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An old theorem of Fathi

Homeoc(Dn, ω) : group of volume-preserving homeomorphisms of
the n-disc, identity near the boundary.

Theorem (Fathi, ’80)

Homeoc(Dn, ω) is simple when n ≥ 3.

(Definition of simple: no non-trivial proper normal subgroups.)

Question (Fathi, 1980)

Is the group Homeoc(D2, ω) simple?
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Today’s theorem

Theorem (“Simplicity conjecture”; CG., Humiliere, Seyfadinni)

Homeoc(D2, ω) is not simple.

Define Homeo0(S2, ω) : area-preserving homeos. of S2, in
component of the identity.

Corollary

Homeo0(S2, ω) is not simple.

S2 the only closed manifold for which simplicity of Homeo0(M, ω)
not known.
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History; comparisons

Ulam (“Scottish book”, 1930s): Is Homeo0(Sn) simple?

30s-60s: Homeo0(M) simple for any connected manifold
(Ulam, von Neumann, Anderson, Fisher, Chernovski,
Edwards-Kirby)

70s: Diff∞0 (M) simple (Epstein, Herman, Mather, Thurston)

Volume preserving diffeos: there is a “flux” homomorphism,
kernel is simple for n ≥ 3. (Thurston)

Symplectic case: kernel of flux simple when manifold closed; if
not closed, there’s a Calabi homomorphism, kernel of Calabi
simple (Banyaga)

Volume preserving homeomorphisms: there is a “mass flow”
homomorphism; kernel is simple for n ≥ 3 (Fathi). n = 2 case
mysterious before our work.
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Our case — comparison

In comparison, our case seems more wild!

Not simple,

but (as far as we know) no obvious natural homomorphism
out of Homeoc(D2, ω) either
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Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes
information about the underlying space.

eg:

Homeo0(M) simple iff M connected

(Whittaker, ’63): any iso. Homeo0(M) −→ Homeo0(N)
induced by a homeomorphism M −→ N.

(Filipkiewicz, ’82): an iso. Diff r
0 (M) −→ Diff s

0 (N) implies
r = s, M,N C r -diffeomorphic (requires M,N compact)

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes
information about the underlying space.

eg:

Homeo0(M) simple iff M connected

(Whittaker, ’63): any iso. Homeo0(M) −→ Homeo0(N)
induced by a homeomorphism M −→ N.

(Filipkiewicz, ’82): an iso. Diff r
0 (M) −→ Diff s

0 (N) implies
r = s, M,N C r -diffeomorphic (requires M,N compact)

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes
information about the underlying space.

eg:

Homeo0(M) simple iff M connected

(Whittaker, ’63): any iso. Homeo0(M) −→ Homeo0(N)
induced by a homeomorphism M −→ N.

(Filipkiewicz, ’82): an iso. Diff r
0 (M) −→ Diff s

0 (N) implies
r = s, M,N C r -diffeomorphic (requires M,N compact)

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes
information about the underlying space.

eg:

Homeo0(M) simple iff M connected

(Whittaker, ’63): any iso. Homeo0(M) −→ Homeo0(N)
induced by a homeomorphism M −→ N.

(Filipkiewicz, ’82): an iso. Diff r
0 (M) −→ Diff s

0 (N) implies
r = s, M,N C r -diffeomorphic (requires M,N compact)

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Remark on some historical motivation

Idea: algebraic structure of the transformation group encodes
information about the underlying space.

eg:

Homeo0(M) simple iff M connected

(Whittaker, ’63): any iso. Homeo0(M) −→ Homeo0(N)
induced by a homeomorphism M −→ N.

(Filipkiewicz, ’82): an iso. Diff r
0 (M) −→ Diff s

0 (N) implies
r = s, M,N C r -diffeomorphic (requires M,N compact)

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Why doesn’t Fathi’s proof work in dim 2?

Le Roux:

Fathi’s proof uses a “fragmentation” result: for any
ϕ ∈ Homec(Dn, ω), n ≥ 3, have ϕ = fg , f and g supported on
discs of 3/4 volume. Fails in dimension 2.

Le Roux shows: simplicity in n = 2 case equivalent to another
fragmentation property.

Our work shows this fragmentation property does not hold.
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Section 2

Idea of the proof
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The Calabi invariant

Diffeoc(D2, ω) is not simple.

There is a non-trivial homomorphism Calabi.

Cal : Diffeoc(D2, ω) −→ R,

defined as follows:

Given ϕ ∈ Diffeoc(D2, ω), write ϕ = ϕ1
H , H = 0 near ∂D2.

Define Cal(ϕ) :=
∫
D2

∫
S1 Hdtω.

Fact: Cal(ϕ) doesn’t depend on choice of H!
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Naive idea

There’s an inclusion

Diffeoc(D2, ω) ⊂ Homeoc(D2, ω),

dense in C 0 topology.

Can we extend Calabi?

Problem: Cal not C 0 continuous.

eg: Consider Hn, supported on disc around origin of area 1/n,
where Hn ≈ n. Cal(ϕ1

Hn
) ≈ 1, C 0 converges to the identity.
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Battle plan

Idea to get around this:

For ϕ ∈ Diffeoc , use “PFH spectral invariants” cd(ϕ) ∈ R
defined via “Periodic Floer Homology”.

Show cd(ϕ) are C 0 continuous, so extend to Homeoc

Prove “enough” of Hutchings’ conjecture:

limd−→∞
cd(ϕ)

d
= Cal(ϕ)

on Diffeoc . (Inspired by “Volume Conjecture” for ECH.)
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Outline of the argument
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Finite Hofer energy homeomorphisms

To prove Homeoc(D2, ω) not simple, need a normal subgroup.

Say ϕ ∈ FHomeoc(D2, ω) — “finite Hofer energy
homeomorphisms” — if there exists

ϕ1
Hi
−→C0 ϕ, ||Hi ||1,∞ ≤ M,

for M independent of i . Here, ||Hi ||1,∞ is the Hofer norm

||Hi ||1,∞ =

∫ 1

0
max(Hi )−min(Hi )dt.
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The infinite twist

We show: FHomeoc E Homeoc .

Hard part: why proper?

Define a monotone twist ϕf to be

(r , θ) −→ (r , θ + 2πf (r)),

where f (r) non-increasing.

Call ϕf an infinite twist if∫ 1

0

∫ 1

r
sf (s)ds r dr =∞.
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Motivation

The idea of the condition∫ 1

0

∫ 1

r
sf (s)ds r dr =∞,

is that for monotone twists ϕ ∈ Diffeoc ,

Cal(ϕf ) =

∫ 1

0

∫ 1

r
sf (s)ds r dr .

So, morally, infinite twists “should” have infinite Calabi invariant.
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Asymptotic arguments

We need to show: ϕf 6∈ FHomeoc .

The argument will go like this:

(A) For any ϕ ∈ FHomeoc , there exists a constant M with

cd(ϕ) ≤ Md .

(B) For any infinite twist ϕf ,

limd−→∞
cd(ϕ)

d
= +∞.
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(A) — Hofer continuity

To prove (A) [cd(ϕ) ≤ Md when ϕ ∈ FHomeoc ],

we prove the following “Hofer continuity” property:

|cd(ϕ1
H)− cd(ϕ1

K )| ≤ d ||H − K ||1,∞.

Then, (A) follows easily from C 0 continuity and the fact that the
id = ϕ1

K for K = 0.
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(B) — part i: Monotonicity

To prove (B) [ cd(ϕf )/d −→∞],

we first prove a general “Monotonicity property”

H ≤ K =⇒ cd(ϕ1
H) ≤ cd(ϕ1

K ),

We then approximate ϕf with smooth ϕfi such that:

fi ≤ fj

hence
cd(ϕf )

d
≥ cd(ϕfi )

d
.
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We pick fi agreeing with f except on [0, 1/i ]; Cal(fi ) −→∞
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(B) — part ii: Hutchings’ conjecture

To complete the proof of (B) [cd(ϕf )/d −→∞],

we prove Hutchings’ conjecture, in the case of monotone twists,
i.e. we show :

limd−→∞
cd(ϕfi )

d
= Cal(ϕfi ).

Combined with the previous slides, this gives

limd−→∞
cd(ϕf )

d
≥ limd−→∞

cd(ϕfi )

d
= Cal(ϕfi ) −→∞.
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We prove Hutchings’ conjecture by direct computation in the
monotone twist case.
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Recap: to-do list

To recap, to prove Homeoc(D2, ω) is not simple, we have to:

Define PFH spectral invariants

Establish C 0 continuity, Hofer continuity, monotonicity for
these invariants

Prove Hutchings’ conjecture for monotone twists

Put it all together, as explained above.
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Section 4

PFH spectral invariants — impressionistic
sketch
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We define PFH spectral invariants by embedding D2 as the
northern hemisphere of S2, and then using the periodic Floer
homology of S2.
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The PFH of S2: the setup

Let ϕ ∈ Diffeo0(S2, ω).

Recall the mapping torus

Yϕ = S2
x × [0, 1]t/ ∼, (x , 1) ∼ (ϕ(x), 0).

Has a canonical vector field

R := ∂t ,

and a canonical two-form ωϕ induced by ω.
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The PFH of S2

The Z2 vector space PFH(ϕ) is homology of a chain complex
PFC (ϕ), for nondegenerate ϕ.

Details of PFC (ϕ) :

Generated by sets {(αi ,mi )}, where

αi distinct, embedded closed periodic orbits of R
mi positive integer; mi = 1 if αi is hyperbolic

Differential ∂ counts I = 1 J-holomorphic curves in R× Yϕ,
for generic J, where I is the “ECH index”

ECH index beyond scope of talk; basic idea: I = 1 forces
curves to be mostly embedded,
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The PFH differential:
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More about PFH

PFH(ϕ) homology of PFC (ϕ, ∂).

There’s a splitting

PFH(ϕ) = ⊕dPFH(ϕ, d),

where PFH(ϕ, d) homology of subcomplex generated by degree d
orbit sets.
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Twisted PFH

To get quantitative information, Hutchings’ observed one can work
with a “twisted” version of PFH; homology of a complex P̃FC (ϕ).

Details of P̃FC (ϕ) :

Choose a degree 1 (trivialized) cycle γ.

Generator of P̃FC (ϕ, d) a pair (α,Z ), Z ∈ H2(α, γd)

∂ counts I = 1 curves C from (α,Z ) to (β,Z ′):

this means: C a curve from α to β, with Z = [C ] + [Z ′].
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Generator of P̃FC (ϕ, d) a pair (α,Z ), Z ∈ H2(α, γd)

∂ counts I = 1 curves C from (α,Z ) to (β,Z ′):

this means: C a curve from α to β, with Z = [C ] + [Z ′].

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

Twisted PFH

To get quantitative information, Hutchings’ observed one can work
with a “twisted” version of PFH; homology of a complex P̃FC (ϕ).

Details of P̃FC (ϕ) :

Choose a degree 1 (trivialized) cycle γ.

Generator of P̃FC (ϕ, d) a pair (α,Z ), Z ∈ H2(α, γd)

∂ counts I = 1 curves C from (α,Z ) to (β,Z ′):

this means: C a curve from α to β, with Z = [C ] + [Z ′].

Dan Cristofaro-Gardiner The simplicity conjecture



Introduction
Idea of the proof

Outline of the argument
PFH spectral invariants — impressionistic sketch

Remarks on the rest of the proof

The spectral invariants:

Two auxiliary structures on P̃FH:

“The action”: A(α,Z ) =
∫
Z ωϕ

“The grading”: gr(α,Z ) = I (Z )

We now define cd(ϕ) to be the minimum action of a homology
class with grading 0 and degree d . We choose γ to be closed orbit
over the south pole (recall that our ϕ are the identity on southern
hemisphere).
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Section 5

Remarks on the rest of the proof
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Still remains to explain Hofer continuity, monotonicity,
C 0-continuity, Hutchings’ conjecture in twist case...key ideas:

Hofer continuity, monotonicity: cobordism map argument
inspired by work of Hutchings-Taubes

C 0 continuity inspired by proof of C 0 continuity of barcodes
for Ham. Floer homology

Hutchings’ conjecture in twist case works by direct
computation: can write down all closed orbits, curves

— get a combinatorial model, involving lattice paths, lattice
regions, inspired by work of Hutchings-Sullivan
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