
The Simplex Algorithm



 So far, we have studied how to solve two-variable 
LP problems graphically.

 However, most real life problems have more than 
two variables!

 Therefore, we need to have another method to 
solve LPs with more than two variables.

 We are going to study The Simplex Algorithm 
which is quite useful in solving very large LP 
problems.

 Today, The Simplex Algorithm is used to solve LP 
problems in many industrial applications that 
involve thousands of variables and constraints.



 LP problems can have both equality and 
inequality constraints.

 LP problems can have nonnegative and urs 
(unrestricted in sign) variables.

 To use the Simplex Method, LP problems 
should be converted to Standard Form LP.



Standard Form LP:
 Why? We know from 2-variables that extreme points 

are potential optimal solutions
 This will be true in higher dimensions as well
 We need an ALGEBRAIC way of characterizing extreme 

points. We can’t draw the feasible region in higher 
dimensions

 Standard form LPs will provide an easy way to do this 
characterization

 All constraints are equalities, with constant 
nonnegative right-hand sides (RHS),

 All variables are nonnegative.
 Any LP can be brought into standard form!



Simplex Method:

 Start with an extreme point

 Move to a neighboring extreme point in the 
improving direction

 Stop if all neighbors are no better 

 Simple Greedy Logic

How to find a feasible extreme point?

How to go to a neighbor?



Converting LP into Standard Form:

Ex: Consider the following LP problem:

max    x1 + 3 x2

s.t.

2x1   +  3x2   +  x3 ≤    5         (1)

4x1   +    x2   +  2x3 =  -11         (2)

3x1 +   4x2  +  2x3 ≥   8         (3) 

x1 ≥ 0, x2 ≤ 0, x3 urs (free)



Converting LP into Standard Form:

a) Define a “slack” variable for each of the “≤” 
constraint  to convert the inequality constraint 
into an equality constraint:

s1 =   5 - 2x1 - 3x2   - x3 , s1≥0       (1)

So that, the first constraint becomes:

2x1   +  3x2   +  x3  +  s1   =  5       (1)



Converting LP into Standard Form:

b) Multiply the second constraint by -1 to get a 
nonnegative right hand side value, i.e. replace 

4x1   +    x2   +  2x3 =  -11         (2)

with:

-4x1   - x2   - 2x3 =  11         (2)



Converting LP into Standard Form:

c) Define an “excess (surplus)” variable for each 
of the “≥” constraints  to convert the 
inequality constraint into an equality 
constraint:

e3 = 3x1 +  4x2   +  2x3 - 8, e3≥0       (3)

So that, the third constraint becomes:

3x1   +  4x2   +  2x3  - e3   =  8       (3)



Converting LP into Standard Form:

d) Variable x2 has a reverse sign restriction:

Replace x2 with -x2
’ throughout.

If x2 is nonpositive then -x2
’ will be nonnegative



Converting LP into Standard Form:

e) Variable x3 is unrestricted in sign:

Replace x3 with x3
’ - x3

’ ’ and force both x3
’ and x3

’ ’

to both be nonnegative



Converting LP into Standard Form:

max    x1 + 3 x2

s.t.

2x1   +  3x2   +  x3 ≤    5     (1)

4x1   +    x2   +  2x3 =  -11    (2)

3x1 +   4x2  +  2x3 ≥   8     (3)

x1 ≥ 0, x2 ≤ 0, x3 urs

max    z=x1 - 3 x2’      

s.t.

2x1  - 3 x2’ + x3’ – x3’’ + s1 =   5      (1)

-4x1  + x2’ - 2 x3’+  2 x3’’       =   11     (2)

3x1 - 4 x2’ + 2 x3’ - 2 x3’’   - e3 =   8    (3) 

x1 ≥ 0, x2’ ≥ 0, x3’ ≥ 0, x3’’ ≥ 0, 

s1 ≥ 0, e3 ≥ 0.



To Convert an LP into Standard Form:
 each inequality constraint is converted into an equality 

constraint by adding or subtracting nonnegative  
slack/excess variables,

 an inequality (equality) can be multiplied by -1 to get 
nonnegative RHS,

 unrestricted variable can be represented as the difference 
of two new nonnegative variables.

If xi is urs, then let xi = xi’- xi’’ where xi’, xi’’≥0.

Replace every occurrence of xi  with      xi’- xi’’ and add sign 
restrictions xi’, xi’’≥0.

 For sign restriction xk≤0,  let xk’= - xk and replace every 
occurrence of xk  with -xk’ and add the sign restriction 
xk’≥0.



Standard Form LP:

Suppose that we converted an LP with m constraints into a standard
form. Also assume  that after the conversion, we have n variables 
as x1, x2, x3,…, xn.



Standard Form LP:

Suppose that we converted an LP with m constraints into a standard
form. Also assume  that after the conversion, we have n variables 
as x1, x2, x3,…, xn.
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Standard Form LP:

If we define:
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Standard Form LP:

If we define:





























































n

2

1

2

1

mnm2m1

2n2221

1n1211

b

 

b

b

b                            ,
 

x

and

a        a   a

                         

a        a    a

    a        a    a

 A 











nx

x

x

LP can be written 
as the system of 
equations :

Ax=b



Standard Form LP:

 For Ax=b to have a solution, rank (A|b)=rank (A).

 We also assume that all redundant constraints are 

removed, so rank(A)=m.

• i.e.  
x1   +  2x2   +  x3 =    4     (1)

x2   - x3 =    1     (2)

2x1 +  6x2  =   10    (3)



Standard Form LP:

 For Ax=b to have a solution, rank (A|b)=rank (A).

 We also assume that all redundant constraints are 

removed, so rank(A)=m.

i.e.  
x1   +  2x2   +  x3 =    4     (1)

x2   - x3 =    1     (2)

2x1 +  6x2  =   10    (3)

Constraint (3) can be 
written as a linear
combination of (1) and (2):

2 [(1)+(2)] = (3)

Remove the 
redundant constraint



Standard Form LP:

 Before proceeding any further with the discussion of 

the simplex algorithm, we should define the concept 

of a basic solution to a linear system.

 Basic Solution: A solution to Ax=b is called a basic 

solution if it is obtained by setting n-m variables 

equal to 0 and solving for the remaining m variables 

whose columns are linearly independent. 



Standard Form LP:

 The n-m variables whose values are set to 0 are 

called nonbasic variables.

 The remaining m variables are called basic

variables.



Standard Form LP:

For Ax=b, where A is a m×n matrix, rank(A)=m, b≥0,

 pick m linearly independent columns from A, 

 rearrange A such that these chosen columns are the first 

m columns in A.



Standard Form LP:

For Ax=b, where A is a m×n matrix, rank(A)=m, b≥0,

 pick m linearly independent columns from A, 

 rearrange A such that these chosen columns are the first 

m columns in A.

Since elementary column and row operations do  

not change the system of linear equations, matrix 

A can be brought into a form A=[Bm×m Nm×(n-m)], 

where Bm×m is invertible. Such a B is called a basis 

matrix



Standard Form LP:
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Standard Form LP:
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Standard Form LP:
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Basic Solutions:

 Consider the system of 

equations:

x1   +   x2   +  x3 =    6

x2          +  x4 =    3 

x1, x2, x3, x4≥0 



Basic Solutions:

 Consider the system of 

equations:

x1   +   x2   ≤    6

x2    ≤     3 

x1, x2≥0 

 Converting into a 

standard form LP:

x1   +   x2   +  x3 =    6

x2          +  x4 =    3 

x1, x2, x3, x4 ≥ 0 

(a) (b)
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Basic Solutions:
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Basic Solutions:

1. Let us chose:
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Basic Solutions:
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Basic Solutions:
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Basic Solutions:
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Basic Solutions:
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Basic Solutions:
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Basic Solutions:

4.    Let us chose:

 
x

x
     x

x

x
     x

0    1

1    1
B

4

1

N

3

2

B 



























The columns are 
linearly independent

   :for x solving and 0 xSetting BN 

bfs. a is 

0

3

3

0

x
3

3
  

3

6
  

1-   1

1    0
bB x 1-

B


















































Basic Solutions:
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Basic Solutions:
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Basic Solutions:
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Basic Solutions:

6.    Let us chose:
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Basic Feasible Solutions:

So, this system of equations has 4 basic feasible 

solutions:
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Recall previously determined bfs:
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Basic Feasible Solutions:
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Theorem:

A point in the feasible region of an LP is an

extreme point if and only if it is a basic feasible 

solution to the LP.



Fundamental Theorem of LP (Revisited):

• If feasible set of an LP is non-empty, then 

there is at least one bfs.

• If an LP has an optimal solution, then there is 
a bfs which is optimal.

For an LP in standard form: 



This Theorem Implies:

• Finding an optimal solution to an LP problem 

is equivalent to finding the best bfs!

• Therefore, we should search for the best bfs.
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• One way is to enumerate all bfs and choose 
the one that gives he best objective function 
value.



• One way is to enumerate all bfs and choose 
the one that gives he best objective function 
value.

• However, enumerating all bfs can be very 
expensive!

184756! is  
m

n
  10,m and 20nfor  example,For 












• Simplex Algorithm does this in a clever way. 
Usually it finds an optimal solution within 3m
enumeration. 



Neighboring extreme points (bfs solutions):

• For any LP with m constraints, two bfs are said to 
be adjacent if their set of basic variables have    
m-1 basic variables in common. 

(Intuitively, two bfs are adjacent if they both lie 
on the same edge of the boundary of the feasible 
region)

• Simplex Algorithm goes from an extreme point to 
an adjacent extreme point with a better objective 
value.
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Recall previously determined bfs:



General Description of the Simplex Algorithm:

1. Convert the LP problem into a standard form 

LP.

2. Obtain a bfs to the LP. This bfs is called the 

initial bfs. In general, the most recent bfs is 

called the current bfs. Therefore, at the 

beginning the initial bfs is the current bfs.



General Description of the Simplex Algorithm:

3. Determine if the current bfs is an optimal 

solution or not.

4. If the current bfs is not optimal, then find an 

adjacent bfs with a better objective function 

value (one nonbasic variable becomes basic and 

one basic variable becomes nonbasic).

5. Go to Step 3.



The Simplex Algorithm:

 To begin the simplex algorithm, convert the LP into 
a standard form,

 Convert the objective function z=c1x1+c2x2+…+ cnxn 

to the row-0 format: 

z-c1x1-c2x2-…- cnxn=0



max    z= x1 + 3 x2

s.t.

x1   +   x2      ≤   6      (1)

-x1   +  2x2    ≤  8       (2)

x1 , x2 ≥ 0

The Simplex Algorithm:

max    z

s.t.

z  - x1   - 3x2                     =  0    (0)

x1   +   x2  +  s1        =  6     (1)

-x1   +  2x2 + s2 = 8    (2)

x1,x2,s1,s2 ≥ 0
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Basic feasible solutions



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z - x1 - 3x2 = 0

1 x1 + x2 + s1 = 6

2 - x1 + 2x2 + s2 = 8

Canonical Form 0:

A system of linear equations  in which each equation has a variable 
with a coefficient 1  in that equation ( and a zero coefficient in all other equations) 
is said to be in canonical form.

If the RHS of each constraint in a canonical form is nonnegative, a basic feasible 
solution can be obtained by inspection. 



Recall that the Simplex Algorithm begins with an initial

bfs and attempts to find better ones. After obtaining a 

canonical form,  we search for the initial bfs.

By inspection, if we set x1=x2=0, we can solve for the 

values of s1 and s2 by setting si equal to the RHS of row i.

BV={s1,s2}  and NBV={x1,x2}

The Simplex Algorithm



The Simplex Algorithm

You may also verify the calculations for the 
initial basic  feasible solution by:
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Notice that each basic variable is associated with the row 

of the canonical form in which the basic variable has a 

coefficient of 1.

To perform the simplex algorithm, we also need a basic 

variable (not necessarily nonnegative!) for row 0.

Observe that variable z appears in row 0 with a 

coefficient of 1, and z does not appear in any other row. 

Therefore, we use z as basic variable for row 0.

The Simplex Algorithm



Let us denote the initial canonical form as canonical form 0. 

With this convention, the basic and nonbasic variables 

for the canonical form 0 are BV={z,s1,s2}  and NBV={x1,x2}.

For this basic feasible solution, z=0, s1=6, s2=8, x1=0, x2=0.

The Simplex Algorithm



In summary, the canonical form:

• LP has equality constraints and nonnegativity constraints ,

• There is one basic variable for each equality constraint,

• The column for the basic variable for constraint i has a 1 in 

constraint i and 0’s elsewhere,

• The remaining variables are called nonbasic.

The Simplex Algorithm



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z - x1 - 3x2 = 0

1 x1 + x2 + s1 = 6

2 - x1 + 2x2 + s2 = 8

Canonical Form 0:



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

Is this current basic feasible solution optimal?

To answer this question, we should determine whether 
there is any way that z can be increased by increasing 
some nonbasic variable from its current value of zero 
while holding all other nonbasic variables at their current 
values of zero (To reach an adjacent bfs). 



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

Row 0 :   z- x1 - 3 x2 = 0    

• if x1 is increased by 1 unit, z increases by 1 unit
• if x2 is increased by 1 unit, z increases by 3 units

So we choose x2 as the “entering variable”.  If x2 is to 
increase from its current value of zero, it has to become a 
basic variable.



The Simplex Algorithm

• For a max. problem, the entering variable has 
a negative coefficient in row 0. Usually we 
choose the variable with the most negative 
coefficient to be the entering variable (ties 
may be broken in an arbitrary fashion).

• x2 will become basic. Therefore, one basic 
variable should become nonbasic. This will be 
the “leaving variable”.



The Simplex Algorithm

• Increasing x2 may cause a basic variable to 
become negative. We look at how increasing 
x2 (while holding x1=0) changes the values of 
current set of basic variables:

x1   +   x2  +  s1    =  6

-x1   +  2x2 +s2 = 8

=0

=0

x2  +  s1         =  6

2x2 +s2 =  8



The Simplex Algorithm

As  s1 ≥ 0,   s1 = 6 - x2  ≥ 0               x2  ≤ 6   

As  s2 ≥ 0,   s2 = 8 - 2x2  ≥ 0             x2  ≤ 4

So, x2 can be at most 4 (otherwise s2  would become negative!)



The Simplex Algorithm

Observe that for any row in which the entering

variable has a positive coefficient, the row’s 

basic variable becomes negative if the entering 

variable exceeds:

rowin   variableentering oft Coefficien

row of Side HandRight 



The Simplex Algorithm

Ratio Test: When entering a variable into the basis, for 

every row i in which the entering  variable has a 

positive coefficient, we compute the ratio:

and determine the smallest one. 

The smallest ratio is the largest value of the entering

variable  that will keep all the current basic variables 

nonnegative. 

,
i rowin   variableentering oft Coefficien

i row of RHS



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

New basic variables = {s1,x2}; and new nonbasic variables = {x1,s2} 
Hence, new z = x1+3x2=12.

If x2=4, then s2=0 and s1=2. 

Therefore s2 is the leaving variable and becomes nonbasic. 



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable

leaving variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable

leaving variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable

leaving variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 - x1 + 2x2 + s2 = 8

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable

To make x2 a basic variable in row 2,  we use elementary row 
operations to make x2 has a coefficient of 1 in row 2 and coefficient 
of 0 in all other rows. 



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

Always make the entering variable a basic variable in a row that
wins the ratio test (ties may be broken arbitrarily).  

entering variable

To make x1 a basic variable in row 2,  we use elementary row 
operations to make x1 has a coefficient of 1 in row 2 and coefficient 
of 0 in all other rows. This procedure is called pivoting on row 2.



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

Pivoting: Purpose is to rewrite the original problem in an 
equivalent form where columns corresponding to basic variables 
form an identity matrix. This allows us to determine the values of 
entering and leaving variables in the new solution. 

entering variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

We may perform elementary row operations step by 
step, starting from the pivot row, one row at a time.



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - x1 + 2x2 + s2 = 8

To make x2 has a coefficient of 1 in row 2: 

• multiply row 2 by 0.5



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

To make x2 has a coefficient of 1 in row 2: 

• multiply row 2 by 0.5 



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 x1 + x2 + s1 = 6

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

To make x2 has a coefficient of 0 in row 1: 

• replace row 1 with row 1 – row 2



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

To make x2 has a coefficient of 0 in row 1: 

• replace row 1 with row 1 – row 2



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - x1 - 3x2 = 0

1 s1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

To make x2 has a coefficient of 0 in row 0: 

• replace row 0 with row 0 + 3 (row 2)



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 s1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

To make x2 has a coefficient of 0 in row 0: 

• replace row 0 with row 0 + 3 (row 2)



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 s1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

Canonical Form 1:

Is this bfs optimal?

No, increasing the nonbasic variable x1 will increase z! 

So x1 is the entering variable. Also note that x1 is the 
variable with the most negative coefficient in row 0.



The Simplex Algorithm

Since s2= 0, the system is:

1.5 x1 + s1 = 2,  and s1 ≥ 0           s1 = 2 – 1.5 x1  ≥ 0                

x1  ≤ 4/3   

-0.5 x1 + x2 = 4, and x2 ≥ 0          x2= 4 + 0.5 x1 ≥ 0

x1  ≥  -8

So, x1 = 4/3  and s1 becomes the leaving variable

We perform the ratio test to find the leaving variable:



The Simplex Algorithm

The new bfs is:
x1 = 4/3, 
x2 = 14/3, 
s1 = 0,
s2 = 0,
z = 46/3.

Now, keep the above results in mind and let us 
have a look at the pivot of the simplex algorithm:



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 s1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

Canonical Form 1:

entering variable

leaving variable



The Simplex Algorithm

Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

entering variable

leaving variable



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

The Simplex Algorithm

Canonical Form 2:

To make x1 a basic variable in row 1,  we use elementary row 
operations to make x1 has a coefficient of 1 in row 1 and coefficient 
of 0 in all other rows. 



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 1.5 x1 + s1 - 0.5 s2 = 2

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 1 in row 1: 

• multiply row 1 by 2/3



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 1 in row 1: 

• multiply row 1 by 2/3



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

The Simplex Algorithm

Canonical Form 2:



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 - 0.5 x1 + x2 + 0.5 s2 = 4

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 0 in row 2: 

• multiply row 1 by 0.5 and add to the row 2



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 0 in row 2: 

• multiply row 1 by 0.5 and add to the row 2



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:



Row Basic 
Variable

RHS

0 z z - 2.5 x1 + 1.5 s2 = 12

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 0 in row 0: 

• multiply row 1 by 2.5 and add to the row 0



Row Basic 
Variable

RHS

0 z z + 5/3 s1 + 2/3 s2 = 46/3

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:

To make x1 has a coefficient of 0 in row 0: 

• multiply row 1 by 2.5 and add to the row 0



Row Basic 
Variable

RHS

0 z z + 5/3 s1 + 2/3 s2 = 46/3

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:

This result is the same as we had calculated before! 



The Simplex Algorithm

Previously calculated new bfs was:
x1 = 4/3, 
x2 = 14/3, 
s1 = 0,
s2 = 0,
z = 46/3.



Row Basic 
Variable

RHS

0 z z + 5/3 s1 + 2/3 s2 = 46/3

1 x1 x1 + 2/3 s1 - 1/3 s2 = 4/3

2 x2 x2 + 1/3 s1 + 1/3 s2 = 14/3

The Simplex Algorithm

Canonical Form 2:

Is this bfs optimal?

YES! Because increasing nonbasic variables s1 and s2

will decrease z (Also note that there is no variable in 
row 0 with a negative coefficient!)



• Instead of writing each variable in every 
constraint, we can use a shorthand display 
called  a simplex tableau. 

Representing Simplex Tableaus



Representing Simplex Tableaus

Row Basic 
Variable

RHS

0 z=0 z - x1 - 3x2 = 0

1 s1=6 x1 + x2 + s1 = 6

2 s2=8 - x1 + 2x2 + s2 = 8

Canonical Form 0:

For example, canonical form 0 could be written as 

Row Basic 
Variable

z x1 x2 s1 s2 RHS

0 z=0 1 -1 -3 0 0 0

1 s1=6 0 1 1 1 0 6

2 s2=8 0 -1 2 0 1 8



• With this format, it is very easy to spot the 
basic variables. We just look for columns with 
a column of identity matrix underneath.  

Representing Simplex Tableaus



(-8,0)

(0,4)

-x1 + 2x2 = 8

x1

x2

x1 + x2 = 6

(0,0)

(1)

(1)

(2)

(2)

(3)

(3)

(4)(4)

(6,0)

(0,6)

(4/3,14/3)

Feasible Region





















































































14

0

0

6

   ,

0

0

3

14

3

4

   ,

0

2

4

0

   ,

8

6

0

0

DB CA

A

B

C

D

Basic feasible solutions

Simplex Iteration 1: x2 enters s2 leaves
ratio test=4, max value for x2 

Simplex Iteration 2: x1 enters x3 leaves
ratio test=4/3, max value for x1



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z=0 1 -1 -3 0 0 0

s1=6 0 1 1 1 0 6

s2=8 0 -1 2 0 1 8

Simplex Tableau-0:

Note that z will always be a basic variable. Therefore, 
we won’t be mentioning it unless it is necessary. 
In addition, since row 0 corresponds to the objective 
function, it is indicated separately in the simplex tableau.

Also note that, since we are in canonical form, the basic 
variable of a row will be equal to the RHS of that row. 



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z=0 1 -1 -3 0 0 0

s1=6 0 1 1 1 0 6

s2=8 0 -1 2 0 1 8

Simplex Tableau-0:

Now let us summarize what we have done so far!



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

0 1 1 1 0 6

0 -1 2 0 1 8

We start with an initial bfs  in the canonical form above 
(if there are m slack variables, we use them 
as basic variables)

For a max problem:

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

s2 0 -1 2 0 1 8

We start with an initial bfs  in the canonical form above 
(if there are m slack variables, we use them 
as basic variables)

For a max problem:

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

s2 0 -1 2 0 1 8

Entering Variable: Choose a variable with the most 
negative coefficient in row 0. 

entering variableSimplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

s2 0 -1 2 0 1 8

entering variableSimplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

s2 0 -1 2 0 1 8

entering variable

,
i  rowin   variableentering oft Coefficien

i  row of RHS

Leaving Variable: compute ratios:

The smallest positive ratio wins and the basic variable  
of the winning row leaves the basis.

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6 6

s2 0 -1 2 0 1 8 4

entering variable

Leaving Variable: compute ratios:

The smallest positive ratio wins and the basic variable  
of the winning row leaves the basis.

,
i  rowin   variableentering oft Coefficien

i  row of RHS

leaving variable pivot term

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6 6

s2 0 -1 2 0 1 8 4

entering variable

Leaving Variable: compute ratios:

The smallest positive ratio wins and the basic variable  
of the winning row leaves the basis.

,
i  rowin   variableentering oft Coefficien

i  row of RHS

leaving variable pivot term

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6 6

x2 0 -1 2 0 1 8 4

Leaving Variable: compute ratios:

The smallest positive ratio wins and the basic variable  
of the winning row leaves the basis.

,
i  rowin   variableentering oft Coefficien

i  row of RHS

pivot term

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

x2 0 -1 2 0 1 8

Leaving Variable: compute ratios:

The smallest positive ratio wins and the basic variable  
of the winning row leaves the basis.

,
i  rowin   variableentering oft Coefficien

i  row of RHS

pivot term

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

x2 0 -1 2 0 1 8

pivot term

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

x2 0 -1 2 0 1 8

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

x2

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 1 1 1 0 6

x2 0 -1/2 1 0 1/2 4

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1

x2 0 -1/2 1 0 1/2 4

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -1 -3 0 0 0

s1 0 3/2 0 1 -1/2 2

x2 0 -1/2 1 0 1/2 4

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z

s1 0 3/2 0 1 -1/2 2

x2 0 -1/2 1 0 1/2 4

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -5/2 0 0 3/2 12

s1 0 3/2 0 1 -1/2 2

x2 0 -1/2 1 0 1/2 4

pivot term

Pivot: Transform the tableau so that the new 
basic variable (entering variable) has 1 in the row 
of the leaving variable (pivot row) and 0 in other 
rows.                                   

Simplex Tableau-0:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -5/2 0 0 3/2 12

s1 0 3/2 0 1 -1/2 2

x2 0 -1/2 1 0 1/2 4

Simplex Tableau-1:

enter



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -5/2 0 0 3/2 12

s1 0 3/2 0 1 -1/2 2 4/3

x2 0 -1/2 1 0 1/2 4 no 
ratio

Simplex Tableau-1:

enter

leave



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -5/2 0 0 3/2 12

0 3/2 0 1 -1/2 2 4/3

x2 0 -1/2 1 0 1/2 4 no 
ratio

Simplex Tableau-1:

enter

leave



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS Ratio 
Test

z 1 -5/2 0 0 3/2 12

x1 0 3/2 0 1 -1/2 2 4/3

x2 0 -1/2 1 0 1/2 4 no 
ratio

Simplex Tableau-1:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 -5/2 0 0 3/2 12

x1 0 3/2 0 1 -1/2 2

x2 0 -1/2 1 0 1/2 4

Simplex Tableau-1:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 0 0 5/3 2/3 46/3

x1 0 1 0 2/3 -1/3 4/3

x2 0 0 1 1/3 1/3 14/3

Simplex Tableau-2:



Representing Simplex Tableaus

Basic 
Variable

z x1 x2 s1 s2 RHS

z 1 0 0 5/3 2/3 46/3

x1 0 1 0 2/3 -1/3 4/3

x2 0 0 1 1/3 1/3 14/3

Simplex Tableau-2:

Can we iterate more?

No, because all row 0 coefficients are 
nonnegative. We stop here. The current bfs is 
optimal!



Summary of the Simplex Algorithm
(For a max problem)

1)   Convert the LP into the standard form and then 
obtain the canonical form

2)   Find an initial bfs (if there are m slack variables, use 
them as basic variables). 

If all nonbasic variables have nonnegative 
coefficients in row 0, then the current LP is optimal. 

If there are any variables with a negative 
coefficient, then we should decide the entering 
variable.

Entering variable: choose a variable with the most 
negative coefficient in row 0 to enter the basis.



Summary of the Simplex Algorithm

3)   For any row in which the entering variable has a 
positive coefficient, compute the ratios: 

RHS of row i

Coefficient of the entering variable in row i

The smallest ratio wins (ties may be broken 
arbitrarily) and the basic variable of the winning 
row leaves the basis.

4) Pivot: Transform the tableau so that the new basic
variable (entering variable) has coefficient of 1 in the 
row of the leaving variable (pivot row) and 
coefficient of 0 in all other rows. In the end, we get 
a tableau with a new canonical form.



Summary of the Simplex Algorithm

After the pivoting, note that:

 

 rowpivot  new
rowpivot  in the variable

 entering  theoft coefficien
 - i row oldi row new

rowpivot  old 

rowpivot  in the variable

 entering  theoft coefficien
   

1
rowpivot  New

























Summary of the Simplex Algorithm

5) Repeat steps 1,2,3, and 4 until all row 0 coefficients

becomes nonnegative. If each nonbasic variable has

a nonnegative coefficient in a canonical form’s row 0 

(remember that basic variables have coefficient of 0

in row 0 of a canonical form), then the canonical 

form is optimal. We stop here and the current bfs is 

optimal!



More on Simplex Method

Simplex for min problems

Alternative optimal solutions

Unboundedness

Degeneracy

Big M method

Two phase method

144



Simplex for min Problems
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Simplex for min Problems

Alternative 1: Use the algorithm for max problems

Remember,

minimize z = 2x1 - 3x2

subject to

x1 + x2 ≤ 4

x1 - x2 ≤ 6

x1, x2 ≥ 0

-maximize z = -2x1 + 3x2

subject to

x1 + x2 ≤ 4

x1 - x2 ≤ 6

x1, x2 ≥ 0

≡

146

≡ - max - f(𝑥1, 𝑥2, …, 𝑥𝑛)             min f(𝑥1, 𝑥2, …, 𝑥𝑛)             

Don’t forget to negate the optimal value when you solve it as 

max problem!



Simplex for min Problems

Alternative 2: Direct way

In Row 0 format, choose the variable with the most

positive coefficent as the entering variable. 
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Alternate Optimal Solutions
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An Example*

149
*from our textbook: “Operations Research: Applications and Algorithms” by Wayne Winston



Model

150



Simplex Iterations
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Alternate Optimal Solutions

Now, reconsider the example with the modification that tables sell for $35 instead of $30.

152



Alternate Optimal Solutions

153

Remember,
change in objective value=|coefficient of entering variable| * ratio test result



Alternate Optimal Solutions

Note that their convex combinations are also optimal.
x1 x2 x3 ObjFnVal

ObjCoeff 60 35 20 -

opt1 2.00 0.00 8.00 280

opt2 0.00 1.60 11.20 280

lambda ObjFnVal

0.0 0.00 1.60 11.20 280

0.1 0.20 1.44 10.88 280

0.2 0.40 1.28 10.56 280

0.3 0.60 1.12 10.24 280

0.4 0.80 0.96 9.92 280

0.5 1.00 0.80 9.60 280

0.6 1.20 0.64 9.28 280

0.7 1.40 0.48 8.96 280

0.8 1.60 0.32 8.64 280

0.9 1.80 0.16 8.32 280

1.0 2.00 0.00 8.00 280

Convex Combinations

154



- In Simplex algorithm, alternative solutions are 

detected when there are 0 valued coefficients for 

nonbasic variables in row-0 of the optimal tableau.

- If there is no nonbasic variable with a zero coefficient 

in row 0 of the optimal tableau, the LP has a unique 

optimal solution.  

- Even if there is a nonbasic variable with a zero 

coefficient in row 0 of the optimal tableau, it is possible 

that the LP may not have alternative optimal solutions.

Alternate Optimal Solutions - Remark
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Alternate Optimal Solutions

Practice example:

maximize z = 2x1 + 4x2

subject to

x1 + 2x2 ≤ 5

x1 + x2 ≤ 4

x1, x2 ≥ 0



Alternate Optimal Solutions

Practice example:

maximize z = 2x1 + 4x2

subject to

x1 + 2x2 ≤ 5

x1 + x2 ≤ 4

x1, x2 ≥ 0

Set of alternate optimal solutions=

𝑥1
𝑥2
𝑠1
𝑠2

:

𝑥1
𝑥2
𝑠1
𝑠2

=𝜆

0
5

2
0
3

2

+(1−𝜆)

3
1
0
0

𝑤ℎ𝑒𝑟𝑒 𝜆 ∈ [0,1]



Unboundedness
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Unbounded LPs

For some LPs, there exist points in the feasible region for 

which z assumes arbitrarily large (in max problems) or 

arbitrarily small (in min problems) values.  When this 

occurs, we say the LP is unbounded.

Consider the following LP:

maximize z = x1 + 2x2

subject to

x1 – x2 ≤ 10 

x1 ≤ 40

x1, x2 ≥ 0

159



Unbounded LPs

Practice Example: 

In standard form:

maximize z = x1 + 2x2

subject to

x1 – x2 + s1 = 10 

x1 + s2 = 40

x1, x2, s1, s2 ≥ 0

Apply Simplex Method. 

Consider x1 = 0; s2 = 40; x2 = a; s1 = 10+a.

The objective function value is then 2a for any a ϵ ℝ+.
160



Unbounded LPs

• An unbounded LP occurs in a max (min) problem if there 

is a nonbasic variable with a negative (positive) coefficient 

in row 0 and there is no constraint that limits how large we 

can make this nonbasic variable.

• Specifically, an unbounded LP for a max (min) problem 

occurs when a variable with a negative (positive) 

coefficient in row 0 has a non positive coefficient in each 

constraint.

There is an entering variable but no leaving variable, since 

ratio test does not give a finite bound!
161



Degeneracy
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Degeneracy

• An LP is a degenerate LP if in a basic feasible solution, one 
of the basic variables takes on a zero value. This bfs is 
called degenerate bfs.

• Degeneracy could cost simplex method extra iterations.

• When degeneracy occurs, obj fn value will not increase.

• A cycle in the simplex method is a sequence of K+1 
iterations with corresponding bases B0, …, BK, B0 and K≥1.

• If cycling occurs, then the algorithm will loop, or cycle, 
forever among a set of basic feasible solutions and never 
get to an optimal solution.

163



164

Example of Cycling

*Lecture 13 by Prof. David P. Williamson of Cornell Uni. ORIE Dept.



• Consider the following example*:

Degeneracy

165
*from our textbook: “Operations Research: Applications and Algorithms” by Wayne Winston



Degeneracy

Iteration-1

Iteration-2
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• In the simplex algorithm, degeneracy is detected when there 
is a tie for the minimum ratio test. In the following iteration, 
the solution is degenerate.

• Example (for practice):

maximize z = 3x1 + 9x2

subject to

x1 + 4x2 ≤ 8

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

Degeneracy
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• When degeneracy occurs, obj fn value will not increase and 
algorithm cycles same basic feasible solutions. To prevent this:

• Bland showed that cycling can be avoided by applying the 
following rules (assume that the slack and excess variables are 
numbered xn+1, xn+2 etc.) 

• Choose an entering variable (in a max problem) the variable 
with a negative coefficient in row 0 that has the smallest index

• If there is a tie in the ratio test, then break the tie by choosing 
the winner of the ratio test so that the variable leaving the 
basis has the smallest index

• Using Bland’s rule, the Simplex Algorithm terminates in finite 
time with optimal solution (i.e. no cycling)

Start Applying Bland’s rule when a degenerate bfs is encountered

Degeneracy – Bland’s Rule
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Big-M Method

Alternative 1 for finding and initial bfs.
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Big M Method

• The simplex method algorithm requires a 
starting bfs.  

• Previous problems have found starting bfs by 
using the slack variables as our basic variables.

– If an LP has ≥ or = constraints, however, a starting 
bfs may not be readily apparent.  

• In such a case, the Big M method may be used 
to solve the problem.
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Big M Method

• Consider the following LP:

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0
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Big M Method

• Consider the following LP:

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

172

- maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

≡



Big M Method

• The LP in standard form has z and s1 which could be used for BVs but row 2 
would violate sign restrictions and row 3 no readily apparent basic 
variable.

• In order to use the simplex method, a bfs is needed.

– To remedy the predicament, artificial variables are created.  

– The variables will be labeled according to the row in which they are used.

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 = 20

Row 3:           x1 +        x2 = 10
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Big M Method

• In the optimal solution, all artificial variables must be set 
equal to zero.  

– To accomplish this, in a min LP, a term Mai is added to 
the objective function for each artificial variable ai.

– For a max LP, the term –Mai is added to the objective 
function for each ai.  

– M represents some very large number.  

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Big M Method

• The modified LP in standard form then becomes:

• Modifying the objective function this way makes it extremely 
costly for an artificial variable to be positive.  The optimal 
solution should force a2 = a3 =0 (whenever possible!)

Row 0: z +  2x1 +      3x2 +  Ma2 + Ma3 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 +    a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2 3 0 0 M M 0

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row2)  and –M(Row 3) to Row 0 to achieve a proper Row 0 for simplex to 

start
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2 3 0 0 M M 0

0 z 1 2-2M 3-4M 0 M 0 0 -30M

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2-2M 3-4M 0 M 0 0 -30M

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Min
Ratio
Test

16

20/3

10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 1-2M/3 0 0 1-M/3 0 -20-10M/3

1 s1 0 5/12 0 1 1/12 0 7/3

2 x2 0 1/3 1 0 -1/3 0 20/3

3 a3 0 2/3 0 0 1/3 1 10/3

Min
Ratio
Test

28/5

20

5

Since a2 has left the basis, we can forget about that column for good!
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 0 0 0 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Since a3 has left the basis, we can also forget about that column for good!
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 0 0 0 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Final Tableau!

The optimal solution is z=-25, x1=x2 = 5, s1=1/4, e2=0.



• The optimal solution (for the original min 
problem) is z=25, x1=x2 = 5, s1=1/4, e2=0.

• Remark: once an artificial variable is NB, it can 
be dropped from the future tableaus since it 
will never become basic again.

• Remark: when choosing the entering variable, 
remember that M is a very large number. For 
example, 

• 4M-2 > 3M + 5000,

• -6M-5 < -3M - 10000. 182

Big M Method



• Another example LP:
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Big M Method

maximize    z = x1 + x2

subject to    x1 - x2 ≥ 1

-x1 + x2 ≥ 1

x1, x2 ≥ 0



184

Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 0 0 M M 0

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row1)  and –M(Row 2) to Row 0 to achieve a proper Row 0 for simplex to 

start



185

Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 0 0 M M 0

0 z 1 -1 -1 M M 0 0 -2M

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row1)  and –M(Row 2) to Row 0 to achieve a proper Row 0 for simplex to 

start
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 M M 0 0 -2M

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 0 -2 M-1 M 0 -2M+1

1 x1 0 1 -1 -1 0 0 1

2 a2 0 0 0 -1 -1 1 2

The final tableau indicates that the solution is unbounded (no exiting variable) 

and one of the artificial variables is nonzero. 

Thus, the original LP is infeasible.



1. Modify the constraints so that the rhs of each constraint is 
nonnegative.  Identify each constraint that is now an = or ≥ 
constraint.

2. Convert each inequality constraint to standard form (add a 
slack variable for ≤ constraints, add an excess variable for ≥ 
constraints).

3. For each ≥ or = constraint, add artificial variables.  Add sign 
restriction ai ≥ 0.

4. Let M denote a very large positive number.  Add (for each 
artificial variable) Mai to min problem objective functions  or  
-Mai to max problem objective functions.

5. Since each artificial variable will be in the starting basis, all 
artificial variables must be eliminated from row 0 before 
beginning the simplex.  Remembering M represents a very 
large number, solve the transformed problem by the simplex. 

Big M Method

188



• If all artificial variables in the optimal solution equal zero, the 
solution is ?
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Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is ? 
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Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is ?
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• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is 
unbounded. If the final tableau indicates that the LP is 
unbounded and at least one artificial variable is positive, then 
the original LP is ?
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Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is 
unbounded. If the final tableau indicates that the LP is 
unbounded and at least one artificial variable is positive, then 
the original LP is infeasible. 
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Big M Method



For computer programs, it is difficult to 
determine how large M should be. Generally, M 
is chosen to be at least 100 times larger than the 
largest coefficient in the original objective 
function. The introduction of such large 
numbers into the problem can cause roundoff 
errors and other computational difficulties. For 
this reason, most computer codes solve LPs by 
using the two-phase simplex method. 
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Big M Method - Remark



Two-Phase Simplex
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Alternative 2 for finding and initial bfs.



• Solve the same LP with the two-phase method

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

196

- maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

≡

Two-Phase Simplex Method - Example



• Solve the same LP with the two-phase method
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maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

Two-Phase Simplex Method - Example

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Two-Phase Simplex Method - Example

Phase I: Change objective function and solve the following LP 

Min       w= a2 + a3

s.t. 0.5x1 + 0.25x2 + s1 =  4

x1 +      3x2 - e2 + a2 = 20

x1 +        x2 + a3 = 10



199

Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 -1 -1 0

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row2)  and (Row 3) to Row 0 to achieve a proper Row 0 for simplex to start
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 -1 -1 0

0 w 1 2 4 0 -1 0 0 30

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row2)  and (Row 3) to Row 0 to achieve a proper Row 0 for simplex to start
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 2 4 0 -1 0 0 30

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Min
Ratio
Test

16

20/3

10
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 2/3 0 0 1/3 0 10/3

1 s1 0 5/12 0 1 1/12 0 7/3

2 x2 0 1/3 1 0 -1/3 0 20/3

3 a3 0 2/3 0 0 1/3 1 10/3

Min
Ratio
Test

28/5

20

5

Since a2 has left the basis, we can forget about that column for good!
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 0

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Since a3 has left the basis, we can also forget about that column for good!

This is the end of Phase I. Since w=0, move to Phase II with this bfs.



Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

Two-Phase Simplex Method – Phase IITwo-Phase Simplex Method – Phase II
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 2 3 0 0 0

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Bring in the original objective.

Zero out the nonzero coefficients of basic variables in Row 0.

Add -2(Row3) – 3(Row2) to Row 0
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 2 3 0 0 0

0 z 1 0 0 0 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Bring in the original objective.

Zero out the nonzero coefficients of basic variables in Row 0.

Add -2(Row3) – 3(Row2) to Row 0
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 0 0 0 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

This is a max problem so the current tableau is optimal!

End of Phase II

The optimal solution is z=-25, x1=x2 = 5, s1=1/4, e2=0.



• Solve the second LP with the two-phase method

First convert to standard form
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Two-Phase Simplex Method

maximize    z = x1 + x2

subject to    x1 - x2 ≥ 1

-x1 + x2 ≥ 1

x1, x2 ≥ 0

maximize    z = x1 + x2

subject to    x1 - x2 -e1 =1

-x1 + x2 -e2 =1 

x1, x2 , e1 , e2 ≥ 0
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Two-Phase Simplex Method

Phase I: Change objective function and solve the following LP 

minimize    w = a1 + a2

subject to    x1 - x2 -e1 + a1 =1

-x1 + x2 -e2 + a2 =1 

x1, x2 , e1 , e2 , a1 , a2 ≥ 0
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Phase I

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 w 1 0 0 0 0 -1 -1 0

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row1)  and (Row 2) to Row 0 to achieve a proper Row 0 for simplex to start
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Phase I

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 w 1 0 0 0 0 -1 -1 0

0 w 1 0 0 -1 -1 0 0 2

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row1)  and (Row 2) to Row 0 to achieve a proper Row 0 for simplex to start
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Phase I

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 w 1 0 0 -1 -1 0 0 2

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Since this is a minimization problem, the most positive nonbasic variable should 

enter in Row 0 format. Since no such variable,  this is the optimal tableau!

Since w>0 at the end of Phase I, we declare original problem as infeasible. 

This is the end of Two Phase Method, no need to move to Phase II. 



Two-Phase Simplex Method - Summary

• When a basic feasible solution is not readily 
available, the two-phase simplex method may 
be used as an alternative to the Big M method.

• In this method, artificial variables are added to 
the same constraints, then a bfs to the original 
LP is found by solving Phase I LP.

• In Phase I LP, the objective function is to 
minimize the sum of all artificial variables.

• At completion, reintroduce the original LPs 
objective function and determine the optimal 
solution to the original LP.
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Two-Phase Simplex Method – Phase I

• Replace the objective function with:

min w = (sum of all artificial variables). 

• The act of solving the Phase I LP will force the 
artificial variables to be zero. 

• Since the artificial variables are in the starting 
basis, we should create zeros for each artificial 
variables in row 0 and then solve the 
minimization problem. 

• Solving the Phase I LP will result in one of the 
following three cases: 
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Two-Phase Simplex Method – Phase I cont’
• CASE 1: The optimal value of w is greater than zero. In this 

case, the original LP has no feasible solution (which means at 
least one of the ai > 0). 

• CASE 2: The optimal value of w is equal to zero, and no 
artificial ai’s are in the optimal Phase I basis. Then a basic 
feasible solution to the original problem is found. Continue 
to Phase II by bringing in the original objective function. 

• CASE 3: The optimal value of w is zero and at least one 
artificial variable is in the optimal Phase I basis. Recall that 
we wanted a bfs of the original problem. But this means that 
we don’t want the basis to contain any artificial variables. 
Then we can perform an additional pivot and get rid of the 
artificial variable. 

So that in the end, we will get w is zero and no artificial 
variables are in the optimal Phase I basis. 
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Two-Phase Simplex Method – Phase II

• Drop all columns in the optimal Phase I tableau 
that correspond to the artificial variables. And 
combine the original objective function with 
the constraints from the optimal Phase I 
tableau. 

• Make sure that all basic variables have zero in 
row 0 by performing elementary row 
operations. 

• Solve the problem starting with this tableau. 
The optimal solution to the Phase II LP is the 
optimal solution to the original LP. 
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Why does it work?

• Suppose the original LP is feasible. Then this 
feasible solution (with all ai’s being zero) is feasible 
in the Phase I LP with w=0. w=0 is the lowest value 
that w can  get. Hence, it is optimal to Phase I. 
Therefore, if the original LP has a feasible solution 
then the optimal Phase I solution will have w = 0. 

• If the original LP is infeasible then the only way to 
obtain a feasible solution to the Phase I LP is to let 
at least one artificial variable to be positive. In this 
situation, w > 0, hence optimal w will be greater 
than zero. 



• As with the Big M method, the column for any 
artificial variable may be dropped from future 
tableaus as soon as the artificial variable leaves 
the basis.

• The Big M method and Phase I of the two-phase 
method make the same sequence of pivots in 
case the original problem is feasible. For the 
infeasible case, since Phase I can never be 
unbounded, they might differ.

• The two-phase method does not cause roundoff
errors and other computational difficulties.

Two-Phase Simplex Method - Remarks



Solve the following LP with both the big-M and 
the two-phase method

minimize     z = 3x1 + 4x2

subject to    4x1 - 3x2 =  9

-2x1 + 8x2 ≥ 2

x1 - 2x2 ≤ 1

x1, x2 ≥ 0
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Practice Example



The first step in both methods is to get the 
standard form by adding slack and surplus 
variables if necessary. The standard form is: 

minimize     z = 3x1 + 4x2

subject to    4x1 - 3x2 =  9

-2x1 + 8x2 - e2 = 2

x1 - 2x2 + s3 = 1

x1, x2 , e2 , s3 ≥ 0
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Practice Example



Add as many artificial variables as necessary to 
have a basic variable in each equation and 
penalize them appropriately in the objective 
function. Solve the following artificial model. 

minimize     z = 3x1 + 4x2 + Ma1 + Ma2

subject to    4x1 - 3x2 + a1 =  9

-2x1 + 8x2 - e2 + a2 = 2

x1 - 2x2 + s3 = 1

x1, x2 , e2 , s3 , a1 , a2 ≥ 0
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Practice Example with Big-M Method
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 a1 a2 RHS

0 z 1 -3 -4 0 0 -M -M 0

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1

Because basic variables a1 and  a2 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

M(Row1)  and M(Row 2) to Row 0 to achieve a proper Row 0 for simplex to start
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 a1 a2 RHS

0 z 1 -3 -4 0 0 -M -M 0

0 z 1 2M-3 5M-4 -M 0 0 0 11M

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 a1 a2 RHS

0 z 1 2M-3 5M-4 -M 0 0 0 11M

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1

Min
Ratio
Test

No ratio

2/8

No ratio
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 a1 RHS

0 z 1 13M/4-4 0 -3M/8-1/2 0 0 1+39M/4

1 a1 0 13/4 0 -3/8 0 1 39/4

2 x2 0 -1/4 1 -1/8 0 0 1/4

3 s3 0 1/2 0 -1/4 1 0 3/2

Since a2 has left the basis, we can forget about that column for good!
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 a1 RHS

0 z 1 13M/4-4 0 -3M/8-1/2 0 0 1+39M/4

1 a1 0 13/4 0 -3/8 0 0 39/4

2 x2 0 -1/4 1 -1/8 0 0 1/4

3 s3 0 1/2 0 -1/4 1 0 3/2

There is a tie in the ratio test. We favor making artificial variables nonbasic so 

leaving variable is a1

Min
Ratio
Test

39/13

No ratio

3
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Big M Method in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 RHS

0 z 1 0 0 -1/26-M/4 0 13

1 x1 0 1 0 -3/26 0 3

2 x2 0 0 1 -2/13 0 1

3 s3 0 0 0 -1/16 1 0

No entering variable so this is the optimal tableau! 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑥1
𝑥2
𝑒2
𝑠3

=

3
1
0
0

with optimal value = 13



Phase I Artificial Model

minimize     w = a1 + a2

subject to    4x1 - 3x2 + a1 =  9

-2x1 + 8x2 - e2 + a2 = 2

x1 - 2x2 + s3 = 1

x1, x2 , e2 , s3 , a1 , a2 ≥ 0
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Practice Example with Two Phase Method
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 a1 a2 RHS

0 w 1 0 0 0 0 -1 -1 0

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1

Because basic variables a1 and  a2 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row1)  and (Row 2) to Row 0 to achieve a proper Row 0 for simplex to start
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 a1 a2 RHS

0 w 1 0 0 0 0 -1 -1 0

0 w 1 2 5 -1 0 0 0 11

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 a1 a2 RHS

0 w 1 2 5 -1 0 0 0 11

1 a1 0 4 -3 0 0 1 0 9

2 a2 0 -2 8 -1 0 0 1 2

3 s3 0 1 -2 0 1 0 0 1

Min
Ratio
Test

No ratio

2/8

No ratio
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 a1 RHS

0 w 1 13/4 0 -3/8 0 0 39/4

1 a1 0 13/4 0 -3/8 0 1 39/4

2 x2 0 -1/4 1 -1/8 0 0 1/4

3 s3 0 1/2 0 -1/4 1 0 3/2

Since a2 has left the basis, we can forget about that column for good!
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 a1 RHS

0 w 1 13/4 0 -3/8 0 0 39/4

1 a1 0 13/4 0 -3/8 0 1 39/4

2 x2 0 -1/4 1 -1/8 0 0 1/4

3 s3 0 1/2 0 -1/4 1 0 3/2

There is a tie in the ratio test. We favor making artificial variables nonbasic so 

leaving variable is a1

Min
Ratio
Test

39/13

No ratio

3
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Phase I in Tableau Format

Row Basic 
Variable

w x1 x2 e2 s3 RHS

0 w 1 0 0 -1/4 0 13

1 x1 0 1 0 -3/26 0 3

2 x2 0 0 1 -2/13 0 1

3 s3 0 0 0 -1/16 1 0

No entering variable so this is the 

optimal tableau for Phase I!

Bring in original objective 

minimize     z = 3x1 + 4x2 

and move to Phase II to optimize 

starting with this bfs

𝑏𝑓𝑠 =

𝑥1
𝑥2
𝑒2
𝑠3

=

3
1
0
0

with value = 13
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Phase II in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 RHS

0 z 1 -3 -4 0 0 0

1 x1 0 1 0 -3/26 0 3

2 x2 0 0 1 -2/13 0 1

3 s3 0 0 0 -1/16 1 0

Row 0 corresponds to minimize     z = 3x1 + 4x2 
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Phase II in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 RHS

0
0

z
z

1
1

-3
0

-4
0

0
-25/26

0
0

0
13

1 x1 0 1 0 -3/26 0 3

2 x2 0 0 1 -2/13 0 1

3 s3 0 0 0 -1/16 1 0

Add 3(Row1) + 4(Row 2) to Row 0 to make it in proper format
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Phase II in Tableau Format

Row Basic 
Variable

z x1 x2 e2 s3 RHS

0 z 1 0 0 -25/26 0 13

1 x1 0 1 0 -3/26 0 3

2 x2 0 0 1 -2/13 0 1

3 s3 0 0 0 -1/16 1 0

There is no entering variable so 

this is the end of Phase II and it corresponds to 

an optimal bfs. 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑥1
𝑥2
𝑒2
𝑠3

=

3
1
0
0

with optimal value = 13


