearest-Neigh bor method 
(kNN), and LVQI, LVQ2 and LVQ3. 

In this partial experiment, the spectral samples were of 
Finnish phonemes (divided into 19 classes and using 15 fre- 
quency channels for the spectral decomposition). There 
were 1550 training vectors, and 1550 statistically indepen- 
dent vectors that were only used for testing. The error per- 
centages are given in Table 2. 

Table 2 Speech Recognition Experiments with Error 
Percentages for Independent Test Data 

Parametric 
Bayes kNN LVQI LVQ2 LVQ3 

Test 1 12.1 12.0 10.2 9.8 9.6 
Test 2 13.8 12.1 13.2 12.0 11.5 

Note that the parametric Bayes classifier is not even the- 
oretically the best because it assumes that the class samples 
are normally distributed. We have not been able to find any 
method, theoretical or heuristic, that classifies speech 
spectra better than LVQI, LVQ2 or  LVQ3. 

In i t s  complete form, the“Ph0neticTypewriter” has been 
tested on several Finnish and Japanese speakers over a long 
period. To someone familiar with practical speech recog- 
nizers it will be clear that it would be meaningless to  eval- 
uateand comparedifferenttest runs statistical1y;the results 
obtained in each isolated test depend so much on the 
experimental situation and the content of text, the status 
and tuningof the equipment, as well as on the physical con- 
dition of the speaker. The number of tests performed over 
many years i s  also too large to  be discussed fully here. Let 
it sufficeto mention thattheaccuracyof spottingand recog- 
nizing phonemes in arbitrary continuous speech typically 
varies between 80 and 90% (depending on the automatic 
segmentation and recognition of any phoneme), and this 
figure depends on the speaker and the text. After com- 
pensation for coarticulation effects and editing the text into 
orthographic form, the accuracy, in terms of correctness of 
any letter, i s  of the order of 92 to  97%, again depending on 
the speaker and the text. 

The Phonetic Typewriter has already been implemented 
in several hardware versions using signal processor chips. 
The latest versions operate in genuine real time with con- 
tinuous dictation. 

It may be of interest here to mention other results, inde- 
pendent of ours. McDermott and Katagiri [28], [66] have car- 
ried out experiments on all the Japanese phonemes, and 
report that LVQ2 gave consistently higher accuracies than 
Backpropagation Time Delay Neural Networks [I051 and was 
faster in learning. 

V. SEMANTIC MAP 

Demonstrations such as those reported above have indi- 
cated that the Self-organizing Map i s  indeed able to extract 
abstract information from multidimensional primary sig- 
nals, and to represent it as a location, say, in a two-dimen- 
sional network. Although this i s  already a step towards gen- 
eralization and symbolism, it must be admitted that the 
extraction of features from geometrically or physically relat- 
able data elements i s  still a very concrete task, in principle 
at least. 

Theoperation of the brain at the higher levels relies heav- 
ily on abstract concepts, symbolism, and language. It is an 
old notion that the deepest semantic elements of any lan- 
guage should also be physiologically represented in the 
neural realms. There i s  now new physiological evidence for 
linguistic units being locatable in the human brain [6], [15]. 

In attempting to  devise Neural Network models for lin- 
guistic representations, the first difficulty i s  encountered 
when trying to  find metric distance relations between sym- 
bolic items. Unlike with primary sensory signal patterns for 
which similarity i s  easily derivable from their mutual dis- 
tances in the vector spaces in which they are represented, 
it can not be assumed that encodings of symbols in general 
have any relationship with the observable characteristics 
of the corresponding items. How could it then be possible 
to represent the “logical similarity” of pairs of items, and 
to map such items topographically? The answer lies in the 
fact that the symbol, during the learning process, i s  pre- 
sented in context, i.e., in conjunction with the encodings 
of a set of other concurrent items. In linguistic represen- 
tations context might mean afew adjacentwords. Similarity 
between items would then be reflected through the simi- 
larity of  the contexts. Note that for ordered sets of arbitrary 
encodings, invariant similarity can be expressed, e.g., in 
terms of the number of items they have in common. O n  the 
other hand, it may be evident that the meaning (semantics) 
of a symbolic encoding i s  only derivable from the condi- 
tional probabilities of its occurrences with other encod- 
ings, independent of the type of encoding [68]. 

However, in the learning process, the literal encodings 
of the symbols must be memorized, too. Let vector x, rep- 
resent the symbolic expression of an item, and x, the rep- 
resentation of its context. The simplest neural model then 
assumes that x, and x, are connected to the same neural 
units, i.e., the representation (pattern) vector x of the item 
is formed as a concatenation of x, and x,: 

In other words, the symbol part and the context part form 
a vectorial sum of two orthogonal components. 

The core idea underlying symbol maps is that the two 
parts are weighted properly such that the norm o f  the con- 
text part predominates over that of  the symbol part during 
the self-organizing process; the topographical mapping 
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then mainly reflects the metric relationships of the sets of 
associated encodings. But since the inputs for symbolic sig- 
nals are also active all the time, memory traces of them are 
formed in the corresponding inputs of those cells in  the 
map that have been selected (or actually enforced) by the 
context part. If then, during recognition o f  input informa- 
tion, the context signals are missing or are weaker, the 
(same) map units are selected solely on the basis o f  the 
symbol part. In this way the symbols become encoded into 
a spatial order reflecting their logical (or semantic) similari- 
ties. 

In the following, I shall demonstrate this idea, which was 
originated by H. Ritter, using a simple language [84]. The 
simplest definition of the context of a word i s  to  take all 
those words (together with their serial order) that occur in 
a certain "window" around the selected word. For sim- 
plicity, we shall imagine that the content of each "window" 
can somehow be presented to  the x, input ports of the 
neural system. We are not interested here in any particular 
means for the conversion of, say, temporal signal patterns 
into parallel ones (this task could be done using paths with 
different delays, eigenstates that depend on sequences, or 
any other mechanisms implementable in short-term mem- 
ory). 

The vocabulary used in this experiment i s  listed in Fig. 
I l (a )  and comprises nouns, verbs, and adverbs. Each word 

Bob/Jim/Mary 1 
horse/dog/cat 2 
beer/water 3 
meat/bread 4 
runs/walks 5 
works/speaks 6 
visits/phones 7 
buys/sells 8 
likes/hates 9 
drinks/eats 10/1 
much/little 12 
fast/slowly 13 
often/seldom 14 
well/poorly 15 

(a) 

Sentence Patterns: 
1-5-12 1-9-2 2-5-14 
1-5-13 1-9-3 2-9-1 
1-5-14 1-9-4 2-9-2 
1-6-12 1-10-3 2-9-3 
1-6-13 1-11-4 2-9-4 
1-6-14 1-10-12 2-10-3 
1-6-15 1-10-13 2-10-12 
1-7-14 1-10-14 2-10-12 
1-8-12 1-11-12 2-10-14 
1-8-2 1-11-13 2-11-4 
1-8-3 1-11-14 2-11-12 
1-8-4 2-5-12 2-11-1: 
1-9-1 2-5-13 2-11-14 

(b) 

Jim speaks well 
Mary likes Jim 
Jim eats often 
Mary buys meat 
dog drinks fast 
horse hates meat 
Jim eats seldom 
Bob buys meat 
cat  walks slowly 
Jim eats bread 
cat hates Jim 
Bob sells beer 

(C) 

Fig. 11. Outline of vocabulary used in this experiment. (a) 
List of used words (nouns, verbs, and adverbs), (b) sentence 
patterns, and (c) some examples of generated three-word- 
sentences. 

class has further categorial subdivisions, such as names of 
persons, animals, and inanimate objects. To study semantic 
relationships in their purest form, it must be stipulated that 
the semantic meaning be not inferable from any patterns 
usedfortheencodingofthe individual words, butonlyfrom 
the context in which the words occur (i.e., combinations of 
words). To this end each word was encoded by a random 
vector of unit length (here, seven-dimensional). 

A sequence of randomly generated meaningful three- 
word sentences was used as the input data to  the self-orga- 
nizing process. Meaningful sentence patterns had there- 
fore first to be constructed on the basis of word categories 
(Fig. I l (b)) .  Each explicit sentence was then constructed by 
randomly substituting the numbers in a randomly selected 
sentence pattern from Fig. I l ( b )  by words with compatible 

numbering in Fig. I l(a). A total of 498 different three-word 
sentences are possible, a few of which are exemplified in 
Fig. I l (c) .  These sentences were concatenated into a single 
continuous string, S. 

The context of a word in this string was restricted to the 
pair ofwords formed by i ts  immediate predecessor and suc- 
cessor in S(ignoring any sentence borders; i.e., words from 
adjacent sentences in S are uncorrelated, and act like ran- 
dom noise in that field). The code vectors of the prede- 
cessor/successor-pair forming the context to  a word were 
concatenated into a single 14dimensional code vector x,. 
In this simpledemonstration wethusonlytook intoaccount 
the context provided by the immediately adjacent textual 
environment of each word occurrence. Even this restricted 
context already contains interesting semantic relation- 
ships. 

In our computer experiments it turned out that instead 
of presenting each phrase separately to the algorithm, a 
much more efficient learning strategy is first to consider 
each word in its average contextover a set of possible "win- 
dows". The (mean) context of a word was thus first defined 
as the average over 70 000 sentences o f  all code vectors of 
predecessor/successor-pairs surrounding that particular 
word. The resulting thirty ICdimensional "average word 
contexts", normalized to  unit length, assumed the role of 
the"context  fields"^, in  (14). Each "context field" was com- 
bined with a 7-dimensional "symbol field" xs, consisting of 
the code vector for the word itself, but scaled to  length a. 
The parameter a determines the relative influence of the 
sym bo1 part x, i n  comparison to  the context part x,  and was 
set to  0.2. 

For the simulation, a planar, rectangular lattice of 10 by 
15cellswas used.The initial weightvectorsof thecellswere 
chosen randomly, so that no initial order was present. 
Updating was based on (7) and (8). The learning step size 
was h,, = 0.8 and the radius o(r) of the adjustment zone (cf. 
(8) )  was gradually decreased from an initial value U, = 4 to 
a final value uf = 0.5 according to the law a(t) = u,(af/u,)'tmax 
Here t counts the number of adaptation steps. 

After t,,, = 2000 input presentations the responses of the 
neurons to presentation of the symbol parts alone were 
tested. In  Fig. 12, the symbolic label i s  written to that site 
at which the symbol signal x = [xs ,  0IT gave the maximum 
response. We clearly see that the contexts "channel" the 
word items to memory positions whose arrangements 
reflects both grammatical and semantic relationships. 
Words of same type, i.e., nouns, verbs, and adverbs, are 
segregated into separate, large domains. Each of these 
domains is further organized according to  similarities on 
the semantic level. Adverbs with opposite meaning tend to  
be close to  each other, because sentences differing in one 
word only are regarded as semantically correlated, and the 
words that are different then usually have the opposite 
meaning. The groupings of the verbs correspond to dif- 
ferences in the ways they can co-occur with adverbs, per- 
sons, animals, and nonanimate objects such as, e.g., food. 

It could be argued thatthe structures resulting in the map 
were artificially created by a preplanned choice of the sen- 
tence patterns allowed as input. This is not the case, how- 
ever, since it is easy to  check that the categorial sentence 
patterns in Fig. I l ( b )  almost completely exhaust the pos- 
sibilities for forming semantically meaningful three-word 
sentences. 
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. water . meat . . . . dog horse 

beer . . . . bread . . . . 

. . .  

. . . buys . . visits . 
. . . . . sells . . . 

. . runs . . . . . . . 
drinks . . . walks . . hates . likes 

Fig. 12. “Semantic map” obtained on a network of 10 x 15 
cells after 2000 presentations of word-context-pairs derived 
from 10 000 random sentencesof the kind shown in Fig. IO(c). 
Nouns, verbs, and adverbs are segregated into different 
domains. Within each domain a further grouping according 
to aspects of meaning i s  discernible. 

VI. SURVEY OF PRACTICAL APPLICATIONS O F  THE MAP 

In addition to numerous more abstract simulations, the- 
oretical developments, and “toy examples,” the following 
practical problem areas have been suggested for the Self- 
Organizing Map or the LVQ algorithms. In  some of them 
concrete work i s  already in progress. 

Statistical pattern recognition, especially recognition 
of speech [42], [48]; 
control of robot arms, and other problems in robotics 
[V, [ W ,  [631, [851, W71, WI; 
control of industrial processes, especially diffusion 
processes in the production of semiconductor sub- 
strates [62], [102]; 
automatic synthesis of digital systems [23]; 
adaptive devices for various telecommunications 

image compression [71]; 
radar classification of sea-ice [76]; 
optimization problems [2]; 
sentence understanding [95]; 
application of expertise in conceptual domains [96]; 
and even 
classification of insect courtship songs [73]. 

tasks PI, [4l, [47l; 

Of these, the application to speech recognition has the 
longest tradition in demonstrating the power of the map 
method when dealing with difficult stochastic signals. My 
personal expectations are, however, that the greatest 
industrial potential of this method may lie in  process con- 
trol and telecom m u n ications. 

On theother hand, it i s  a little surprising that so few appli- 
cations of the maps to computer vision are being studied. 
This does not mean that the problems of vision are not 
important. It i s  rather that automatic analysis and extraction 
of visual features, without heuristic or analytical approach, 
has turned out to  be an extremely difficult problem. Bio- 
logical and artificial vision probably require very compli- 
cated hierarchical systems using many stages (e.g., several 
different maps) [55], [56]. One unclarified problem i s  how 
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the maps should be interconnected, e.g., whether special 
nonlinear interfaces are needed [82]; and in hierarchical 
systems, adaptive normalization of input (cf. [31]) also seems 
necessary. Only a few isolated problems, such as texture 
analysis that i s  under study in our laboratory, might be ame- 
nable to the basic method as such. 

VII. DISCUSSION 

It was stated in Secs. I and Ill that it is not advisable to  
use the Self-organizing Map for classification problems 
because decision accuracy can be significantly increased 
iffinetuningsuchasLVQisused.Another important notion, 
that not only concerns the maps but most of the other neural 
network models as well, is that it would often be absurd to 
use primary signal elements, such as temporal samples of 
speech waveform or pixels of an image, for the components 
of x directly. This is especially true if the input patterns are 
fine-structured, like line drawings. It is not possible to 
achieve any invariances in perception unless the primary 
information i s  first transformed, using, e.g., various con- 
volutions with, say, Gabor functions [13], or other, possibly 
nonlinearfunctionalsof the imagefield [81], ascomponents 
of x. Which particular choice of functionals should be used 
for preprocessing in a particular task i s  a very difficult and 
delicate question, and cannot be discussed here. 

One question concerns the maximum capacity achiev- 
ablein themaps. I s  itpossibletoincreasetheirsize,toeven- 
tually use them for data storage in large knowledge data 
bases? It can at least be stated that the brain’s maps are not 
particularly extensive; they mainly seem to provide for effi- 
cient encoding of a particular subset of signals to  enhance 
the operation and capacity of associative memory [44]. If 
more extensive systems are required, it might be more effi- 
cient to develop hierarchical structures of abstract repre- 
sentations. 

The hardware used for the maps has so far only consisted 
of co-processor boards (cf., e.g., [42], [48]). If the simple algo- 
rithm i s  to be directly built into special hardware, one of 
its essential operations will be the global extremum selec- 
tor, for which conventional parallel computing hardware 
i s  available [39]. Analog “winner-take-all” circuits can also 
be used [20], [21], [52]. Another question i s  whether the 
learning operations ought to  be performed on the board, 
or whether fixed values for weights could be loaded into 
the cells. Note that in the latter case the function of the cells 
can be very simple, Ii ke that of the conventional formal neu- 
rons. One beneficial property of the maps i s  that their 
parameters usually stabilize out into a narrow dynamic 
range, and the accuracy requirements are then modest. In 
this case even integer arithmetic operations can provide for 
sufficient accuracy. 

What is  the most significant difference between the Self- 
Organizing Map and other contemporary neural-model 
approaches? Most of the latter strongly emphasize the 
aspect of distributed processing, and only consider spatial 
organization of the processing units as a secondary aspect. 
The map principle, on the other hand, i s  in some ways com- 
plementary to this idea. The intrinsic potential of this par- 
ticular self-organizing process for creating a localized, 
structured arrangement of representations in the basic net- 
work module i s  emphasized. 

Actually, we should not talk of the localization of  a 
“function”: i t  is only the response that i s  localized. I am 
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thus not opposed to the view that neural networks are dis- 
tributed systems. The massive interconnects that underlie 
all neural processing are certainly spread over the network; 
their effects, on the other hand, may be "focused" on local 
sites. 

It seems inevitable, however, that any complex process- 
ing task requires organization o f  information into separate 
parts. Distributed processing models in general underrate 
this issue. Consequently, many models that process fea- 
tures of input data without structuring exhibit slow con- 
vergence and poor generalization ability, usually ensuing 
from ignorance of the localization of the adaptive pro- 
cesses. 

On the lower perceptual levels, localization of responses 
in topographically organized maps has already been dem- 
onstrated long time ago, and it i s  known that such maps 
need not be prespecified in detail, but can instead organize 
themselves on the basis of the statistics of the incoming 
signals. Such maps have already been applied with success 
in many complex pattern recognition and robot control 
tasks. 

On the higher levels of representation, relationships 
between items seem to be based on more subtle roles in 
their occurrence, and are less apparent from their imme- 
diate intrinsic properties. Nonetheless it has also been 
shown recently that even with a simple modeling assump- 
tion of semantic roles, topological self-organization of 
semanticdatawill takeplace.Todescribetheroleofan item, 
it i s  sufficient that the input data are presented together 
with a sufficient amount of context. This then controls the 
adaptation process. 

In the practical application that we have studied most 
carefully, viz. speech recognition, a statistical accuracy of 
phonemic recognition has been achieved that i s  clearly 
equal to or better than the results produced by more con- 
ventional methods, even when the latter are based on anal- 
ysis of signal dynamics [28], [66]. 

It should be emphasized that the map method is not 
restricted to using of any particular form of preprocessing, 
such as amplitude spectra in speech recognition, or even 
to phonemes as basic phonological units. For instance, 
analogous maps may be formed for diphones, syllables, or 
demisyllables, and other spectral representations such as 
linear prediction coding (LPC) coefficients or cepstra may 
be used as the input information to the maps. 

Although the basic one-level map, as demonstrated in  
Sec. II-E, has already been shown to be capable of creating 
hierarchical (ultrametric) representations of structured data 
distributions, it might be expected that the real potential 
of the map lies in a genuine hierarchical or otherwise struc- 
tured system that consists of several interconnected map 
modules. In a more natural system, such modules might 
also correspond to contiguous areas in a single large sheet, 
where each area receives a different kind of external input, 
as in the different areas in the cortex. In that case, the bor- 
ders between the modules might be diffuse. The problem 
of hierarchical maps, however, has turned out to be very 
difficult. One of the particular difficultiesarises if the inputs 
to a cell come from very different sources; it then seems 
inevitable that for the comparison of input patterns, an 
asymmetrical distance function, in which the signal com- 
ponents are provided with adaptive tensorial weights, must 
be applied [31]. Another aspect concerns the interfaces of 
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modules in a hierarchical map system: the signals merging 
from different modules may have to be combined nonlin- 
early [82]. On the other hand, it has already been dem- 
onstrated that the map, or the LVQ algorithms, can be used 
as a preprocessing stage for other models [26], [69], [ lo l l .  
In the Counterpropagation Network of Hecht-Nielsen [22], 
competitive learning is neatly integrated into a hierarchical 
system as a special layer. Combinations of maps have also 
been studied in [74], [112], and [113]. 

It should be noted that slightly different self-organization 
ideas have recently been suggested [5], [IO], [16]. They, how- 
ever, fall outside the scope of this article. 

One of the strongest original motives for starting the 
development of (artificial) neural networks was their use as 
learning systems that might effectively be able to utilize the 
vast capacities of active circuits that can be manufactured 
using semiconductor or optical technologies. It i s  therefore 
a little surprising that most of the theoretical research on 
and simulations of neural networks have been restricted to 
relatively small networkscontainingonlyafewtens toafew 
thousands of nodes (let alone parallel networks for pre- 
processing images). The main problem with most circuits 
seems to be slow convergence of learning, which again 
indicates that the best learning mechanisms are yet to be 
found. 

REFERENCES 

S.4. Amari, "Topographic organization of nerve fields," Bull. 
Math. Biology, vol. 42, pp. 339-364, 1980. 
B. Angenio1,C. de IaCroixVaubois, and J.-Y. LeTexier,"Self- 
organizing feature maps and the travelling salesman prob- 
lem," Neural Networks, vol. 1, pp. 289-293, 1988. 
N. Ansari and Y. Chen, "Dynamic digital satellite commu- 
nication network management by self-organization," Proc. 
lnt. joint Conf. on Neural Networks, ljCNN-90-WASH-DC 
(Washington, DC, 1990) pp. 11-567-11-570. 
D. S. Bradburn, "Reducing transmission error effects using 
a self-organizing network," Proc. lnt. joint Conf. on Neural 
Networks, lICNN89 (Washington, D.C., 1989) pp. 11-531-537. 
D. J. Burr, "An improved elastic net method for the traveling 
salesman problem," Proc. / € E €  lnt. Conf. on Neural Net- 
works, ICNN-88 (San Diego, Cal., 1988) pp. 1-69-1-76. 
A. Caramazza, "Some aspects of language processing 
revealed through the analysis of acquired aphasia: The lex- 
ical system,"Ann. Rev. Neurosci., vol. 11, pp. 395-421,1988. 
M. Cottrell and J.-C. Fort, "A stochastic model of retinotopy: 
A self-organizing process," Blol. Cybern., vol. 53, pp. 405- 
411,1986. 
- , "Etude d'u n processus d'auto-organisation," Ann. Inst. 
Henri Poincare, vol. 23, pp. 1-20, 1987. 
A. R .  Darnasio, H. Damasio, and C. W. Van Hoesen, "Pro- 
sopagnosia: Anatomic basis and behavioral mechanisms," 
Neurology, vol. 24, pp. 89-93, 1975. 
R. Durbin and D. Willshaw, "An analogue approach to the 
travelling salesman problem using an elastic net method," 
Nature, vol. 326, pp. 689-691, 1987. 
D. Essen, "Functional organization of primate visual cor- 
tex," in Cerebral Cortex, vol. 3, A. Peters, E. G. Jones (Eds.). 
New York: Plenum Press, 1985, pp. 259-329. 
1. Fuller and A. Farsaie, "Invariant target recognition using 
feature extraction," Proc. Int. joint. Conf. on Neural Net- 
works, IJCNN-90-WASH-DC (Washington, DC, 1990) pp. 
11-595-1 1-598. 
D. Cabor, "Theory of communication," )./.€.E., vol. 93, pp. 
429-459, 1946. 
A. Cersho, "On the structure of vector quantizers," I€€€  
Trans. Inform. Theory, vol. IT-25, no. 4, pp. 373-380, July 1979. 
H. Goodglass, A. Wingfield, M. R. Hyde, and J. C. Theurkauf, 
"Category specific dissociations in naming and recognition 
by aphasic patients," Cortex, vol. 22, pp. 87402,  1986. 

1477 

Authorized licensed use limited to: Stanford University. Downloaded on April 14,2021 at 23:03:38 UTC from IEEE Xplore.  Restrictions apply. 



[I61 I. Crabec, “Self-organization based on the second maxi- 
mum entropy principle,” First / € E  lnt. Conf. on Artificial 
NeuralNetworks, Conference Publication No. 313. (London, 

[ I 7  D. H. Craf and W. R. LaLonde, “A neural controller for col- 
lision-free movement of general robot manipulators,” Proc. 
lE€E  lnt. Conf. on Neural Networks, ICNN-88 (San Diego, 
Cal., 1988) pp. 1-77-1-84. 

[I81 D. H. Craf and W. R. LaLonde, ”Neuroplannersfor handleye 
coordination,” Proc. lnt. joint Conf. on Neural Networks, 
IICNN 89 (Washington, DC, 1989) pp. 11-543-11-548. 

[I91 R. M. Gray, ”Vector quantization,” / E € €  ASSP Mag., vol. 1 ,  

[201 S. Crossberg, “On the development of feature detectors in 
the visual cortex with applications to learning and reaction- 
diffusion systems,“ Biol. Cybern., vol. 21, pp. 145-159,1976. 

[21] -, “Adaptive pattern classification and universal recod- 
ing: I. Parallel development and coding of neural feature 
detectors; I I .  Feedback, expectation, olfaction, illusions,” 
Biol. Cybern., vol. 23, pp. 121-134 and 187-202, 1976. 

[22] R. Hecht-Nielsen, “Applications of counterpropagation net- 
work,” Neural Networks, vol. 1 ,  pp. 131-139, 1988. 

[23] A. Hemani and A. Postula, “Scheduling by self organisa- 
tion,” Proc. lnt. joint. Conf. on Neural Networks, ljCNN-90- 
WASH-DC (Washington, DC, 1990) pp. 11-543-11-546. 

[24] R. E. Hodgesand C.-H. Wu, “A method toestablish an auton- 
omous self-organizing feature map,” Proc. lnt. joint. Conf. 
on Neural Networks, ljCNN-90-WASH-DC (Washington, DC, 

[251 R. E. Hodges, C.-H. Wu, and C.-J. Wang, “Parallelizing the 
self-organizing feature map on multi-processor systems,” 
Proc. lnt. joint. Conf. on Neural Networks, lICNN-90-WASH- 
DC (Washington, DC, 1990) pp. 11-141-11-144. 

[26] R. M. Holdaway, ”Enhancing supervised learning algo- 
rithms via self-organization,” Proc. lnt. /oint Conf. on Neural 
Networks, l/CNN 89 (Washington, D.C., 1989) pp. 11-523- 

[2-/1 J. J. Hopfield, “Neural networks and physical systems with 
emergent collective computational abilities,” Proc. Natl. 
Acad. Sci. USA, vol. 79, pp. 2554-2558, 1982. 

[28] H. Iwamida, S. Katagiri, E. McDermott, and Y. Tohkura, “A 
hybrid speech recognition system using HMMswith an LVQ- 
trained codebook,” ATR Technical Report TR-A-0061, ATR 
Auditory and Visual Perception Research Laboratories, 1989. 

[29] 1. H. Kaas, R. I .  Nelson, M. Sur, C. S. Lin, and M. M. Mer- 
zenich, ”Multiple representations of the body within the 
primary somatosensory cortex of primates,” Science, vol. 

[30] J. H. Kaas, M. M. Merzenich, and H. P. Killackey, “The reor- 
ganization of somatosensory cortex following peripheral 
nerve damage in adult and developing mammals,” Annual 
Rev. Neurosci., vol. 6, pp. 325-356, 1983. 

[31] J. Kangas, T. Kohonen, and J. Laaksonen, “Variants of self- 
organizing maps,” lEEE Trans. Neural Networks, vol. 1 ,  pp. 
93-99,1990. 

[32] A. Kertesz, Ed., Localization in Neuropsychology. New 
York, N.Y.: Academic Press, 1983. 

[33] E. I. Knudsen, S. du Lac, and S. D. Esterly, ”Computational 
maps in the brain,” Ann. Rev. Neurosci., vol. IO, pp. 41-65, 
1987. 

[34] T. Kohonen, ”Automatic formation of topological maps of 
patterns in a self-organizing system,” Proc. 2nd Scandina- 
vian Conf. on lmage Analysis (Espoo, Finland, 1981) pp. 214- 
220. 

[35] -, “Self-organized formation of topologically correct fea- 
ture maps,” Biol. Cybern., vol. 43, pp. 59-69, 1982. 

[36] -, “Clustering, taxonomy, and topological maps of pat- 
terns,” Proc. Sixth lnt. Conf. on Pattern Recognition (Mun- 
ich, Germany, 1982) pp. 114-128. 

[37) -, ”Dynamically expanding context, with application to 
the correction of symbol strings in the recognition of con- 
tinuous speech,” Proc. €ighth lnt. Conf. on Pattern Recog- 
nition (Paris, France, 1986) pp. 1148-1151. 

[38] -, ”Learning Vector Quantization,” Helsinki University 
of Technology, Laboratory of Computer and Information 
Science, Report TKK-F-A-601, 1986. 

1989) pp. 12-16. 

pp. 4-29, 1984. 

1990) pp. 1-517-1-520. 

11-529. 

204, pp. 521-523,1979. 

[391 -, Content-Addressable Memories, 2nd ed. Berlin, Hei- 
delberg, Germany: Springer-Verlag, 1987. 

[40] -, “Self-learning inference rules by dynamically expand- 
ing context,” Proc. lEEE First Ann. lnt. Conf. on Neural Net- 
works (San Diego, CA, 1987) pp. 11-3-11-9. 

[41] -, “An introduction to neural networks,” Neural Net- 
works, vol. 1, pp. 3-16,1988, 

[42] -, “The ‘neural’ phonetic typewriter,“ Computer, vol. 21, 
pp. 11-22, March 1988. 

[431 -, “Learning vector quantization,” Neural Networks, vol. 
1, suppl. 1,  p. 303, 1988. 

[441 -, Self-organization and Associative Memory, 3rd ed. 
Berlin, Heidelberg, Germany: Springer-Verlag, 1989. 

[45] T. Kohonen, C. Barna, and R. Chrisley, “Statistical pattern 
recognition with neural networks: Benchmarking studies,” 
Proc. lEE€  lnt. Conf. on Neural Networks, ICNN-88 (San 
Diego, Cal., 1988) pp. 1-61-1-68. 

[46] T. Kohonen, K. Makisara, and T. Saramaki, “Phonotopic 
maps-insightful representation of phonological features 
for speech recognition,” Proc. Seventh lnt. Conf. on Pattern 
Recognition (Montreal, Canada, 1984) pp. 182-185. 

[47l T. Kohonen, K. Raivio, 0. Simula, 0. Venta, and J. Hen- 
riksson, “An adaptive discrete-signal detector based on self- 
organizing maps,” Proc. lnt. joint. Conf. on Neural Net- 
works, lICNN-90-WASH-DC (Washington, DC, 1990) pp. 

[48] T. Kohonen, K. Torkkola, M. Shozakai, J.  Kangas, and 0. 
Venta, “Microprocessor implementation of a large vocab- 
ulary speech recognizerand phonetic typewriter for Finnish 
and Japanese,” Proc. European Conference on Speech 
Technology (Edinburgh, 1987) pp. 377-380. 

[49] H .  J.  Kushner and D. S. Clark, Stochastic Approximation 
Methods for Constrained and Unconstrained Systems. 
New York, Berlin: Springer-Verlag, 1978. 

[50] J. Lampinen and E. Oja, “Fast self-organization by the prob- 
ing algorithm,” Proc. lnt. /oint Conf. on Neural Networks, 
IICNN 89 (Washington, DC, 1989) pp. 11-503-11-507. 

[51] A. LaVigna, “Nonparametric classification using learning 
vector quantization,” Ph.D. Thesis, University of Maryland, 
1989. 

1521 J. Lazarro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead, 
“Winner-take-all network of O(N) complexity,“ in Advances 
in Neural lnformation Processing Systems I, D. S. Touretzky, 
Ed. San Mateo, CA: Morgan Kaufmann Publishers, 1989. 

[53] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An intro- 
duction to the application of the theory of probabilistic 
functions of a Markov process to automatic speech rec- 
ognition,” Bell Syst. Tech. /., pp. 1035-1073, Apr. 1983. 

[54] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector 
quantization,” IEEE Trans. Communication, vol. COM-28, pp. 

[55] S.  P. Luttrell, “Self-organizing multilayer topographic map- 
pings,“ Proc. / F E E  lnt. Conf. on Neural Networks, ICNN-88 
(San Diego, CA, 1988) pp. 1-93-1-100. 

[56] -, “Hierarchical self-organizing networks,” First I€€ lnt. 
Conf. on Artificial Neural Networks, Conference Publica- 
tion No. 313. (London, 1989) pp. 2-6. 

1571 -, “Self-organization: A derivation from first principles of 
a class of learning algorithms,” Proc. lnt. joint Conf. on 
Neural Networks, l/CNN 89 (Washington, DC, 1989) pp. 
11495-11-498. 

[58] J. Makhoul, S. Roucos, and H. Cish, “Vector quantization 
in speech coding,” Proc. I€€€, vol. 73, pp. 1551-1588, 1985. 

1591 Ch. v.d Malsburg, “Self-organization of orientation sensi- 
tive cells in the striate cortex,” Kybernetik, vol. 14, pp. 85- 
100, 1973. 

[60] Ch. v.d. Malsburg and D. J. Willshaw, “How to label nerve 
cells so that they can interconnect in an ordered fashion,” 
Proc. Natl. Acad. Sci. USA, vol. 74, pp. 5176-5178, 1977. 

[61] R. Mann and S.  Haykin, “A parallel implementation of Koho- 
nen feature maps on the Warp systolic computer,” Proc. lnt. 
joint. Conf. on Neural Networks, lICNN-90-WASH-DC 
(Washington, DC, 1990) pp. 11-84-11-87. 

[62] K. M. Marks and K. F. Goser, “Analysis of VLSl process data 
based on self-organizing feature maps,” Proc. Neuro- 
Nimes’88 (Nimes, France, 1988) pp. 337-347. 

11-249-11-252. 

84-95, 1980. 

1478 PROCEEDlNCS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990 

I 

Authorized licensed use limited to: Stanford University. Downloaded on April 14,2021 at 23:03:38 UTC from IEEE Xplore.  Restrictions apply. 



[63] 1. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimen- 
sional neural net for learning visuomotor coordination of 
a robot arm,” / € € E  Trans. Ne& Networks, vol. 1, pp. 131- 
136,1990. 

[64] J. Max, “Quantizing for minimum distortion,” lR€ Trans. 
Inform. Theory, vol. IT-6, no. 2, pp. 7-12, Mar. 1960. 

165) R. A. McCarthy and E. K. Warrington, “Evidence for modality 
specific meaning systems in the brain,” Nature, vol. 334, pp. 

[66] E. McDermott and S. Katagiri, “Shift-invariant, multi-cate- 
gory phoneme recognition using Kohonen’s LVQ2,” Proc. 
lnt. Conf. on Acoustics, Signals, and Speech, KASSP 89 
(Glasgow, Scotland) pp. 81-84. 

[67l P. McKenna and E. K. Warrington, ”Category-specific nam- 
ing preservation: A single case study,” 1. Neurol. Neurosurg. 
Psychiatry, vol. 41, pp. 571-574, 1978. 

[68] R. Miikkulainen and M.-G. Dyer, “Forming global repre- 
sentations with extended backpropagation,” Proc. / € € E  lnt. 
Conf. on Neural Networks, lCNN 88 (San Diego, CA, 1988) 

428-430, 1988. 

pp. 285-292. . .  
P. Morasso, “Neural models of cursive script handwriting,” 
Proc. lnt. Joint Conf. on Neural Networks, IJCNN 89 (Wash- 
ington, DC, 1989) pp. 11-539-11-542. 
J.  T. Murphy, H. C. Kwan, W. A. MacKay, and Y. C. Wong, 
“Spatial organization of precentral cortex in awake pri- 
mates, Ill, Input-output coupIing,’’J. Neurophysiol., vol. 41, 

N. M. Nasrabadi and Y. Feng, ”Vector quantization of images 
based upon the Kohonen Self-organizing Feature Maps,” 
Proc. / € E €  lnt. Conf. on Neural Networks, IC”-88 (San 
Diego, CA, 1988) pp. I-101-1-108. 
M. M. Nassand L. N. Cooper,”Atheoryforthedevelopment 
of featuredetectingcells in visual cortex,”Biol. Cybern., vol. 

E. K. Neumann, D. A. Wheeler, J. W. Burnside, A. S. Bern- 
stein, and J. C. Hall, “A technique for the classification and 
analysis of insect courtship song,” Proc. lnt. Joint. Conf. on 
Neural Networks, lJCNN-90-WASH-DC, (Washington, DC, 
1990) pp. 11-257-262. 
Y. Nishikawa, H. Kita, and A. Kawamura, ”“/I: a neural net- 
work which divides and learns environments,” Proc. lnt. 
Joint. Conf. on Neural Networks, lJCNN-90-WASH-DC, 
(Washington, DC, 1990) pp. 1-684-1-687. 
G. A. Ojemann, ”Brain organization for language from the 
perspective of electrical stimulation mapping,” Behav. Brain 

J. Orlando, R. Mann, and S. Haykin, ”Radar classification of 
sea-ice using traditional and neural classifiers,” Proc. lnt. 
Joint. Conf. on Neural Networks, lJCNN-90-WASH-DC, 
(Washington, DC, 1990) pp. 11-263-11-266. 
K. J. Overton and M. A. Arbib, “The branch arrow model of 
the formation of retinotectal connections,” Biol. Cybern., 

K. J. Pearson, L. H. Finkel, and G. M. Edelman, “Plasticity in 
the organization of adult cerebral maps: a computer sim- 
ulation based on neuronal group selection,” /. Neurosci., 

R. Perez, L. Glass, and R. J. Shlaer, “Development of spec- 
ificity in cat visual cortex,” ], Math. Biol., vol. 1, pp. 275-288, 
1975. 

pp. 1132-1139, 1977. 

19, pp. 1-18, 1975. 

Sci., vol. 2, pp. 189-230, 1983. 

VOI. 45, pp. 157-175, 1982. 

vol. 12, pp. 4209-4223, 1987. 

[80] S. E. Petersen, P. T. Fox, M. I. Ponsner, M. Mintun, and 
M. E. Raichle, ”Positron emission tomographic studies of 
the cortical anatomy of single-word processing,” Nature, 

[81] M. Porat and Y. Y. Zeevi, ”The generalized Gabor scheme 
of image representation in biological and machine vision,” 
/ € E €  Trans. Pattern Anal. Machine lntell., vol. PAMI-IO, pp. 

[82] H. Ritter, ”Combining self-organizing maps,” Proc. lnt./oint 
Conf. on Neural Networks, ljCNN 89 (Washington, DC, 1989) 

[83] -, ”Asymptotic level density for a class of vector quan- 
tization processes,” Helsinki Universityof Technology, Lab. 
of Computer and Information Science, Report A9, 1989. 

[84] H. Ritter and T. Kohonen, “Self-organizing semantic maps,” 
Biol. Cybern., vol. 61, pp. 241-254, 1989. 

vol. 331, pp. 585-589, 1988. 

452-468,1988. 

pp. 11-499-11-502. 

[851 H. 1. Ritter, T. M. Martinetz, and K. J. Schulten, “Topology 
conserving maps for learning visuo-motor-coordination,” 
Neural Networks, vol. 2, pp. 159-168, 1989. 

[86] H. Ritter and K. Schulten, ”On the stationary state of Koho- 
nen’s self-organizing sensory mapping,” Biol. Cybern., vol. 

[87l -, “Topology conserving mappings for learning motor 
tasks,” Proc. Neural Networks for Computing, AIP Confer- 
ence (Snowbird, Utah, 1986) pp. 376-380. 

[88] -, ”Extending Kohonen’s self-organizing mapping algo- 
rithm to learn ballistic movements,” NATO AS/ Series, vol. 

[89] -, “Kohonen’s self-organizing maps: exploring their com- 
putational capabilities,” Proc. / E € €  lnt. Conf. on Neural Net- 
works, lCNNN 88 (San Diego, CA, 1988) pp. I-109-1-116. 

[go] -, “Convergency properties of Kohonen’s topology con- 
serving maps: Fluctuations, stability and dimension selec- 
tion,’’ Biol. Cybern., vol. 60, pp. 59-71, 1989. 

[91] R. A. Reale and T. J. Imig, “Tonotopic organization in audi- 
tory cortex of the cat,” J. Comp. Neurol., vol. 192, pp. 265- 
291, 1980. 

[92] H. Robbins and S. Monro, “A stochastic approximation 
method,” Ann. Math. Statist., vol. 22, pp. 400-407, 1951. 

[93] E. T. Rolls, “Neurons in the cortex of the temporal lobe and 
in the amygdala of the monkey with responses selective for 
faces,” Hum. Neurobiol., vol. 3, pp. 209-222, 1984. 

[94] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning 
internal representations by error propagation,” in Parallel 
Distributed Processing: Explorations in the Microstructure 
of Cognition. Vol. 1.: Foundations, D. E. Rumelhart, J. L. 
McClelland and the PDP research group, Eds. Cambridge, 
Mass.: MIT Press, 1986, pp. 318-362. 

[95] J. K. Samarabandu and 0. E. Jakubowicz, “Principles of 
sequential feature maps in multi-level problems,” Proc. lnt. 
loint. Conf. on Neural Networks, IJCNN-90-WASH-DC 
(Washington, DC, 1990) pp. 11-683-11-686. 

[96] P. G. Schyns, “Expertise acquisition through concepts 
refinement in a self-organizing architecture,” Proc. lnt. Joint. 
Conf. on Neural Networks, IJCNN-90-WASH-DC (Washing- 
ton, DC, 1990) pp. 1-236-1-239. 

[97l D. L. Sparks and J. S.  Nelson, ”Sensory and motor maps in 
the mammalian superior colliculus,” TINS, vol. IO, pp. 312- 
317, 1987. 

[98] N. Suga and W. E. O’Neill, ”Neural axis representing target 
range in the auditory cortex of the mustache bat,” Science, 

[99] N. V. Swindale, ”A model for the formation of ocular dom- 
inance stripes,” Proc. R. Soc., vol. 8.208, pp. 243-264, 1980. 

[IOO] A. Takeuchi and S. Amari, “Formation of topographic maps 
and columnar microstructures,” Biol. Cybern., vol. 35, pp. 

[I011 T. Tanaka, M. Naka, and K. Yoshida, “Improved back-prop- 
agation combined with LVQ,” Proc. lnt. Joint. Conf. on 
Neural Networks, IJCNN-90-WASH-DC (Washington, DC, 

[I021 V. Tryba, K. M. Marks, U. Ruckert, and K. Goser, “Selbst- 
organisierende Karten als lernende klassifizierende 
Speicher,” ITG Fachbericht, vol. 102, pp. 407-419, 1988. 

[I031 A. R. Tunturi, “Physiological determination of the arrange- 
ment of the afferent connections to the middle ectosylvian 
auditory area in the dog,” Am. J. Physiol., vol. 162, pp. 489- 
502, 1950. 

[I041 -, “The auditory cortex of the dog,” Am. /. Physiol., vol. 

[I051 A.Waibel,T.Hanazawa,G. Hinton,K.Shikano,andK.J. Lang, 
”Phoneme recognition using time-delay neural networks,” 
/ E € €  Trans. Acoust. Speech and Signal Processing, vol. ASSP- 

[I061 E. K. Warrington, ”The selective impairment of semantic 
memory,” Q. j .  Exp. Psycho/., vol. 27, pp. 635-657,1975. 

[IO7 E. K. Warrington and R. A. McGarthy, “Category specific 
access dysphasia,” Brain, vol. 106, pp. 859-878,1983. 

[I081 -, “Categories of knowledge,” Brain, vol. 110, pp. 1273- 
1296, 1987. 

[I091 E. K. Warrington and T. Shallice, “Category-specific impair- 
ments,” Brain, vol. 107, pp. 829-854, 1984. 

54, pp. 99-106, 1986. 

F41, pp. 393-406,1988. 

vol. 206, pp. 351-353, 1979. 

63-72,1979. 

1990) pp. 1-731-734. 

168, pp. 712-717, 1952. 

37, pp. 382-339, 1989. 

KOHONEN: THE SELF-ORGANIZING M A P  1479 

Authorized licensed use limited to: Stanford University. Downloaded on April 14,2021 at 23:03:38 UTC from IEEE Xplore.  Restrictions apply. 



[I101 D.J. Willshawand Ch.v.d. Malsburg,”Howpatterned neural 
connections can be set up by self-organization,” Proc. R. Soc. 
London, vol. B 194, pp. 431-445, 1976. 

[ I l l ]  -,“A marker induction mechanism for the establishment 
of ordered neural mappings: its application to the retino- 
tectal problem,” Proc. 17. Soc. London, vol. B 287, pp. 203- 
243, 1979. 

[I121 L. Xu and E. Oja, “Vector pair correspondence by a sim- 
plified counter-propagation model: a twin topographic 
map,” Proc. lnt. joint. Conf. on Neural Networks, l/CNN-90- 
WASH-DC (Washington, DC, 1990) pp. 11-531-534. 

[I131 -, “Adding top-down expectation into the learning pro- 
cedure of self-organizing maps,” Proc. Int. loint. Conf. on 
Neural Networks, l/CNN-9@WASH-DC (Washington, DC, 

[I141 A. Yamadori and M. L. Albert, ”Word category aphasia,” 
Cortex, vol. 9, pp. 112-125, 1973. 

[I151 P. L. Zador, “Asymptotic quantization error of continuous 
signals and the quantization dimension,” I€€€ Trans. Inform. 
Theory, vol. IT-28, pp. 139-149, March 1982. 

[I161 S. Zeki, “The representation of colours in the cerebral cor- 
tex,” Nature, vol. 284, pp. 412-418, 1980. 

1990) pp. 1-735-738. 

1480 

- 

Teuvo Kohonen (Senior Member, IEEE) 
received the D.Eng. degree in physics from 
Helsinki University of Technology, Espoo, 
Finland, in 1962. 

He i s  a professor on the Faculty of Infor- 
mation Sciences of Helsinki University of 
Technology, and i s  also a research profes- 
sorof the Academyof Finland. Hisscientific 
interests are neural computers and pattern 
recognition. He is the author of four text- 
books, of which Content-Addressable 

Memones (Springer, 1987) and Self-Organizat/on and Associative 
Memory (Springer, 1989) are best known. 

Dr. Kohonen i s  a member of the Finnish Academy of Sciences, 
and of the Finnish Academy of Engineering Sciences. He has served 
as the first vice chairman of the International Association for Pat- 
tern Recognition, and as a Governing Board Member of the Inter- 
national Neural Network Society. He was awarded the Eemil Aal- 
tonen Prize in 1983 and the Cultural Prize of Finnish Commercial 
Television in 1984. 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 9, SEPTEMBER 1990 

1 

Authorized licensed use limited to: Stanford University. Downloaded on April 14,2021 at 23:03:38 UTC from IEEE Xplore.  Restrictions apply. 


