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Abstract. For any finite dimensional associative algebra A we define a d-

cluster tilting module. We look at the case where A is a selfinjective Nakayama
algebra with a d-cluster tilting module and make some observations on how

these modules can look like. From this we make some observations in terms of

Ωd+1ν-orbits and the complexity of the modules.
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1. Introduction

For an algebra A we have the category modA of finitely generated A-modules.
O. Iyama indroduced d-cluster tilting modules in [1] and defined them as a module
M ∈ modA such that the three following conditions are equivalent;

(i) X ∈ add(M)
(ii) Exti(X,M) = 0 for all 0 < i < d
(iii) Exti(M,X) = 0 for all 0 < i < d

These modules are in some literature referred to as d − 1 maximal orthogonal
modules and are closely related to tilting modules. They are in the center of,
among other things, higher dimensional Auslander-Reiten theory. Nowadays there
exist an extended theory about them. The existence of a d-cluster tilting on the
other hand are far from obvious and can have consequences for the whole category
modA.

K. Erdmann and T. Holm adressed the problem with finding algebras exhibiting
a d-cluster tilting module in their article [2] and, as it turns out, they are somewhat
rare. They showed that if the algebra is selfinjective the existence of a d-cluster
tilting module bounds the complexity for all modules in modA. None the less,
finding examples are far from impossible. M. Herschend and O. Iyama gives us
several examples of selfinjective algebras having 2-cluster tilting modules in [3].

Erdmann and Holm also point out that it seem natural to consider selfinjective
algebras when searching for d-cluster tilting modules since there cannot exist any
non-split extensions between the injective and projective modules.

E. Darpö and O. Iyama looked closer on selfinjective algebras and categorized
which of the selfinjective Nakayama algebras that admits a d-cluster tilting module
in [4].

In this paper we will walk though the usual preliminaries, in large following [5]
and study selfinjective algebras from a general perspective. Then we will try to
expand on both [2] and [4] via considering orbits of indecomposable modules under
Ω and τd = τΩd−1. We will study one of the two cases from [4] when the selfinjective
Nakayama algebras admits d-cluster tilting modules.

2. Basic Definitions

In this section we recollect all basic definitions we will use throughout this paper.
For anyone used to work in homological algebra we recommend skipping section
2.1 and possibly the rest of section 2. We will assume that the reader has a brief
understanding of category theory and a working knowledge of linear algebra.

2.1. Algebras and Modules. Throughout this paper we will use the notations
introduced here. Most of them are quite basic, but we have them here to avoid
ambiguity. Here we will largely follow [5], but if anything will become easier via
the use of a slightly different definition we have tried to use the latter. Throughout
K denotes an algebraically closed field.

Definition 2.1. An algebra over a field K (or a K-algebra) is a ring A with
identity and a K-vector space structure compatible with the multiplication of the
ring. That is:

k(ab) = (ak)b = a(kb) = (ab)k
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for all k ∈ K and a, b ∈ A. Another way of phrasing this is that the multiplication
of A is K-bilinear. We define the dimension of A to be the dimension of A over K,
that is dimK(A), and we say that A is finite dimensional if dimK(A) <∞.

The opposite algebra, denoted Aop is defined by the same underlying set with
the the ring multiplication ∗ defined via a ∗ b = ba.

Definition 2.2 (Orthogonal Primitive Idempotents). An element e ∈ A is said to
be an idempotent if e2 = e. Two idempotents, e1, e2, are said to be orthogonal
if e1e2 = 0. An idempotent, e, is said to be primitive if there does not exist two
non-zero orthogonal idempotents e1, e2 such that e = e1 + e2.

Clearly 0 and 1 in AA are orthogonal idempotents, we will call them the trivial
idempotents.

A right ideal (or left ideal) I of an algebra A is a K-subspace which is closed
under right (or left) multiplication, that is ia ∈ I (or ai ∈ I) for all i ∈ I and a ∈ A.
If I is both a left and right ideal, we will simply call it an ideal.

Definition 2.3 (Module). A right module over a K-algebra A (or a right A-
module) is a K-vector space M with a right multiplication · : M × A → M that
fulfills the following:

(1) (x+ y)a = xa+ ya
(2) x(a+ b) = xa+ xb
(3) (xa)b = x(ab)
(4) x1 = x
(5) (xk)a = x(ak) = (xa)k

A left module is defined analogously. We will write MA for a right A-module
and AM for a left A-module. If we wish to consider an algebra A as a right or left
A-module we will simply write AA or AA, respectively. We define the dimension
of M to be the dimension of M over K, that is dimK(M), and we say that M is
finite dimensional if dimK(M) <∞.

Definition 2.4. A homomorphism between two A-modules M and N is a K-
linear map ϕ : M → N for which ϕ(ma) = ϕ(m)a for all m ∈ M and a ∈ A. The
class of homomorphisms fromM toN is denoted HomA(M,N). If ϕ ∈ EndA(M) :=
HomA(M,M) we say that ϕ is an endomorphism.

A homomorphism is said to me a monomorphism if it is injective and an
epimorphism if it is surjective. A homomorphism which is both is called an
isomorphism.

For each moduleM there exists the identity morphism denoted IdM ∈ EndA(M)
which sends each element to itself. We say that a homomorphism, γ ∈ HomA(M,N),
is a section if there exists a homomorphism γ′ ∈ HomA(N,M) such that γ′ ◦ γ =
IdM . We say that a homomorphism, ψ ∈ HomA(M,L), is a retraction if there
exists a homomorphism ψ′ ∈ HomA(L,M) such that ψ ◦ ψ′ = IdL.

Definition 2.5. We say that an A-moduleM is generated by the elements {mi} ⊆
M if any element can be written as a finite sum

∑
miai for some elements ai ∈ A.

If there exists a finite set that generates M we say that M is finitely generated.

Remark 2.6. It is easily checked that a module M over a finite dimensional algebra
A is finitely generated if and only if dimK(M) is finite. For more details we refer
to [5].
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Definition 2.7. The category of all right A-modules, ModA, is defined as having
all A-modules as objects. The morphisms between M and N is HomA(M,N),
that is all A-module homomorphisms. The subcategory modA is defined to have
all finitely generated A-modules as objects and HomA(M,N) as arrows, for some
finitely generated A-modules M and N .

With this it is easy to see that ModAop is the category of all left A-modules
and modAop is the category of all finitely generated left A-modules. Let A and
B be two K-algebras. If we have a K-vector space, M , endowed with both the
structure of a left A-module and the structure of a right B-module we say that M
is a A-B-bimodule if the actions commute, that is (am)b = a(mb) for all a ∈ A,
b ∈ B and m ∈M .

For any A-B-bimodule AMB we can define the contravariant functor

HomB(−,AMB) : ModB → ModAop

by sending NB to HomB(N,M), endowed with the left A-module structure from
M , that is (af)(v) = a ·f(v). For ϕ ∈ HomB(N,N ′) we have HomB(ϕ,M) = −◦ϕ.
That is, HomB(−,M), works on morphisms via right concatenation.

In the same way we can define the covariant functor

HomB(AMB ,−) : ModB → ModA

with the action defined by (fa)(v) = f(av). An important case is when we choose

AMB = AAA and thus have a contravariant functor

(−)t := HomA(−, A) : ModA→ ModAop.

It is easy to see that if A is a finite dimensional K-algebra this restricts to a functor
modA→ modAop.

We can, of course, also consider the vector space of K-linear functions between
two K-vector spaces, M and N , which we will denote HomK(M,N). If M is a
A-module we can give HomK(M,N) the structure of an Aop-module via (af)(v) :=
f(va). Thus HomK(−, N) is a functor ModA→ ModAop.

In a similar way we can define the standard K-duality

D := HomK(−,K) : modA→ modAop.

That is we send MA to the space of K-linear functions from M to K, HomK(M,K).
This is a A-module with the action defined by (aϕ)(m) = ϕ(ma).

A convention
In this paper we will only consider finitely generated modules over a finite dimen-
sional algebra. Thus we introduce the following convention:

Unless specified otherwise an A-module is a finitely generated right
A-module for some finitely dimensional K-algebra, where K is an
algebraically closed field.

Though the attentive reader can confirm that many results holds anyways.

Definition 2.8 (Submodule). A submodule NA of MA is a K-subspace which
is closed under the right-multiplication in MA. That is na ∈ N for all n ∈ N
and a ∈ A. A submodule NA is said to be maximal if there does not exist any
submodule LA such that N ( L (M .
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With this is it easy to see that the kernel, kerϕ and the image, imϕ, of some
homomorphism, ϕ : M → N , are submodules of M or N , respectively. Moreover
we let the cokernel be cokerϕ := N

/
imϕ .

Definition 2.9 (Sum of Submodules). Given two right A-submodules, M and N ,
of some A-module, the sum of them is defined as

M +N := {m+ n; m ∈M,n ∈ N}
This can easily be shown to be a submodule. If moreover M ∩N = {0} the sum is
called a direct sum and is written as M ⊕N . In the latter case, for each element
a ∈M ⊕N there exists unique elements m ∈M and n ∈ N such that a = m+ n.

In the case that M ∈ A-mod is generated by {m0, . . . ,mn} we have M = m0A+
· · · + mnA. Moreover we say that a submodule N of M is superfluous in M if
for any submodule L of M the equality N + L = M implies L = M . Clearly, if N
is superfluous in M and N ′ is a submodule of M such that N ′ ⊆ N , then N ′ is
superfluous.

Definition 2.10. A module is said to be simple if the only submodules are 0 and
the module itself. We say that a module is semisimple if it is the direct sum of
simple submodules.

Definition 2.11. A module M is said to be indecomposable if M = S ⊕ T
implies that either S = 0 or T = 0.

An algebra A is said to be representation finite if there only exists finitely
many indecomposable modules in modA, up to isomorphism. Similar to the above
we can define the direct sum of two modules.

Definition 2.12. The direct sum of two A-modules, M and N , is defined as the
K-vector space M⊕N given the right A-module structure via (m,n)a := (ma, na).

Remark 2.13. Notice that both M ⊕ 0 and 0 ⊕ N are submodules of M ⊕ N and
are isomorphic to M and N respectively. Therefore we will often say that M and
N are submodules of M ⊕N even though we actually talk about M ⊕ 0 and 0⊕N .

Remark 2.14. If S is an A-module and M and N are two submodules of S such
that S = M ⊕N (with the ⊕ here being the internal sum). Then S 'M ⊕N if we
see M and N as two A-modules. With this in mind we will not distinguish between
them.

For any non-trivial idempotent e ∈ A we have (1 − e)2 = 1 − e and (1 − e)e =
0, thus e and 1 − e are two non-trivial orthogonal idempotents. It follows that
there exists a direct sum decomposition A = eA ⊕ (1 − e)A. Indeed, assume
a ∈ eA∩(1−e)A, then we have a = ea′ = (1−e)a′′ which gives us a′′ = e(a′+a′′) =
e2(a′ + a′′) = ea′′. Hence a = (1− e)ea′′ = 0a′′ = 0. Moreover a = ea+ (1− e)a.

Now for any finite dimensional K-algebra A we get a decomposition of AA =
M0 ⊕ · · · ⊕Mn where Mi is indecomposable. Notice that by definition there exists
unique ei ∈ Mi such that 1 = e0 + · · · + en is an idempotent. It follows by
the previous discussion that the set {e0, . . . , en} is a set of primitive orthogonal
idempotents such that Mi = eiA. In this case we say that {ei} is a complete set
of primitive orthogonal idempotents.
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Lemma 2.15 (Schur’s lemma). Let M and N be A-modules and ϕ : M → N a
non-zero homomorphism.

(1) If M is simple then ϕ is a monomorphism.
(2) If N is simple then ϕ is an epimorphism.
(3) If both M and N are simple then ϕ is an isomorphism.

Proof. Let ϕ be non-zero. If M is simple then kerϕ = 0. If N is simple then
imϕ = N . �

Definition 2.16 (The (Jacobson) radical). Let M ∈ modA. Then we define
rad(M) to be the intersection of all maximal submodules of M .

We will now list the fundamental properties of the radical. This can be found as
proposition (I.3.7) in [5].

Proposition 2.17. Let M , N and L be A-modules.

(1) An element m ∈ M is in rad(M) if and only if f(m) = 0 for any f ∈
HomA(M,S) for all simple A-modules S.

(2) rad(M ⊕N) = rad(M)⊕ rad(N).
(3) For all f ∈ HomA(M,N) we have f(rad(M)) ⊆ rad(N).
(4) M rad(A) = rad(M).
(5) rad(M) is superfluous in M .

For proof, see [5].

Definition 2.18 (Chain Complex). A chain complex, M•, is a set of A-modules
{Mn}n∈Z with homomorphisms ϕn : Mn → Mn−1 such that ϕn ◦ ϕn+1 = 0. That
is imϕn+1 ⊆ kerϕn. We usally visualize this as:

. . . // M2
ϕ2 // M1

ϕ1 // M0
ϕ0 // M−1

ϕ−1 // . . .

The complex is said to be exact if imϕn+1 = kerϕn for all n. It is said to be
bounded above if all Mn = 0 if n is large enough and bounded below if all
Mn = 0 if n is small enough. If a complex is bounded from both above and below,
we will simply call it bounded.

Remark 2.19. For any exact complex on the form:

0 // A
ϕ // B // . . .

we have that ϕ is a monomorphism and for any exact complex on the form:

. . . // M
γ // N // 0

we have that γ is an epimorphism.

Definition 2.20 (Short Exact Sequence). A short exact sequence is a bounded
chain complex on the form:

0 // M
α // N

β // L // 0

If there exists either α′ : N →M or β′ : L→ N with α′ ◦ α = IdM or β′ ◦ β = IdL,
respectively, it is said to split. If that is the case B = imα⊕kerα′ = kerβ⊕imβ′ '
M ⊕ L and the sequence is isomorphic to

0 // M
(10) // M ⊕ L

(1 0) // L // 0.
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A diagram is a directed multi-graph with an A-module in each node and a
homomorphism for each vertex such that the homomorphism is from the source of
the vertex to the target of the vertex.

The diagram is called commutative if the composition of homomorphisms along
any to paths with the same start and endpoint are equal.

Example 2.21. One example of a commutative diagram would be:

Z ·3 //

·2
��

Z

·2
��

Z ·3 // Z
simply because − · 2 · 3 = − · 6 = − · 3 · 2.

Definition 2.22 (Chain Map). A chain map, f• : M• → N•, is a collection of
homomorphisms fn : Mn → Nn such that the following diagram commutes:

. . .
ϕn+1 // Mn

ϕn //

fn

��

Mn−1
ϕn−1 //

fn−1
��

Mn−2
ϕn−2 //

fn−2
��

. . .

. . .
γn+1 // Nn

γn // Nn−1
γn−1 // Nn−2

γn−2 // . . .

That is fn−1◦ϕn = γn◦fn for all n. The notion of chain map expands the notion
of homomorphism to chain complexes and we call a chain map f• a monomorphism,
epimorphism or isomorphism if all the fn are monomorphisms, epimorphisms or
isomorphisms respectively.

Remark 2.23. Just because there exists isomorphisms Mn ' Nn for all n in two
complexes it does not make them isomorphic. It is only a requirement and not a
sufficient condition.

Definition 2.24. An A-module I is said to be injective if for any monomorphism
f : A→ B and any homomorphism g : A→ I there exists g′ : B → I with g′◦f = g.
Another way to put this is that there exists g′ such that the following diagram with
exact rows commute:

0 // A
f //

g

��

B

g′��
I

Definition 2.25. An A-module P is said to be projective if for any epimorphism
f : A→ B and any homomorphism g : P → B there exists g′ : P → A with f◦g′ = g.
Another way to put this is that there exists g′ such that the following diagram with
exact rows commute:

A
f // B // 0

P

g

OO

g′

__
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Example 2.26. Any algebra AA, seen as a right A-module, is projective.

Proposition 2.27. A direct summand of a projective module is projective and the
direct sum of two projective modules are projective. The same is true for injectivity
of modules.

Proof. If M ⊕ N is projective, then given any epimorphism ϕ : X → Y and mor-
phism γ1 : M → Y there exists ψ = (ψ1 ψ2) : M ⊕ N → X making the following
diagram commute.

X
ϕ // // Y

M ⊕N

(γ1 0)

OO

ψ

cc

It is easy to verify that the existance of ψ1 makes M projective, and by symmetry
N must also be.

The other way around, if M and N be projective. Given any epimorphism
ϕ : X → Y and morphism γ = (γ1 γ2) : M ⊕N → Y . Then using the projectivity
of M and N we have commutative diagrams:

X
ϕ // // Y

M

γ1

OO

ψ1

`` X
ϕ // // Y

N

γ2

OO

ψ2

``

If we let ψ = (ψ1 ψ2) we get that M ⊕N is projective via the existance of ψ. �

Proposition 2.28. A module P is projective if and only if all short exact sequences
on the form

0 // M // N // P // 0

splits and a module I is injective if and only if all short exact sequences on the form

0 // I // N // L // 0

splits.

Proof. A proof for this proposition can be found in [6]. �

A result similar to the two above results can be found in [5] as lemma (I.5.3).

Definition 2.29. An epimorphism ϕ : M → N is called minimal if kerϕ is super-
fluous in M . An epimorphism ϕ : P →M is called a projective cover of M if P
is a projective module and ϕ is minimal. If a projective cover exists we denote the
module by P (M).

Proposition 2.30. For any A-module M there exists a projective cover and it is
unique, up to isomorphism. That is, for any two projective covers, ϕ : P → M
and ϕ′ : P ′ →M , there exists an isomorphism g : P ′ → P that makes the following
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diagram commute:

0

P
ϕ // M

OO

// 0

P ′
g

``

ϕ′

OO

Proof. See (I.5.8) in [5]. �

Lemma 2.31. For any two A-modules, M and N , we have P (M ⊕N) ' P (M)⊕
P (N).

Proof. Let ϕM and ϕN be the corresponding projective covers. In view of proposi-
tion 2.30 we only need to show that (ϕM , ϕN ) : P (M)⊕ P (N)→M ⊕N is indeed
minimal. We will show something a little more general.

Let M ′ and N ′ be superfluous in M and N respectively. Then M ′ ⊕ N ′ is
superfluous in M ⊕N .

For this case, assume M ′ ⊕N ′ + C ′ ⊕D′ = M ⊕N . Indeed, projecting on the
first and second coordinate we get M ′ +C ′ = M and N ′ +D′ = N . Using that N ′

and M ′ are superfluous we get the desired result. �

Definition 2.32. A projective resolution of M is an exact chain complex on
the form

. . . // P1
ϕ1 // P0

// 0 // . . .

With a morphism ϕ0 : P0 →M that makes the following chain complex exact:

. . . // P1
ϕ1 // P0

ϕ0 // M // 0 // . . .

Where the Pi’s are projective modules. The resolution is said to be minimal if
P0 = P (M) and Pi = P (kerϕn−1). If P0 and P1 is the first two terms of a minimal
projective resolution we say that

P1
// P0

// M // 0

is a minimal projective presentation.

Corollary 2.33. By proposition (2.30) any two minimal projective resolution are
isomorphic.

Example 2.34. For any projective module P we have a projective resolution:

. . . // 0 // P
Id // P // 0 // . . .

Proposition 2.35. Let D be the standard duality.

i) A sequence 0 // M // N // L // 0 is exact in modA if and

only if 0 // D(L) // D(N) // D(M) // 0 is exact in modAop.

ii) P in modA is projective if and only if D(P ) is injective in modAop. E in
modA is injective if and only if D(E) is projective in modAop.

iii) S is simple in modA if and only if D(S) is simple in modAop



THE SELFINJECTIVE NAKAYAMA ALGEBRAS AND THEIR COMPLEXITY 11

iv) A morphism ϕ : P →M is a projective cover if and and only if D(ϕ) : D(M)→
D(P ) is an injective envelope. A morphism γ : M → E is an injective en-
velope if and and only if D(γ) : D(E)→ D(M) is a projective cover.

Definition 2.36. The syzygy of M , Ω(M), is defined as the kernel of a projective
cover. The cosyzygy Ω−1 is defined as the cokernel of an injective envelope.

By proposition (2.30) this definition does not depend on the choice of projective
cover, up to isomorphism. Moreover, since projective covers respect direct sums,
we get Ω(M ⊕N) ' Ω(M)⊕ Ω(N).

It is easily checked that Ω(M) = 0 if and only if M is projective. Indeed, we
always have an exact sequence

0 // Ω(M) // P (M) // M // 0

and that P (M) 'M if and only if M projective.
For Ω (or Ω−1) to be well defined functors we would need to consider the pro-

jective (injective) stable category. We will discuss this category later but for now
we will leave it as it is.

We will say that a module is Ω-periodic if there exists an n such that Ωn(M) '
M .

Another type of functor which will be of interest is the following; let α ∈ AutA
be an automorphism and define

Φα : modA→ modA

to send every module M ∈ modA to the module with twisted action Mα. That is
the module with the same underlying vector space and the action of a ∈ A in v ∈Mα

is defined as v ·Mα a := v ·M α(a). Moreover, it sends any φ ∈ HomA(M,N) to
Φα(φ) ∈ HomA(Mα, Nα) defined by Φα(φ)(v) = φ(v) seen as linear maps between
vector spaces. It can be checked that this is an exact functor and an isomorphism
modA→ modA. Thus it sends projective covers to projective covers.

Now a minimal projective resolution will always have the following form:

0P (M)P (Ω(M))P (Ω2(M)). . .

Ω(M)Ω2(M)

A projective resolution thus encodes how a module looks like in the form of
projective modules. This motivates futher studies of them, thus let

. . . // P2
// P1

// P0
// 0

be a minimal projective resolution for M . The complexity of M is then defined
as

cx(M) = inf{a ∈ N|∃C : Cna−1 ≥ dimK Pn for all n}.
Notice that cx(M) = 0 if and only if M has a bounded minimal projective resolution
and cx(M) = 1 if the dimension of all Pn are bounded from above. Clearly any
Ω-periodic module has complexity 1 and by the construction of minimal projective
covers cx(M) = cx(ΩM) and cx(M ⊕N) = max{cx(M), cx(N)}. Moreover if P is
projective cx(P ) = 0 and for any automorphism α we have cx(Φα(M)) = cx(M).
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Proposition 2.37. If P is a projective module and the diagram

M
α // P

β // N

γ

��
0 // X

ϕ
// Y

ψ
// Z // 0

has exact rows, then there exists γ0 and γ1 making the following diagram commute:

M
α //

γ1

��

P
β //

γ0

��

N

γ

��
0 // X

ϕ
// Y

ψ
// Z // 0

Proof. The existence of γ0 follows directly from the definition that P is projective.
Since the rows are exact, ϕ is injective and thus there exists ϕ−1 ∈ HomA(imϕ,X),
indeed it exists as a linear function by basic linear algebra. We need to show that
ϕ−1 commutes with the action of the algebra, then we have

aϕ−1(y) = ϕ−1(ay)⇔ ϕ(aϕ−1(y)) = ϕ(ϕ−1(ay))

⇔ aϕ(ϕ−1(y)) = ϕ(ϕ−1(ay))

⇔ ay = ay

But we have ψ ◦ γ0 ◦α = γ ◦ β ◦α = γ ◦ 0 = 0, thus im γ0 ◦α ⊆ kerψ = imϕ and
we can choose γ1 = ϕ−1 ◦ γ0 ◦ α. �

Worth noting is that even though γ0 is not necessarily unique, γ1 is uniquely
determined by γ0.

2.2. Extensions and the Stable Category.

Definition 2.38. Let M and N be two A-modules. Then we define ExtmA (M,N)
via the following construction: Take any projective resolution for M

P• : . . . // P3
ϕ3 // P2

ϕ2 // P1
ϕ1 // P0

// 0

and apply Hom(−, N). Then we get a induced complex Hom(P•, N) as:

0 // Hom(P0, N)
Hom(ϕ1,N) // Hom(P1, N)

Hom(ϕ2,N) // Hom(P2, N) // . . .

Then we let

ExtmA (M,N) = ker Hom(ϕm+1, N)
/

im Hom(ϕm, N) .

Remark 2.39. For this to be well defined one must show that this does not depend
on the choice of P•, up to isomorphism. This is relatively straightforward and can
be found in [5] appendix (A.4).

Any γ ∈ Hom(N,N ′) then induces a morphism Hom(Pm, γ) : ExtmA (M,N) →
ExtmA (M,N ′). Similar to above, this will not depend on the choice of P• and we
can prove that ExtmA (M,−) is a covariant additive functor.

Corollary 2.40. For any A-modules M and N we have Ext0A(M,N) ' HomA(M,N)
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Definition 2.41 (The Stable Category). The projective stable category, de-
noted ModA, has the same objects as A-Mod but morphisms are quotients

Hom(M,N) := HomA(M,N)
/
P(M,N)

where P(M,N) is the space of all morphisms in HomA(M,N) factoring through a
projective module. Similarly the injective stable category, denoted ModA has
the same objects as A-Mod but morphism are quotients

Hom(M,N) := HomA(M,N)
/
I(M,N)

where I(M,N) is the space of all morphisms in HomA(M,N) factoring through an
injective module.

Theorem 2.42. Given any short exact sequence 0 // M // N // L // 0
and a module X we have the two induced long exact sequences:

0 // HomA(X,M) // HomA(X,N) // HomA(X,L)

δ0 // Ext1A(X,M) // Ext1A(X,N) // Ext1A(X,L)

. . . . . . . . .

δn−1 // ExtnA(X,M) // ExtnA(X,N) // ExtnA(X,L)

. . . . . . . . .

and

0 // HomA(L,X) // HomA(N,X) // HomA(M,X)

δ0 // Ext1A(L,X) // Ext1A(N,X) // Ext1A(M,X)

. . . . . . . . .

δn−1 // ExtnA(L,X) // ExtnA(N,X) // ExtnA(M,X)

. . . . . . . . .
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Proof. For the construction of δ0 in the first sequence, consider the following dia-
gram.

P2
ϕ2 // P1

ϕ1 // P0
ϕ0 // X

γ

��

// 0

0 // M
g
// N

f
// L // 0

Then by proposition (2.37) we can lift γ ∈ Hom(M,X) to a morphism in Hom(P1,M).
It can be checked that this defines a morphism to Ext1A(X,M) which fufills our de-
mands. Then δn can be constucted similarly using the definition of ExtnA. �

Proposition 2.43. A module P in modA is projective if and only if ExtmA (P,−) =
0 for all m ≥ 1. A module E in modA is injective if and only if ExtmA (−, E) = 0
for all m ≥ 1.

Proof. We will only prove the first part as the second one is proved similarly. If P is

projective we choose the projective resolution as 0 // P // 0 with ϕ0 = IdP ,
and the rest follows by definition.

Assume ExtmA (P,−) = 0, then given any epimorphism M // N we have a
short exact sequence

0 // ker f // M
f // N // 0

and thus a long exact sequence

0 // HomA(P, ker f) // HomA(P,M) // HomA(P,N)

δ0 // Ext1A(P, ker f) // Ext1A(P,M) // Ext1A(P,N)

. . . . . . . . .

δn−1 // ExtnA(P, ker f) // ExtnA(P,M) // ExtnA(P,N)

. . . . . . . . .

.

By assumtion, this long exact sequence is in fact the short exact sequence:

0 // HomA(P, ker f) // HomA(P,M)
f◦− // HomA(P,N) // 0 .

Thus f ◦ − is surjective for any epimorphism f . Thus P is projective. �

Definition 2.44 (Pullback and pushout). Let M , N and L be A-modules.

a) Given homomorphism M N
ϕoo γ // L we define the amalgammed

sum to be the module

S = M ⊕ L
/
{(ϕ(n),−γ(n)) : n ∈ N}
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with two homomorphisms M
ϕ′ // S L

γ′
oo given by ϕ(m) = (m, 0)

and γ(l) = (0, l).

b) Given homomorphisms M
ϕ // N L

γ
oo we define the fibered prod-

uct to be the submodule

P = {(m, l) ∈M ⊕ L : ϕ(m) = γ(l)}

of M⊕L together with two homomorphisms M P
ϕ′
oo γ′ // L given by

ϕ′(m, l) = m and γ′(m, l) = l.

Theorem 2.45. Let 0 // M // N // L // 0 be a short exact se-
quence.

(a) Given a morphism ϕ : M → X there exists a module U and a commutative
diagram

0 // M //

ϕ

��

N //

��

L // 0

0 // X // U // L // 0
with exact rows.

(b) Given a morphism γ : X → L there exists a module V and a commutative
diagram

0 // M // V //

��

X //

γ

��

0

0 // M // N // L // 0
with exact rows.

(c) In the above, U and V are unique, up to isomorphism.

We will not show this, instead we will do a similar construction which we will
use later. This construction is used in [2].

Theorem 2.46 (Universal Extention). Given two modules X and V such that
Ext1A(X,X) = 0 and Ext1A(X,V ) 6= 0. Let n := dimK Ext1A(X,V ). Then there
exists a module U and a short exact sequence

0 // V // U // Xn // 0

with Ext1A(X,U) = 0.

This short exact sequence is refered to as the universal extention.

Proof. Let P2
h2 // P1

h1 // P0
h0 // 0 be the beginning of a projective resolu-

tion of X. In this proof we let hni denote (hi, . . . , hi) : Pni → Pni−1, that is n copies
of hi.

We can choose elements ϕi ∈ ker(− ◦ h2) ⊆ Hom(P1, V ) so that {ϕ1, . . . , ϕn} is
a basis for Ext1A(X,V ). Let ϕ = (ϕ1, . . . , ϕn) and let U be the amalgammed sum

of V Pn1
ϕoo hn1 // Pn0 . For conveniance we set H = {(ϕ(p),−hn1 (p))}, that is

U = V ⊕ Pn0
/
H .
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We want to define α, β and γ such that the following diagram commute and has
exact rows:

Pn2

��

// Pn1 //

ϕ

��

Pn0 //

γ

��

Xn // 0

0 // V
α // U

β // Xn // 0

Thus define

α(v) = (v, 0) +H

β (v, (p1, . . . , pn)) = hn0 (p1, . . . , pn) = (h0(p1), . . . , h0(pn))

γ(p1, . . . , pn) = (0, hn1 (p1, . . . , pn)) +H = (h1(p1), . . . , h1(pn)) +H

To check that all of these are well defined, commute and form a short exact sequence
as in the above picture is left as an exercise for the reader.

Then by the proof of theorem (2.42) we have that δ0 in the long exact sequence

0 // HomA(X,V ) // HomA(X,U) // HomA(X,Xn)

δ0 // Ext1A(X,V ) // Ext1A(X,U) // Ext1A(X,Xn)

is surjective. But we assumed that Ext1A(X,X) = 0 and it follows that

HomA(X,Xn)
δ0 // Ext1A(X,V ) // Ext1A(X,U) // 0

is exact. Thus Ext1A(X,U) = 0. �

2.3. Quiver Algebras. Here we will discuss quivers and how we can get algebras
from them. We will briefly break our convention that all algebras are finitely
generated for this chapter.

Definition 2.47 (Quiver). A quiver Q is a quadruple (Q0, Q1, s, t). The set Q0

are the vertices. The set Q1 are the arrows, s and t are functions Q1 → Q0 giving
each arrow v ∈ Q1 a source s(v) and a target t(v). A quiver is said to be finite if
both Q0 and Q1 is.

Remark 2.48. The definition of a quiver is more or less identical with that of a
directed multi-graph. We will use this terminology of two reasons, firstly the defi-
nition of latter sometimes varies between literature, secondly the first is commonly
used in the context we will use it and we hope this will make it easier for the reader.

Example 2.49. One example of a quiver would be:

◦

◦

◦

◦

◦

◦
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Let a, b ∈ Q0 for some quiver Q. A path from a to b is a sequence of arrows
α0α1 . . . αn where s(α0) = a, t(αn) = b and for all relevant i we have t(αi) =
s(αi+1). Such a path is sometimes written as (a|α1 . . . αn|b). We also have the
stationary path at a as εa = (a||a).

Definition 2.50 (Quiver Algebra). We define the quiver algebra of Q, usually
denoted KQ, to be the algebra generated by all paths and the multiplication defined
as

(a|α0 . . . αn|b)(c|β0 . . . βm|d) =

{
(a|α0 . . . αnβ0 . . . βm|d) if b = c

0 otherwise

This is clearly an associative algebra, although it is not always finitely generated.
Moreover, for a finite quiver it is easily checked that 1 =

∑
a∈Q0

εa.

Example 2.51. This can be found as example [II.1.3] in [5]. Let Q be the quiver:

◦ α

Then KQ is generated by {ε1, α, α2, . . . } and is thus isomorphic to K[X], that is,
polynomials in one indeterminate over K.

It follow by definition that {εa| a ∈ Q1} is a complete set of primitive orthogonal
idempotents.

Theorem 2.52. For any finite quiver Q the quiver algebra KQ is finite dimensional
if and only if Q is acyclic.

Proof. The algebra is finite dimensional if and only if there exists a finite number
of paths. This is only the case if Q is acyclic. �

Of course we can consider the usual constructions on the path algebra of any
quiver.

Definition 2.53. The arrow ideal of a quiver Q is the ideal in KQ generated
by all arrows in Q. We will denote this ideal RQ of R whenever it is clear from
context.

An admissable ideal is an ideal I such that RmQ ⊆ I ⊆ R2
Q for some large

enough m.

The study of algebras on the form A ' KQ
/
I for some admissible ideal I is

motivated by the following theorem.

Theorem 2.54. If A is a basic connected K-algebra, then there exists a quiver Q
and a admissible ideal I such that A ' KQ

/
I .

Proof. See [5]. �

Definition 2.55. Given a quiver Q and an ideal I we say that we have a bounded
representation of KQ

/
I if we for each a ∈ Q0 have a vector space Va over K.

Moreover for each α ∈ Q1 we have a ϕα ∈ HomK(Vs(α), Vt(α)) such that for each∑
i(a

i|αi0 . . . αin|bi) ∈ I we have
∑
i ϕαin ◦ · · · ◦ ϕαi0 = 0.
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For this reason we have the category Rep(Q, I) of bounded representations of
KQ

/
I with the subcategory rep(Q, I) of finite dimensional bounded representa-

tions. The reason why we deal in representations is that they are easy to visualize
and the following theorem.

Theorem 2.56. There exists an equivalence of categories Rep(Q, I) ' ModA,
where A ' KQ

/
I , that restricts to an equivalence of categories rep(Q, I) ' modA.

Proof. See [5]. �

Example 2.57. A example of a representation of the algebra A ' KQ
/
I where

Q is the quiver ◦ ◦ and I = R2
Q would be

K2 K2

(
1 0
0 0

)

(
0 0
0 1

)
If we can avoid it we will not write out the whole representation as above and

instead focus on the dimension vectors. We will simply write out which dimen-
sion each vector space has at the position of the node and assume that as many
morphisms as possible are equal to the identity morphism. For example if we call

the above representation M then dim(M) = 2 2 . Notice though that the dimen-
sion vector does not always uniquely define a representation, even if we want most

of the morphisms to be the identity. For example let Q = ◦
◦
◦ and I = R2

Q.
Then the two representations

K

K

K

1

1

0

K

K

K

0

1

1

have the same dimension vectors, even though they are not the same or even iso-
morphic. For the rest of the paper however, we will only use this notation when the
dimension vectors for indecomposable modules uniquely defines the indecomposable
module.

2.4. Auslander-Reiten Theory.

Definition 2.58. Let M , N and L be right A-modules.

(a) A homomorphism ϕ ∈ HomA(M,N) is called left minimal if for any
α ∈ End(N) α ◦ ϕ = ϕ implies that α is an automorphism.

(b) A homomorphism γ ∈ HomA(N,L) is called right minimal if for any
β ∈ End(N) β ◦ γ = γ implies that β is an automorphism.
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(c) A homomorphism ϕ ∈ HomA(M,N) is called left almost split if ϕ is
not a section and for each non section ψ ∈ HomA(M,L) there exists ψ′ ∈
HomA(N,L) such that ψ = ψ′◦ϕ. That is, the following diagram commute:

M
ϕ //

ψ

��

N

ψ′~~
L

(d) A homomorphism γ ∈ HomA(N,L) is called right almost split if γ is
not a retraction and for each non retraction ψ ∈ HomA(M,L) there exists
ψ′ ∈ HomA(M,N) such that ψ = ϕ ◦ ψ′. That is, the following diagram
commute:

M

ψ′~~
ψ

��
N

γ // L

(e) A homomorphism ϕ ∈ HomA(M,N) is called left minimal almost split
if it is both left minimal and left almost split.

(f) A homomorphism γ ∈ HomA(N,L) is called right minimal almost split
if it is both right minimal and right almost split.

Definition 2.59. A short exact sequence

0 // M
ϕ // N

γ // L // 0

is said to be an almost split sequence if ϕ is left minimal almost split and γ is
right minimal almost split.

Definition 2.60 (Auslander-Reiten Translation). Given a minimal projective pre-

sentation P1
ϕ1 // P0

ϕ0 // M // 0 of M we can apply (−)t to get the exact
sequence

0 // M t // P t0 // P1t // cokerϕt1 // 0 .

Then we define the transpose of M to be cokerϕt1 and denote it with TrM . Then
we define the Auslander-Reiten translation to be τ := DTr and the inverse
τ−1 := TrD.

The notation of τ−1 is a little bit unorthodox since τ−1 is not an actual inverse,
therefore the notation τ− is also commonly used. We will begin with a quick
summarize of the properties the transpose possess. This next proposition can be
found as proposition (IV.2.1) in [5]. Notice that for any M ∈ modA we have
TrM ∈ modAop.

Proposition 2.61. The following holds for any indecomposable modules M and
N :

(a) The left A-module TrM has no nonzero projective direct summands.
(b) If M is non-projective, then

P t0
ϕt1 // P t1 // TrM // 0 ,

definied as above, is a minimal projective presentation of the left A-module
TrM .
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(c) M is projective if and only if TrM = 0. If M is not projective, then TrM
is indecomposable and Tr(TrM) 'M .

(d) If M and N are non-projective, then M ' N if and only if TrM ' TrN .

Proof. See [5]. �

The following theorem can be found as proposition (IV.2.10) in [5].

Theorem 2.62. Let M and N be indecomposable modules in modA. Then the
following holds:

(1) τM = 0 if and only if M is projective.
(2) τ−1M = 0 if and only if M is injective.
(3) If M is non-projective, then τM is non-injective and τ−1τM 'M .
(4) If M is non-injective, then τ−1M is non-projective and ττ−1M 'M .
(5) If M and N are non-projective then M ' N if and only if τM ' τN .
(6) if M and N are non-injective then M ' N if and only if τ−1M ' τ−1N .

Proof. See [5]. �

Theorem 2.63 (Auslander-Reiten Formulas). If M and N are two modules in
modA, then we have isomorphisms

Ext1A(M,N) ' DHomA(τ−1N,M) ' DHomA(N, τM)

that are functorial in both arguments.

Proof. See theorem (IV.2.13) in [5]. �

The following theorem due to Auslander and Reiten.

Theorem 2.64 (Existence of almost split sequence). If A is a finite dimensional
K-algebra the following holds in modA:

(a) For any non-projective indecomposable L ∈ modA there exists a unique, up
to isomorphism, almost split sequence

0 // τL // N // L // 0 .

(b) For any non-injective indecomposable M ∈ modA there exists a unique, up
to isomorphism, almost split sequence

0 // M // N // τ−1M // 0 .

Definition 2.65 (AR-quiver). The Auslander-Reiten quiver of the module
category modA, denoted Γ(modA), is defined as follows. The nodes are isoclasses
of indecomposable A-modules. The arrows are in bijective correspondence with the
dimension of the K-vector space of irreducible morphisms from the source to the
target. For a more exact definition of the latter, see [5].

A helpful observation when constructing the Auslander-Reiten quiver for an
algebra is the following proposition from [5].

Proposition 2.66. Assume 0 // M // N // L // 0 is an almost split
sequence. Then dimN = dimM + dimL.
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Example 2.67. Let A = KQ
/
I where Q is the quiver

◦

◦ ◦

◦

◦

and let I = R3
Q. Then the Auslander-Reiten quiver of A will be:

10
0 1

1 11
0 0

1 11
1 0

0 01
1 1

0 00
1 1

1 10
0 1

1

10
0 0

1 11
0 0

0 01
1 0

0 00
1 1

0 00
0 1

100
0 1

1

00
0 0

1 10
0 0

0 01
0 0

0 00
1 0

0 00
0 1

0 00
0 0

1

The dashed lines are to indicate that the picture repeats itself.

2.5. Selfinjective Algebras. As earlier mentioned, any algebra A seen as an A-
module is always projective. In general, the same is not true for injectivity. In this
chapter we will take some time and discuss the ones that are injective and see what
follows.

Definition 2.68 (Selfinjective Algebra). An algebra A is said to be selfinjective
(or a quasi-Frobenius algebra) if AA is injective.

Even though this may look rather innocent, the consequences that follows are
not.

This next theorem is from [7]. It can be found as proposition (IV.3.1) and the
text following it. We will use this result for the rest of the chapter without referring
to this theorem, so it would be wise for the reader to remember the result.

Theorem 2.69. The following are equivalent:

a) A is selfinjective.
b) A module is projective in modA if and only if it is injective in modA.
c) Aop is selfinjective
d) The functor (−)t : modA→ modAop is a duality.

Proof. See [7]. �

By the above theorems we clearly have that modA is the same as modA for a
selfinjective algebra A.

We have seen that in the selfinjective case both D and (−)t defines dualities
between modA and modAop. This inspires us to consider the Nakayama functor:

ν := D(−)t = HomK(HomA(−, A),K) : modA→ modA

The following theorem explain how ν is related to Ω and τ . Similar results can be
found in [7] proposition (IV.3.7).
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Theorem 2.70. If A is a selfinjective algebra then, as functors modA→ modA

a) τ ' Ω2ν,
b) Ων ' νΩ,
c) τΩ ' Ωτ .

Proof. Let M be in modA.

a) Apply the functors (−)t and D in order to the minimal presentation

P1
// P0

// M // 0

to get the exact sequence

0 // DTrM // D(P t1) // D(P t0) // D(M t) // 0 .

This sequence can be rewritten as

0 // τM // D(P t1) // D(P t0) // νM // 0 .

Now it follows that D(P ti ) is injective, thus, since A was selfinjective, it is
projective and that the above is a minimal projective presentation of νM
follows from 2.35. Thus τ ' Ω2ν.

b) This part is proved similarly but using the exact sequence

0 // ΩM // P0
// M // 0

c) By the above we get τΩ ' Ω2νΩ ' ΩΩ2ν ' Ωτ .

�

Moreover, we get an easy way to compute ExtiA(M,N).

Theorem 2.71. Let A be a selfinjective algebra. Then for any M and N in modA,
we have

ExtmA (M,N) ' HomA(ΩmM,N) ' HomA(M,Ω−mN)

for all m ≥ 1.

Proof. That there exists an isomorphism Extm+1
A (M,N) ' Ext1A(ΩmM,N) is clear

by definition of Ext. Thus we only need to show that Ext1A(M,N) ' Hom(ΩM,N).
So let

. . . // P2
ϕ2 // P1

ϕ1 // P0
ϕ0 // M // 0

be a minimal projective resolution. Then, by definition,

Ext1A(M,N) = (ker− ◦ ϕ2)
/

(im− ◦ ϕ1) .

For each f ∈ ker(− ◦ ϕ2) we have a commutative diagram with exact row

P2
ϕ2 //

��

P1
ϕ1 //

f

��

h

"" ""

P0
// M // 0

0 // N Ω(M)

ι

OO

Then we can consider the map − ◦ h : Hom(ΩM,N) → ker(− ◦ ϕ2). First of, this
is well definied since − ◦ h ◦ ϕ2 = − ◦ 0. Secondly, since h is surjective we have
g ◦ h = g′ ◦ h ⇐ g = g′, thus − ◦ h is injective. For surjectivity, we want to
show that f(h−1(−)) is a well definied map, here h−1 denotes the preimage. It is



THE SELFINJECTIVE NAKAYAMA ALGEBRAS AND THEIR COMPLEXITY 23

well defined since kerh = kerϕ1 = imϕ2 ⊆ ker f . The last inclution follows since
f ∈ ker(−◦ϕ2). Then we get f(h−1(−)) 7→ f and surjectivity follows. What is left
to check is that − ◦ h maps P(ΩM,N) bijectively to im(− ◦ ϕ1).

So take g ∈ P(ΩM,N) and let it factor via P as g = g′ ◦ g′′. Then, since A was
selfinjective, P is injective and there exists a morphism ρ such that g = g′◦ρ◦ι where
ι is the inclution morphism ΩM → P0. Then we have g◦h = g′ ◦ρ◦ι◦h = g′ ◦ρ◦ϕ1

and thus − ◦ h maps P(ΩM,N) into im(− ◦ ϕ1). Injectivity is clear, so all that
is left is surjectivity. So let f ∈ im(− ◦ ϕ1), that is f = f ′ ◦ ϕ1. Then we have
f ′ ◦ ι ◦ h = f ′ ◦ ϕ1 = f and we are done.

A similar construction of Ext using injective envelopes in the second argument
shows that Extm+1

A (M,N) ' Ext1A(M,Ω−mN), the rest is proved similarly.
�

Recall the functor Φα from chapter 2.1 which sends each moduleM to the module
Mα which have the same underlying vector space but the action twisted with α.

Proposition 2.72. For any selfinjective algebra A there exist an automorphism α
such that ν ' Φα.

Proof. See [8].
�

We are now in a posistion to bring up the following theorem. Notice that a
formal proof requires the use of triagulated categories, which we will not cover.
The theorem can be found as part of lemma (4.1) in [2].

Theorem 2.73. Let A be a selfinjective algebra and M , N and L be modules

in modA. Moreover let 0 // M // N // L // 0 be a short exact se-
quence. If two of the modules has complexity less than or equal to 1 then so does
the third.

Proof. We will proove the case where cx(M) ≤ 1 and cx(L) ≤ 1. Then, via the use
of triagulated categories, there will exist a projective module P and a short exact
sequence on the form

0 // L // M ⊕ P // Ω−1N // 0

thus we will be done. So let PM,i and PL,i be projective resolutions of M and L
respectively. In picture we have

0

��
. . . // PM,1

// PM,0
// M //

��

0

N

��
. . . // PL,1 // PL,0 // L //

��

0

0
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This can be extended to the commuting diagram

0

��

0

��

0

��
. . . // PM,1

//

��

PM,0
//

��

M //

��

0

. . . // PM,1 ⊕ PL,1

��

// PM,0 ⊕ PL,0

��

// N

��

// 0

. . . // PL,1 //

��

PL,0 //

��

L //

��

0

0 0 0

Thus PM,i⊕PL,i will be a, not neccesarily minimal, projective resolution of N and
thus cx(N) ≤ max{cx(M), cx(L)} ≤ 1. �

3. Cluster Tilting Modules

Definition 3.1 (Cluster Tilting Module). A module M is called d-cluster tilting
if the following tree conditions are equivalent:

(i) X ∈ add(M)
(ii) Exti(X,M) = 0 for all 0 < i < d
(iii) Exti(M,X) = 0 for all 0 < i < d

Here add(M) denotes the full subcategory of modA with objects that are direct
summands of some power of M . A d-cluster tilting module is sometimes, for ex-
ample in [2], referred to as (d− 1)-maximal orthogonal. Owing to (ii) and (iii) all
indecomposable injectives and projectives of modA must be in add(M).

Theorem 3.2. If M is d-cluster tilting and X ∈ add(M) then τd(X) ∈ add(M)
where τd := τ ◦ Ωd−1.

Proof. While this is true in general, we only present a quick proof for when A is
selfinjective since we will only use it for this case. We compute ExtiA(M, τdX) for
0 < i < d, since A was selfinjective we have by theorem 2.71:

ExtiA(M, τdX) ' Ext1A(Ωi−1M, τ ◦ Ωd−1X)

' DHom(Ωd−1X,Ωi−1M)

' DHom(Ωd−iX,M)

' DExtd−iA (X,M)

= 0

Notice that the subscripts rage through 0 < d− i < d thus the last equality is valid.
Since M was d-cluster tilting τdX ∈ add(M). �
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3.1. Cluster Tilting Modules for Selfinjective Algebras. In the case that A
is a selfinjective algebra, cluster tilting modules behaves, in some ways, nicer. In
this chapter we try to use the most of what we have done and finish with proving
the main result from [2]. We then see that the existence of a cluster tilting module
affects the whole category modA in an interesting way.

Corollary 3.3. If A is a selfinjective algebra and M is a d-cluster tilting module
in modA, then so is Ωk(M)⊕A.

Proof. Since A is isomorphic to the direct sum of all indecomposable projective
modules and Ω(M) = 0 if and only if M is projective it is enough to consider a
non-projective indecomposable X. Then we have

ExtiA(X,Ωk(M)⊕A) ' ExtiA(X,Ωk(M))

' ExtiA(Ω−kX,M)

and

ExtiA(Ωk(M)⊕A,X) ' ExtiA(Ωk(M), X)

' ExtiA(M,Ω−kX)

for all 0 < i < d. Since X was assumed to be non-projective (and hence non-
injective) Ω−kX ∈ addM is equivalent with X ∈ add ΩkM . Thus since M was
assumed to be d-cluster tilting we get by the above that so is ΩkM ⊕A. �

Then we have the following result from [2].

Theorem 3.4. Let M be a d-cluster tilting module in modA for some selfinjective
algebra A. If X is in addM , then so is Ωd+1νX. Thus Ωd+1ν permutes the non-
projective indecomposable summands of M .

Proof. We see that Ωd+1ν ' νΩ2Ωd−1 ' τΩd−1 = τd, thus the first part follows
from theorem 3.2. The second part follows easily from the form τΩd−1 and the fact
that A was selfinjective. �

With this we are in a position of proving the following theorem from [2]. We
will present the same proof as Erdmann and Holm, though we will expand on some
details. First though, a quick lemma.

Lemma 3.5. Let A be a selfinjective algebra. If M ∈ modA is Ωd+1ν-periodic,
then cx(M) = 1.

Proof. Say
(
Ωd+1ν

)m
M 'M and let α ∈ Aut(A) be the automorphism such that

ν ' Φα. Recall that ν and Ω commute. Then if {Pi} is a minimal projective
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resolution we have

dim(Pi) = dim(P (ΩiM))

= dim(P (Ωi
(
Ωd+1ν

)m
M))

= dim(P (νmΩi+m(d+1)M))

= dim(P (Φmα Ωi+m(d+1)M))

= dim(Φmα P (Ωi+m(d+1)M))

= dim(P (Ωi+m(d+1)M))

= dim(Pi+m(d+1))

Thus sup{dim(Pi) : i ∈ N} = sup{dim(Pi) : 0 ≤ i < m(d + 1)} and the result
follows. �

Now for the actual theorem.

Theorem 3.6. If A is a selfinjective algebra which admits a d-cluster tilting module
M , then cx(X) ≤ 1 for all X ∈ A-mod.

Proof. All Ωd+1ν-periodic modules have complexity less than or equal to 1, so
assume we have a module X in modA that is not. Set U0 = X. We will inductively
construct modules Ui and short exact sequences

(ζk) 0 // Uk−1 // Uk // (Ωd−1−kM)mk // 0

such that Ext1A(ΩiM,Uk) = 0 for d − 1 − k ≤ i < d − 1. If we do this Ud−1
will have Exti+1

A (M,Ud−1) ' Ext1A(ΩiM,Ud−1) = 0 for 0 ≤ i < d − 1 and since
M was an d-cluster tilting module, Ud−1 ∈ addM . Then we have cx(Ud−1) ≤ 1
and cx (Mmd−1) = cx(M) ≤ 1 since both are Ωd+1ν-periodic. Using backwards
induction and the fact that cx

(
(Ωd−1−kM)mk

)
= cx(M) ≤ 1 we will get that

cx(Uk) ≤ 1 and we will be done.
For the construction of Uk, let U0, . . . , Uk−1 be given and let, for easier notation,

nk = d− 1− k. We have two cases:

(1) If Ext1A(ΩnkM,Uk−1) = 0 let Uk = Uk−1 ⊕ ΩnkM , mk = 1 and

(ζk) 0 // Uk−1
(1 0) // Uk

(0 1) // ΩnkM // 0.

Then we clearly have

Ext1A(ΩiM,Uk) ' Ext1A(ΩiM,Uk−1 ⊕ ΩnkM)

' Ext1A(ΩiM,Uk−1)⊕ Ext1A(ΩiM,ΩnkM)

' Ext1A(ΩiM,Uk−1)⊕ Ext1+i−nkA (M,M).

The right summand is zero for all i such that 0 < 2 + i+ k− d < d and the
left summand is zero for all d − k = d − 1 − (k − 1) ≤ i < d by induction
hypothesis and zero for i = d− 1− k by assumption. Since 1 ≤ k ≤ d− 1
the right hand side is zero for all d − 1 − k ≤ i < d − 1 and thus we are
done with this case of the induction step.
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(2) If Ext1A(ΩnkM,Uk−1) 6= 0 we can construct the universal extension and let
mk = dim Ext1A(ΩnkM,Uk−1). Thus we have

(ζk) 0 // Uk−1 // Uk // (ΩnkM)
mk // 0.

Then, by construction, Ext1A(ΩnkM,Uk) = 0. If we now consider the long
exact sequence from the construction of the universal extension we have
the long exact sequence

0 // HomA(ΩnkM,Uk−1) // HomA(ΩnkM,Uk) // HomA(ΩnkM, (ΩnkM)mk)

δ0 // Ext1A(ΩnkM,Uk−1) // Ext1A(ΩnkM,Uk) // Ext1A(ΩnkM, (ΩnkM)mk)

. . . . . . . . .

δj−1 // ExtjA(ΩnkM,Uk−1) // ExtjA(ΩnkM,Uk) // ExtjA(ΩnkM, (ΩnkM)mk)

. . . . . . . . .

The j:th row can be rewritten as:

δj−1 // Ext1A(Ωnk+j−1M,Uk−1) // Ext1A(Ωnk+j−1M,Uk) // Ext1A(Ωnk+j−1M, (ΩnkM)mk).

Since M was d-cluster tilting, the rightmost term is zero for all 0 < j < d.
By our induction hypotesis the leftmost term is zero for all d− k ≤ d− k+
j−2 < d−1. It is easily checked that 0 < j < d is the weaker of these two,
thus, by exactness, the middle term is zero for all d−k ≤ d−k+j−2 < d−1.
By construction Ext1A(ΩnkM,Uk) = 0 and thus Ext1A(ΩiM,Uk) = 0 is true
for all d− 1− k ≤ i < d− 1, completing our induction step.

By the previous arguments we are done. �

A similar proof can be done using approximations. Let M once again be a
d-cluster tilting algebra. We will get short exact sequences on the form

0 // kerφk // Ak
φk // kerφk−1 // 0

where Ak is a right add(M)-approximation of kerφk−1. Then each Ak ∈ addM and
studying the long exact sequences as above we can conclude that kerφd ∈ addM .
The rest follows as above. For more information see [1].

The attentive reader will notice that in the above proof we only used two things
about M , namely:

(1) If X ∈ addM then cx(X) ≤ 1.
(2) X ∈ addM if and only if ExtiA(M,X) = 0 for all 0 < i < d.

By theorem 3.4 both of the above holds if M is d-cluster tilting. Even though this
might look weaker than being d-cluster tilting, it is not.
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Proposition 3.7. Let A be a selfinjective algebra and M ∈ modA be a module
such that X ∈ addM if and only if ExtiA(M,X) = 0 for all 0 < i < d, then M is
d-cluster tilting.

Proof. We will begin by showing that M is closed under the action of τd, so assume
that it is not. Then there exists an indecomposable module X ∈ addM such that
τdX 6∈ addM . Since ExtiA is a biadditive functor, this implies that there exists an
indecoposable module Y ∈ addM such that ExtiA(Y, τdX) 6= 0 for some 0 < i < d.
Thus we get

0 6= DExtiA(Y, τdX)

' DHom(Y, τΩd−i−1X)

' Ext1A(Ωd−i−1X,Y )

' Extd−iA (X,Y ).

Note that 0 < d − i < d, thus we have a contradiction since X,Y ∈ addM . Thus
M is closed under τd.

Clearly all projectives must be in addM . Since A was selfinjective all injectives
are also in addM , since they are also projective.

Since A was selfinjective the number of non-projective indecomposable direct
summands of M must be the same as in τdM . That gives us that addM = add(A⊕
τdM) and it follows that ExtiA(X,M) = 0 if and only if ExtiA(X, τdM) = 0. Then
we have

DExtiA(X, τdM) ' DExt1A(X, τΩd−iM)

' Hom(Ωd−iM,X)

' Extd−iA (M,X).

The result follows. �

3.2. Selfinjective Nakayama Algebras. Here we will look closer to the case
where A is a selfinjective Nakayama algebra. We will use existing theorems from
[4] and try to connect this with our earlier results about complexity.

For easier notation we define Nn,k = KQ
/
I where Q is the quiver

n 1
2

3

..

.

...

...
.. .

...

and I = RkQ. That is, Nn,k is the selfinjective Nakayama algebra with Lowey length
k.
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Consider the Auslander-Reiten quiver for Nn,k. The dashed lines are to indicate
that the picture repeats itself.

P1 Pn . . . P2 P1

Mk−1,1 · · · Mk−1,3 Mk−1,2Mk−1,2

...
. . .

. . .
...

...

M2,i−1 · · · M2,i+1 M2,iM2,i

Si Si−1 . . . Si+1 Si

Here we number the modules such that P (Sj) = P (Mi,j) = Pj and dimK(Mi,j) =
i. In picture we have

dim(S1) =

1 0
0

0

.....
.
.

dim(S2) =

0 1
0

0

.....
.
.

We will for easier notation let M1,i = Si, M0,i = 0 and Mk,i = Pi. Let us begin
by calculating how Ω, τ and τd ' Ωd+1ν act with this notation. It is easily verified
that ΩMi,j = Mk−i,j+i and τMi,j = Mi,j+1 for all i 6= k, with the second index
calculated modulo n. It follows that Ω2Mi,j = Mi,j+k. Thus we get τdMi,j = Ma,b

with

a =

{
i if d is odd
i− k if d is even

b =

{
j +

(
k (d−1)

2 + 1
)

if d is odd

j +
(
k d−22 + i+ 1

)
if d is even

These numbers do not tell us much since it is hard to calculate b modulo n. Al-
though, if we number them a little bit diffrently, we see something nicer. Therefore,
consider the following picture:

P1 Pn . . . P2 P1

Mk−1,1 · · · Mk−1,3 Mk−1,2Mk−1,2

...
. . .

. . .
...

...

M2,i−1 · · · M2,i+1 M2,iM2,i

Si Si−1 . . . Si+1 Si

0 1 2 2n− 3 2n− 2 2n− 1
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Let c(X) be the column which X is in, for example c(Pi) = 2(n−i+1). We can then
see that for all non-projective X we have c(τX) = c(X)−2 and c(ΩX) = c(X)−k,
here counted modulo 2n. Thus c(τdX) = c(X)−(k(d−1)+2) for all non-projective
indecomposable modules.

From here it is easy to compute the complexity of all Nn,k-modules. Indeed, we
only need that Nn,k is representation finite and that for any non-projective inde-
composable X the module ΩX will be an indecomposable non-projective module.
So take any Y ∈ modNn,k and let Y = P ⊕ Y ′ where P is projective and Y ′ does
not have a projective direct summand. Then we clearly have ΩiY ′ ' Y ′ for some
i by the pigeon hole principle and thus cx(Y ) = 1 if Y ′ is non-zero. The following
proposition follows:

Proposition 3.8. For any X ∈ modNn,k we have cx(X) = 1 if and only if X is
non-projective. If X is projective cx(X) = 0.

But for completeness, let us study this a little futher keeping theorem (3.6) in
mind. The following theorem is proved in [4], theorem 5.1.

Theorem 3.9. There exists a d-cluster tilting module in Nn,k if and only if one of
the following conditions are met:

i) k(d− 1) + 2|2n;
ii) k(d− 1) + 2|tn where t = gcd(d+ 1, 2(k − 1)).

Corollary 3.10. If there exits a d-cluster tilting module in modNn,k there exists
a d-cluster tilting module in modNmn,k for each m ∈ Z+.

A natural question to ask is how the d-cluster tilting module in modNmn,k looks
like in relation to the one in modNn,k. For this, consider the two cases N3,4 and
N6,4. Then we have a 2-cluster tilting module in as follows:

P1 P3 P2 P1

M3,1 M3,3 M3,2M3,2

M2,2 M2,1 M2,3 M2,2

S2 S1 S3S3

That is, M = A⊕ S2 ⊕M2,2 ⊕M3,1 is 2-cluster tilting. This can be easily verified
using (2.71) as we will see later. In N6,4 we then have a 2-cluster tilting module as
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follows:

P1 P6 P5 P4 P3 P2 P1

M3,1 M3,6 M3,5 M3,4 M3,3 M3,2M3,2

M2,2 M2,1 M2,6 M2,5 M2,4 M2,3 M2,2

S2 S1 S6 S5 S4 S3S3

Notice how the first picture seems to repeat itself twice. This is really not a
coincidence and comes partly from that the Auslander-Reiten quiver have the same
structure with a longer period, and partly from theorem (2.71). Notice that a con-
sequence of theorem (2.71) is that ExtiA(M,N) is totally dependant on how M and
N lies in the Auslander-Reiten quiver since Ω sends non-projective indecomposables
to non-projective indecomposables. Thus we get the following result.

Proposition 3.11. If M =
⊕

(i,j)∈IMi,j is a d-cluster tilting module in modNn,k
then M ′ =

⊕m−1
h=0

⊕
(i,j)∈IMi,j+nh is a cluster tilting module in modNmn,k.

Proof. This is a consequence of the fact that the Auslander-Reiten quiver for Nn,k
is repeating itself and that the Auslander-Reiten quiver for Nmn,k has the same
structure, but with a longer period. Using this with theorem (2.71) the result
follows. The details are left for the reader. �

Given (3.9), let us study the case where 2n = k(d − 1) + 2. We claim that the
module

N1 = A⊕
⊕

c(X)∈{0,1}

X

is a d-cluster tilting module. To see this, let us take the example with n = 5, k = 4
and d = 3. Then in picture we have that N1 is

P1 P5 P4 P3 P2 P1

M3,1 M3,5 M3,4 M3,3 M3,2M3,2

M2,2 M2,1 M2,5 M2,4 M2,3 M2,2

S2 S1 S5 S4 S3S3

Ω2N1 ΩN1

Using theorem (2.71) we see that Ω(N1) ' S4 ⊕ M2,4 ⊕ M3,3 and Ω2(N1) '
S1 ⊕M2,1 ⊕M3,5. It is easy to see that all indecomposable modules, except the
ones in N1, have a non-zero morphism in the projective stable category from at



32 PETTER RESTADH

least one of S3, M2,3, M2,4, S1, M2,1 or M3,2. Thus X ∈ addN1 is equivalent to

ExtiA(N1, X) for 0 < i < 3. By proposition (3.7) it follows that N1 is 3-cluster
tilting.

By symmetry we of course have that Nj = A⊕
⊕

c(X)∈{j−1,j}X also is a cluster

tilting module. This shows the following lemma.

Lemma 3.12. Let Nn,k be as above. If 2n = k(d−1)+2 then for any indecompos-
able module X ∈ modNn,k there exists a module Y ∈ modNn,k such that X ⊕Y is
d-cluster tilting.

Thus using theorem (3.4) all non-projective modules are Ωd+1ν-periodic. In fact,
for all non-projective we have, by the proof of (3.4), that c(Ωd−1νX) ' c(τdX) =
c(X) − (k(d − 1) + 2) = c(X) − 2n ≡ c(X) modulo 2n. Thus, if we collect our
above observations, we get that if 2n = k(d − 1) + 2 then for all non-projecitve
indecomposable modules Mi,j

• Mi,j ' Ωd+1νMi,j if d is odd.

• Mi,j '
(
Ωd+1ν

)2
Mi,j if d is even.

Using (3.11) we can expand the above lemma to all cyclic Nakayama algebras
such that k(d− 1) + 2|2n, but we first need to clarify one more case. Consider the
case when k(d− 1) + 2 = n. Then we claim that

M1 = A⊕
⊕

cx(X)∈{0,1,n,n+1}

X

is d-cluster tilting. Indeed, similar to above we will show this via an example. Thus
consider N7,5 which has a 2-cluster tilting module on the following form:

P1 P7 P6 P5 P4 P3 P2 P1

M4,1 M4,7 M4,6 M4,5 M4,4 M4,3 M4,2M4,2

M3,2 M3,1 M3,7 M3,6 M3,5 M3,4 M3,3 M3,2

M2,2 M2,1 M2,7 M2,6 M2,5 M2,4 M2,3M2,3

S3 S2 S1 S7 S6 S5 S4 S3

Then each ”pillar” will have a non-zero Ext1A with all modules to the left of them.
Similar to above, we can consider any Mi defined as

Mi = A⊕
⊕

cx(X)∈{i−1,i,n+i−1,n+i}

X

Then we are in a position to prove the following:
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Theorem 3.13. Let Nn,k be as above. If k(d−1)+2|2n then for any indecomposable
module X ∈ modNn,k there exists a module Y ∈ modNn,k such that X ⊕ Y is d-
cluster tilting.

Proof. Let m := 2n
k(d−1)+2 . If k(d − 1) + 2 is even, this is a direct consequence of

proposition (3.11) via considering Ni in N n
m ,k

. If k(d− 1) + 2 is odd it is clear that
k(d − 1) + 2|n and then it follows from proposition (3.11) via considering Mi in
N 2n

m ,k. �

Thus, if k(d− 1) + 2|2n, by theorem (3.4) all non-projectives are Ωd+1ν-periodic
and by (3.5) they have complexity less than, or equal to, 1. Thus we can calculate
the periodicity as

• Mi,j '
(
Ωd+1ν

)m
Mi,j if (d− 1)m is even.

• Mi,j '
(
Ωd+1ν

)2m
Mi,j if (d− 1)m is odd.

The above theorem does not however hold in general. For example, consider
N4,6. According to theorem (3.9) there exists at least one 4-cluster tilting module
and it can be checked that there does not exist a d-cluster tilting module for any
other d. It can be checked that the only 4-cluster tilting modules that do exist are
A⊕M5,i ⊕ Si.

P1 P4 P3 P2 P1

M5,1 M5,4 M5,3 M5,2M5,2

M4,2 M4,1 M4,4 M4,3 M4,2

M3,2 M3,1 M3,4 M3,3M3,3

M2,3 M2,2 M2,1 M2,4 M2,3

S3 S2 S1 S4S4

Indeed, assumeM2,i would be a direct summand of a cluster tilting module. Then so

is τ4M2,i ' M4,i+1, but Ext1A(M2,i,M4,i+1) 6= 0. Similarly Ext1A(τ4M4,i,M4,i) 6= 0

and Ext1A(M3,i, τM3,i) 6= 0.

Remark 3.14. We can, as before, conclude that even in this case all non-projective
indecomposable modules are both Ω- and Ωd+1ν-periodic using our earlier argument
with the pigeon hole principle.
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