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The Shape of Fuzzy Sets in Adaptive Function Approximation
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Abstract—The shape of if-part fuzzy sets affects how well feed-
forward fuzzy systems approximate continuous functions. We ex-
plore a wide range of candidate if-part sets and derive supervised
learning laws that tune them. Then we test how well the resulting
adaptive fuzzy systems approximate a battery of test functions. No
one set shape emerges as the best shape. The sinc function often
does well and has a tractable learning law. But its undulating side-
lobes may have no linguistic meaning. This suggests that the engi-
neering goal of function-approximation accuracy may sometimes
have to outweigh the linguistic or philosophical interpretations of
fuzzy sets that have accompanied their use in expert systems. We
divide the if-part sets into two large classes. The first class consists
of -dimensional joint sets that factor into scalar sets as found
in almost all published fuzzy systems. These sets ignore the corre-
lations among vector components of input vectors. Fuzzy systems
that use factorable if-part sets suffer in general from exponential
rule explosion in high dimensions when they blindly approximate
functions without knowledge of the functions. The factorable fuzzy
sets themselves also suffer from what we call the second curse of di-
mensionality: The fuzzy sets tend to become binary spikes in high
dimension. The second class of if-part sets consists of the more gen-
eral but less common -dimensional joint sets that do not factor
into scalar fuzzy sets. We present a method for constructing such
unfactorable joint sets from scalar distance measures. Fuzzy sys-
tems that use unfactorable if-part sets need not suffer from expo-
nential rule explosion but their increased complexity may lead to
intractable learning laws and inscrutable if-then rules. We prove
that some of these unfactorable joint sets still suffer the second
curse of dimensionality of spikiness. The search for the best if-part
sets in fuzzy function approximation has just begun.

Index Terms—Adaptive fuzzy system, curse of dimensionality,
fuzzy function approximation, fuzzy sets.

I. THE SHAPE OFFUZZY SETS: FROM TRIANGLES TOWHAT?

WHAT is the best shape for fuzzy sets in function approx-
imation? Fuzzy sets can have any shape. Each shape

affects how well a fuzzy system of if-then rules approximate
a function. Triangles have been the most popular if-part set
shape but they surely are not the best choice [24], [32] for ap-
proximating nonlinear systems. Overlapped symmetric trian-
gles or trapezoids reduce fuzzy systems to piecewise linear sys-
tems. Gaussian bell-curve sets give richer fuzzy systems with
simple learning laws that tune the bell-curve means and vari-
ances. But this popular choice comes with a special cost: It con-
verts fuzzy systems to radial-basis-function neural networks or
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to other well-known systems that predate fuzzy systems [3],
[17], [20], [27], [28], [30]. These Gaussian systems make im-
portant benchmarks but there is no scientific advance involved
in their rediscovery.

Triangles and Gaussian bell curves also do not represent the
vast function space of if-part fuzzy sets. But then which shapes
do? This question has no easy answer. A key part of the problem
is that we do not know what should count as a meaningful tax-
onomy of fuzzy sets. We can distinguish continuous fuzzy sets
from discontinuous sets, differentiable from nondifferentiable
sets, monotone from nonmonotone sets, unimodal from multi-
modal sets, and so on. But these binary classes of fuzzy sets may
still be too general to permit a fruitful analysis in terms of func-
tion approximation or in terms of other performance criteria. Yet
a taxonomy requires that we draw lines somewhere through the
function space of all fuzzy sets.

We draw two lines. The first line answers whether a joint
fuzzy set is factorable or unfactorable. Consider any fuzzy set

with arbitrary set function (or the
slightly more general case wheremaps or some other space

into some connected real interval ). The multidi-
mensional nature of fuzzy set presents a structural question
that does not arise in the far more popular scalar or one-dimen-
sional case: Is factorable? Does factor into a Carte-
sian product of scalar fuzzy sets ?

The general answer is no. Factorability is rare in the space of
all -dimensional mappings of into numbers. It corresponds
to uncorrelatedness or independence in probability theory. Yet
much analysis focuses on the factorable exceptions of hyper-
rectangles and multivariate Gaussian probability densities. And
almost all published fuzzy systems use rules that deliberately
factor the if-part sets into scalar sets. This often yields factorable
joint set functions of the form
or . Consider this rule for
a simple air-conditioner controller: “If the air is warm and the
humidity is high then set the blower to fast.” A triangle or trape-
zoid or bell curve might describe the fuzzy subset of warm air
temperatures or of high humidity values. A product of these two
scalar sets forms a factorable fuzzy subset . But
users tend not to work with even simple unfactorable two-di-
mensional (2-D) sets such as ellipsoids: “If the temperature-hu-
midity values lie in the warm-high planar ellipsoid then set the
motor speed to fast.” Few unfactorable fuzzy subsets of the
plane or of are as simple geometrically or as tractable math-
ematically as ellipsoids [1], [2].

Below we study how well feedforward additive fuzzy sys-
tems can approximate test functions for both adaptive factorable
and unfactorable if-part fuzzy sets. We first derive supervised
learning laws for a wide range of fuzzy sets of different shape
and then test them against one another in terms of how accu-
rately they approximate the test functions in a squared-error
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Fig. 1. Samples of sinc set functions for one-input and two-input cases. (a) Scalar sinc set function for one-input case. (b) Nine scalar sinc set functions for input
x. All sinc set functions have the same width but their centers differ. (c) Product sinc set function for two-input case. The set function has the forma (x) =
a (x ; x ) = a (x )� a (x ). The shadows show the scalar sinc set functionsa : R! R for i = 1; 2 that generatea : R ! R. (d) Jointl metrical sinc
set function:a (x) = sinc(d (x;m )). (e) Joint quadratic metrical sinc set function:a (x) = sinc(d (x;m )).

sense. Then we form factorable-dimensional fuzzy sets from
the scalar factors and compare them both against one another
and against some new unfactorable joint fuzzy sets. Exponential
rule explosion severely constrains the extent of the simulations.
We also uncover a second curse of dimensionality: Factorable
sets tend toward binary spikes in high dimension. Unfactorable
sets need not suffer exponential rule explosion. But we prove
that some of them also suffer from spikiness in high dimensions.

We draw a second line between parametrized and non-
parametrized fuzzy sets. We study only parametrized fuzzy
sets because only for them could we define learning laws
(that tune the parameters). We did not study recursive fuzzy
sets such as those that can arise with B-splines [33] or other
recursive algorithms. It also is not clear how to fairly compare
parametrized if-part set functions with nonparametrized set
functions for the task ofadaptivefunction approximation.

The simulation results do not pick a clear-cut winner. Nor
would we expect them to do so given the ad hoc nature of our
choices of both candidate set functions and test functions. But
the results do suggest that some nonobvious set functions should
be among those that a fuzzy engineer considers when building
or tuning a fuzzy system. Along the way we also developed an
extensive library of new set functions and derived their often
quite complex learning laws.

Perhaps the most surprising and durable finding is that the
sinc function of signal processing often converges
fastest and with greatest accuracy among candidates that include
triangles, Gaussian and Cauchy bell curves, and other familiar
set shapes. This appears to be the first use of the sinc function
as a fuzzy set. We could find no theoretical reason for its perfor-
mance as a nonlinear interpolator in a fuzzy system despite its
well-known status as the linear interpolator in the Nyquist sam-
pling theorem and its signal-energy optimality properties [21].
We also combined two hyperbolic tangents to give a new bell
curve that often competes favorably with other if-part set can-
didates. We call this new bell curve the difference hyperbolic
tangent [18].

Fig. 1 shows scalar and joint sinc set functions. Fig. 1(a)
shows the decaying sidelobes that can take on negative values.
This requires that we view the sinc as a generalized fuzzy set
[14] whose set function maps into a totally ordered interval
that includes negative values: . An exer-
cise shows that such a bipolar set-function range does not affect
the set-theoretic structure of in terms intersection, union, or
complementation because the corresponding operations of min-
imum, maximum, and order reversal depend on only the total or-
dering (with a like result for triangular or-norms [8]). Fig.1(c)
shows the 2-D factorable sinc that results when we multiply two
scalar sinc functions as we might do to compute the degree to
which a two-vector input fires the two if-part fac-
tors of a rule of the form “If is and is then is

.” Fig. 1(d) and (e) show two new unfactorable 2-D set func-
tions built from the scalar sinc function and a distance metric.

Below we derive the supervised learning law that tunes these
sinc set functions given input–output samples from a test func-
tion. The factorable joint set functions are far easier to tune than
are the unfactorable sets because we need only add one more
term to a partial-derivative expansion and then multiply the re-
sults for tuning the individual factors. Fig. 2 shows how a 2-D
factorable or product sinc set evolves as the process of super-
vised learning unfolds when a sinc-based fuzzy system approx-
imates a test function.

The sinc finding raises a broader issue: Does an if-part fuzzy
set need to have a linguistic meaning? The very definition of
the sinc set function already requires that
we broaden our usual notion of “degrees” that range from 0%
to 100% to a more general totally ordered scale. But the sinc’s
undulating and decaying sidelobes admit no easy linguistic in-
terpretation. We could simply think of the smooth bell-shaped
envelopeof the sinc and treat it as we would any other unimodal
curve that stands for warm air or high humidity or fast blower
speeds. That would solve the problem in practice and would
allow engineers to safely interpret a domain expert’s fuzzy con-
cepts as appropriately centered and scaled sinc sets. But that
would not address the conceptual problem of how to make sense
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Fig. 2. Samples of evolution of a product sinc if-part set function in an adaptive function approximator. Supervised learning tunes the parameters ofthe product
sinc set function such as its center and width on each parameter axisx andx : (a) a sinc set function at initial state, (b) the same sinc set after 10 epochs of
learning, (c) after 500 epochs, and (d) the sinc set converges after 3000 epochs.

of all those local minima and maxima in such a multimodal set
function.

A pragmatic answer is that a given if-part fuzzy set need not
have a precise linguistic meaning or have any tie to natural lan-
guage at all. Function approximation is a global property of a
fuzzy system. If-part fuzzy sets are local parts of local if-then
rules. The central goal is accurate function approximation. This
can outweigh the linguistic and philosophical concerns that may
have attended earlier fuzzy expert systems. Engineers designed
many of those earlier systems not to accurately approximate
some arbitrary nonlinear function but to accurately model an
expert’s knowledge as the expert stated it in if-then rules.

So the real issue is the gradual shift in performance criteria
from accuracy of linguistic modeling to accuracy of function ap-
proximation. Progress in fuzzy systems calls into question the
earlier goal of simply modeling what a human says. That goal
remains important for many applications and no doubt always
will. But it should not itself constrain the broader considera-
tions of fuzzy function approximation. The function space of
all if-part fuzzy sets is simply too vast and too rich for natural
language to restrict searches through it.

II. FUZZY FUNCTION APPROXIMATION AND TWO CURSES OF

DIMENSIONALITY

We work with scalar-valued additive fuzzy systems
. These systems approximate a function

by covering the graph of with fuzzy rule patches
and averaging patches that overlap [14]. An if-then rule of
the form “If is then is ” defines a fuzzy Cartesian
patch in the input–output space . The rules
can use fuzzy sets of any shape for either their if-part sets
or then-part sets . This holds for the feedforward standard
additive model (SAM) fuzzy systems discussed below. Their
generality further permits any scheme for combining if-part
vector components because all theorems assume only that the
set function maps to numbers as in . The
general fuzzy approximation theorem [11] also allows any
choice of if-part set or then-part sets for a general additive
model and still allows any choice of if-part set for the SAM
case that in turn includes most fuzzy systems in use [15].

The fuzzy approximation theorem does not say which shape
is the best shape for an if-part fuzzy set or how many rulesa
fuzzy system should use when it approximates a function. The
shape of if-part sets affects how well the feedforward SAM

approximates a functionand how quickly an adaptive SAM
approximates it when learning based on input–output samples

from tunes the parameters of and the centroids and vol-

umes of the then-part set . The shape of then-part sets
does not affect thefirst-orderbehavior of a feedforward SAM
beyond the effect of the volume and centroid . This holds
because the SAM output computes only a convex-weighted sum
of the then-part centroids for each vector input

(1)

where and for each as
defined in (6). depends on only through its volume or area

(and perhaps through its rule weight). We also note that (1)
and (2) imply that [14]. But the shape
of does affect thesecond-orderuncertainty or conditional
variance of the SAM output [14]

(2)

where in an SAM is the then-part set variance

(3)

and where is an integrable probability den-
sity function and is the integrable set function
of then-part set . The first term on the right side of (2) gives
an input-weighted sum of the then-part set uncertainties. The
second term measures the interpolation penalty that results from
computing the SAM output in (1) as simply the weighted
sum of centroids. The output conditional variance (2) further
simplifies if all then-part sets have the same shape and thus
all have the same inherent uncertainty

(4)

So a given input minimizes the system uncertainty or gives
an output with maximal confidence if it fires theth rule
dead-on (so ) and does not fire the other 1 rules at
all ( for ). This justifies the common practice of
centering a symmetric unimodal if-part fuzzy set at a point
where the other 1 if-part sets have zero membership degree.
It does not justify the equally common practice of ignoring the
thickness or thinness of the then-part setsand even replacing
them with the maximally confident choice of binary “singleton”
spikes centered at the centroid. The second-order structure of
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a fuzzy system’s output depends crucially on the size and shape
of the then-part sets .

We allow learning to tune the volumes and centroids
of the then-part sets in our adaptive function-approximation
simulations. A then-part set with volume and centroid

can have an infinitude of shapes. And again many of these
shapes will change the output uncertainty in (2) or (4). But we
too shall ignore the second-order behavior that (2) and (4) de-
scribe.

High dimensions present further problems for fuzzy func-
tion approximation. Feedforward fuzzy systems suffer at least
two curses of dimensionality. The first is the familiar exponen-
tial rule explosion. This results directly from the factorability
of if-part fuzzy sets in fuzzy if-then rules. The second curse is
one that we call the second curse of dimensionality: factorable
if-part sets tend to binary spikes as the dimensionincreases.

Consider first rule explosion for blind function approxima-
tion. Suppose we can factor the if-part fuzzy set

. Nontrivial if-then rules require that we use at least
two scalar factors for each of theorthogonal axes in as in
the minimal fuzzy partition of air temperatures into warm and
not-warm temperatures or into low and high temperatures. A
fuzzy system must cover the graph of the functionwith rule
patches. That entails that the if-part sets cover the system’s do-
main—else the fuzzy system would not be defined on those
regions of the input space. So such a rule-patch cover of the do-
main of a fuzzy system entails a rule explo-
sion on the order of where is some compact subset of .
We will for convenience often denote functions as
or as where we understand that the domain is
only some compact subset of .

There is a related exception that deserves comment. Watkins
[31], [32] has shown that if we not only know the functional
form of but build it into the very structure of the if-part sets

then we can exactlyrepresentmany functions in the sense
of for all and can do so with a number of rules
that grows linearly with the dimension. This does not apply
in blind approximation where we pick the tunable if-part sets

in advance and then train them and other parameters based
on exact or noisy input–output samples from the approximand
function . But it suggests that there may be many types of
middle ground where partial knowledge ofmay reduce the
rule complexity from exponential to polynomial or perhaps to
some other tractable function of dimension.

All factorable if-part sets suffer the second curse of di-
mensionality. They ignore input structure and collapse to
binary-like spikes in high dimensions. The separate factors

ignore correlations and other nonlinearities among the
input variables [5]. This structure can be quite complex in
high dimensions. The product form
tends toward a spike in for large when .
The Borel–Cantelli lemma of probability theory shows that

tends to zero with probability one
[9] as if the random sequence is independent
and identically distributed. This also holds forany -norm
combination of factors because of the generalized-norm
bound .
Factorable joint set functions degenerate in high dimensions.

This curse of dimensionality can combine with the better
known curse of exponential rule explosion. The result can be a
function approximator with a vast set of spiky rules.

Joint unfactorable sets tend to preserve input correlations [5].
They need not collapse to spikes in high dimensions or suffer
from the like rotten-apple effect of falling to zero when just one
term equals zero. This also suggests that some unfactorable joint
fuzzy sets may lessen or even defeat the curse of dimensionality.

The second part of this paper shows how to create and tune
metrical joint set functions. These joint set functions preserve
at least the metrical structure of inputs and do not try to factor
a nonlinear function into a product or other combination of
terms. The idea is to use one well-behaved scalar set function
like sinc [18] and apply it to an -dimensional distance func-
tion rather than multiply of the scalar set functions:

rather than . Then
supervised learning tunes the metrical joint set function as it
tunes the metric. The next section reviews the standard additive
fuzzy systems that we use to derive parameter learning laws and
to test candidate if-part sets in terms of their accuracy of func-
tion approximation.

III. A DDITIVE FUZZY SYSTEMS AND FUNCTION

APPROXIMATION

This section reviews the basic structure of additive fuzzy sys-
tems. The Appendix reviews and extends the more formal math
structure that underlies these adaptive function approximators.

A fuzzy system stores rules of the word
form “If Then ” or the patch form

. The if-part fuzzy sets
and then-part fuzzy sets have set functions

and . Generalized fuzzy sets
[14] map to intervals other than . The system can use the
joint set function or some factored form such as

or or any
other conjunctive form for input vector
[10].

An additive fuzzy system [10], [11] sums the “fired” then-part
sets

(5)

Fig. 3(a) shows the parallel fire-and-sum structure of the SAM.
These nonlinear systems can uniformly approximate any con-
tinuous (or bounded measurable) functionon a compact do-
main [19]. Engineers often apply fuzzy systems to problems of
control [4] but fuzzy systems can also apply to problems of com-
munication [22] and signal processing [5], [6] and other fields.

Fig. 3(b) shows how three rule patches can cover part of the
graph of a scalar function . The patch-cover struc-
ture implies that fuzzy systems suffer fromrule
explosionin high dimensions. A fuzzy system needs on the
order of rules to cover the graph and thus to approxi-
mate a vector function . Optimal rules can help
deal with the exponential rule explosion. Lone or local mean-
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Fig. 3. Feedforward fuzzy function approximator. (a) The parallel associative
structure of the additive fuzzy systemF : R ! R with m rules. Each
inputx 2 R enters the systemF as a numerical vector. At the set levelx
acts as a delta pulse�(x � x ) that combs the if-part fuzzy setsA and gives
them set valuesa (x ) = �(x � x )a (x) dx. The set values “fire”
or scale the then-part fuzzy setsB to giveB . An SAM scales eachB with
a (x). Then the system sums theB sets to give the output “set”B. The system
outputF (x ) is the centroid ofB. (b) Fuzzy rules define Cartesian rule patches
A �B in the input–output space and cover the graph of the approximandf .
This leads to exponential rule explosion in high dimensions. Optimal lone rules
cover the extrema of the approximand as in Fig. 4.

squared optimal rule patches cover the extrema of the approx-
imand [13], [14]. They “patch the bumps” as in Fig. 4. The
Appendix presents a simple proof of this fact. Better learning
schemes move rule patches to or near extrema and then fill in
between extrema with extra rule patches if the rule budget al-
lows.

The scaling choice gives an SAM. The Ap-
pendix further shows that taking the centroid of in (5)
gives the following SAM ratio [10], [11], [13], [14]:

(6)

Here is the finite positive volume or area of then-part
set and is the centroid of or its center of mass.
The convex weights have the form

. The convex co-
efficients change with each input vector. Sections V
and VIII derive the gradient learning laws of all parameters of
the SAM for different shapes of if-part sets.

Fig. 4. Lone optimal fuzzy rule patches cover the extrema of approximandf .
A lone rule defines a flat line segment that cuts the graph of the local extremum
in at least two places. The mean value theorem implies that the extremum lies
between these points. This can reduce much of fuzzy function approximation to
the search for zeroeŝx of the derivative mapf : f (x̂) = 0.

IV. SCALAR AND JOINT FACTORABLE FUZZY SET FUNCTIONS

A scalar set function measures the degree
to which input belongs to the fuzzy or multivalued set

. A joint factorable set
derives from scalar sets . Any conjunctive operator
such as a-norm can combine scalar sets to obtain a joint
factorable set.

A. Scalar Fuzzy Sets

We tested a wide range of if-part set functions. Below we list
the scalar form of most of these set functions. The sinc function
was multimodal and could take on negative values in [0.217,
1]. We viewed these negative values as low degrees of set mem-
bership.

1) Triangle set function.We define the triangle set function
as a three-tuple where and .

denotes the location of a peak of the triangle

if

if

else

(7)

We can also define the symmetric triangle set function
with two parameters that are itscenter andwidth
as

if

else.
(8)

2) Trapezoid set function.We define the trapezoid set
function as a four-tuple where

. and denote the
distance of the support of a function to the left and
right of and . We can view thecenter as

if
if
if
else

(9)
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3) Clipped-parabola (Quadratic) set function.A clipped-
parabola set function (or quadratic set function) centered
at and with “width” has the form

if

else
(10)

This quadratic set function differs from the quadratic set
function in [26].

4) Gaussian set function.The Gaussian set function de-
pends on the mean and standard deviation

(11)

5) Cauchy set function.The Cauchy set function is a bell
curve with thicker tails than the Gaussian bell curve and
with infinite variance and higher order moments [5]

(12)

6) Laplace set function.The Laplace set function is an ex-
ponential curve

(13)

where is the center and picks the decay rate
of the curve.

7) Sinc set function.We define the sinc set function cen-
tered at andwidth as

(14)

The sinc set function is a map .
So the denominator of a sinc SAM can in theory become
zero or negative. The system design must take care when
these negative set values enter the SAM ratio in (6). We
set a logic flag to check if the denominator is zero or
negative.

8) Logistic set function.The logistic or sigmoid function
has the form of . We define
a symmetric logistic set function centered at with
width as

(15)

The factor 2 gives .
9) Hyperbolic tangent set function.This set function has

the form

(16)

where and define the center and the width of the
bell curve.

10) Hyperbolic secant set function.Again and
define the center and width of this scalar set function

(17)

11) Differential logistic set function.The derivative of the lo-
gistic function is a bell curve form of probability density
function. holds for a logistic
function . So we define this
new set function as

(18)

The factor 4 gives .
12) Difference logistic set function.The logistic or sigmoid

function withsteepness has the form of
. We define a symmetric logistic set

function centered at with width as

(19)

The normalizer ensures that
.

13) Difference hyperbolic tangent set function.This new set
function has the difference form

(20)

This results in a bell curve. The term defines the
“width” of the function and gives
the normalization factor.

Fig. 5 plots the scalar set functions for sample choices of pa-
rameters. Simulations in Section VI compare how these scalar
set functions perform in adaptive fuzzy function approximation
in terms of squared error.

B. Joint Factorable Sets: Product Set Functions

This class includes joint set functions
that factor for some function

. The popular factorable joint set functions
combine the scalar set functions with product

(21)

or other -norms such as min

(22)

for scalar set functions . We form the product set
functions from scalar set functions in Section IV-A as in Fig. 6.
Section VI compares the results of adaptive function approxi-
mation of these set functions for two- and three-input cases.
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Fig. 5. Set functions centered atm = 0. (a) Triangle:l = 1 andr = 3. (b) Symmetric triangle:d = 3. (c) Trapezoid:l = 1;ml = �2;mr = 2, andr = 2.(d)
Parabola:d = 2. (e) Gaussian:d = 2. (f) Cauchy:d = 2. (g) Laplace:d = 2. (h) Sinc:d = 0:4. (i) Logistic: d = 2. (j) Hyperbolic Tangent:d = 2. (k)
Hyperbolic secant:d = 2. (l) Differential logistic:d = 2. (m) Difference logistic:� = 2 andl = 1. (n) Difference hyperbolic tangent:d = 2 andl = 1.

Fig. 6. Product joint set functions centered atm = 0. (a) Triangle:a � (0;3; 4) anda � (0;2; 2). (b) Symmetric triangle:d = 4 andd = 2. (c) Trapezoid:
a � (2;�1;1; 3) anda � (1;�1:5; 1:5;2). (d) Parabola:d = 4 andd = 3. (e) Gaussian:d = 2 andd = 1. (f) Cauchy:d = 2 andd = 1. (g)
Laplace:d = 2 andd = 1. (h) Sinc:d = 0:8 andd = 0:4. (i) Logistic: d = 2 andd = 1. (j) Hyperbolic tangent:d = 2 andd = 1. (k) Hyperbolic
secant:d = 2 andd = 1. (l) Differential logistic:d = 2 andd = 1. (m) Difference logistic:� = 1; l = 2; � = 2, andl = 1. (n) Difference hyperbolic
tangent:d = 1; l = 2; d = 2, andl = 1.

V. SUPERVISEDLEARNING IN SAMS: SCALAR AND PRODUCT

SETS

Supervised gradient descent can tune all the parameters in the
SAM model (6) [12], [14]. A gradient descent learning law for
a SAM parameter has the form

(23)

where is a learning rate at iteration. We seek to minimize
the squared error

(24)

of the function approximation. The vector function
has components and so does

the vector function . We consider the case when . A
general form for multiple output when expands the error
function for some norm . Let

denote the th parameter in the set function. Then the chain
rule gives the gradient of the error function with respect to the
if-part set parameter with respect to the then-part set centroid

and with respect to the then-part set volume

and

(25)

where

(26)

(27)
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The SAM ratios (6) with equal rule weights
give [12], [14]

(28)

(29)

Then the learning laws for the then-part set centroidsand
volumes have the final form

(30)

(31)

The learning laws for the if-part set parameters follow in like
manner for both scalar and joint sets as we show below.

We first derive learning laws for parameters of the scalar
if-part set functions. Each set function gives different par-
tial derivatives of with respect to its th parameter in (25).
The learning laws for the parameters of each scalar set functions
are as follows.

1) Triangle set function

if

if
else

(32)

if
else

(33)

if
else.

(34)

2) Trapezoid set function

if
else

(35)

if
else

(36)

if
else

(37)

if
else.

(38)

3) Clipped-parabola set function

if

else

(39)

if

else.

(40)

4) Gaussian set function

(41)

(42)

5) Cauchy set function

(43)

(44)

6) Laplace set function

(45)

(46)

7) Sinc set function

(47)

(48)

8) Logistic set function

(49)

(50)

9) Hyperbolic tangent set function

(51)

(52)
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10) Hyperbolic secant set function

(53)

(54)

11) Differential logistic set function

(55)

(56)

12) Difference logistic set function

(57)

(58)

(59)

13) Difference hyperbolic tangent set function

(60)

(61)

(62)

We also can approximate the learning laws for the symmetric
triangle and trapezoid set functions with Gaussian learning laws
for their centers and the widths. Like results hold for the learning
laws of factorable -D set functions. A factored set function

leads to a new form for the error
gradient. The gradient with respect to the parameterof the
th set function has the form

(63)

where

(64)

VI. SIMULATION RESULTSI: SCALAR AND JOINT PRODUCT

SETS

We trained the SAMs with different set functions to approx-
imate different functions. We scored each test in terms of the
squared error (SE) of the function approximation for a constant
learning rate .

We uniformly sampled 201 points of the function in the one-
dimensional (1-D) case to give a training set. The 2-D case used

samples. The 3-D case used
samples. One epoch passed all 201, 961, or 8000 samples

through the SAM to train it.
We then finely sampled the function to obtain the test data

for each function. So the training data set and the test data set
are different but do overlap due to the sampling pattern. The
one-input cases used 241 samples, the two-input cases used

samples and the three-input cases used
samples to test how well fuzzy systems ap-

proximate the approximands.
The 1-D SAMs used 12 rules, while the 2-D SAMs used 64

rules. The 3-D SAMs used 125 rules. Different initializations
led to convergence to different local minima of the SE surface.
There is no formal way to find the initial conditions that lead
to the global minimum, so we had to guess at them. We spread
rule patches uniformly along the input space. So we spread the
if-part set centers uniformly along the -axis. We picked
the then-part set centroids as the values of the sampled ap-
proximand at . We set the then-part volumes
(areas) to unity at first: . Then supervised
learning tuned each SAM parameter.

We used a constant learning ratethroughout each training
session. We also tried different learning rates to see whether the
system converged to different solutions and picked the best re-
sults as a representative for that case. But at each try the learning
rates for each parameter were the same. The learning rates were
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Fig. 7. Samples of 1-D and 2-D test approximands.

small because each learning law is highly nonlinear–else the
learning might not have converged. The learning rates that we
used ranged from to . We compared the results
for each learning rates and picked the best ones. Below we list
test functions we used as approximands.

A. 1-D Test Functions

We defined functions of one variable to test
the scalar fuzzy sets in the SAM models. We also used functions
from the literature [1], [7]. We roughly classify the test functions
that we used and list some of them as follow.

1) Polynomial and Rational Functions:This class of
approximands consisted of polynomial functions and rational
functions of different degrees. The two simplest functions in
this class are a constant function and a straight line function.
We do not list constant functions here because we can represent
any constant function with any kind of fuzzy system with only
one rule. We did include a straight line function in our test case
(see Fig. 7). The test functions were as follows:

for (65)

for (66)

for (67)

2) Exponential Functions:This class of set function
includes Gaussian bell-curve and Laplace functions. The hy-
perbolic tangent is one form of ratio of exponential functions.
We tested the approximands below on the interval

(68)

(69)

(70)

3) Polynomials Based on Trigonometric Functions:This
class of functions includes many functions. A truncated Fourier
expansion of any function belongs to this class. We also include
the inverse of these trigonometric functions within this class
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of test cases. All of the functions have as their domain the set

(71)

(72)

(73)

(74)

(75)

(76)

4) Combination of Exponential, Rational, and Trigono-
metric Functions: We formed a mixed class of functions from
the above classes. A sinc function also belongs to this
class because it is a rational function of trigonometric and
polynomial functions

for

(77)

for

for
(78)

for (79)

Fig. 7 plots some of the 1-D approximands.

B. 2-D Test Functions

We created 2-D test functions from the
1-D test functions. A product of two 1-D functions created 2-D
test functions. We also defined new 2-D set functions that were
unfactorable. Below we list some samples of the approximands
that we tested. All test functions have as their domain the set

except for the test function

for (80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

Fig. 7 plots the surface of some of these samples of 2-D approx-
imands.

C. 3-D Test Functions

We created 3-D test functions as products
of 1-D test functions. We also define new 3-D set functions that
were unfactorable. All test functions have as their domain the set

. Below we list some samples
of the approximands that we tested

(89)

(90)

(91)

(92)

(93)
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Fig. 8. Convergence plots of squared error versus iteration steps. We picked the best results from different learning rates from each set function. The approximands
are 1-D and 2-D approximands in Fig. 7.

D. Results: Comparison of Squared Errors

We gave one point to the set function whose squared error
(SE) was the lowest for each test approximand. In case of a
tie (when their SEs are well within 20%) we gave a fraction
of a point for each tying competitors. We also count as winners
the set functions whose SEs lie within 20% of the lowest SE.
We tested the learning laws with various learning rates (from

to ) and also with different initial widths
for set functions of bell-curve shape.

Fig. 8 plots the SEs against the number of learning cycles.
The simulation results show that the sinc set function often con-
verged faster and more accurately than did the other set func-
tions. The 2-D and 3-D cases with factored set functions showed
like patterns. The pie charts in Fig. 9 show the frequency with
which each set function performed best in the test cases for the
scalar sets and factorable (product) sets. Note that the sinc shape
wins in one and two dimensions while it loses to Gaussian and
hyperbolic tangent shapes in three dimensions.

A joint set function measures the degree
to which input belong to the fuzzy or multivalued

set Degree . Most fuzzy sys-
tems factor the joint set function though some use distance to
maintain the joint structure and thus to maintain the correla-
tion among input components [5]. We further examine how fac-
torable and unfactorable joint set functions affect function ap-
proximation.

VII. JOINT UNFACTORABLE FUZZY SETS: TRANSFORMED

METRICS

This section considers a class of joint set functions
that do not factor. We focus on a small class of metrical

joint set functions: for
some metric and some scalar functionsuch as a Gaussian,
triangle, or sinc set function.

We first define the metric as a
quadratic form with positive definite matrix

(94)
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Fig. 9. Proportions of test cases where each function performed best.
Multidimensional sets are factorable (product) sets of the scalar ones. The
winners in each case are from the best learning rates from� = 10 to
� = 10 . (a) 1-D, (b) 2-D, and (c) 3-D test cases.

Then we can create metrical joint set functionsfrom this
metric and the scalar set functions .
Below we show the cases whentakes the form of a piece-
wise linear function (this gives a metrical tri-
angle), parabolic function , Cauchy func-
tion , Gaussian function ,
Laplace function , sinc function ,
hyperbolic tangent , logistic function

where , hyperbolic
secant , or the derivative of logistic function

.

1) Symmetric metrical triangle set function.This set function
defines the degree to which an input vector belongs
to set with linear function

if
else

(95)

2) Joint Gaussian set function.This set function derives from
the probability density function of a jointly normal random
vector [23]

(96)

So is analogous to the inverse covariance matrix
(1/2) and is analogous to the mean vector in the
normalized joint Gaussian probability density [23]. The
joint Gaussian set factors when the positive definite matrix

is diagonal.
The joint Gaussian set function has the Mahalanobis dis-

tance as its exponent if is a covariance matrix. We
apply this method to scalar set functions to create metrical
joint set functions below.

3) Metrical parabolic set function.The set value linearly falls
as the square of the distancegrows

if
else.

(97)

4) Joint Cauchy.The joint Cauchy set function derives from
the probability density function of joint Cauchy random
variables [25]. We discard the constant that normalizes
the density function to a unit integral and obtain the joint
Cauchy set function

(98)

5) Metrical Cauchy set function.This set function differs from
the actual joint Cauchy density in (98). It has a simpler form

(99)

6) Metrical Laplace set function.The scalar Laplace function
forms the metrical set function as

(100)

This metrical set function reduces to the factorable product
set if the positive definite matrix is diagonal.

7) Metrical sinc set function.The scalar sinc function forms
a joint metrical set from a metric as

(101)

8) Metrical logistic set function.The logistic function defines
this metrical joint set as

(102)

9) Metrical hyperbolic tangent set function.This metrical
joint set has the form

(103)
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Fig. 10. Metrical joint set functions withm = 0 andK = [
2 �1

�1 1
] andl distance. (a) Symmetric metrical triangle set function. (b) Metrical parabola set

function. (c) Joint (metrical) Gaussian set function. (d) Metrical Cauchy set function. (e) Metrical Laplace set function. (f) Metrical sinc set function. (g) Metrical
logistic set function. (h) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set function. (j) Metrical differential logistic set function.

10) Metrical hyperbolic secant set function.We form the met-
rical joint set from the hyperbolic secant function as

(104)

11) Metrical differential logistic set function.The derivative of
the logistic function also defines a metrical joint set

(105)

Fig. 10 shows some of the above joint set functions with cen-

ters at and with .

The metric reduces to the weighted metric for the
diagonal matrix

. So we can generalize this metrical
measure to the weighted metric

(106)

for and use it to create joint metrical set functions. We
replaced the weights from the diagonal matrix with scales
1 . So we replaced with to
conform with the form of factorable sets in Section IV-B. The

metrical distance has the form

(107)

So the metrical set function follows as

(108)

for some scalar function and for as in (107).
This gives a general form for metrical sets. The real function

can be any generalized scalar set function. Popular
examples of are triangle and Gaussian functions.

We also tested the metrical sets with theor “city block”
metric

(109)

where in (107). The set function has the form

(110)

Fig. 11 shows some of the metrical sets with and
for the 2-D input case. The functiontakes the form

of a symmetrical triangle, parabola, Gaussian, Cauchy, Laplace,
sinc, logistic, hyperbolic tangent, or differential logistic func-
tion.

We now consider the extreme case of themetrical set func-
tions when . This gives the “max” metric. The set
function has the form

(111)

(112)

(113)

Note that is never negative. So if is mono-
tone decreasing for (such as for a triangle or Gaussian
function or any unimodal function where peaks at )
then

(114)

(115)
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Fig. 11. Metrical joint set functions withm = 0; � = [2 1], andl distance. (a) Symmetric metrical triangle set function. (b) Metrical parabola set function. (c)
Metrical Gaussian set function. (d) Metrical Cauchy set function. (e) Metrical Laplace set function. (f) Metrical sinc set function. (g) Metrical logistic set function.
(h) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set function. (j) Metrical differential logistic set function.

(116)

holds for a scalar set function . So
the metrical joint sets with monotone decreasing are
equivalent to the factorable sets with the min conjunctive oper-
ator. Fig. 12 shows the sets of points that give the same distance
from the origin with metric for and . So factorable
set functions with min bound the metrical set functions in (108)
through the metric in (107).

The shape and orientation of the “hills” of if-part fuzzy sets
may help fuzzy systems better approximate certain functions in
that region. So we transform the translated input vector

to where is any
linear or nonlinear operator [16]. We transform the translated
vector instead of the input vector because it is easier
to keep track of the “center” vector (if we use a unimodal
set function such as the Gaussian and some mappingsuch
that if and only if ).

Here we show the simple case of a linear transformation. Say
is an matrix . Then define the norm (or

distance with the vector ) as

(117)

for the th metrical set function as above. The
-norm of a vector has the form

(118)

So we can rewrite the quadratic distance
in (94) in the form of (117). The

matrix is symmetrical nonnegative definite: .
So and [29]. This implies
that

(119)

Fig. 12. Spheres in different metric spaces.

(120)

(121)

This has the form where and .
Users may encode more useful information in the nonlinear

operator to reduce the number of fuzzy rules and perhaps
lessen the rule explosion. Finding good combinations of non-
linear maps and metrics and functional form remains
an open research problem.

VIII. SUPERVISEDLEARNING IN SAMS: METRICAL SETS

The learning laws for the then-part set centroidsand vol-
umes remain the same for any if-part fuzzy sets. Only the
learning laws for if-part set parameters have new forms. The
joint metrical set functions depend on the metric. So we tune
the parameters that define the metric. For the quadratic metric

we tune the vector and
the matrix

(122)

(123)
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The partial derivatives (or gradients in the vector-matrix cases)
follow from (24) in like manner

(124)

(125)

We have derived the first two partial derivatives in (26) and (27).
The partial derivative depends on which scalar set
function we use to create the joint set function.

1) Symmetric metrical triangle set function

if
else,

(126)

2) Metrical parabola set function

if
else.

(127)

3) Joint Gaussian set function

(128)

4) Joint Cauchy set function

(129)

5) Metrical Cauchy set function

(130)

6) Metrical Laplace set function

(131)

7) Metrical sinc set function

(132)

8) Metrical logistic set function

(133)

9) Metrical hyperbolic tangent set function

(134)

10) Metrical hyperbolic secant set function

(135)

11) Metrical differential logistic set function

(136)

These partial derivatives hold for any metric
that users might choose. They are independent of the function

that we use to transform the input vectorinto the scalar
.

We now derive the gradients of the metricwith respect to
the vector and matrix for the quadratic case

. The gradients have the form

(137)

(138)

since .
We might use diagonal matrices to reduce the compu-

tation. This reduces the quadratic form of to a weighted
norm. We can also use any norm to compute as men-
tioned earlier. We also examine set functions from thenorm
as in (109). The partial derivatives have the form

(139)

(140)

for . The learning laws for the set functions that use
the metric in (106) follow in like manner. We now derive the
learning laws for the metrical set function
where takes the form in (117) and is a matrix .
Let denote the th row of an matrix and put

. We can rewrite the norm as

(141)

(142)

So the gradient (in row vector notation) for theth row of is

(143)
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(144)

(145)

(146)

The gradient of the metric with respect to (in column
vector notation) follows in like manner

(147)

(148)

(149)

(150)

(151)
We can further tune the parameterin the metric in (106)

(152)

(153)

The partial derivative when the metric has the form (117) has
the similar form

(154)

Fig. 13. l metrical sets. Proportions of test cases where each metrical set
function performed best. (a) 2-D test cases. (b) 3-D test cases. Note that the
metrical triangle and the metrical quadratic switch from first and second place
for the 2-D test cases to second and first place for the 3-D test cases.

Fig. 14. l metrical sets. Proportions of test cases where each metrical set
function performed best. (a) 2-D test cases. (b) 3-D test cases. Thel -metrical
sinc goes from winner for the 2-D test cases to loser for the 3-D test cases. The
l -metrical Laplacian emerges as the winner for the first time in the 3-D case.

IX. SIMULATION RESULTSII: JOINT METRICAL SETS

Figs. 13 and 14 show the second results of quadraticand
metrical sets in 2-D and 3-D test cases. Fig. 13 shows that the
metrical triangle performs best in the 2-D experiments while
the -metrical quadratic performs second best. This outcome
reverses in the 3-D experiments. There the-metrical quadratic
if-part set performs best while the metrical triangle performs
second best. Fig. 14 shows that the-metrical sinc wins for
the 2-D test cases but loses for the 3-D test cases (when the

-metrical Laplace wins).
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A. The Second Curse of Dimensionality and Unfactorable
Metrical Sets

Our final result is negative: even unfactorable joint set func-
tions can suffer the second curse of dimensionality of spikiness
in high dimensions. The following theorem illustrates this claim
for metrical set functions that depend on diagonal matrices. The
result may also hold for many nondiagonal matrices.

Theorem: Suppose that a metrical set function has the
form

(155)

for the metric . Here is an
positive-definite diagonal matrix and is a

monotone decreasing function such that as .
Then suffers the second curse of dimensionality: it collapses
to a spike in high dimension asgrows to .

Proof: Recall that factorable set functions with min con-
junction collapse to spikes in
high dimensions for monotone decreasingsuch that
as (see Section II). So we need show only that for a
given metrical set function in (155) there exists afactorable
set function (generated from the same function) that bounds

. Then the metrical set collapses to a spiky
surface in high dimensions.

For a matrix it follows that

(156)

(157)

(158)

since (see Lemma below)

and is monotone decreasing (159)

since is monotone decreasing (160)

(161)

where and is the th row
of . So bounds . Q.E.D.

Lemma: if .
Proof: Consider . Then

for all (162)

for all (163)

(164)

So . Q.E.D.

Note that the set function may not count as a factorable
set function since each componenttakes as input the whole
vector . Then the th row of transforms the input
vector into a scalar . Therefore may not be inde-
pendent and so the theorem (Borel–Cantelli lemma) [9] need
not apply. The theorem does apply if is diagonal.

X. CONCLUSION: THE SEARCH GOESON

At least three main conclusions follow from the above if-part
fuzzy-set definitions, learning laws, and simulations of how
these if-part sets affect adaptive fuzzy function approximation.
The first conclusion is that curses of dimensionality alone will
impose tight limits on empirical searches for the best shape of
parametrized if-part fuzzy sets. The complexity of the learning
laws further compounds this computational burden. It limited
our simulation experiments to no more than three dimensions.
The sets that performed well in these smaller dimensions may
not do so in higher dimensions. The winner histograms even
changed dramatically when going from one to two to three
dimensions. The second dimensionality curse of set spikiness
will also have greater force for searches through the spaces of
four- and higher dimensional set functions.

The second conclusion is that common sense or even expert
intuition may offer little guidance for picking good if-part sets in
higher dimensions. Indeed, they may mislead even in the scalar
case. The frequent winning status of the sinc set in the simula-
tions shows that. This seems to be the first time anyone has used
the sinc function as a fuzzy set and yet such sets may well have
improved the performance of many real fuzzy systems. Surely
there are many more scalar if-part sets that would perform even
better for these and other test functions and that would appear
even less intuitive or have less linguistic meaning than does the
sinc function. Again, the engineering goal of accurate function
approximation will tend to lead the search for the best if-part
set far beyond where the earlier goal of accurate linguistic mod-
eling would take it. And the success of the sinc set and the
hyperbolic-tangent bell curve further suggest that the familiar
Gaussian or Cauchy or other familiar unimodal curves will not
emerge as optimal set functions in other searches.

The third conclusion follows from the other two: The search
for the best shape of if-part (and then-part) sets will continue.
There are as many continuous if-part fuzzy subsets of the
real line as there are real numbers. The set of all if-part fuzzy
subsets of the real line has the higher cardinality of the set of all
subsets of the real line. Fuzzy theorists will never exhaust this
search space. Each theorist can draw different lines through the
space to form set taxonomies or to focus the search or to pose
narrow or broad optimality problems. We suspect that many
such searches will take care to distinguish factorable from
unfactorable sets though they may well ignore our distinction
of parametrized versus nonparametrized sets. The unfactorable
sets hold the promise that they may lessen if not defeat ex-
ponential rule explosion even if they may still suffer from set
spikiness. These searches may be endless in principle but that
itself does not mean that they are not worthwhile. They can on
occasion produce new tools.
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APPENDIX

THE STANDARD ADDITIVE MODEL (SAM) THEOREM

This Appendix derives the basic ratio structure (6) of a stan-
dard additive model fuzzy system and review the local structure
of optimal fuzzy rules.

SAM Theorem:Suppose the fuzzy system
is a standard additive model: Centroid
Centroid for if-part joint set function

, rule weights , and then-part fuzzy set
. Then is a convex sum of the then-part set

centroids

(165)

The convex coefficients or discrete probability weights
depend on the input through

(166)

is the finite positive volume (or area if ) and is the
centroid of then-part set

(167)

(168)

Proof: There is no loss of generality to prove the theorem
for the scalar-output case when . This
simplifies the notation. We need but replace the scalar integrals
over with the -multiple or volume integrals over in the
proof to prove the general case. The scalar case gives
(167) and (168) as

(169)

(170)

Then the theorem follows if we expand the centroid of
and invoke the SAM assumption Centroid
Centroid to rearrange terms

Centroid (171)

(172)

(173)

(174)

(175)

(176)

Now we give a simplelocal description of optimal lone fuzzy
rules [13], [14]. We move a fuzzy rule patch so that it most
reduces an error. We look (locally) at a minimal fuzzy system

of just one rule. So the fuzzy system is constant in
that region: . Suppose that for and
define the error

(177)

We want to find the best place. So the first-order condition
gives or

(178)

Then implies that

(179)

at . So the extrema of and coincide in this case. Fig. 4
shows how fuzzy rule patches can “patch the bumps” and so
help minimize the error of approximation.
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