Chapter 1. Graphs, Functions, \& Models

The Slope of a Line

Mathematicians have developed a useful measure of the steepness of a line, called the slope of the line. Slope compares the vertical change (the rise) to the horizontal change (the run) when moving from one fixed point to another along the line. A ratio comparing the change in y (the rise) with the change in x (the run) is used calculate the slope of a line.

Definition of Slope

The slope of the line through the distinct points $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ is

$$
\frac{\text { Change in } \mathrm{y}}{\text { Change in } \mathrm{x}}=\frac{\text { Rise }}{\text { Run }}=\frac{\boldsymbol{y}_{2}-\boldsymbol{y}_{1}}{\boldsymbol{x}_{2}-\boldsymbol{x}_{1}}
$$

where $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}=0$.

Sample Problems:

- Find the slope of the line thru the points given:
$>(-3,-1)$ and $(-2,4)$

$$
m=\frac{(4-(-1))}{(-2-(-3))}=\frac{5}{1}=5
$$

$>(-3,4)$ and $(2,-2)$

$$
m=\frac{(-2-4)}{(2-(-3))}=\frac{-6}{5}
$$

The Possibilities for a Line's Slope

Point-Slope Form of the Equation of a Line

The point-slope equation of a non-vertical line of slope m that passes through the point $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ is

$$
\boldsymbol{y}-\boldsymbol{y}_{1}=m\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right) .
$$

Example: Writing the Point-Slope Equation of a Line

Write the point-slope form of the equation of the line passing through $(-1,3)$ with a slope of 4 . Then solve the equation for y .

Solution We use the point-slope equation of a line with $m=4, x_{1}=-1$, and $y_{1}=3$.

$$
\begin{array}{ll}
\boldsymbol{y}-\boldsymbol{y}_{1}=m\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right) & \text { This is the point-slope form of the equation. } \\
\boldsymbol{y}-3=4[\boldsymbol{x}-(-1)] & \text { Substitute the given values. Simply. } \\
\boldsymbol{y}-3=4(\boldsymbol{x}+1) & \begin{array}{l}
\text { We now have the point-slope form of the equation for the } \\
\text { given line. }
\end{array}
\end{array}
$$

We can solve the equation for y by applying the distributive property.

$$
\begin{aligned}
& y-3=4 x+4 \\
& \boldsymbol{y}=4 \boldsymbol{x}+7 \quad \text { Add } 3 \text { to both sides. }
\end{aligned}
$$

Slope-Intercept Form of the Equation of a

The slope-intercept equation of a non-vertical line with slope m and \boldsymbol{y} intercept b is

$$
\boldsymbol{y}=m \boldsymbol{x}+b .
$$

Equations of Horizontal and Vertical Lines

Equation of a Horizontal Line

A horizontal line is given by an equation of the form

$$
y=b
$$

where b is the \boldsymbol{y}-intercept. Note: $m=0$.

Equation of a Vertical Line

A vertical line is given by an equation of the form

$$
\boldsymbol{x}=a
$$

where a is the \boldsymbol{x}-intercept. Note: m is undefined.

General Form of the Equation of the a Line

Every line has an equation that can be written in the general form

$$
A \boldsymbol{x}+B \boldsymbol{y}+C=0
$$

Where A, B, and C are three integers, and A and B are not both zero. A must be positive.

Standard Form of the Equation of the a Line

Every line has an equation that can be written in the standard form

$$
A x+B y=C
$$

Where A, B, and C are three integers, and A and B are not both zero. A must be positive.
In this form, $m=-\mathrm{A} / \mathrm{B}$ and the intercepts are $(0, \mathrm{C} / \mathrm{B})$ and $(\mathrm{C} / \mathrm{A}, 0)$.

Equations of Lines

- Point-slope form: $\boldsymbol{y}-\boldsymbol{y}_{1}=m\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
- Slope-intercept form: $\boldsymbol{y}=m \boldsymbol{x}+b$
- Horizontal line: $\boldsymbol{y}=b$
- Vertical line: $\quad \boldsymbol{x}=a$
- General form: $A x+B y+C=0$
- Standard form: $A \boldsymbol{x}+B \boldsymbol{y}=C$

Example: Finding the Slope and the \boldsymbol{y}-Intercept

Find the slope and the y-intercept of the line whose equation is $2 \boldsymbol{x}-3 \boldsymbol{y}+6=0$.
Solution The equation is given in general form, $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$. One method is to rewrite it in the form $\boldsymbol{y}=m \boldsymbol{x}+b$. We need to solve for \boldsymbol{y}.

$$
\begin{array}{ll}
2 \boldsymbol{x}-3 y+6=0 & \text { This is the given equation. } \\
2 x+6=3 y & \text { To isolate the } y \text {-term, add } 3 y \text { on both sides. } \\
3 y=2 x+6 & \text { Reverse the two sides. (This step is optional.) } \\
y=\frac{2}{3} x+2 & \text { Divide both sides by } 3 .
\end{array}
$$

The coefficient of $\boldsymbol{x}, 2 / 3$, is the slope and the constant term, 2 , is the \boldsymbol{y}-intercept.

Steps for Graphing $\boldsymbol{y}=m \boldsymbol{x}+b$

Graphing $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$ by Using the Slope and \boldsymbol{y}-Intercept

- Plot the \boldsymbol{y}-intercept on the \boldsymbol{y}-axis. This is the point $(0, b)$.
- Obtain a second point using the slope, m. Write m as a fraction, and use rise over run starting at the \boldsymbol{y}-intercept to plot this point.
- Use a straightedge to draw a line through the two points. Draw arrowheads at the ends of the line to show that the line continues indefinitely in both directions.

Example: Graphing by Using Slope and \boldsymbol{y}-Intercept

Graph the line whose equation is $\mathrm{y}=\frac{2}{3} \mathrm{x}+2$.
Solution The equation of the line is in the form $\boldsymbol{y}=m \boldsymbol{x}+b$. We can find the slope, \boldsymbol{m}, by identifying the coefficient of \boldsymbol{x}. We can find the \boldsymbol{y}-intercept, \boldsymbol{b}, by identifying the constant term.

Example: Graphing by Using Slope and \boldsymbol{y}-Intercept

Graph the line whose equation is $\mathrm{y}=\frac{2}{3} \mathrm{x}+2$.

Solution

We need two points in order to graph the line. We can use the y-intercept, 2 , to obtain the first point $(0,2)$. Plot this point on the y-axis.

$$
m=\frac{2}{3}=\frac{\text { Rise }}{\text { Run }}
$$

We plot the second point on the line by starting at $(0,2)$, the first point.
Then move 2 units up (the rise) and 3 units to the right (the run). This gives us a second point at $(3,4)$.

Sample Problems

Give the slope and y-intercept of the given line then graph.

$$
\begin{aligned}
& y=3 x+2 \\
& y=-\frac{2}{5} x+6
\end{aligned}
$$

Example: Finding the slope and the x-\& y-intercepts.

Find the slope and the intercepts of the line whose equation is $2 x-3 y=-6$.
Solution When an equation is given in standard form, $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$, the slope can be determine by using the coefficients A and B , so that $\boldsymbol{m}=-\mathrm{A} / \mathrm{B}$.

$$
2 x-3 y=-6 \quad \text { For the given equation, } \mathrm{A}=2 \text { and } \mathrm{B}=-3 \text {. So } m=2 / 3 \text {. }
$$

To find the intercepts, recall that the \boldsymbol{x}-intercept has the form $(\boldsymbol{x}, 0)$ and the y intercept has the form $(0, y)$.

$$
\begin{aligned}
& 2 \boldsymbol{x}-3(\boldsymbol{0})=-6 \text { Let } \mathbf{y}=0 \text { and solve for } \mathrm{x} \text {. } \\
& 2 x=-6 \\
& \boldsymbol{x}=-3 \text { So the } \boldsymbol{x} \text {-intercept is }(-3,0) \text {. } \\
& 2(0)-3 y=-6 \text { Likewise, let } \mathbf{x}=0 \text { and solve for } \mathrm{y} \text {. } \\
& -3 y=-6 \\
& \boldsymbol{y}=2 \quad \text { So the } \boldsymbol{y} \text {-intercept is }(0,2) \text {. }
\end{aligned}
$$

Problems

For the given equations,

1. Rewrite the equation in slope-intercept form and in standard form.
2. Graph the lines using both methods - using slope and y intercept and using the x - \& y-intercepts.

- $4 x+y-6=0$
- $4 x+6 y+12=0$
- $6 x-5 y-20=0$
- $4 y+28=0$

Exercises page 138, numbers 1-60.

Section 1.2 (cont'd)

Review

- Defintion of a slope : $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
- 6 Forms for the Equation of a Line
- Point-slope form: $\boldsymbol{y}-\boldsymbol{y}_{1}=m\left(\boldsymbol{x}-\boldsymbol{x}_{1}\right)$
- Slope-intercept form:
$\boldsymbol{y}=m \boldsymbol{x}+b$
- Horizontal line: $\boldsymbol{y}=b$
- Vertical line: $\quad \boldsymbol{x}=a$
- General form: $A \boldsymbol{x}+B \boldsymbol{y}+C=0$
- Standard form: $A \boldsymbol{x}+B \boldsymbol{y}=C$
- Graphing Techniques
- Using slope and y-intercept
- Using x - \& y-intercepts

Slope and Parallel Lines

- If two non-vertical lines are parallel, then they have the same slope.
- If two distinct non-vertical lines have the same slope, then they are parallel.
- Two distinct vertical lines, both with undefined slopes, are parallel.

Example: Writing Equations of a Line Parallel to a Given Line

Write an equation of the line passing through $(-3,2)$ and parallel to the line whose equation is $\boldsymbol{y}=2 \boldsymbol{x}+1$. Express the equation in point-slope form and \boldsymbol{y}-intercept form.

Solution We are looking for the equation of the line shown on the left on the graph. Notice that the line passes through the point $(-3,2)$. Using the point-slope form of the line's equation, we have $\boldsymbol{x}_{1}=-3$ and $\boldsymbol{y}_{1}=2$.

Example continued:

Since parallel lines have the same slope and the slope of the given line is $2, m=2$ for the new equation. So we know that $m=2$ and the point $(-3$, 2) lies on the line that will be parallel. Plug all that into the point-slope equation for a line to give us the line parallel we are looking for.

Example continued:

Solution The point-slope form of the line's equation is

$$
\begin{gathered}
y-2=2[x-(-3)] \\
y-2=2(x+3)
\end{gathered}
$$

Solving for y, we obtain the slope-intercept form of the equation.

$$
\begin{array}{ll}
\boldsymbol{y}-2=2 \boldsymbol{x}+6 & \text { Apply the distributive property. } \\
\boldsymbol{y}=2 \boldsymbol{x}+8 & \begin{array}{l}
\text { Add } 2 \text { to both sides. This is the slope-intercept } \\
\text { form of the equation. }
\end{array}
\end{array}
$$

Slope and Perpendicular Lines

Two lines that intersect at a right angle $\left(90^{\circ}\right)$ are said to be perpendicular. There is a relationship between the slopes of perpendicular lines.

Slope and Perpendicular Lines

- If two non-vertical lines are perpendicular, then the product of their slopes is -1 .
- If the product of the slopes of two lines is -1 , then the lines are perpendicular.
- A horizontal line having zero slope is perpendicular to a vertical line having undefined slope.

Example: Finding the Slope of a Line Perpendicular to a Given Line

Find the slope of any line that is perpendicular to the line whose equation is $\boldsymbol{x}+4 \boldsymbol{y}-8=0$.

Solution We begin by writing the equation of the given line in slopeintercept form. Solve for y .

$$
\begin{aligned}
\boldsymbol{x}+4 \boldsymbol{y}-8=0 & \text { This is the given equation. } \\
4 \boldsymbol{y}=-\boldsymbol{x}+8 & \begin{array}{l}
\text { To isolate the } \mathrm{y} \text {-term, subtract } \mathrm{x} \text { and add } 8 \text { on } \\
\text { both sides. }
\end{array} \\
\boldsymbol{y}=-1 / 4 \boldsymbol{x}+2 & \text { Divide both sides by } 4 . \\
\text { Slope is }-1 / 4 . &
\end{aligned}
$$

The given line has slope $\mathbf{- 1 / 4}$. Any line perpendicular to this line has a slope that is the negative reciprocal, 4.

Example: Writing the Equation of a Line Perpendicular to a Given Line

Write the equation of the line perpendicular to $\boldsymbol{x}+4 \boldsymbol{y}-8=0$ that passes thru the point $(2,8)$ in standard form.
Solution: The given line has slope $-1 / 4$. Any line perpendicular to this line has a slope that is the negative reciprocal, 4.
So now we need know the perpendicular slope and are given a point $(2,8)$. Plug this into the point-slope form and rearrange into the standard form.

$$
\begin{aligned}
& y-8=4[x-(2)] \\
& y-8=4 x-8 \\
& -4 x+y=0 \\
& 4 x-y=0 \quad \text { Standard form }
\end{aligned}
$$

Problems

1. Find the slope of the line that is
a) parallel
b) perpendicular to the given lines.

- $y=3 x$
- $8 x+y=11$
- $3 x-4 y+7=0$
- $y=9$

2. Write the equation for each line in slope-intercept form.

- Passes thru $(-2,-7)$ and parallel to $y=-5 x+4$
- Passes thru $(-4,2)$ and perpendicular to

$$
y=x / 3+7
$$

Exercises pg 138, numbers 61-68

