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Abstract—Practitioners use infrastructure as code (IaC) scripts
to provision servers and development environments. While de-
veloping IaC scripts, practitioners may inadvertently introduce
security smells. Security smells are recurring coding patterns that
are indicative of security weakness and can potentially lead to
security breaches. The goal of this paper is to help practitioners
avoid insecure coding practices while developing infrastructure as
code (1aC) scripts through an empirical study of security smells in
IaC scripts.

We apply qualitative analysis on 1,726 IaC scripts to identify
seven security smells. Next, we implement and validate a static
analysis tool called Security Linter for Infrastructure as Code
scripts (SLIC) to identify the occurrence of each smell in 15,232
IaC scripts collected from 293 open source repositories. We
identify 21,201 occurrences of security smells that include 1,326
occurrences of hard-coded passwords. We submitted bug reports
for 1,000 randomly-selected security smell occurrences. We obtain
104 responses to these bug reports, of which 67 occurrences
were accepted by the development teams to be fixed. We observe
security smells can have a long lifetime, e.g., a hard-coded secret
can persist for as long as 98 months, with a median lifetime of
20 months.

Index Terms—devops, infrastructure as code, security smell

I. INTRODUCTION

Infrastructure as code (IaC) scripts help practitioners to
provision and configure their development environment and
servers at scale [1]. IaC scripts are also known as configuration
scripts [2] [1] or configuration as code scripts [1] [3]. Commer-
cial IaC tool vendors, such as Chef ! and Puppet [4], provide
programming syntax and libraries so that programmers can
specify configuration and dependency information as scripts.

Fortune 500 companies 2, such as Intercontinental Exchange
(ICE) 3, use IaC scripts to maintain their development envi-
ronments. For example, ICE, which runs millions of financial
transactions daily 4 maintains 75% of its 20,000 servers using
IaC scripts [5]. The use of IaC scripts has helped ICE decrease
the time needed to provision development environments from
1~2 days to 21 minutes [5].

However, IaC scripts can be susceptible to security weak-
ness. Let us consider Figure 1 as an example. In Figure 1,
we present a Puppet code snippet extracted from the ‘aeolus-
configure’ open source software (OSS) repository °. In this

Uhttps://www.chef.io/chef/
Zhttp://fortune.com/fortune500/list/
3https://www.theice.com/index
“https://www.theice.com/publicdocs/ICE_at_a_glance.pdf
Shttps://github.com/aeolusproject/aeolus-configure

code snippet, we observe a hard-coded password using the
‘password’ attribute. A hard-coded string ‘v23zj59an’ is as-
signed as password for user ‘aeolus’. Hard-coded passwords in
software artifacts is considered as a software security weakness
(‘CWE-798: Use of Hard-coded Credentials’) by Common
Weakness Enumerator (CWE) [6]. According to CWE [6],
“If hard-coded passwords are used, it is almost certain that
malicious users will gain access to the account in question”.

IaC scripts similar to Figure 1, which contain hard-coded
credentials or other security smells, can be susceptible to
security breaches. Security smells are recurring coding patterns
that are indicative of security weakness. A security smell does
not always lead to a security breach, but deserves attention
and inspection. Existence and persistence of these smells in
IaC scripts leave the possibility of another programmer using
these smelly scripts, potentially propagating use of insecure
coding practices. We hypothesize through systematic empirical
analysis, we can identify security smells and the prevalence
of the identified security smells.

The goal of this paper is to help practitioners avoid insecure
coding practices while developing infrastructure as code (IaC)
scripts through an empirical study of security smells in laC
scripts.

We answer the following research questions:

« RQ1: What security smells occur in infrastructure as code
scripts? (Section II)

« RQ2: How frequently do security smells occur in infras-
tructure as code scripts? (Section VI)

o RQ3: What is the lifetime of the identified security smell
occurrences for infrastructure as code scripts? (Section VI)

e« RQ4: Do practitioners agree with security smell occur-
rences? (Section VI)

We answer our research questions by analyzing IaC scripts
collected from OSS repositories. We apply qualitative anal-
ysis [7] on 1,726 scripts to determine security smells. Next,
we construct a static analysis tool called Security Linter for
Infrastructure as Code scripts (SLIC) to automatically identify
the occurrence of these security smells in 15,232 IaC scripts
collected by mining 293 OSS repositories from four sources:
Mozilla ®, Openstack 7, Wikimedia Commons 8, and GitHub °.

Shttps://hg.mozilla.org/
"https://git.openstack.org/cgit
8https://gerrit.wikimedia.org/r/
“https://github.com/



postgres: :user{"aeolus":
password => "v23zj59an", <----TTTITEIESssssses
roles => "CREATEDB",
require => Service["postgresql"] }

Fig. 1: An example IaC script with hard-coded password.

We calculate smell density and lifetime of each identified smell
occurrence in the collected IaC scripts. We submit bug reports
for 1,000 randomly-selected smell occurrences to assess the
relevance of the identified security smells.

Contributions: We list our contributions as following:

o A derived list of seven security smells with definitions;

o An evaluation of how frequently security smells occur in
IaC scripts along with their lifetime;

o An empirically-validated tool (SLIC) that automatically
detects occurrences of security smells; and

o An evaluation of how practitioners perceive the identified
security smells.

We organize the rest of the paper as following: we pro-
vide background information with related work discussion in
Section II. We describe the methodology and the definitions
of seven security smells in Section III. We describe the
methodology to construct and evaluate SLIC in Section IV.
In Section V, we describe the methodology for our empirical
study. We report our findings in Section VI, followed by a dis-
cussion in Section VII. We describe limitations in Section VIII,
and conclude our paper in Section IX.

II. BACKGROUND AND RELATED WORK

We provide background information with related work dis-
cussion in this section.

A. Background

IaC is the practice of automatically defining and managing
network and system configurations and infrastructure through
source code [1]. Companies widely use commercial tools such
as Puppet, to implement the practice of IaC [1] [8] [9]. For
example, using IaC scripts application deployment time for
Borsa Istanbul, Turkey’s stock exchange, reduced from ~10
days to an hour [10]. With IaC scripts Ambit Energy increased
their deployment frequency by a factor of 1,200 [11].

Typical entities of Puppet include manifests [4]. Manifests
are written as scripts that use a .pp extension. In a single
manifest script, configuration values can be specified using
variables and attributes. Puppet provides the utility ‘class’
that can be used as a placeholder for the specified vari-
ables and attributes. For better understanding, we provide
a sample Puppet script with annotations in Figure 2. For
attributes configuration values are specified using the ‘=>’
sign, whereas, for variables, configuration values are provided
using the ‘=" sign. A single manifest script can contain one
or multiple attributes and/or variables. In Puppet, variables
store values and have no relationship with resources. Attributes
describe the desired state of a resource. Similar to general
purpose programming languages, code constructs such as

{ Calling function\:
‘getAuth()’ ]

'Cent0S': { auth_protocol => igetAuth()| } <77

[AShippian g

default: { auth_protocol => “https' }

Fig. 2: Annotation of an example Puppet script.

functions/methods, comments, and conditional statements are
also available for Puppet scripts.

B. Related Work

Prior research has investigated what categories of bad
coding practices can have security consequences in non-laC
domains, such as Android applications and Java frameworks.
Meng et al. [12] studied bad coding practices related to the
security of Java Spring Framework in Stack Overflow, and
reported 9 out of 10 SSL/TLS-related posts to discuss insecure
coding practices. Fahl et al. [13] investigated inappropriate use
of SSL/TLS protocols, such as, trusting all certificates and
stripping SSL, for Android applications. Using MalloDroid,
Fahl et al. [13] identified 8% of the studied 13,500 Android
applications to inappropriately use SSL/TLS. Felt et al. [14]
used Stowaway to study if Android applications follow the
principle of least privilege. They reported 323 of the studied
900 Android applications to be over-privileged. Ghafari et
al. [15] analyzed 70,000 Android applications to identify the
frequency of security smells. They reported 50% of the studied
applications to contain at least three security smells. Egele et
al. [16] used a static analysis tool called Cryptolint to analyze
if cryptography APIs are used inappropriately, for example,
using constant encryption keys and using static seeds to seed
pseudo-random generator function. Egele et al. [16] observed
at least one inappropriate use for 88% of 11,748 Android
applications.

The above-mentioned work highlights that other domains
such as Android are susceptible to inappropriate coding prac-
tices that have security consequences. Yet, for IaC scripts
we observe lack of studies that investigate coding practices
with security consequences. For example, Sharma et al. [2],
Schwarz [17], and Bent et al. [18], in separate studies in-
vestigated code maintainability aspects of Chef and Puppet
scripts. Hanappi et al. [19] investigated how convergence
of TaC scripts can be automatically tested, and proposed an
automated model-based test framework. Jiang and Adams
[8] investigated the co-evolution of IaC scripts and other
software artifacts, such as build files and source code. They
reported IaC scripts to experience frequent churn. Rahman and
Williams [20] characterized defective IaC scripts using text
mining and created prediction models using text feature met-



rics. Rahman et al. [21] surveyed practitioners to investigate
which factors influence usage of IaC tools.

III. SECURITY SMELLS

We describe the methodology to derive security smells in
TaC scripts, followed by the definitions and examples for the
identified security smells.

A code smell is a recurrent coding pattern that is indicative
of potential maintenance problems [22]. A code smell may not
always have bad consequences, but still deserves attention, as
a code smell may be an indicator of a problem [22]. Our
paper focuses on identifying security smells. Security smells
are recurring coding patterns that are indicative of security
weakness. A security smell is different from a vulnerability, as
a vulnerability always enables a security breach [23], whereas
a security smell does not.

A. RQI: What security smells occur in infrastructure as code
scripts?

Data Collection: We collect 1,726 Puppet scripts that we
use to determine the security smells. We collect these scripts
from the master branches of 74 repositories, downloaded on
July 30, 2017. We collect these 74 repositories from the three
organizations Mozilla, Openstack and Wikimedia Commons.
We use Puppet scripts to construct our dataset because Puppet
is considered as one of the most popular tools for configuration
management [8] [9], and has been used by companies since
2005 [24].

Qualitative Analysis: We first apply a qualitative analy-
sis technique called descriptive coding [25] on 1,726 Pup-
pet scripts to identify security smells. Next, we map each
identified smell to a possible security weakness defined by
CWE [6]. We select qualitative analysis because we can (i)
get a summarized overview of recurring coding patterns that
are indicative of security weakness; and (ii) obtain context
on how the identified security smells can be automatically
identified. We select the CWE to map each smell to a security
weakness because CWE is a list of common software security
weaknesses developed by the security community [6].

Figure 3 provides an example of our qualitative analysis
process. We first analyze the code content for each IaC script
and extract code snippets that correspond to a security weak-
ness as shown in Figure 3. From the code snippet provided in
the top left corner, we extract the raw text: ‘$db_user = ‘root’.
Next we generate the initial category ‘Hard-coded user name’
from the raw text ‘$db_user = ‘root” and ‘$vcenter_user =
‘user”. Finally, we determine the smell ‘Hard-coded secret’
by combining initial categories. We combine these two initial
categories, as both correspond to a common pattern of speci-
fying user names and passwords as hard-coded secrets. Upon
derivation we observe ‘Hard-coded secret’ to be related to
‘CWE-798: Use of Hard-coded Credentials’ and ‘CWE-259:
Use of Hard-coded Password’ [6].

Our qualitative analysis process to identify seven security
smells took 565 hours. The first author conducted the qualita-
tive analysis.

Verification of CWE Mapping by Independent Raters:
The first author derived the seven smells, and the derivation
process is subject to the rater’s judgment. We mitigate this
limitation by recruiting two independent raters who are not
authors of the paper. These two raters, with background in
software security, independently evaluated if the identified
smells are related to the associated CWEs. We provide the
raters the smell names, one example of each smell, and the
related CWEs for each smell. The two raters independently
determined if each of the smells are related to the provided
CWEs. Both raters mapped each of the seven security smells
to the same CWEs. We observe a Cohen’s Kappa score of 1.0
between raters.

B. Answer to RQ1: What security smells occur in infrastruc-
ture as code scripts?

Using our methodology we identify seven security smells,
each of which we describe in this section. The names of the
smells are presented alphabetically. Examples of each security
smell is presented in Figure 4.

Admin by default: This smell is the recurring pattern of
specifying default users as administrative users. The smell can
violate the ‘principle of least privilege’ property [26], which
recommends practitioners to design and implement system in a
manner so that by default the least amount of access necessary
is provided to any entity. In Figure 4, two of the default
parameters are ‘$power_username’, and ‘$power_password’.
If no values are passed to this script, then the default user will
be ‘admin’, and can have full access. The smell is related with
‘CWE-250: Execution with Unnecessary Privileges’ [6].

Empty password: This smell is the recurring pattern of us-
ing a string of length zero for a password. An empty password
is indicative of a weak password. An empty password does not
always lead to a security breach, but makes it easier to guess
the password. The smell is similar to the weakness ‘CWE-
258: Empty Password in Configuration File’ [6]. An empty
password is different from using no passwords. In SSH key-
based authentication, instead of passwords, public and private
keys can be used [27]. Our definition of empty password
does not include usage of no passwords and focuses on
attributes/variables that are related to passwords and assigned
an empty string. Empty passwords are not included in hard-
coded secrets because for a hard-coded secret, a configuration
value must be a string of length one or more.

Hard-coded secret: This smell is the recurring pattern
of revealing sensitive information such as user name and
passwords as configurations in IaC scripts. [aC scripts provide
the opportunity to specify configurations for the entire system,
such as configuring user name and password, setting up SSH
keys for users, specifying authentications files (creating key-
pair files for Amazon Web Services). However, in the process
programmers can hard-code these pieces of information into
scripts. In Figure 4, we provide six examples of hard-coded
secrets. We consider three types of hard-coded secrets: hard-
coded passwords, hard-coded user names, and hard-coded
private cryptography keys. Relevant weaknesses to the smell



Code Snippet |—>| Raw Text |->| Initial Category |—>| Security Smell I
oo T oo TmmmTmmmTT 1
, class osnailyfacter::mysql_access( e e mmmmeeeeo - |
1 J— ’ I — s emmEmEm e e == == ===
| $ensure = ‘present’, i I_$_dt_’ user =‘root’, ™} Hard-coded user name
1 $db_user = ’root’, At
b o o o o e - ] (= = = = - - - - - - - == - - 1

I$vcenux,u&n': ‘user’, Hard-coded secret }

_____________________ 1 - . - . e e e - -
| $vcenter_user = ‘user’, :Z _____________
: $vcenter_password = ‘password’, $vcenter_password = ‘password ' Hard-coded password |

1 $vcenter_host_ip = ‘10.10.10.10°, 1

Fig. 3: An example of how we use qualitative analysis to determine security smells in IaC scripts.

i Susplclous comment, ‘

//bugs . launchpad.net/keystone/+bug/1472285; <-

i Admin by default, Hard- rnded secret (user name)

case $: osfamlly
“Cent0S’: {
user { 0000 e———eeeeeed

}

3 . | Hard-coded secret (user namc)

« Commmmmssees e

‘RedHat’:
user {

‘Debian’: {
user {

¥

¥
default: {
user {

password => $power password,
¥
}
}
}

Fig. 4: An annotated script with all seven security smells. The
name of each security smell is highlighted on the right.

are ‘CWE-798: Use of Hard-coded Credentials’ and ‘CWE-
259: Use of Hard-coded Password’ [6]. For source code,
practitioners acknowledge the existence of hard-coded secrets
and advocate for tools such as CredScan ' to scan source
code.

We acknowledge that practitioners may intentionally leave
hard-coded secrets such as user names and SSH keys in scripts,
which may not be enough to cause a security breach. Hence
this practice is security smell, but not a vulnerability.

Invalid IP address binding: This smell is the recurring
pattern of assigning the address 0.0.0.0 for a database server
or a cloud service/instance. Binding to the address 0.0.0.0 may
cause security concerns as this address can allow connections
from every possible network [28]. Such binding can cause

10https://blogs.msdn.microsoft.com/visualstudio/2017/11/17/managing-
secrets-securely-in-the-cloud/

security problems as the server, service, or instance will be
exposed to all IP addresses for connection. For example,
practitioners have reported how binding to 0.0.0.0 facilitated
security problems for MySQL !!(database server), Mem-
cached '?(cloud-based cache service) and Kibana '3(cloud-
based visualization service). We acknowledge that an orga-
nization can opt to bind a database server or cloud instance to
0.0.0.0, but this case may not be desirable overall. This smell
is related to improper access control as stated in the weakness
‘CWE-284: Improper Access Control’ [6].

Suspicious comment: This smell is the recurring pattern of
putting information in comments about the presence of defects,
missing functionality, or weakness of the system. The smell
is related to ‘CWE-546: Suspicious Comment’ [6]. Examples
of such comments include putting keywords such as ‘TODO’,
‘FIXME’, and ‘HACK’ in comments, along with putting bug
information in comments. Keywords such as ‘“TODO’ and
‘FIXME’ in comments are used to specify an edge case or
a problem [29]. However, these keywords make a comment
‘suspicious’ i.e., indicating missing functionality about the
system.

Use of HTTP without TLS: This smell is the recurring
pattern of using HTTP without the Transport Layer Security
(TLS). Such use makes the communication between two
entities less secure, as without TLS, use of HTTP is susceptible
to man-in-the-middle attacks [30]. For example, as shown in
Figure 4, the authentication protocol is set to ‘http’ for the
branch that satisfies the condition ‘RedHat’. Such usage of
HTTP can be problematic, as the ‘admin-user’ will be connect-
ing over a HTTP-based protocol. An attacker can eavesdrop
on the communication channel and may guess the password
of user ‘admin-user’. This security smell is related to ‘CWE-
319: Cleartext Transmission of Sensitive Information’ [6]. The
motivation for using HTTPS is to protect the privacy and
integrity of the exchanged data. Information sent over HTTP
may be encrypted, and in such case ‘Use of HTTP without
TLS’ may not lead to a security attack.

Use of weak cryptography algorithms: This smell is the
recurring pattern of using weak cryptography algorithms, such

https://serversforhackers.com/c/mysql-network-security
12https://mews.ycombinator.com/item?id=16493480
Bhttps://www.elastic.co/guide/en/kibana/5.0/breaking-changes-5.0.html



TABLE I: An Example of Using Code Snippets To Determine Rule for ‘Hard-coded secret’

Code Snippets

Output of Parser

S$keystone_db_password = ‘keystone_pass’,
$glance_user_password = ‘glance_pass’,
$rabbit_password = ‘rabbit_pw’,

user =>‘jenkins’

$ssl_key_file = ‘/etc/ssl/private/ssl-cert-gerrit-review.key’

<VARIABLE, ‘$keystone_db_password’, ‘keystone_pass’ >
<VARIABLE, ‘$glance_user_password’, ‘glance_pass’ >

<VARIABLE, ‘$rabbit_password’, ‘rabbit_pw’ >

<ATTRIBUTE, ‘user’, ‘jenkins’ >

<VARIABLE, ‘$ssl_key_file’, ‘/etc/ssl/private/ssl-cert-gerrit-review.key’ >

as MD4 and SHA-1 for encryption purposes. MD5 suffers
from security problems, as demonstrated by the Flame mal-
ware in 2012 [31]. MDS5 is susceptible to collision attacks [32]
and modular differential attacks [33]. In Figure 4, we observe
a password is being set using the ‘ht_md5’ method provided
by the ‘htpasswd’ Puppet module '*. Similar to MD5, SHA1
is also susceptible to collision attacks '>. This smell is related
to ‘CWE-327: Use of a Broken or Risky Cryptographic Algo-
rithm’ and ‘CWE-326: Inadequate Encryption Strength’ [6].
When weak algorithms such as MDS5 are used for for hashing
that may not lead to a breach, but using MD5 for password
setup may.

Line# __ Output of Parser

1 This is an example Puppet script 1 <COMMENT, “This is an example Puppet script’™>

2 $t0ken =" XXXYYYZZZ' 2 <VARIABLE, ‘token’, ‘XXXYYYZZZ'>

3 $os_name = " Windows' 3 <VARIABLE, ‘05 name’, ‘Windows™>

1 auth protocol => \http' 4 <ATTRIBUTE, ‘auth_protocol’, *http">

5 $\'<:(‘1;r('1‘71»155“'01'(1 = "password' s <VARIABLE, ‘veenter_password’, ‘password’>
a b

Fig. 5: Output of the ‘Parser’ component in SLIC. Figure 5a
presents an example [aC script fed to Parser. Figure 5b presents
the output of Parser for the example IaC script.

IV. SECURITY LINTER FOR INFRASTRUCTURE AS CODE
SCRIPTS (SLIC)

We first describe how we construct SLIC, then we describe
how we evaluate SLIC with respect to smell detection accu-
racy.

A. Description of SLIC

SLIC is a static analysis tool for detecting security smells
in IaC scripts. SLIC has two components:

Parser: The Parser parses an IaC script and returns a set
of tokens. Tokens are non-whitespace character sequences
extracted from IaC scripts, such as keywords and variables.
Except for comments, each token is marked with its name,
token type, and any associated configuration value. Only token
type and configuration value are marked for comments. For
example, Figure 5a provides a sample script that is fed into
SLIC. The output of Parser is is expressed as a vector, as
shown in Figure 5b. For example, the comment in line#l, is
expressed as the vector ‘<COMMENT, ‘This is an example
Puppet script’>’. Parser provides a vector representation of all
code snippets in a script.

https://forge.puppet.com/leinaddm/htpasswd
Shttps://security.googleblog.com/2017/02/announcing-first-shal-
collision.html

Rule Engine: We take motivation from prior work [35] [36]
and use a rule-based approach to detect security smells. We
use rules because (i) unlike keyword-based searching, rules
are less susceptible to false positives [35] [36]; and (ii) rules
can be applicable for IaC tools irrespective of their syntax.
The Rule Engine consists of a set of rules that correspond to
the set of security smells identified in Section III-A. The Rule
Engine uses the set of tokens extracted by Parser and checks
if any rules are satisfied.

We can abstract patterns from the smell-related code
snippets, and constitute a rule from the generated patterns.
We use Table I to demonstrate our approach. The ‘Code
Snippet’ column presents a list of code snippets related to
‘Hard-coded secret’. The ‘Parser Output’ column represents
vectors for each code snippet. We observe that the vector of
format ‘<VARIABLE, NAME, CONFIGURATION VALUE
>’ and ‘<ATTRIBUTE, NAME, CONFIGURATION
VALUE >’, respectively, occurs four times and once for
our example set of code snippets. We use the vectors
from the output of ‘Parser’ to determine that variable
and attribute are related to ‘Hard-coded secret’. The
vectors can be abstracted to construct the following rule:
‘(isAttribute(xz) V isVariable(x)) A (isUser(x.name)
V' isPassword(x.name) V isPvtKey(xz.name)) A
(length(x.value) >0)’. This rule states that ‘for an IaC
script, if token z is a variable or an attribute, and a string is
passed as configuration value for a variable or an attribute
which is related to user name/password/private key, then the
script contains the security smell ‘Hard-coded secret’. We
apply the process of abstracting patterns from smell-related
code snippets to determine the rules for the seven security
smells.

A programmer can use SLIC to identify security smells for
one or multiple Puppet scripts. The programmer specifies a
directory where script(s) reside. Upon completion of analysis,
SLIC generates a comma separated value (CSV) file where
the count of security smell for each script is reported, along
with the line number of the script where the smell occurred.
We implement SLIC using API methods provided by puppet-
lint 17,

Rules to Detect Security Smells: We present the rules
needed for the ‘Rule Engine’ of SLIC in Table II. The string
patterns need to support the rules in Table II are listed in
Table III. The ‘Rule’ column lists rules for each smell that is
executed by Rule Engine to detect smell occurrences. To detect
whether or not a token type is a variable (isVariable(z)),

http://puppet-lint.com/



TABLE II: Rules to Detect Security Smells

Smell Name Rule

Admin by default

(isParameter(x)) A (isAdmin(z.name) A isUser(x.name))

Empty password

(isAttribute(z) V isVariable(z)) A ((length(z.value) == 0 A isPassword(xz.name))

(tsAttribute(z) V isVariable(z)) A (isUser(z.name) V isPassword(z.name) V isPvtKey(z.name))

Hard-coded secret A (length(z.value)>0)

Invalid IP address binding

(isVariable(x) V isAttribute(z)) A (isInvalid Bind(z.value))

Suspicious comment

(isComment(z)) A (hasWrongWord(xz) V hasBuglnfo(z))

Use of HTTP without TLS

(isAttribute(x) V isVariable(x)) A (isHTTP(x.value))

Use of weak crypto. algo.

(isFunction(z) A usesWeakAlgo(x.name))

TABLE III: String Patterns Used for Functions in Rules

Function
hasBugInfo() [34]
hasWrongWord() 1

String Pattern
‘bug[#nt]*+[0-9]+,‘show_bug\.cgi?id=[0-9]+
‘bug’, ‘hack’, ‘fixme’, ‘later’, ‘later2’, ‘todo’

1s Admin() ‘admin’

isHTTP() ‘http:’

isInvalidBind() ‘0.0.0.0°

isPassword() ‘pwd’, ‘pass’, ‘password’
isPvtKey() ‘[pvt[priv]+*[cert]key]rsa[secret[ssI]+
1sUser() ‘user’

usesWeakAlgo() ‘md5’, ‘shal’

an attribute (isAttribute(z)), a function (isFunction(z)),
or a comment (isComment(x)), we use the token vectors
generated by Parser. Each rule includes functions whose
execution is dependent on matching of string patterns. We
apply a string pattern-based matching strategy similar to prior
work [37] [38], where we check if the value satisfies the
necessary condition. Table III lists the functions and corre-
sponding string patterns. For example, function ‘hasBuglInfo()’
will return true if the string pattern ‘show_bug)\.cgi?id=[0-9]+’
or ‘bug[#nt]+[0-9]+ is satisfied.

B. Evaluation of SLIC

We evaluated the detection accuracy of SLIC by construct-
ing an oracle dataset.

Oracle Dataset: We construct the oracle dataset by applying
closed coding [25], where a rater identifies a pre-determined
pattern. In the oracle dataset, 140 scripts are manually checked
for security smells by at least two raters. The raters apply their
knowledge related to IaC scripts and security, and determine if
a certain smell appears for a script. To avoid bias, we did not
include any raters as part of deriving smells or constructing
SLIC.

We made the pattern identification task available to the
students using a website. In each task, a rater determines which
of the security smells identified in Section III-A occur in a
script. We used graduate students as raters to construct the or-
acle dataset. We recruited these students from a graduate-level
course conducted in the university. We obtained institutional
review board (IRB) approval for the student participation. Of
the 58 students in the class, 28 students agreed to participate.
We assigned 140 scripts to the 28 students to ensure each
script is reviewed by at least two students, where each student
does not have to rate more than 10 scripts. We used balanced
block design to assign 140 scripts from our collection of 1,726
scripts. We observe agreements on the rating for 79 of 140

scripts (56.4%), with a Cohen’s Kappa of 0.3. According to
Landis and Koch’s interpretation [39], the reported agreement
is “fair’. In the case of disagreements between raters for 61
scripts, the first author resolved the disagreements.

Upon completion of the oracle dataset, we evaluate the
accuracy of SLIC using precision and recall for the oracle
dataset. Precision refers to the fraction of correctly identified
smells among the total identified security smells, as determined
by SLIC. Recall refers to the fraction of correctly identified
smells that have been retrieved by SLIC over the total amount
of security smells.

Accuracy of SLIC for Oracle Dataset: We report the
detection accuracy of SLIC with respect to precision and recall
in Table IV. As shown in the ‘No smell’ row, we identify
113 scripts with no security smells. The rest of the 27 scripts
contained at least one occurrence of the seven smells. The
count of occurrences for each security smell along with SLIC’s
precision and recall for the oracle dataset are provided in
Table IV. For example, in the oracle dataset, we identify one
occurrence of ‘Admin by default’ smell. The precision and
recall of SLIC for one occurrence of admin by default is
respectively, 1.0 and 1.0. SLIC generates zero false positives
and one false negative for ‘Hard-Coded secret’. For the oracle
dataset average precision and recall of SLIC is 0.99.

TABLE IV: SLIC’s Accuracy for the Oracle Dataset

Smell Name Occurr.  Precision Recall
Admin by default 1 1.00 1.00
Empty password 2 1.00 1.00
Hard-coded secret 24 1.00 0.96
Invalid IP address binding 4 1.00 1.00
Suspicious comment 17 1.00 1.00
Use of HTTP without TLS 9 1.00 1.00
Use of weak crypto. algo. 1 1.00 1.00
No smell 113 0.99 1.00
Average 0.99 0.99

Dataset and Tool Availability: The source code of SLIC
and all constructed datasets are available online [40].

V. EMPIRICAL STUDY
A. Research Questions

We investigate the following research questions:

« RQ2: How frequently do security smells occur in infrastruc-
ture as code scripts?

o RQ3: What is the lifetime of the identified security smell
occurrences for infrastructure as code scripts?



TABLE V: OSS Repositories Satisfying Criteria (Sect. V-B)

GH MOz OST WIK
Initial Repo Count 3,405,303 1,594 1,253 1,638
Criteria-1 (11% IaC Scripts) 6,088 2 67 11
Criteria-2 (Not a Clone) 4,040 2 61 11
Criteria-3 (Commits/Month > 2) 2,711 2 61 11
Criteria-4 (Contributors > 10) 219 2 61 11
Final Repo Count 219 2 61 11

e RQ4: Do practitioners agree with security smell occur-
rences?

B. Datasets

We conduct our empirical study with four datasets of Pup-
pet scripts. Three datasets are constructed using repositories
collected from three organizations: Mozilla, Openstack, and
Wikimedia. The fourth dataset is constructed from repositories
hosted on GitHub. To assess the prevalence of the identified
smells and increase generalizability of our findings, we include
repositories from Github, as companies tend to host their
popular OSS projects on GitHub [41] [42].

As advocated by prior research [43], OSS repositories needs
to be curated. We apply the following criteria to curate the
collected repositories:

o Criteria-1: At least 11% of the files belonging to the
repository must be IaC scripts. Jiang and Adams [8] reported
for OSS repositories, which are used in production, IaC
scripts co-exist with other types of files, such as Makefiles.
They observed a median of 11% of the files to be [aC scripts.
By using a cutoff of 11% we assume to collect repositories
that contain sufficient amount of IaC scripts for analysis.

o Criteria-2: The repository is not a clone.

o Criteria-3: The repository must have at least two commits
per month. Munaiah et al. [43] used the threshold of at least
two commits per month to determine which repositories
have enough software development activity. We use this
threshold to filter repositories with short activity.

o Criteria-4: The repository has at least 10 contributors. Our
assumption is that the criteria of at least 10 contributors may
help us to filter out irrelevant repositories.

As shown in Table V, we answer RQ2 using 15,232 scripts
collected from 219, 2, 61, and 11 repositories, respectively,
from GitHub, Mozilla, Openstack, and Wikimedia. We clone
the master branches of the 293 repositories. Summary at-
tributes of the collected repositories are available in Table VI.

TABLE VI: Summary Attributes of the Datasets

Attribute GH MOZ OST WIK
Repository Type Git  Mercurial Git Git
Repository Count 219 2 61 11
Total File Count 72,817 9,244 12,681 9,913
Total Puppet Scripts 8,010 1,613 2,764 2,845
Tot. LOC (Puppet Scripts) 424,184 66,367 214,541 135,137

C. Analysis

Sanity Check for SLIC’s Accuracy: With respect to
accuracy, SLIC may have high accuracy on the oracle dataset,

but not on the complete dataset. To mitigate this limitation and
assess SLIC’s accuracy performance on the complete dataset,
we perform a sanity check for a randomly-selected set of 250
scripts collected from four datasets. We manually inspect each
of the 250 scripts for security smells. Next, we run SLIC on
the collected scripts. Finally, we report the precision and recall
of SLIC for the selected 250 scripts.

The first author performed manual inspection. From manual
inspection we observe 40 occurrences of smells: 29 occur-
rences of hard-coded secrets; 8 occurrences of suspicious com-
ments; and 3 occurrences of invalid IP address binding. Pre-
cision of SLIC for hard-coded secrets, suspicious comments,
and invalid IP address binding is respectively, 0.78, 0.73, and
1.00. The recall of SLIC for hard-coded secrets, suspicious
comments, and invalid IP address binding is respectively
1.00, 0.95, and 1.00. SLIC generated eight and three false
positives respectively for ‘Hard-coded secret’, and ‘Suspicious
comment’. SLIC generated one false negative for ‘Hard-coded
secret’. The recall is >0.95, which indicates SLIC’s ability
to detect most existing smells, but may overestimate the
frequency of smell occurrences.

1) RQ2: How frequently do security smells occur in infras-
tructure as code scripts?: RQ2 focuses on characterizing how
frequently security smells are present. First, we apply SLIC
to determine the security smell occurrences for each script.
Second, we calculate two metrics described below:

o Smell Density: Similar to prior research that have used
defect density [44] [45] and vulnerability density [46], we
use smell density to measure the frequency of a security
smell z, for every 1000 lines of code (LOC). We measure
smell density using Equation 1.

Smell Density (x) =
Total occurrences of = @9)
Total line count for all scripts/1000

o Proportion of Scripts (Script%): Similar to prior work in
defect analysis [20] [47], we use the metric ‘Proportion
of Scripts’ to quantify how many scripts have at least one
security smell. This metric refers to the percentage of scripts
that contain at least one occurrence of smell x.

The two metrics characterize the frequency of security
smells differently. The smell density metric is more granular,
and focuses on the content of a script as measured by how
many smells occur for every 1000 LOC. The proportion of
scripts metric is less granular and focuses on the existence of
at least one of the seven security smells for all scripts.

2) RQ3: What is the lifetime of the identified security smell
occurrences for infrastructure as code scripts?: In RQ3, we
focus on identifying the lifetime i.e., amount of time a security
smell persists for the same script. A security smell that persists
for a long time can facilitate attackers. We answer RQ3 by
executing the following steps:

Step-1: For each smell occurrence s existent in script « for
month m;, we determine s to persist for month m;; if,

« s occurs for script z; and



TABLE VII: Example of a Persistent Security Smell

Month  Code Snippet Output of Parser Persist?
2012-03 ‘bind_address’ = <ATTRIBUTE, N/A
‘0.0.0.0 ‘bind_address’, ‘0.0.0.0
>
$bind_host=‘0.0.0.0° <VARIABLE, ‘$bind_host’, N/A
‘0.0.0.0 >
2012-04 ‘bind_address” =  <ATTRIBUTE, YES
‘0.0.0.0° ‘bind_address’, ‘0.0.0.0
>
$admin_bind_host <VARIABLE, NO
= ‘0.0.0.0° ‘$admin_bind_host’,
‘0.0.0.0° >

e 5 occurs with the same configuration value; and
o s occurs for the same type of token in the script such as,
attribute, comment, function, or variable.

We further demonstrate our approach using an example, as
shown in Table VII. In Table VII, we provide code snippets
that relate to two instances of ‘Invalid IP address binding’.
In this example, as shown in the first row, we notice two
occurrences of ‘Invalid IP address binding’, for the same
script. Both of the smells occurred in March 2012. In the
second row of Table VII, we observe for April 2012 two
code snippets for which ‘Invalid IP address binding’ occurred.
The first code snippet, as indicated by ‘YES’, represents a
persistent smell because the smell occurred with the same
attribute ‘bind_address’.

Step-2, we repeat Step-1, for all smell occurrences for
months, m;, where ¢ = 2,3,..., N, representing all months
for the script the security smell occurred.

Step-3, we determine which smells have consecutive occur-
rences throughout the lifetime of the script. For each smell
with consecutive occurrences, we calculate the difference
between the time the smell first and last occurred. For example,
for script , if smell s occurs for months March 2012 and April
2012, then the lifetime of smell s will be one month. To avoid
systematic overestimating of lifetime, we do not mark multiple
attributes or variables with the same configuration values as
persisting smells.

3) RQ4: Do practitioners agree with security smell oc-
currences?: We gather feedback using bug reports on how
practitioners perceive the identified security smells. From the
feedback we can assess if the identified security smells actually
have an impact on how practitioners develop IaC scripts. We
apply the following procedure:

First, we randomly select 1,000 occurrences of security
smells from the four datasets. Second, we post a bug report for
each occurrence, describing the following items: smell name,
brief description, related CWE, and the script and line number
where the smell occurred. We explicitly ask if contributors of
the repository agrees to fix the smell instances.

VI. EMPIRICAL FINDINGS

We answer the three research questions as following:

A. RQ2: How frequently do security smells occur in infras-
tructure as code scripts?

We observe our identified security smells to exist across
all datasets. For GitHub, Mozilla, Openstack, and Wikimedia
respectively, 29.3%, 17.9%, 32.9%, and 26.7% of all scripts
include at least one occurrence of our identified smells. Hard-
coded secret is the most prevalent security smell with respect
to occurrences and smell density. Altogether, we identify
16,952 occurrences of hard-coded secrets, of which 68.3%,
23.9%, and 7.8% are respectively, hard-coded keys, user
names, and passwords. A complete breakdown of findings
related to RQ2 is presented in Table VIII for our four datasets
GitHub (‘GH’) Mozilla (‘MOZ’), Openstack (‘OST’), and
Wikimedia (“WIK”).

Occurrences: The occurrences of the seven security smells
are presented in the ‘Occurrences’ column of Table VIII.
The ‘Combined’ row presents the total smell occurrences. For
Github, Mozilla, Openstack, and Wikimedia we respectively
observe 13221, 1141, 4507, and 2332 occurrences of security
smells.

Smell Density: In the ‘Smell Density (per KLOC)’ column
of Table VIII we report the smell density. The ‘Combined’
row presents the smell density for each dataset when all
seven security smell occurrences are considered. For all four
datasets, we observe the dominant security smell is ‘Hard-
coded secret’. The least dominant smell is ‘Admin by default’.

Security smells occur more frequently for scripts hosted in
GitHub. For hard-coded secrets, smell density is 1.5 ~ 2.1
times higher for scripts hosted in GitHub than the other three
datasets.

Proportion of Scripts (Script%): In the ‘Proportion of
Scripts (Script%)’ column of Table VIII, we report the propor-
tion of scripts (Script %) values for each of the four datasets.
The ‘Combined’ row represents the proportion of scripts in
which at least one of the seven smells appear. As shown in
the ‘Combined’ row, percentage of scripts that have at least
one of seven smells is respectively, 29.3%, 17.9%, 32.9%, and
26.7% for GitHub, Mozilla, Openstack, and Wikimedia.

B. RQ3: What is the lifetime of the identified security smell
occurrences for infrastructure as code scripts?

The persistence of some hard-coded secrets is noticeable
across all datasets. A security smell can persist in a script
for as long as 98 months. We report our findings for RQ3 in
Table IX. The median and maximum lifetime of each security
smell is identified for the four datasets. The row ‘At least One
Smell’ refers to the median and maximum lifetime of at least
one type of security smell.

For GitHub, Mozilla, Openstack, and Wikimedia the maxi-
mum lifetime of a hard-coded secret is respectively, 92, 77, 89,
and 98 months. Hard-coded secrets can reside in IaC scripts for
a long period of time, which can give attackers opportunity to
compromise the system. Awareness and perception can be two
possible explanations for lengthy lifetime of security smells. If
practitioners are not aware of the consequences of the smells
then they may not fix them. Also, if the practitioners do not



TABLE VIII: Smell Occurrences, Smell Density, and Proportion of Scripts for the Four Datasets

Occurrences Smell Density (per KLOC) Proportion of Scripts (Script%)

Smell Name GH MOZ OST WIK GH MOZ OST WIK GH MOZ OST WIK

Admin by default 52 4 35 6 0.1 0.06 0.1 0.04 0.6 0.2 1.1 0.2

Empty password 136 18 21 36 0.3 0.2 0.1 0.2 1.4 0.4 0.5 0.3

Hard-coded secret 10,892 792 3,552 1,716 256 11.9 16.5 127 219 9.9 24.8 17.0

Invalid IP address binding 188 20 114 41 0.4 0.3 0.5 0.3 1.7 0.7 2.9 1.4

Suspicious comment 758 202 305 343 1.7 3.0 1.4 2.5 5.9 8.5 7.2 9.1

Use of HTTP without TLS 1,018 57 460 164 2.4 0.8 2.1 1.2 6.3 1.6 8.5 3.7

Use of weak crypto algo. 177 48 20 26 0.4 0.7 0.1 0.2 0.9 1.1 0.5 0.4

Combined 13,221 1,141 4,507 2,332  31.1 17.2 21.0 172 293 17.9 329 26.7

TABLE IX: Lifetime of Security Smells (Months) B

Disagree Agree
Smell GH MOZ OST WIK
Name WEAK.CRYP_9-  E—
(Med, Max) (Med, Max) (Med, Max) (Med, Max) = SUSP.COMM_15-
Admin by  (30.0, 73.0) _ (41.0, 41.0) _ (15.0, 89.0) _ (20.0, 22.0) £ INVAIP_15~  e—
default E) HTTP.USG 10-  ee—
3 HARD.CODE.SECR_30- L

Empty (21.0, 76.0) (27.5, 54.0) (13.5, 89.0) (18.5, 56.0) % EMPTAASS 71
password DFLT.ADMN_9 - L}
Hard- (240,920) (340, 77.0) (150, 89.0) _ (20.0, 98.0) o e e e Lo
coded Percentage
secret
Invalid IP (31.0,73.0) (14.0,77.0) (22.0,89.0) (20.0.63.0)  Fig. 6: Feedback for the 104 smell occurrences. Practitioners
;‘ii[i;ie;; agreed with 64.4% of the selected smell occurrences.
Suspicious  (21.0, 92.0) (22.0, 77.0) (11.0, 89.0) (20.0, 61.0)
comment
Use of (230,920) (9.0, 77.0) (I13.0, 89.0) (20.0, 93.0) ) o
HTTP For example, for an occurrence of ‘Invalid IP address binding’,
without one practitioner stated:“l would accept a pull request to do a
LS default of 127.0.0.1”
Use of  (26.0, 92.0) (47.0, 77.0) (23.0, 89.0) (20.0, 59.0) T
weak Reasons for Practitioner Disagreements: We observe con-
Zggto' text to have importance to practitioners. For example, a hard-
At Least (24.0,92.0) (23.5, 77.0) (14.0, 89.0) _ (20.0, 98.0) coded password may not have security implications if the
One Smell

perceive these smells to be consequential then smells may
reside in scripts for a long duration.

C. RQ4: Do practitioners agree with security smell occur-
rences?

From 93 practitioners we obtain 104 responses for the
submitted 1000 bug reports. We observe an agreement of
64.4% for 104 smell occurrences. The percentage of smells to
which practitioners agreed to be fixed is presented in Figure 6.
In y-axis each smell name is followed by the occurrence
count. For example, according to Figure 6, for 30 occurrences
of ‘Hard-coded secret’(HARD_CODE_SECRET), we observe
70.0% agreement. We observe 75.0% or more agreement for
two smells: ‘Use of HTTP without TLS’ and ‘Use of weak
cryptography algorithms’.

In their response, practitioners provided reasoning on why
these smells appeared in the first place. For one occurrence
of ‘HTTP without TLS’, practitioners highlighted the lack of
documentation and tool support saying: “Good catch. This
was probably caused by lack of documentation or absence
of https endpoint at the time of writing. Should be fixed in
next release.”. Upon acceptance of the smell occurrences,
practitioners also suggested how these smells can be mitigated.

hard-coded password resides in a repository used for training
purposes. As one practitioner stated “This is not publicly used
module, but instead used in training only in a non-production
environment. This module is designed in a manner to show
basic functionality within Puppet Training courses.”. For one
occurrence of ‘HTTP Without TLS’ one practitioner disagreed
stating “It’s using http on localhost, what’s the risk?”.

The above-mentioned statements from disagreeing practi-
tioners also suggest lack of awareness: the users who use the
training module of interest may consider use of hard-coded
passwords as an acceptable practice, potentially propagating
the practice of hard-coded secrets. Both local and remote sites
that use HTTP can be insecure, as considered by practitioners
from Google '® !°. Possible explanations for disagreements
can also be attributed to perception of practitioners: smells
in code have subjective interpretation [48], and programmers
do not uniformly agree with all smell occurrences [49], [50].
Furthermore, researchers [51] have observed programmers’
bias to perceive their code snippets as secure, even if the code
snippets are insecure.

Bhttps://security.googleblog.com/2018/02/a-secure-web-is-here-to-
stay.html

19https://developers.google.com/web/fundamentals/security/encrypt-in-
transit/why-https



VII. DISCUSSION

We suggest strategies on how the identified security smells
can be mitigated along with other implications:

A. Mitigation Strategies

Admin by default: We advise practitioners to create user
accounts that has the minimum possible security privilege and
use that account as default. Recommendations from Saltzer
and Schroeder [52] may be helpful in this regard.

Empty password: We advocate against storing empty pass-
words in [aC scripts. Instead, we suggest the use of strong
passwords.

Hard-coded secret: We suggest the following measures to
mitigate hard-coded secrets:

o use tools such as Vault 2° to store secrets
« scan laC scripts to search for hard-coded secrets using tools
such as CredScan and SLIC.

Invalid IP address binding: To mitigate this smell, we
advise programmers to allocate their IP addresses systemati-
cally based on which services and resources needs to be provi-
sioned. For example, incoming and outgoing connections for
a database containing sensitive information can be restricted
to a certain IP address and port.

Suspicious comment: We acknowledge that in OSS de-
velopment, programmers may be introducing suspicious com-
ments to facilitate collaborative development and to provide
clues on why the corresponding code changes are made [29].
Based on our findings we advocate for creating explicit
guidelines on what pieces of information to store in comments,
and strictly follow those guidelines through code review. For
example, if a programmer submits code changes where a
comment contains any of the patterns mentioned for suspicious
comments in Table III, the submitted code changes will not
be accepted.

Use of HTTP without TLS: We advocate companies to
adopt the HTTP with TLS by leveraging resources provided by
tool vendors, such as MySQL 2! and Apache ?2. We advocate
for better documentation and tool support so that programmers
do not abandon the process of setting up HTTP with TLS.

Use of Weak cryptography algorithms: We advise pro-
grammers to use cryptography algorithms recommended by
the National Institute of Standards and Technology [53] to
mitigate this smell.

B. Possible Implications

Guidelines: One possible strategy to mitigate security
smells is to develop concrete guidelines on how to write [aC
scripts in a secure manner. When constructing guidelines, the
IaC community can take Acar et al. [54]’s findings into ac-
count, and include easy to understand, task-specific examples
on how to write [aC scripts in a secure manner.

2Ohttps://www.vaultproject.io/
2l https://dev.mysql.com/doc/refman/5.7/en/encrypted-connections.html
22https://httpd.apache.org/docs/2.4/ssl/ss]_howto.html

Prioritizing inspection efforts: From Section VI-A, an-
swers to RQ2 indicates that not all IaC scripts include security
smells. Researchers can build upon our findings to explore
which characteristics correlate with TaC scripts with security
smells. If certain characteristics correlate with scripts that have
smells, then programmers can prioritize their inspection efforts
for scripts that exhibit those characteristics. Researchers can
also investigate if metric-based prediction techniques proposed
in prior research [55] [56] can be used to identify IaC scripts
that are more likely to include security smells, which can
benefit from more scrutiny.

VIII. THREATS TO VALIDITY

In this section, we discuss the limitations of our paper:

Conclusion Validity: The derived security smells and their
association with CWEs are subject to the first author’s judg-
ment. We account for this limitation by applying verification of
CWE mapping with two student raters who are not authors of
the paper. Also, the oracle dataset constructed by the raters are
susceptible to subjectivity, as the raters’ judgment influences
appearance of a certain security smell.

Internal Validity: We acknowledge that other security
smells may exist. We mitigate this threat by manually ana-
lyzing 1,726 TaC scripts for security smells. In future, we aim
to investigate if more security smells exist.

The detection accuracy of SLIC depends on the constructed
rules that we have provided in Table II. We acknowledge that
the constructed rules are heuristic-driven and susceptible to
generating false positives and false negatives.

External Validity: Our findings are subject to external
validity, as our findings may not be generalizable. We observe
how security smells are subject to practitioner interpretation,
and thus the relevance of security smells may vary from
one practitioner to another. We construct our datasets using
Puppet, which is a declarative language. Our findings may
not generalize for IaC scripts that use an imperative form of
language. Also, our scripts are collected from the OSS domain,
and not from proprietary sources.

IX. CONCLUSION

IaC scripts help companies to automatically provision and
configure their development environment, deployment envi-
ronment, and servers. Security smells are recurring coding
patterns in IaC scripts that are indicative of security weakness
and can potentially lead to security breaches. By applying
qualitative analysis on 1,726 scripts we identified seven se-
curity smells: admin by default; empty password; hard-coded
secret; invalid IP address binding; suspicious comment; use of
HTTP without TLS; and use of weak cryptography algorithms.
We analyzed 15,232 TaC scripts to determine which security
smells occur and used a tool called SLIC, to automatically
identify security smells that occur in IaC scripts. We evaluated
SLIC’s accuracy by constructing an oracle dataset. We identi-
fied 21,201 occurrences of security smells that included 1,326
occurrences of hard-coded passwords. Based on smell density,
we observed the most dominant and least dominant security



smell to be respectively, ‘Hard-coded secret’ and ‘Admin by
default’. We randomly selected 1,000 occurrences of security
smells and observe 64.4% agreement from practitioners for
104 responses. We observed security smells to persist, for
example, hard-coded secrets can reside in an IaC script for up-
to 98 months. Based on our findings, we recommend concrete
guidelines for practitioners to write IaC scripts in a secure
manner. We hope our paper will facilitate further security-
related research in the domain of IaC scripts.
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