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Preface

In an introduction lecture to statistical mechanics you are mostly given a fast
"crash course" on some topics. Either you get a very hand-wavy approach to
the subject in a mathematical viewpoint - but which nevertheless enhances
the physical understanding of it, or the lecturer emphasizes too much the
mathematical techniques to the point that it may become too ductile for the
students. Although the mathematical approach may be exact and rigorous
it may veil the main subject. The aim of this thesis is to discuss a physical
issue in a mathematical context, and then collect the mathemati-cal results
and re-embed them within the physical frame. As a topic, it is chosen the 2D
Ising model to discuss its physical importance using adequate mathematical
formalisms.
The Ising model is a very simple model to describe magnetism in solid state
bodies. Because of its simplicity it is possible to solve it analytically in 1 and
2 dimensions, for it is not solved yet in 3 or higher dimensions. Although
Lars Onsager (1903-1976) has solved the 2D Ising model in 1944, some more
e�orts have been made on that issue in order to provide a solution which
comes along in a more natural way. This allows us to apply mathematical
formalisms to �nd an elegant way to solve the problem. Despite its simplicity
it teaches us a very important phenomenon, namely that spontaneous sym-
metry breaking can occur in the thermodynamic limit.
First of all, one shall examine whether the problem is well-de�ned by consid-
ering a canonical ensemble, and by analyzing the appropriate thermodynamic
potential, i.e., the free energy in the so-called thermodynamic limit. One will
carefully investigate under which conditions the thermodynamic limit of the
ensembles exists. After that, it will �nally be possible to discuss the phase
transition in the Ising model, which is established in the speci�c heat capacity
c:

c(β) := −kbβ2∂
2βf(β)

∂β2
,
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ii PREFACE

where f is the density of the free energy, and β := 1
kbT

is the inverse temper-
ature.
I want to thank my two advisors: Professor Hundertmark, who helped me �nd
a matching bachelor thesis that could ful�ll the requirements of a mathemat-
ical and a physical thesis, and �nd adequate literature for the mathematical
frame; Professor Schmalian, who helped me understand the development of
the Ising model in condensed matter physics w.r.t. realizability and compet-
ing models.

It doesn't matter how beautiful your theory is, it doesn't matter
how smart you are. If it doesn't agree with experiment, it's
wrong.

-R.P. Feynman-

This is the basic principle under which the (Lenz-)Ising model was refused
at the beginning because it did not yield ferromagnetism. Since a physical
theory is considered which shall describe nature, the model will be discussed
respecting experimental hints for the assumptions and one will later have to
justify mathematical steps. Therefore, this thesis is arranged into 3 parts,
namely

(i) the physical background for the model,

(ii) the "well-de�nedness" of the thermodynamic limit,

(iii) the actual calculation of the transition temperature for the 2D Ising
model.

In this manner, the physical setting is created �rst to help understanding how
one gets to the idea of the Ising model. After that, the mathematical setting
must be de�ned and both, the physical and the mathematical ones, will give
us the chance to understand the 2D Ising model. Nevertheless, at this point
one has to already stress that the Ising model represents a certain group of
substances; otherwise there would not be any current interest in discussing
it. A physical example that realizes the 2D Ising model is hydrogen adsorbed
on Fe surface.
In the second chapter it is not intended to historically describe the Ising
model in its detail. Instead, the steps towards understanding the Ising model
a par with its history shall be emphasized for it was not clear �rst how it could
become a physical model when taking its causal nexus into consideration:
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neither some crucial assumptions which imply the Ising model were physically
understood, nor its applicability to any experiment. In this sense, the Ising
model is a magni�cent example for the development of physical theories, but
it also draws the line between a mathematical and a physical model.
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Importance of an exact solution

for a model

0.0.1 De�nition (model). A physical model is a set of equations which
simpli�es by idealizations the scenario it shall describe in order to be solvable,
i.e. it provides a well-de�ned solution, but whose assumptions are based on
empirical facts. In addition, it must be compatible with the contemporary
established concepts of theoretical physics. A good physical model is one
that is realized in nature and can provide prognoses to scenarios that are
conceptually equivalent the original scenario, but which on the other hand
can be defended with the contemporary axiom system.

In the frame of this thesis this de�nition will be used to discuss the Ising
model. It seems to be a very hard criterion for a physical attempt1 to be a
good model but it exhibits both properties, the physical and the mathemat-
ical viewpoint. Both are in�uenced one by the other, so one must always
consider both together. A crucial feature demanded in my de�nition is the
time-dependent character. Whether an attempt has to be considered a model
depends on the mathematical and physical insight one is given, that is why
it is important to study physical and mathematical attempts provided in the
past. They may not have been adequate descriptions at the time they arose
or for the special scenario they were developed for, but they can be applicable
in other cases. E.g. many models and theories to describe superconductivity
failed in that but some of them could explain phenomena related to that2.
This does not mean that all physical or mathematical attempts of the past
can help us in most recent researches, but some of those are nonetheless use-
ful for these. A famous example for that are the Navier-Stokes equations3

1That is how theories will be called which do not ful�ll the above criteria.
2I refer to a single lecture Prof. Schmalian gave on that topic.
3derived in 1827 and 1845 respectively by George Gabriel Stokes (1819-1903) and

v



vi IMPORTANCE OF AN EXACT SOLUTION FOR A MODEL

and the Euler equations4 which are related to these. At the time they were
stated one was far from understanding them. A problem among others was
that there were no computers, so one could not even provide a numerical
approximation to it, but today the Navier-Stokes equations are discussed
very much whenever a �uid is considered. E.g. in game programming their
numerical approach have been used to shape water.
The history of science has shown that some physical models had been used
by physicists many years before mathematicians could prove that the solu-
tion for this problem is well-de�ned. For instance, the 3d Heisenberg model
had been in use for some years when in 1978 mathematicians [FILS78] could
prove the existence of a phase transition in that model. A phase transition
can just occur in the thermodynamic limit5. In a usual introduction course
to statistical mechanics one works with the thermodynamic limit (system
size→∞, particle number→∞) without paying attention whether the ther-
modynamic potential in the considered ensemble exists. This is not a bad
feature of a pure introduction course because one has to learn many physical
concepts instead, but it is still crucial in terms of really understanding a
model, to take care of its "well-de�nedness".
With the speed of modern computers today one is able to provide approxi-
mate solutions and there are people trying to determine whether there is an
exact solution close to the approximate solution, but these methods are very
complicated and depend very much on the model. A problem which is related
to that is chaos. One can consider the magnetic pendulum with 3 sources
which is exposed to friction and gravity (cf. �gure 1). The "solution", i.e.
the endpoint of the motion, depends dramatically on the initial conditions.
It is not even given that there is a solution for the initial condition even
though there might be given a solution in a neighborhood. In that type of
problems one cannot avoid to analyze stability of the solution.

One can see, that the speci�c mathematical issues concerning a (physical)
problem are spread widely, whereas a physicist given a model is exposed to
"just" 2 problems: 1. providing a solution, 2. agreeing with the experiment.
Nonetheless, in order to really understand a model it is unavoidable to care
about mathematical points of it as mentioned above. In the 70's and 80's an
important step in the physical history was the idea of so-called renormaliza-

Claude Louis Marie Henri Navier (1785-1836) respectively
4derived in 1755 by Leonhard Euler (1707-1783)
5This will be precisely discuss in chapter 2.
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Figure 1: Magnetic Pendulum with 3 sources; the sources are placed
in the center of the big areas colored in the particular color. Each
pixel is colored in the color of the magnet where the trajectory of the
pendulum ends. Source: http://nylander.wordpress.com/2007/10/27/

magnetic-pendulum-strange-attractor/.

tion. Renormalization gives a certain condition on models to �t into the �eld
which it is ascribed to. It is applied to Feynman integrals which themselves
are not well-understood in terms of the present axiom system. However, they
can really well describe QED and QCD processes, i.e. one obtains very good
agreement with the experiment.
Not an equation is a mathematical object but the solution of it. In that
sense, providing an exact solution is the last step in understanding a physi-
cal model, it "completes" a physical model.
This thesis aims to describe a certain type of magnetic substances conform
with the concept of statistical mechanics. Although it cannot provide high
numerical accuracy concerning the transition temperature of those substances
one learns how a phase transition can arise in a certain model.

http://nylander.wordpress.com/2007/10/27/magnetic-pendulum-strange-attractor/
http://nylander.wordpress.com/2007/10/27/magnetic-pendulum-strange-attractor/
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Chapter 1

Historical background of the Ising

model

1.1 Weiss's theory of ferromagnetism

According to Martin Niss1 [Nis05], at the time when Wilhelm Lenz (1888-
1957) proposed his model of magnetism to his student Ernst Ising (1900-
1998) in 1920, there were already theories on magnetism which tried to ex-
plain it in a classical way. One was given the experimental results by Pierre
Curie (1859-1906) that there were three types of magnetism, namely dia-
magnetism, paramagnetism and ferromagnetism, and further he found out
that the magnetic susceptibility χ of a paramagnet follows the eponymous
law

χ(T ) ∝ 1

T
(1.1.1)

Paul Langevin (1872-1946), Curie's student, - he believed that macroscopic
magnetism arose with molecular microscopic (atomic) magnets which could
point in every direction - assumed, according to Niss, that the total magnetic
moment "[arose] with the revolution of electrons" in the micro magnets 2

and thus he describes paramagnetism and diamagnetism in 1905 by applying
Boltzmann's law to a gas exposed to an external magnetic �eld. The idea of
micro magnets can be seen due to the Maxwell equation ∇·B = 0, i.e., divid-
ing a magnet into two parts creates two new magnets. With the assumption

1Roskilde Universitet, Institut for Natur, Systemer og Modeller
2[Nis05], p. 273

1



2CHAPTER 1. HISTORICAL BACKGROUND OF THE ISING MODEL

of free rotatability, neglecting interaction between the micro magnets and
assuming

E = H ·M3 = HM cosα

Langevin derived his famous equation

I = MN

(
coth(βMH)− kBT

MH

)
.

With Langevin's results Pierre Weiss (1865-1940) extended this theory to
ferromagnetism in his paper of 1907 [Wei07]. In his attempt to do so he
provided the mean-�eld hypothesis4

Je suppose que chaque molécule éprouve de la part de l'ensemble
des molécules environnantes une action égale à celle d'un champ
uniforme NI proportionnel à l'intensité d'aimantation et de
même direction qu'elle.

i.e., "a molecule experiences, from the collection of molecules surrounding
it, an action equal to that of a uniform �eld proportional to the intensity
of magnetization and in the same direction." He then substituted5 H in the
equations above by the total magnetic �eld Htot under the in�uence of an
external �eld Hext in order to obtain

Htot = NI +Hext.

With this equation Weiss argued that below a critical temperature because
of spontaneous magnetization a magnetic �eld was present, even, if the ex-
ternal �eld was turned o�. However, he could not explain how this transition
arose in a mathematical viewpoint. Other physicists worked further on im-
provements of the assumptions and obtained very good agreements with the
experiment.

3In this thesis one will not use co- or contravariant vectors if it is not mentioned
otherwise, thus, any "·" in a product between vectors means the usual Euclidean scalar

product, i.e. A ·B :=
3∑
i=1

AiBi.

4[Wei07], p. 662
5[Wei07], p. 682
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1.1.1 Stern's criticism

The German physicist Otto Stern (1888-1969) displayed in 1920 [Ste20] that
Weiss had applied Langevin's theory to solids neglecting the anisotropy given
in a crystal so that the idea of free rotatable micro magnets could not be
justi�ed. Further he pointed out that Weiss' theory (as well as the others
above mentioned theories) contained some adjustable parameters, namely
the magnetic moment and the moment of inertia of the molecules which were
�tted by the experiments. One even used the free choice of these constants
for their plots of the experimental data. On the other hand, Stern mentions
examples for which the moment of inertia was computed using Weiss' and his
successors' theory, not anticipating that the free rotatability was not justi�ed
anymore in a crystal.
In the following 6 Stern points out an error in Weiss' calculation who had
tried in 1913 to circumvent this false assumption by arguing that Curie's
law could be deduced considering molecules which had a �xed null position
and which were able to vibrate whenever the null positions had no preferred
direction as it is the fact in amorphous materials. This implies a much bigger
temperature dependence than the assumption actually yielded.

1.2 Lenz's model

Lenz, who knew about Stern's criticism on Weiss' theory - in fact he men-
tioned Stern's paper in his own paper of 1920 [Len20] - introduced his model
by imposing a further restriction on the idea of micro magnets, namely that
the directions, that the micro-magnets could have, were "quantized" - he
does not mention this term - , i.e., only two directions were allowed (→ spin
up/spin down). He describes this as "turnovers"7 (Umklappbewegungen8) and
he justi�es this turnovers with "position switching among atoms" in "self-
and strange di�usion" (Selbst- und Fremddi�usion9). Prof. Schmalian ex-
plained to me that in a current viewpoint this has to be declined as a reason
for magnetism since electronic e�ects dominate and the di�usion processes
happen far too slowly.

6[Ste20], p. 148-153
7I adopted this translation from [Nis05], since Umklapp processes mean something

di�erent in solid state physics
8[Len20], p. 614
9[Len20], p. 614
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It must be emphasized that at the time when Lenz proposed his model, nei-
ther quantum mechanics was developed nor the idea of spin was founded
and one was far from understanding the relation between spin and mag-
netism. For instance, Lenz mentions in his paper a "quantum treatment" (in
quantenmechanischer Betrachtung10) to argue that some angles towards the
external magnetic �eld should be preferred, but Niss explains that this shall
be seen as an idea of "space quantization" his advisor A. Sommerfeld had
introduced. In this idea, the "directions of the normal vector to the orbit of
an electron [...] point only in discrete directions"11.
The experimental fact Lenz relied on, was that not free rotatability, but
anisotropy was given in a crystal lattice12. In the following Lenz deduces
Curie's law from the assumption, that just �ipping of the micro magnets was
allowed, by computing the mean magnetic moment in virtue of

µ̄ = µ
ea − e−a

ea + e−a
= µ tanh a ≈ µa ∝ T−1,

where a = βµH is a small parameter for H → 0. This model can only be
applied to diamagnetic and paramagnetic substances since in his assump-
tions Lenz ignores the interaction between the micro magnets. At the end
of the paper, Lenz concludes that if "the potential energy of an atom to-
wards its neighbors" is di�erent in the null position than in an angle of π to
that - if interaction between the neighbors is allowed - one obtains sponta-
neous magnetization because of a "natural [...] directedness" (natürliche [...]
Gerichtetheit) in the crystal 13.

1.2.1 Ising's paper

In his own paper [Isi24], Ising imposed further constraints on the model Lenz
proposed to him. On one hand, he assumed that the forces acting between
the atoms were an electric force that only acts on the nearest neighbors,
since they decay very fast. On the other hand, he mentions that the state of
minimal energy is obtained if all micro magnets point in the same direction.
This last assumption is very important to understand ferromagnetism. Ising,
however, did not justify his further assumptions in his dissertation14. Niss

10[Len20], p. 614
11[Nis05], p. 278
12[Len20] p. 614
13[Len20], p. 615
14In a modern viewpoint, the fast decay can be seen due to screening e�ects.



1.2. LENZ'S MODEL 5

tries to draw parallels to Walter Schottky 's (1886-1976) ideas, but he also
underlines di�erences between both models, e.g., the di�erent orientations
(Ising demanded spins that are pointing in the plane, Schottky needed spins
that are perpendicular to it)15. Schottky stated that the spins interacted
electro-statically which he justi�es by saying that this way he was able to
estimate the Curie temperature to the right order. Because it is unclear,
according to Niss, if Ising was a�ected by Schottky's thinking, the motivation
behind these assumptions will be left open. The most recent reasons for
them were given in quantum mechanics which was developed after Ising had
published his dissertation. This will be seen in more detail in the following
two sections.
As it is well-known, Ising found no net magnetization in a linear chain of next
or next-to-next neighbor coupled micro magnets even when he considered
an in�nite system (i.e. #micro magnets→ ∞). Ising then concludes that
either no thermal equilibrium or another reason was given for the Boltzmann
distribution not to be applicable16. However, as one will see, that is not
the crucial point where the attempt breaks down. In his paper of 1925
[Isi25], he tries to add a three-dimensional extension to his linear chain by
considering several chains parallel to each other. He does not describe how
he wants to arrange these chains to obtain a three-dimensional lattice, but he
oversimpli�es the coupling by assuming that the single magnetic momenta
just add up to a total magnetic momentum, and thus he can apply the one-
dimensional result to this "three-dimensional" arrangement. Initially one can
understand this result heuristically: Consider a Ising ferromagnetic chain of
length N in a single phase and a subchain of length L of the other phase.
Such a subchain can be inserted approximately N/L times, thus the entropy
changes by approximately

∆S = kB log
N

L
.

With that one obtains a change in the free energy of

∆F = ∆U − T∆S = ∆U − kBT log
N

L
,

which becomes negative for su�ciently large value of N . This heuristic argu-
ment can be rigorously established, cf. [SS81], and can be used to justify the

15[Nis05], p. 280-281
16[Isi24], Ergebnis; I did not �nd a typewriter version for the dissertation, thus I cannot

refer to a certain page number in Ising's thesis.
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phase transition in the 2 dimensional Ising model. The crucial assumptions
which underly the Ising model are

(i) magnetism arises with micro magnets (this can be replaced by the idea
of spins in quantum mechanics),

(ii) the crystalline anisotropy yields that only certain orientations are al-
lowed for the micro magnets,

(iii) only nearest neighbors interact electrically,

(iv) in ferromagnets the minimum energy is obtained if all the spins are
oriented in the same direction and

(v) a phase transition can only occur if the lattice is taken to be arbitrarily,
i.e. in�nitely, large.

This last condition requires more mathematical care, since the thermody-
namic potentials must stay well-de�ned for the limit. Though it is essential,
since a phase transition of order n represents a discontinuity in the nth deriva-
tive of the considered thermodynamic potential in Landau's theory of phase
transitions. And because in the case of a �nite lattice the density f of the
free energy is a �nite sum of C∞(R)-functions of the temperature and thus
it is a C∞(R)-function itself, a discontinuity in any derivative of f can only
occur in the case of an in�nite system. Mathematically one needs further
restrictions to obtain a phase transition, but this will be discussed later in
the thesis. At �rst, one further model shall be introduced which was known
to Ising and his contemporaries, namely the Heisenberg model.
One must pay attention to the fact that under the dimension of a spin cou-
pling model it is understood the number of dimensions in which coupling
is allowed. The dimension of a spin coupling model is not the number of
dimensions in which the spins are allowed to point. The space dimension
of a spin coupling model is de�ned to be the number of possible orthogonal
directions in which the spin can point.

1.3 Heisenberg model

With the birth of quantum mechanics in 1925-1926, Werner Heisenberg
(1901-1976) derived his own theory of ferromagnetism. Since due to the
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Stern-Gerlach experiment given in 1922 Samuel Goudsmit (1902-1978) and
George Uhlenbeck (1900-1988) had already proposed the concept of spin
quantization for electrons, Heisenberg wanted to apply it to magnetism. In
his paper of 1928 [Hei28] he explains that the interaction between the near-
est neighbors could neither be a magnetic force nor the Coulomb force. He
uses an exchange integral (Austauschintegral17) between a pair of electrons
which consists of Coulomb terms among the electrons and the core, and he
further imposes the Pauli principle according to which he concludes, that the
eigenfunction of the corresponding Hamiltonian must be anti-symmetric. He
further respects that the electron quanta are indistinguishable, i.e., one has
to take into account all the possible permutations to calculate the partition
function18. Heisenberg demands that only nearest neighbor interactions are
non-negligible and the exchange integral is the same for all pairs of electrons.
He derives Langevin's equation with Weiss' extension, but he puts further
constraints on the calculation. The fact that he could derive this equa-
tion lead his contemporaries to accept his theory of ferromagnetism. These
however only saw it as a "step in the right direction" and not as a correct
explanation, since some constraints Heisenberg imposed were arbitrary19. It
is important with regard to the understanding of magnetism, that Heisen-
berg refers to the Einstein-de Haas e�ect to justify that not atomic micro
magnets evoke ferromagnetism but the spin (Eigenmomente)20.
One must separate Heisenberg's theory of magnetism which was above, de-
scribed from his model

H = −2JE
∑
i#j

Si · Sj. (1.3.1)

This Hamiltonian is in a way an extension of the Ising Hamiltonian which only
respects the couping z−component of the spins and it was �rst considered to
be the correct model to describe ferromagnetism. Due to the simpli�cation
of the Heisenberg model, ignoring the coupling of the other two components,
and due to the fact that its one-dimensional case did not reveal ferromag-
netism, the physical community dismissed the Lenz-Ising model as a realistic
representation of ferromagnetism. The actual form of the Hamiltonian in

17Heitler and London introduce this exchange integral in [HL27]
18[Hei28], p. 624- 627
19[Nis05], p. 289
20[Hei28], p. 619
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eq. (1.3.1) was derived by Paul Adrien Maurice Dirac (1902-1984) in a pa-
per in 1929 [Dir29], but he did not explicitly refer to Heisenberg's theory in
computing the Hamiltonian, although he mentions Heisenberg's work on the
topic. In his own paper Dirac criticizes that Heisenberg used too complicated
techniques like group theory, which he did not consider to be adequate to
describe a quantum mechanical problem, to explain ferromagnetism21:

It should therefore be possible to translate the methods and results
of group theory into the language of quantum mechanics and
so obtain a treatment of the exchange phenomena which do not
presuppose any knowledge of groups on the part of the reader.

In a certain way Dirac anticipates Occam's razor, but Dirac himself drifts
to a very combinatorial discussion in deriving the Hamiltonian. However,
it will be shown that certain higher mathematical techniques shed another
light on the treatment of a physical issue not to veil the physical nature in
large non-instructive computations.
One shall understand how Heisenberg's Hamiltonian is the most general form
for a Hamiltonian of a 2-fermion-interaction by following some simple steps
described in the following subsection.

1.3.1 Derivation of the Heisenberg Hamiltonian

John Hasbrouck Van Vleck (1899-1980) derived in his book22 in 1932 the
form of Heisenberg's Hamiltonian starting with the general non-relativistic
Hamiltonian for 2 identical spin-1/2 fermions23

H := H1 +H2 + V12,

Hi :=
P 2
i

2m
+ V,

imposing the Pauli principle and respecting the spins of the single electrons.
V12 stands for the coupling between the electrons, whereas V only acts on the
single particles. The aim is to transform the Hamiltonian for the case that
it is acting on the spin wave function of the electrons instead of the orbital
wave function, i.e., one wants to �nd a corresponding Hamiltonian H(S) s.t.

Hψ = Eψ ⇔ H(S)χ = Eχ,

21[Dir29], p. 716
22[VV32], p. 316-321
23I am here using my own notation to emphasize the crucial steps
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where ψ ∈ L2(R3) and χ ∈ C2. This throws a conceptually completely
di�erent light on the problem24. With the ansatz25

|ψI〉 = |ψ1, ψ2〉
|ψII〉 = |ψ2, ψ1〉 ,

which respects the indistinguishability of the two particles, the eigenvalue
equation becomes ∣∣∣∣W0 +K12 − E J12

J12 W0 +K12 − E

∣∣∣∣ = 0, (1.3.2)

where we introduced

W0 := 〈ψI |H1 +H2 |ψI〉 = 〈ψII |H1 +H2 |ψII〉
K12 := 〈ψI |V12 |ψI〉 = 〈ψII |V12 |ψII〉
J12 := 〈ψI |V12 |ψII〉 = 〈ψII |V12 |ψI〉 .

V12 is assumed to ful�ll the above symmetries, which is, e.g., the case if

〈r1, r2|V12 |r1, r2〉 =
1

|r1 − r2|
,

i.e., a Coulomb potential. The eigenvalues with corresponding eigenkets are

W1 = W0 +K12 + J12, |ψs〉 =

√
2

2
(|ψI〉+ |ψII〉)

W2 = W0 +K12 − J12, |ψa〉 =

√
2

2
(|ψI〉 − |ψII〉) .

If one now takes into account that fermions obey the Pauli principle and
thus their wave function must be antisymmetric, one concludes that the only
possible combinations are that the orbital wave function is antisymmetric
and the spin wave function is symmetric and vice versa.

24Taking the Dirac equation into consideration one notices that spin arises with the
relativistic motion of the electrons. In this sense the spin and the orbital wave function
are related.

25I use the Dirac notation, Van Vleck himself chose the space representation for the
eigenfunctions
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Since one is dealing with a non-relativistic discussion, the spin wave function
can now be considered separately. The total spin is given by

(S1 + S2)2 = S226 = S(S + 1),

where the total spin quantum number S can attain the eigenvalues 0 and 1
depending on whether the spins are anti-parallel or parallel. The operators
Si

2 themselves have the eigenvalue 3/4. One hence obtains

S1 · S2 =
1

2

(
S2 − S2

1 − S2
2

)
” = ”

{
1/4 parallel spins

−3/4 anti-parallel spins
.

The last equality shall indicate the possible Eigenvalues of the operator.
The aim is now to derive the interaction potential V12 which gives back the
above Eigenvalues, starting with the eigenvalue equation (1.3.2). Since a
symmetric orbital wave function yields a anti-symmetric spin function and
vice versa, one �rst obtains

V12 =

{
K12 + J12 spins anti-parallel

K12 − J12 spins parallel
.

A general ansatz to solve this problem is

V12 = K12 + (x+ y(S1 · S2))J12.

Together with the corresponding eigenvalues of S1 · S2, one gets a system of
linear equations ∣∣∣∣x + 1

4
y = −1

x − 3
4
y = 1

∣∣∣∣ .
With this one obtains

V12 = K12 −
1

2
J12 − 2J12S1 · S2.

This result gives an even more general form for the Heisenberg Hamiltonian

H = −2
∑
j#k

JjkSj · Sk,

which in this case only plays the role of an interaction potential.

26In here I mean operators by bold letters and the eigenvalue by the normal font.
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1.3.2 Approaches to the Heisenberg model

It is now understood, how the Heisenberg model arises naturally. A basic
property of the Heisenberg model is that it maintains invariant under rota-
tions. Thus it includes Weiss' imagination of free micro-magnets. Since the
Heisenberg model arose out of quantum mechanical considerations, it was
viewed a long time to be a candidate for an adequate description of ferro-
magnetism. In 1931, however, Hans Bethe (1906-2005) [Bet31] could solve
the one-dimensional periodic, ferromagnetic Quantum Heisenberg model

H = −2J
N∑
k=1

Sk · Sk+1, SN+1 = S1, J > 0

i.e., he determined the zeroth order eigenfunctions and the �rst order Eigen-
values for a linear chain of coupled spins with only nearest-neighbor-interaction.
The so-called Bethe ansatz which he provided in this paper was used many
times later to solve a lot of many body problems27. One could apply this
method to the 1d Ising model, but it required much more e�ort than the
usual transfer matrix method Ising. The computation of the 1d Heisenberg
model is not shown in here, but see e.g. [KM98].
In 1966, Nathaniel David Mermin (*1935) and Herbert Wagner (*1935)
[MW66], as well as Pierre C. Hohenberg (*1934) [Hoh67], proved that nei-
ther the one-dimensional nor the two-dimensional Heisenberg model exhibit
spontaneous magnetization.

1.3.1 Theorem (Mermin-Wagner-Hohenberg). The Heisenberg model

H = −2
∑
ij

JijSi · Sj −B ·
∑
i

eiq·RiSzi

with certain Jij does not yield spontaneous magnetization in one or two di-
mensions, i.e.

lim
B→0

lim
N→∞

1

N
〈
∑
i

eiq·RiSzi 〉 = 0

Proof. Cf. [Roe77] and [MW66]. In [Roe77] a stronger inequality than Bo-
goliubov's inequality is obtained in order to prove the Mermin-Wagner the-
orem.

27In the appendix A.1 the Bethe ansatz is described a little.
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It is crucial to distinguish between the ferromagnetic/anti-ferromagnetic
Quantum/classical Heisenberg model. All four have very di�erent properties
and have to be treated mathematically di�erent one from each other. The
classical d-dimensional Heisenberg model on a �nite lattice ∅ 6= Λ ⊆ Zd,
d ∈ N, with the space dimension n ∈ N has the Hamilton function

H : (Sd−1
fin )Λ28 → R, S 7→ −

∑
i,j∈Λ,i 6=j

JijSi · Sj +H ·
∑
i∈Λ

S
(1)
i ,

whereas the Quantum Heisenberg model in that case, but with space dimen-
sion n = 3, is

H := −
∑

i,j∈Λ,i 6=j

JijSi · Sj + H ·
∑
i∈Λ

S
(1)
i .

In here, Si = (Sx
i ,S

y
i ,S

z
i ) can be represented with the Pauli matrices {τxi , τ

y
i , τ

i
z}

in virtue of Si = 1
2
(τxi , τ

y
i , τ

i
z). The Heisenberg model is said to be {ferromagneticantiferromagnetic}

i� ∃J ∈ {R+

R−}∀i, j ∈ Λ : Jij = J .
Fröhlich, Israel, Lieb and Simon [FILS78] discussed the classical (ferro- and
antiferromagnetic) Heisenberg model in any dimension with long range order
interaction among other classical models, i.e., they analyzed the existence of
a phase transition. In addition, Dyson, Lieb and Simon [DLS78] could treat
the n-dimensional, n ≥ 3, Quantum anti -ferromagnetic Heisenberg model.
They claimed to have treated the ferromagnetic Heisenberg model, too, but
Fröhlich pointed out an error in the proof.

In contrast to the Ising model, there are no exact solutions for the Heisen-
berg model in higher dimensions than 1. As mentioned in the preface, a
model can be considered a model if it provides a solution. The steps I want
to emphasize are purely epistemological, namely

• �nding an ansatz,

• understanding mathematically why the model actually works,

• computing the model.

As far as the Ising model is concerned, this steps can be attributed to 3
physicists, namely, in the above order, Wilhelm Lenz, Rudolf Peierls (1907-

28S(n−1)
fin := {x ∈ Rn|||x|| = 1} denotes the (n− 1)-dimensional unit sphere.
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1995) and Lars Onsager. Ironically, even though Peierls [Pei36] could show29

in 1936 that the 2D Ising model exhibits spontaneous magnetization, he did
not believe that it could correctly describe ferromagnetism. Peierls' proof
shall not be discussed in here because it takes place in the Bachelor thesis of
a friend of mine. Considering the Heisenberg model as describing ferromag-
netism more adequately to the "more complicate nature than [...] assumed
by Ising", Peierls concluded that "the Ising model [was] therefore [then] only
of mathematical interest"30. In 1944, Onsager [Ons44] then provided the ex-
act computation, but it is not very ostensive. In addition, in contrast to the
method discussed below, it cannot exhibit deeper physical insight into the
problem.

1.4 Heisenberg model vs. Ising model

In the following, I will discuss Lenz' correct objection towards the idea of
rotational invariance of the "micro-magnets" due to the fact, that one is given
anisotropy in a crystal lattice, in more detail. Before one can dedicate oneself
to that, the symmetries given in the single models shall be demonstrated:
The free Heisenberg model - without external �eld H - has free total spin
rotatability, i.e.,

[HHeis,
∑
i

S2
i ] = 0.

Because of
[HHeis,

∑
i

S
(1)
i ] = 0

the Heisenberg further shares the Z2 symmetry with the Ising Hamiltonian,
i.e., �ipping every single spin Si → −Si leaves the Hamiltonian invariant.
Due to the Z2 symmetry of the bare Hamiltonians, the magnetization van-
ishes for both models in the �nite case. There are di�erent types of magne-
tization (cf. [GUW11], p. 193-194):

• The thermodynamic magnetization mth is de�ned by

∀β ∈ R+ : mth(β) := − lim
h→0+

f(β, h)− f(β, 0)

h
.

29As Gri�th [Gri64] says himself in his own paper, N.G. van Kampen and M.E. Fisher
pointed to him, that Peierls actually had an error in his calculation. However, in that
paper Gri�th could correct the �rst attempt of the proof.

30[Pei36], p. 477
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This limit exists since f is concave. f(β, h) denotes the van Hove-limit
of the free energy with non-vanishing external magnetic �eld h (cf.
chapter 2).

• The residual magnetization mres is de�ned by

∀β ∈ R+ : mres(β) := lim
h→0+

lim
|Λ|→∞ v.H.

1

|Λ|
〈MΛ(β, h)〉.

In here lim
|Λ|→∞ v.H.

stands for the van Hove limit (cf. again 2) and the

mean value operator 〈·〉 depends on whether one is dealing with bound-
ary conditions or not.

• The spontaneous magnetization is de�ned by

∀β ∈ R+ : msp(β) := lim inf
|Λ|→∞ v.H.

1

|Λ|
〈|MΛ(β, 0)|〉.

Because it is easier to calculate, one works with

∀β ∈ R+ : m̃2
sp(β) := lim inf

|Λ|→∞ v.H.

1

|Λ|
〈MΛ(β, 0)2〉.

At this point, it is unclear if these types of magnetization even exist. They are
mentioned to stress the fact, that there are di�erent mathematical de�nitions
of the macroscopic observable, the magnetization.

If one respects the possible anisotropy Lenz already mentioned (cf. section
1.2), one concludes that physically the Heisenberg model is not the more
general case for the Ising model, although it is mathematically (by reducing
the space dimension to 1). So, if one wants to analyze (anti-)ferromagnetic
properties of a material, one has to start considering the Hamiltonian

H = −2
∑
i 6=j

Jij
(
αxy(S

x
i S

x
j + Syi S

y
j ) + αzS

z
i S

z
j

)
.

Three special cases which are realized in nature are

(i) αxy = αz 6= 0: the Heisenberg model,

(ii) αxy = 0, αz 6= 0: the Ising model,

(iii) αxy 6= 0, αz = 0: the xy-model.
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In order to determine the domains in which either the Heisenberg model or
the Ising model is an adequate description, one must discuss microscopic rea-
sons for possible anisotropy in a crystal, so-calledmagnetocrystalline anisotropy31.

Dipole-dipole interaction

If the multipole expansion of the magnetic �eld B is taken into consideration,
one obtains dipole-dipole interaction for the ions as a small e�ect additional
to the exchange e�ect discussed before. Although the correction might be
small, it behaves like |ri − rj|−3 and can, thus, cause anisotropy in the elec-
tronic structure of the crystal. De�ning

eij :=
ri − rj
|ri − rj|

i 6= j

one can write the corresponding Hamiltonian for the dipole-dipole interaction
as follows:

Hdip :=
∑
i 6=j

Dij

|ri − rj|3
(Si · Sj − 3(Si · eij)(Sj · eij)) .

In here, one identi�es the magnetic moment µi of an ion with the spin Si in
virtue of

µi = gµBSi.

Here µB and g are the Bohr magneton and the corresponding Landé-factor
for the electrons.

Spin-orbit interaction

A further reason for anisotropy within a crystal is the spin-orbit interaction,
that arises, if one analyzes the Dirac equation(

6 P −m− γ0V
)
ψ = 0

with P being the corresponding 4-vector to the 3-momentum P . The equiv-
alent Hamiltonian to describe this problem is

H = α · P + βm+ V

β = γ0, αi = γ0γi

31For this I consulted [Say10]
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with the Dirac matrices γµ. By applying the Foldy-Wouthuysen transfor-
mation, which decouples particles and antiparticles, one obtains, besides the
relativistic correction and the Zeemann term, a spin-orbit coupling term

HSO =
∑
i

~2

2m2c2

1

ri

(
∂Φ

∂r

)
i︸ ︷︷ ︸

=:λi

Si · Li.

In here, m is the electron mass. Depending on the coupling λi in the given
crystal, the Hamiltonian including this coupling is not invariant towards spin
rotation anymore.



Chapter 2

Existence of the thermodynamic

limit

Before one dedicates oneself to the thermodynamic limit for spin systems,
spin interactions must �rst be discussed. In this chapter, I refer basically to
[KS04]. In the following let d ∈ N.

2.1 Spin systems

As mentioned above, one is given the fact that the spin is quantized in up
(denoted as 1) and down (denoted as 0) spin. It seems paradox to talk about
classical spin, since the spin is a Quantum feature. A classical consideration
means the description using the Hamilton function. In this way, one can
rigorously quantize the system by identifying the Hamilton function with
the Hamilton operator. In chapter 1 it is explained how a spin coupling
arises, but in order to provide a thermodynamic limit - which has not been
de�ned, yet - one must take care whether the series, one is dealing with,
is converging. If one were not able to obtain a converging series, the term
"model" for the above mentioned theories could not be justi�ed and these
stayed attempts.

2.1.1 Topological and stochastical intermezzo

2.1.1 De�nition (Topological space). A topological space is a pair (T,O)
where T is a set and O, the topology on T respectively the set of so-called

17
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open sets, ful�lls the following:

(i) ∅, T ∈ O,

(ii) ∀O1, O2 ∈ O: O1 ∩O2 ∈ O ,

(iii) ∀O1, O2, . . . ∈ O:
∞⋃
i=1

Oi ∈ O.

If it is clear which topology T is equipped with one says:"T is a topological
space".

2.1.2 De�nition (Continuous map). For two topological spaces (X,OX) and
(Y,OY ) a map f : X → Y is called continuous i�

∀O ∈ OY : f−1(O) ∈ OX .

2.1.3 De�nition (Product topology). 1 Let I be an index set and {(Xi,OXi)|i ∈
I} be a family of topological spaces. De�ne

×
i∈I

Xi := {(xi)i∈I |∀i ∈ I : xi ∈ Xi},

∀i ∈ I : πj :×
i∈I

Xi → Xj, (xi)i∈I 7→ xj
2.

The product topology is the smallest (or coarsest3) topology with respect to
⊆ as partial order on which all πi, i ∈ I are continuous.

2.1.4 De�nition (σ-algebra). Let M be a set. A σ-algebra on M is a set
M⊆ P(M) of sets s.t.

(i) M ∈M,

(ii) ∀A ∈M: Ac ∈M,

(iii) ∀A1, A2, . . . ∈M:
∞⋃
i=1

Ai ∈M.

2.1.5 De�nition. Let Ω be a set and A be a σ-algebra on Ω. Let P : A → R
be a map s.t.

1cf. [Jän08], chapter 6
2∀j ∈ I πj is called the canonical projection.
3Let X be a set and O1 and O2 be two topologies on X. O1 is said to be {coarser�ner } than

O2 i� O1{⊆⊇}O2.
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(i) P(Ω) = 1,

(ii) ∀A ∈ A: P(Ac) = 1− P(A),

(iii) ∀A1, A2, . . . ∈ A, ∀i 6= j : Ai ∩ Aj = ∅: P(
∞⋃
i=1

Ai) =
∞∑
i=1

P(Ai).

P is called a probability measure on Ω and (Ω,A,P) a probability space.

In order to discuss a general setup, the following de�nition for a classical
spin is adopted from [KS04].

2.1.6 De�nition (Classical spin). 4 A classical spin is a measure space
(E, E , µ) with the so-called a-priori measure µ.

2.1.2 Classical systems

Finite spin systems

De�ne the set of spin orientation for a single spin

E := {−1; 1}.5

2.1.7 De�nition. Let Λ ⊆ Zd and

ΩΛ := EΛ.

ω ∈ ΩΛ is called a spin con�guration on Λ6.

A �nite lattice is a subset Λ ⊆ Zd with 0 < |Λ| <∞7. In order to de�ne
a probability measure, one may just use the power set P(Λ) of Λ. Before it is
possible to �nd a probability measure which maximizes the entropy under the
constraint of given internal energy, i.e., if one considers a canonical ensemble,
we shall discuss the most general form of an interaction Hamiltonian for the
system Λ.

4cf. [KS04], p. 44
5In the set of this chapter it is more convenient to deal with this notation for up

and down spin. One �nds a bijective map, {−1; 1} → {0; 1}, s → s+1
2 , to identify both

notations.
6Recall, that ω ∈ ΩΛ is a map which maps each vertex i ∈ Λ to a spin orientation

(up/down).
7In here, one uses the counter measure in order to determine the volume of a �nite

subset of Zd.
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2.1.8 De�nition (Finite Ising model). Let Λ ⊆ Zd, 0 < |Λ| <∞ and

J : P(Λ)→ R.

The Hamilton function for the classical Ising model on Λ is

HΛ : ΩΛ → R, (σ1, σ2, . . . , σ|Λ|) 7→ −
∑
L⊆Λ

J(L)
∏
i∈L

σi
8. (2.1.1)

2.1.9 Remark. • Note that one is dealing in here with a �nite summa-
tion, thus, HΛ attains �nite values if it is applied to a σ ∈ ΩΛ.

• In the case of a �nite lattice Λ ⊆ Zd, a map J : P(Λ)→ R is called an
interaction potential.

In a �nite lattice Λ, the probability measure for a particle being in a
certain state is de�ned by maximizing the entropy SΛ under the constraints
of given observables. In the case of a canonical ensemble, i.e., under the
constraint of �xed internal energy, one obtains as a probability measure

PΛ : ΩΛ → [0, 1], σ 7→ e−βHΛ(σ)∑
σ′∈ΩΛ

e−βHΛ(σ′)

This result will not be shown, since it is given in any textbook9.

In�nite spin systems

If one wants to proceed to the case of an in�nite lattice Λ ⊆ Zd, |Λ| = ∞,
one has to face several problems:

• The expression for the (classical) Hamilton function does not converge
for every spin con�guration σ ∈ ΩΛ.

8For L ∈ Sfin(d) and (σi)i∈L ∈ ΩL one will denote σL :=
∏
i∈L

σi.

9Again, it is recommended [KS04]. It is explained how the density matrix belonging
to the maximal entropy can be obtained in the quantum mechanical case(chapter 4). The
classical case for a �nite lattice can be obtained through introducing Lagrange multipliers
for the constraints.
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• A probability measure cannot be de�ned because there is not even a
system of measurable10 sets on which it is possible to de�ne it. Note
that P(Λ) is not a suitable σ-algebra to de�ne a (probability) measure
on it!

• One cannot ensure that there is an asymptotic measure.

This problem can be circumvented if a topology on Ω := EZd is introduced,
so that there is a concept of open sets on Ω, in order to de�ne observables
which are de�ned to be continuous maps. For a start, one chooses the discrete
topology P(E) on E and then one de�nes O to be the product topology on
Ω. One �nally obtains a suitable σ-algebra for the spin con�gurations

A := σ(O).11

2.1.10 Remark. Starting with

Sfin(d) := {Λ ⊆ Zd|0 < |Λ| <∞},

the set of all �nite subsets of Zd, the canonical projection πΛ for Λ ⊆ Zd is
de�ned in virtue of

πΛ : Ω→ ΩΛ, σ 7→ σ
∣∣
Λ

= (σl)l∈Λ
12.

For the given purpose it is su�cient to de�ne a measure on I,

I := {π−1
Λ (σ)|Λ ∈ Sfin(d), σ ∈ ΩΛ},

which consists of �nite lattices. In general, a phase transition, which in the
case of this thesis is established in the heat capacity, appears whenever the
corresponding Gibbs measure stops being unique. A discussion can be found
in [KS04].

10Note: The σ-algebra de�nes the measurable sets. In order to provide a well-de�ned
measure, one looks for a generating system on which one can de�ne a measure.

11For a system of sets E σ(E) :=
⋂

M⊇E σ-algebra
M means the smallest σ-algebra which

contains E , i.e. ∀ σ-algebrasM containing E one has σ(E) ⊆M.
12Note, that ∀σ ∈ Ω∀i ∈ Zd : σi := σ

∣∣
i
.
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2.1.11 De�nition (Microscopic observable). 13 A continuous map

f : Ω→ R (2.1.2)

is called a (microscopic) classical observable.

2.1.12 De�nition. An Ising (interaction) potential (without boundary con-
ditions) on Zd is a map J : Sfin(d)→ R with

||J ||(I)d := sup
i∈Zd

∑
i∈Λ∈Sfin(d)

|J(Λ)|
|Λ|

<∞. (2.1.3)

R(J) := sup
Λ∈Sfin(d),J(Λ) 6=0

(diam(Λ)) (2.1.4)

is called the range of J where for Λ ∈ Sfin(d)

diam(Λ) := max
i,j∈Λ

(||i− j||1)14

is the diameter of Λ.

2.1.13 Remark. • One can easily verify that eq. (2.1.3) de�nes a norm
on {J : Sfin(d)→ R}.

• One could think of other possible norms on {J : Sfin(d)→ R}, e.g.

||J || := sup
Λ∈Sfin(d)

|J(Λ)|
|Λ|

.

Though in order to provide a well-de�ned free energy, it is su�cient to
look at || · ||(I)d as it will be seen below. In addition, || · || does not include
all interactions on a single spin of the lattice whereas || · ||(I)d does.

• From the de�nition of || · ||(I)d one can see that J : Sfin(d) → R must
decay su�ciently fast in order to be an Ising potential. This feature
renders the physical nature of the exchange integral discussed above.

13cf. [KS04], p.57

14∀x, y ∈ Rd : ||x− y||1 :=
d∑
i=1

|xi − yi|
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2.1.14 De�nition. Let J : Sfin(d) → R be an Ising potential. J is said to
be

• a next-neighbor potential i� R(J) ≤ 1,

• translational invariant i� ∀Λ ∈ Sfin(d)∀a ∈ Zd : J(Λ + a) = J(Λ)15,

• ferromagnetic i� J ≥ 0.16

2.1.15 Remark. In the transition to an in�nite system, one starts by con-
sidering a �nite system on which the spin con�guration is �xed, but the infor-
mation about the surrounding spins on the lattice is left vacant. Nonetheless,
in the set of the general interaction that was treated now, it is unavoidable to
discuss the interaction on the surface, that means the interaction between the
spins in the considered �nite system with the environment. The aim will be
to pick a sequence of �nite systems, so that the interaction with the environ-
ment becomes irrelevant for the limit. Using this approach, one can ensure
that any boundary conditions can be imposed and the limit stays the same.

2.1.16 De�nition. J : Sfin(d)→ R is de�ned to be an Ising potential with
boundary condition i�

∀Λ ∈ Sfin(d) :
∑

L∈Sfin(d),L∩Λ6=∅

|J(L)| <∞

Remark. It is

∅ 6= {J : Sfin(d)→ R|R(J) <∞}

⊆

J : Sfin(d)→ R|∀Λ ∈ Sfin(d)
∑

L∈Sfin(d),L∩Λ6=∅

|J(L)| <∞

 .

It is now possible to allow boundary conditions on a Λ ∈ Sfin(d).

2.1.17 De�nition. Let Λ ∈ Sfin(d), τ ∈ ΩΛc. For an Ising potential with
boundary condition J : Sfin(d) → R one de�nes the Hamilton function for
the classical Ising model with boundary condition τ to be

Hτ
Λ : ΩΛ → R, σ 7→ −

∑
L∈Sfin(d),L∩Λ6=∅

J(L)σL∩ΛτL∩Λc . (2.1.5)

15∀Λ ⊆ Rda ∈ Rd : Λ + a := {l + a|l ∈ Λ}
16Note that this de�nition depends on the de�nition of the Hamiltonian J is ascribed

to!
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2.1.18 Remark. For the given purposes, it is su�cient to consider Ising
potentials with boundary conditions with �nite range. Chapter 3 deals with
next-neighbor potentials.

2.1.19 Lemma. Let Λ ∈ Sfin(d), J : Sfin(d) → R be an Ising potential
and HΛ : ΩΛ → R be the in eq. (2.1.1) de�ned corresponding Ising Hamilton
function. One obtains

||HΛ||∞ ≤ |Λ| · ||J ||(I)d ,

where || · ||∞ means the usual supreme norm on {ΩΛ → R}. So the energy
density is bounded for Ising potentials.

Proof. One has

||HΛ||∞ = max
σ∈ΩΛ

∣∣∣∣∣∑
L⊆Λ

J(L)σL

∣∣∣∣∣ ≤∑
L⊆Λ

|J(L)| =
∑
L⊆Λ

∑
i∈L︸︷︷︸

=
∑
i∈Λ

1L(i)

|J(L)|
|L|

=
∑
i∈Λ

∑
i∈L⊆Λ

|J(L)|
|L|

≤
∑
i∈Λ

∑
i∈L∈Sfin(d)

|J(L)|
|L|︸ ︷︷ ︸

≤||J ||(I)d

≤ |Λ| · ||J ||(I)d

2.1.3 Quantum spin systems

The Hilbert space H(1) of a single 1/2-spin can be described as

H(1) := C2

and thus the Hilbert space for an n 1/2-spin system, n ∈ N, becomes

H(n) :=
n⊗
i=1

C2.

In order to �nd the corresponding Hamilton operator H to the Hamilton
function H : ΩΛ → R in eq. (2.1.1), one identi�es

∀i ∈ Λ : E → B(H), σi 7→ Id⊗ . . .⊗ Id⊗ σz︸︷︷︸
ith position

⊗Id⊗ . . .⊗ Id. (2.1.6)
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Here, σz is the Pauli matrix

σz :=

(
1 0
0 −1

)
,

represented in the canonical basis of a single up (1
0) and down (0

1) spin. In this
thesis the fact that one can map a classical problem to a Quantum mechanical
problem will be used in order to solve it.

2.1.20 De�nition (Quantum mechanical observable). A Quantum mechan-
ical observable on a Hilbert space H is a self-adjoint operator O : H → H.

2.1.21 Remark. Let n ∈ N. If one wants to map a classical spin system to
a Quantum spin system, one extends

φ : E → H(1),

{
1 7→ (1

0)

−1 7→ (0
1)

to a map on En in virtue of

φn : En → H(n), (σ1, σ2, . . . , σn) 7→
n⊗
i=1

φ(σi).

De�ne17

ψn : C(En,R)→ B(H)

by

∀O ∈ C(En,R) ∀σ ∈ En : ψn(O)φn(σ) = O(σ)φn(σ).

So, ψn(O) is diagonal on {φn(σ)|σ ∈ En}, which itself de�nes a basis of H(n).
An example was given in eq. (2.1.6).

2.2 Thermodynamic limit in a classical spin sys-

tem

We now want to consider the limit of a certain sequence of �nite lattices
before to de�ne the limit for the density of the free energy. In the classical

17In here one denote for two topological spaces A,B C(A,B) := {f : A →
B|f continuous}
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case the free energy is de�ned by

∀Λ ∈ Sfin(d) : fΛ : R+ → R, β 7→ − 1

β|Λ|
log

(∑
σ∈ΩΛ

e−βHΛ(σ)

)
. (2.2.1)

Again a notation for the case that one is dealing with boundary conditions
on H shall be introduced. I.e., for Λ ∈ Sfin(d), τ ∈ ΩΛc , one de�nes

f τΛ : R+ → R, β 7→ − 1

β|Λ|
log

(∑
σ∈ΩΛ

e−βH
τ
Λ(σ)

)
(2.2.2)

in the case of an Ising potential with boundary condition τ .

2.2.1 De�nition (van Hove sequence). A sequence (Λn)n∈N ∈
(
Zd
)N

of sub-
sets Λn ⊆ Zd is called a van Hove sequence i�

lim
n→∞

|Λn| =∞ and ∀h ∈ N : lim
n→∞

Vh(Λn)

|Λn|
= 0,

where

∀M ∈ Sfin(d) ∀h ∈ N : Vh(M) := |{i ∈M |d(i,M c) ≤ h}|
∀i ∈ Zd ∀M ⊆ Zd : d(i,M) := min

j∈M
||i− j||1.

(Λn)n∈N is said to diverge in the sense of van Hove or to exhaust Zd in the
sense of van Hove.

2.2.2 Remark. The crucial feature of a van Hove sequence is that the volume
of the boundary becomes su�ciently small, so that it becomes irrelevant in
the limit. In this way, it is possible to ensure that boundary conditions do
not a�ect the thermodynamic limit of the free energy.

Before one can study the general case of van Hove sequences a special van
Hove sequence shall be analyzed, namely a sequence of cubes with increasing
edge length.

2.2.3 Example. Setting

∀n ∈ N : Λd(n) := {0; 1; . . . ;n− 1}d

∀t ∈ Zd∀n ∈ N : Λd
t (n) := {nt+ l|l ∈ Λd(n)},
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one obtains

∀h, n ∈ N : Vh(Λ
d(n)) = |Λd(n) \ Λd(n− 2h− 2)|

= nd − (n− 2h− 2)d

= 2(h+ 1)
d−1∑
k=0

nk(n− 2h− 2︸ ︷︷ ︸
≤n

)d−1−k

≤ 3d(h+ 1)
|Λd(n)|
n

,

and thus

∀h ∈ N : lim
n→∞

Vh(Λ
d(n))

|Λd(n)|
= 0.

Hence, (Λd(n))n∈N is an example for a van Hove sequence which justi�es the
last comment in the last remark.

LH1L

LH4,2LH1L

-1 1 2 3 4 5 6

-1

1

2

3

4

Figure 2.1: The enclosed vertices belong to the considered translates of the
unit square.

2.2.4 Remark. The fact that for Λ ⊆ Zd the maximal number of neighbors
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for l ∈ Λ in Λc is 2d yields an upper bound on Vh(Λ),

Vh(Λ) = |
h⋃
i=1

{l ∈ Λ|d(l,Λc) = i}︸ ︷︷ ︸
={l∈Λ|d(l,∂Λ)=i−1}

|

≤
(
1 + 2d+ (2d)2 + . . .+ (2d)h

)
|∂Λ|︸︷︷︸

=V1(Λ)

=
1− (2d)h+1

1− 2d
V1(Λ)

This inequality is not sharp, but it is su�cient to prove the statement below.
So, in general it is su�cient to demand

lim
n→∞

V1(Λn)

|Λn|
= 0

for a sequence (Λn)n∈N ∈ (Sfin(d))N to be a van Hove sequence.

2.2.5 Lemma. Let J : Sfin(d)→ R be a translational invariant Ising poten-
tial with �nite range R(J) <∞. One has

∃n0 ∈ N∀n1, n2 ≥ n0 ∀β ∈ R+ :

|fΛd(n1)(β)− fΛd(n2)(β)| ≤ 2dR(J)||J ||(I)d

(
1

n1

+
1

n2

)
,

so (fΛd(n)(β)n∈N is a Cauchy sequence uniformly in β ∈ R+. In particular,

∀Λd ∈ Sfin(d)∀β ∈ R+ : fΛd(β) := lim
n→∞

fΛd(n)(β)

is well-de�ned.

Proof. Let β > 0. We will show that

|∆| ≤ 2dR(J)
1

n1

(2.2.3)

holds for su�ciently large n1 and n2 where

∆ := fΛd(n1n2)(β)− fΛd(n1)(β).
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UH1L

Figure 2.2: Λ2(3 · 3) with embedded translates of Λ2(3). It is further shown
the catchment of U(1), i.e., the maximal area of interaction between the
translates for R(J) ≤ 1. The darker shaded areas illustrate the sets in which
the sites experience more boundary interaction because they interact with 2
sites of 2 adjacent cubes.

The triangle inequality then implies the statement of the lemma,

|fΛd(n1)(β)− fΛd(n2)(β)| ≤ |fΛd(n1n2)(β)− fΛd(n1)(β)|
+ |fΛd(n1n2)(β)− fΛd(n2)(β)|

≤ 2dR(J)||J ||(I)d

(
1

n1

+
1

n2

)
.

Now let n1, n2 > 2R(J). The trick is to subdivide

HΛd(n1n2) =
∑

i∈Λd(n2)

HΛdi (n1)︸ ︷︷ ︸
=:H

(I)

Λd(n1n2)

+ (HΛd(n1n2) −H
(I)

Λd(n1n2)
)︸ ︷︷ ︸

=:H
(II)

Λd(n1n2)

(2.2.4)

in order to reduce the problem to the interaction within the nd2 translates
of Λd(n1) which �ll Λd(n1n2) and the interaction between the translates of
Λd(n1).
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Since

 ∑
σ∈Ω

Λd(n1)

e
−βH

Λd(n1)

|Λd(n2)|

=
∑

σ∈Ω
Λd(n1)

. . .
∑

σ∈Ω
Λd(n1)︸ ︷︷ ︸

|Λd(n2)|=
∑

i∈Λd(n2)

1=nd2 times

exp

−β ∑
i∈Λd(n2)

HΛd(n1)︸ ︷︷ ︸
J transl.-

=
inv.

H
Λd
i

(n1)



=
∑

σ∈Ω
Λd(n1n2)

e
−βH(I)

Λd(n1n2) (2.2.5)

one �nds

∆ =
1

β|Λd(n1n2)|
log

 ∑
σ∈Ω

Λd(n1n2)

e
−βH

Λd(n1n2)
(σ)


− 1

β|Λd(n1)|
log

 ∑
σ∈Ω

Λd(n1)

e
−βH

Λd(n1)
(σ)



=
1

βΛd(n1n2)
log


∑

σ∈Ω
Λd(n1n2)

exp
(
−βHΛd(n1n2)(σ)

)
∑

σ∈Ω
Λd(n1n2)

exp
(
−βH(I)

Λd(n1n2)
(σ)
)


For the next step the following claim is needed:
Claim: Let n ∈ N, a1, a2, . . . an, b1, b2, . . . , bn ∈ R+. Then

n∑
i=1

ai

n∑
i=1

bi

≤ n
max
i=1

ai
bi
. (2.2.6)

Proof of the claim: One has

n∑
i=1

ai

n∑
i=1

bi

=

n∑
i=1

ai
bi
bi

n∑
i=1

bi

≤ n
max
i=1

ai
bi
.
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With that one can estimate ∆:

β|Λd(n1n2)||∆|
log

≤
increasing

log

[
max({ max

σ∈Ω
Λd(n1n2)

e
∓β(H

Λd(n1n2)
(σ)−H(I)

Λd(n1n2)
(σ))})

]
exp
=

increasing
log

[
exp

(
max

σ∈Ω
Λd(n1n2)

∓H(II)

Λd(n1n2)
(σ)

)]
= ||H(II)

Λd(n1n2)
||∞ (2.2.7)

We can represent H(II) by a sum in virtue of

∀σ ∈ ΩΛd(n1n2) : H
(II)

Λd(n1n2)
(σ) =: −

∑
L∈B

J(L)σL

for some B ⊆ P(Λd(n1n2)) and we de�ne

I :=
⋃
L∈B

L ⊆ U(R(J )),

U(R) :=

n2−1⋃
k=1

d⋃
i=1

{l ∈ Λd(n1n2)
∣∣|li − kn1 +

1

2
| < R}.

Hence, one has

|U(R)|
sub-additivity of the

≤
counter measure

n2−1∑
k=1

d∑
i=1

|{b ∈ Zd|bi − kn1 +
1

2
| < R}|︸ ︷︷ ︸

transl.-inv. of the
=

counter measure
|{b∈Zd|bi|<R}|=2R(n1n2)d−1

= 2d(n2 − 1)R(n1n2)d−1

≤ 2dR|Λd(n1n2)| 1

n1

.

Lemma 2.1.19 now yields

||H(II)

Λd(n1n2)
||∞

2.1.19

≤ |I|︸︷︷︸
≤|U(R(J)|

·||J ||(I)d ≤ 2dR(J)||J ||(I)d |Λ
d(n1n2)| 1

n1

The inequality eq. (2.2.7) �nally gives

|∆|
(2.2.7)

≤ 2dR(J)||J ||(I)d

1

n1

as stated in eq. (2.2.3).
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2.2.6 Remark. If boundary conditions are taken into consideration, one
only has to consider the boundary interaction with the surrounding spins.
For n1, n2 ∈ N one subdivides the Hamilton function with boundary condition
τn1,n2 ∈ ΩΛ(n1n2)c exactly as in eq. (2.2.4). One obtains for σ ∈ ΩΛ(n1n2)

H
(II),τn1,n2

Λ(n1n2) (σ) =: −
∑
L∈B

J(L)σL∩ΛτL∩Λc

with

I :=
⋃
L∈B

L ⊆ U(R(J))∪

(
Λ(n1n2 + 2R(J))−R(J)

d∑
i=1

êi

)
\(

Λ(n1n2 − 2R(J)− 2) + (R(J) + 1)
d∑
i=1

êi

)
.

Thus, one has

||H(II),τn1,n2

Λ(n1n2) ||
2.1.19

≤ |I| · ||J ||(I)d ≤
(
2dR(J)|Λd(n1n2)|/n1 + (n1n2 + 2R(J))d

−(n1n2 − 2R(J)− 2)d
)
||J ||(I)d

cf. algebra

≤
in ex. 2.2.3

2d

(2R(J) + 1)/n2︸ ︷︷ ︸
≤2R(J)+1

+R(J)

 ||J ||(I)d

|Λd(n1n2)|
n1

≤ 2d(3R(J) + 1)||J ||(I)d

|Λd(n1n2)|
n1

,

which is equivalent to the result of Lemma 2.2.5.

A more general framework for the thermodynamic limit of van Hove se-
quences shall now be considered, since one will deal with boundary conditions
on the Hamiltonian. In addition, one will allow in�nitely ranged Ising po-
tentials. This requires the following lemma.

2.2.7 Lemma. Let Λ ∈ Sfin(d) and J1 : Sfin(d)→ R and J2 : Sfin(d)→ R
be two Ising potentials and let f

(J1)
Λ : R+ → R resp. f

(J2)
Λ : R+ → R be the

corresponding free energies. Then

|f (J1)
Λ (β)− f (J2)

Λ (β)| ≤ ||J1 − J2||(I)d . (2.2.8)
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Figure 2.3: Maximal zone of boundary interaction for Λ2(5) for R(J) = 1.

In particular, for any β ∈ R+

fΛ,β : {J : Sfin(d)→ R|J Ising potential} → R, J → f
(J)
Λ (β)

is a Lipschitz continuous functional on {J : Sfin(d)→ R|J Ising potential}.

Remark. The inequality (2.2.8) holds uniformly in β ∈ R+ and Λ ∈ Sfin(d).

Proof of Lemma 2.2.7. Let

∀1 ≤ i ≤ 2 : H
(Ji)
Λ : ΩΛ → R, σ 7→ −

∑
L∈Sfin(d),L∩Λ6=∅

Ji(L)σL∩Λ.

Clearly
H

(J+J ′)
Λ = H

(J)
Λ +H

(J ′)
Λ . (2.2.9)

One �nds

f
(J2)
Λ (β)− f (J1)

Λ (β) =
1

β|Λ|
log


∑
σ∈ΩΛ

e−βH
(J1)
Λ∑

σ∈ΩΛ

e−βH
(J2)
Λ


(2.2.6)

≤ log

max
σ∈ΩΛ

exp(β (H
(J2)
Λ −H(J1)

Λ )︸ ︷︷ ︸
(2.2.9)

= H
(J2−J1)
Λ

)




≤ 1

|Λ|
||H(J2−J1)

Λ ||∞
2.1.19

≤ ||J2 − J1||(I)d .
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Switching J1 and J2 yields the claim.

2.2.8 Theorem (Thermodynamic limit of the free energy in classical spin
systems). Let (Λn)n∈N ∈ (Sfin(d))N be a van Hove sequence and let further
J : Sfin(d)→ R be a translational invariant Ising potential. Then

(i)
f : R+ → R, β 7→ lim

n→∞
fΛn(β)

is a well-de�ned function, i.e., for another van Hove sequence (Λ′n)n∈N ∈
(Sfin(d))N one �nds the same limit,

∀β ∈ R+ : lim
n→∞

fΛ′n(β) = lim
n→∞

fΛn(β).

(ii) if J further has �nite range and (τn)n∈N, ∀n ∈ N : τn ∈ ΩΛcn, is a
sequence of boundary conditions corresponding to (Λn)n∈N, one has

∀β ∈ R+ : lim
n→∞

f τnΛn
(β) = lim

n→∞
fΛn(β) = f(β).

Moreover R+ → R, β 7→ βf(β) is a concave function.

Proof. De�ne
F : R+ → R, β 7→ lim

n→∞
fΛd(n)(β).

The basic idea is to deduce the thermodynamic limit of the free energy for
a van Hove sequence to the thermodynamic limit for a sequence of cubes, so
one wants to show f=F.
Case 1: One starts by considering J having �nite range R(J) < ∞ and one
ignores boundary conditions. The aim is to deduce the case of a general van
Hove sequence to the case of a sequence of unions of cubes and treating the
boundary separately. Let (an) ∈ NN with an →∞ (n→∞) and

lim
n∈N

V1(Λn)

|Λn|︸ ︷︷ ︸
=: 1

bn

1− (2d)an

1− 2d
= 0.

E.g., pick

∀n ∈ N : an := b log[(2d− 1)
√
bn + 1]

log(2d)
c
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Figure 2.4: Partition of a set Λ := Λ(I)∪̇Λ(II)

and use the fact that (Λn)n∈N is a van Hove sequence, in particular

lim
n→∞

V1(Λn)

|Λn|
= 0

One de�nes

∀n ∈ N : Tn := {t ∈ Zd|Λd
t (a) ⊆ Λn}.

Let n ∈ N and set

Λ(I)
n :=

⋃
t∈Tn

Λd
t (an) Λ(II)

n := Λn \ Λ(I)
n .

In the same manner, the Hamilton function is divided in virtue of

HΛn = H
Λ

(I)
n︸ ︷︷ ︸

=:H
(I)
Λn

+ (HΛn −HΛ
(I)
n

)︸ ︷︷ ︸
=:H

(II)
Λn

.

Setting

∀β ∈ R+ : f
(I)
Λn

(β) := − 1

β|Λn|
log

 ∑
σ∈ΩΛn

e−βH
(I)
Λn


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and one estimates

|fΛn(β)− F (β)| ≤ | fΛn(β)− f (I)
Λn

(β)︸ ︷︷ ︸
=:∆1

|+ | f (I)
Λn

(β)− fΛd(an)(β)︸ ︷︷ ︸
=:∆2

|

+ | fΛd(an)(β)− F (β)︸ ︷︷ ︸
=:∆3

|.

Analogously to the proof of 2.2.5, one obtains with the inequality given in
(2.2.6)

|∆1| ≤
||H(II)

Λn
||∞

|Λn|
.

Again, one can write

∀σ ∈ ΩΛn : H
(II)
Λn

(σ) =: −
∑
L∈B

J(L)σL

with

I :=
⋃
L∈B

L ⊆ Uan(R(J))

∀a,R ∈ N : Ua(R) := Λ(II)
n ∪

d⋃
i=1

⋃
t∈Z

{l ∈ Λn

∣∣|li − at+
1

2
| < R}︸ ︷︷ ︸

=:Ua(R)

.

It is ∀a ∈ N : diam(Λ(a)) = d(a− 1) and hence

Λ(II)
n ⊆ {l ∈ Λn|d(l,Λc

n) ≤ d(an − 1)}

which yields

|Λ(II)
n | ≤ V(an−1)d(Λn).

So,

0 ≤ lim
k→∞

|Λ(II)
k |
|Λk|

≤ lim
k→∞

V(an−1)d(Λk)

|Λk|
2.2.4

≤ lim
n∈N

V1(Λn)

|Λn|
1− (2d)an

1− 2d
= 0

⇒ lim
k→∞

|Λ(II)
k |
|Λk|

= 0.
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Taking a look at the density of interactions in Ua(R) with respect to Λn gives

|Ua(R)|
|Λn|

≤ ad − (a− 2R− 2)d

ad
.

This is the highest ratio of boundary interactions with range R(J). With
that one can estimate

|Uan(R(J))|
|Λn|

≤ |Λ
(II)
n |
|Λn|

+
adn − (an − 2R(J)− 2)d

adn
→ 0 (n→∞).

Hence holds

|∆1| ≤
||H(II)

Λn
||∞

|Λn|
2.1.19

≤ |Uan(R(J))

|Λn|
||J ||(I)d → 0 (n→∞).

One has

H
(I)
Λn

= −
∑
t∈Tn

∑
L⊆Λdt (an)

J(L)σL
J transl.-

=
inv.

−|Tn|
∑

L⊆Λd(an)

J(L)σL (2.2.10)

and hence

∑
σ∈ΩΛn

e−βH
(I)
Λn

(σ) cf. (2.2.5)
= 2|Λ

(II)
n |︸ ︷︷ ︸

=total # spin con�gurations in Λn\Λ(I)
n =Λ

(II)
n

 ∑
σ∈Ω

Λd(an)

e−βHΛd(an)
(σ)

|Tn|

As in the proof of Lemma 2.2.5 one obtains

β∆2 = − 1

|Λn|
log

 ∑
σ∈ΩΛn

e−βH
(I)
Λn

(σ)

+
1

|Λd(an)|
log

 ∑
σ∈Ω

Λd(an)

e−βHΛd(an)
(σ)


|Tn|= |Λ(I)

n |
|Λd(an)|
= −|Λ

(II)
n |
|Λn|

+ βfΛ(an)(β)

(
1− |Λ

(I)
n |
|Λn

)

=
|Λ(II)

n |
|Λn|

β fΛ(an)(β)︸ ︷︷ ︸
→F (β)(n→∞)

− log(2)

→ 0 (n→∞)

By de�nition it is
∆3 → 0 (n→∞)
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and thus

|fΛn(β)− F (β)| ≤
3∑
i=1

|∆i| → 0 (n→∞).

Case 2: J has in�nite range. De�ne the truncated potential JR : Sfin(d)→ R
for R ∈ N to be

JR : Sfin(d)→ R,Λ 7→

{
J(Λ) diam(Λ) ≤ R

0 diam(Λ) > R
.

With the notation of Lemma 2.2.7 one �nds

|fJΛn(β)− F (β)| ≤ |fJΛn(β)− fJRΛn
(β)|+ |fJRΛn

(β)− F (β)|
(2.2.8)

≤ ||J − JR||(I)d + |fJRΛn
(β)− F (β)| → 0 (n,R→∞).

Case 3: Now let J have �nite range again and (τn)n∈N, ∀n ∈ N : τn ∈ ΩΛcn , be
a sequence of boundary conditions. The only di�erence to the previous case
occurs in ∆1. One more time, one rewrites Hτn

Λn
as

Hτn
Λn

= H
(I)
Λn

+Hτn
Λn
−H(I)

Λn︸ ︷︷ ︸
=:H

(II),τn
Λn

with
∀σ ∈ ΩΛn: H

(II),τn
Λn

(σ) =: −
∑
L∈B̃

J(L)σL∩Λn(τn)L∩Λcn .

It is

Ĩ :=
⋃
L∈B̃

L ⊆ Wan(R(J))

Wa(R) := Ua(R) ∪ {l ∈ Λc
n|d(l,Λn) ≤ R}

Similar to remark 2.2.4, one has the following estimation

|Wa(R)| ≤ |Ua(R)|+ V1(Λn)
(
2d+ (2d)2 + . . .+ (2d)R

)
= |Ua(R)|+ 2d

(2d)R − 1

2d− 1
V1(Λn).
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Setting

∀β ∈ R+ : f τnΛn
(β) := − 1

β|Λn|
log

 ∑
σ∈ΩΛn

e−βH
τn
Λn

 ,

∆τn
1 := fΛn(β)− f (I)

Λn
(β)

there is an upper bound on |∆τn
1 | analogously to case 1

|∆τn
1 | ≤

||H(II),τn
Λn

||∞
|Λn|

2.1.19

≤


|Uan(R(J))|
|Λn|

+ 2d
(2d)R − 1

2d− 1

V1(Λn)

|Λn|︸ ︷︷ ︸
(Λn)n∈N−→
van Hove

0(n→∞)

 ||J ||
(I)
d → 0(n→∞).

This yields

∀β ∈ R+ : |f τnΛn
(β)− F (β)| ≤ |∆τn

1 |+ |∆2|+ |∆3| → 0 (n→∞).

So, one could provide that for any van Hove sequence the limit of the
density of the free energy with or without boundary conditions is equal to
the limit of the density of the free energy for a sequence of cubes with growing
edge length. In particular, the thermodynamic limit for the free energy is
well-de�ned in the case of van Hove sequences.

2.2.9 Remark. Before proceeding to the actual calculation, the result of this
powerful theorem shall be analyzed. In the proof Λ

(I)
n ∪Uan(R(J)) contains all

possible interactions among spins in the sequence element Λn, i.e., one can
impose periodic boundary conditions on Λn. Periodic boundary conditions

are equivalent to the projection Zd → Zd−k×
k
×
l=1

Z/(inlZ). For the thermody-

namic limit one considers the limit of n1, n2, . . . , nk →∞. This feature later
will turn out to be useful for the actual computation of the free energy.

If one only considers Ising potentials with �nite range, �nitely many struc-
tural defects (or su�ciently few s.t. the van Hove feature is not violated) such
as point defects and torsion become irrelevant for the free energy of large sys-
tems. This property is crucial if one wants to deal with a real crystal which
can be described by the 2-dimensional Ising model.
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Chapter 3

Calculation of the critical

temperature

The discussion in this section is followed the paper by Lieb, Mattis and
Schultz [LMS64]. Instead of a graph theoretical approach to the Ising model,
a so-called fermionization will be used instead. Since one needs some further
calculations to comprehend the chain of thought and since some results in
the paper above turned out to be wrong, the calculation shall be displayed
in more detail at this point. Because we want to calculate the temperature
of the phase transition in the 2D classical Ising model explicitly, some more
technical steps will be taken. However, important steps are motivated by the
physics underlying the computation and thus they naturally arise.
Remark 2.1.21 allows to map the classical 2D Ising model to a Quantum
model by the given identi�cation. Under these identi�cations, one has

∀n ∈ N ∀O ∈ C(En) : Tr{ψn(σ)|σ∈En}ψn(O) =
∑
σ∈En

O(σ)1

Let n ∈ N, O ∈ C(En). With the continuous functional calculus one can
even provide for a real valued function f ∈ C([min

σ∈En
O(σ),max

σ∈En
O(σ)]︸ ︷︷ ︸

=:In

,R)

Tr{ψn(σ)|σ∈En}Φψn(O)(f) =
∑
σ∈En

(f ◦O)(σ),

1Notation as in remark 2.1.21

41
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where

Φψn(O) : C(In,R)2 → B(En)

is the functional calculus for ψn(O) de�ned by

∀g ∈ C(In,R)∀σ ∈ En : Φψn(O)(g)φn(σ) = g(O(σ))φn(σ).

Thus one can solve the classical 2D Ising model by solving its Quantum
mechanical image. We will work with

H := (EM)N=̃EMN

for some M,N ∈ N.

3.1 The general setup

The general Hamiltonian for the Ising model exposed to an external �eld H
is

H :=
N∑
n=1

(Hn +K1,n +K2,n) (3.1.1)

Hn := H
M∑
m=1

σxn,m : coupling to external �eld

K1,n := K1

M∑
m=1

σxn−1,mσ
x
n,m : row interaction

K2,n := K2

M∑
m=1

σxn,mσ
x
n,m+1 : column interaction

Here one denotes H := βh, K1 := βJ1 and K2 := βJ2 where h is the external
magnetic �eld and J1 (resp. J2) is the coupling constant among spins in a
row (resp. in a column). Once chooses

σx =

(
0 1
1 0

)
2Usually one de�nes the functional calculus on Cb(R,R) but since it is always possible

to extend a continuous function on a closed interval to a function in Cb(R,R) it is su�cient
to only consider functions on C(In,R). Note: For two normed spaces (A, || · ||A), (B, || · ||B)
one denotes Cb(A,B) := {g ∈ C(A,B)| sup

x∈A
||g(x)||B <∞}.
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to be the the spin matrix in this problem in order to simplify the computa-
tions below.
Before one can calculate the partition function, it is easy to derive a recursion
relation for the density matrix of a distribution of con�gurations in a lattice
of N + 1 rows depending on that of N rows, i.e., the marginal distribution
or reduced density matrix. Instead of imposing cyclicity on the columns, one
will demand cyclic (resp. anti-cyclic) conditions in a row, in particular

∀1 ≤ n ≤ N : σxn,M+1 = σxn,1.

By the discussion above (cf. remark 2.2.9), one has that the free energy stays
the same for the "Quantum" case in the thermodynamic limit. The density
operator for N + 1 rows is3

ρN(Σ0,Σ1, . . . ,ΣN) := exp[
N∑
n=1

(Hn +K1,n +K2,n)]ρ0(Σ0),

Σn := (σxn,1, . . . , σ
x
n,M),

σxi,j := Id⊗ . . .⊗ Id⊗ σx︸︷︷︸
position (i,j)

⊗Id⊗ . . .⊗ Id.

(i, j) ∈ {1; 2; . . . ;M}× {1; 2; . . . ;N} is identi�ed with its canonical image in
{1; 2; . . . ;MN}. In here, ρ0(Σ0) indicates the density operator of a boundary
condition in the �rst row. Note that we have already seen that these are
irrelevant in the thermodynamic limit.

As usual, the reduced density operator is de�ned as

ρredN (ΣN) := TrΣ0,Σ1,...ΣN−1
[ρN(Σ0,Σ1, . . .ΣN)].

It is possible to derive a recursion relation for the reduced density operator.
This will be the aim of the following proposition.

3.1.1 Proposition. It is possible to rewrite ρredN (ΣN) as

ρredN (ΣN) = exp(HN +K2,N)O[ρredN−1(ΣN)]

for some operator O ∈ B(H).

3Small remark to the notation: This notation re�ects that one is dealing with a classical
problem. So, the original partition function is obtained if one identi�es σxi,j with its

eigenvalues and takes the trace. Note: ρN : B(H)N+1 → B(H) and ρredn : B(H)→ B(H)
are maps, not operators on H.
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Proof. One has

ρredN (ΣN) = exp (HN +K2,N)TrΣN−1
[exp (K1,N)ρredN−1(ΣN−1)]. (3.1.2)

Since σ2 = 1 for any Pauli matrix σ and [σxi1,j1 , σ
x
i2,j2

] = 0 ∀i1, i2, j1, j2, one
obtains by expanding ρredN (Σn) in the canonical form:

ρredN−1(ΣN−1) =: r(0) +
∑
m1

r(1)
m1
σxm1

′ +
∑

m1 6=m2

r(2)
m1,m2

σxm1

′σxm2

′ + . . .

+ r(M)σx1
′σx2
′ · · ·σxM

′ (3.1.3)

Here we put

∀m ∈ {1; 2; . . . ;M} : σxm
′ := σxN−1,m.

The
(
M
0

)
+
(
M
1

)
+ . . . +

(
M
M

)
= 2M coe�cients in eq. (3.1.3) correspond to

the 2M spin con�gurations in the (N − 1)st row. This guarantees that all
possible spin con�gurations are respected. With (3.1.3) one has to calculate
in eq. (3.1.2) terms of the form

TrΣN−1
[exp(K1,N)σxm1

′ · · ·σxmr
′]

def.
= TrΣN−1

[
M∏
m=1

exp(K1σ
x
mσ

x
m
′)σxm1

′ · · · σxmr
′],

(3.1.4)

∀m ∈ {1; 2; . . . ;M} : σxm := σxN,m.

One applies the trace step by step by considering terms like the following

Trσxm′ [exp(K1σ
x
m
′σxm)] = 2 cosh(K1σ

x
m) = 2 coshK1

Trσxm′ [exp(K1σ
x
m
′σxm)σxm

′] = 2 sinh(K1σ
x
m) = 2σxm sinhK1.

Eq. (3.1.4) yields

TrΣN−1
[exp(K1,N)σxm1

′ · · ·σxmr
′] = (2 coshK1)M(tanhK1)rσxm1

· · ·σxmr
and thus

TrΣN−1
[exp(K1,N)ρN−1(ΣN−1)]

(3.1.3)
= (2 coshK1)MρN−1(tanhK1ΣN)

=: O[ρN−1(ΣN)]

Here one introduced an operator O which still has to be determined. With
O (3.1.2) simply becomes

ρN(ΣN) = exp(HN +K2,N)O[ρN−1(ΣN)]
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3.1.2 Remark. It is not possible to write O in the form (2 coshK1)M(tanhK1)M

in virtue of an operator identity because all but the zeroth order term in eq.
(3.1.3) would match this identity if M counts the σx's in every single term
of the expansion (3.1.3). The zeroth order term required M · Id = 0 which
impliesM = 0, a contradiction to the requirements for the other terms in the
expansion. Since the partition function is the trace of the density operator
introduced above, it is su�cient ifM is implicitly determined in virtue of its
action on a state. It will turn out that it is convenient to consider the action
on the vacuum |0〉 in the N th row de�ned to have all spins are down. The
corresponding raising and lowering operators for the spins are as usual

σ∓m |i〉 : = σ∓N,m |i〉 := δiN,m,{10} |i1,1, . . . , iN,m−1, {0
1}, iN,m+1, . . . , iN,M〉 ,

σ+
m + σ−m = σxm,

where |i〉 is written as

|i〉 := |i1,1, . . . , i1,M , i2,1, . . . , i2,M , . . . , iN,M〉
:= |i1,1〉 ⊗ . . .⊗ |iN,M〉

for i = (i1,1, . . . , iN,M) ∈ EMN . In here, one choses

|1〉 =

(
1

0

)
, |0〉 =

(
0

1

)
.

In the following, the notation "|0〉" will be overloaded in order to de�ne it
the vacuum state for the N th row, the state with all spins down (

(
0
1

)
) in the

N th row. With regard to counting the number of σx's in ρN(ΣN) whenever
that operators is applied to the vacuum, one has to set

M :=
M∑
m=1

σ+
mσ
−
m. (3.1.5)

In order to simplify the algebra in the following, de�ne K∗1 in virtue of

tanhK1 =: exp(−2K∗1) (3.1.6)

assuming that a ferromagnetic (J1, J2 ≥ 0) Ising lattice is treated with re-
spect to simplifying some considerations. This is not a restriction: the anti-
ferromagnetic case would only imply further case analyses. The obtained



46CHAPTER 3. CALCULATION OF THE CRITICAL TEMPERATURE

recursion relation is

ρN(ΣN) |0〉 = (2 coshK1)M exp(HN +K2,N)

× exp(−2K∗1

M∑
m=1

σ+
mσ
−
m)ρN−1(ΣN) |0〉

= (2 coshK1)MN

(
eK2,N eHN e

−2K∗1
M∑
m=1

σ+
mσ
−
m

)N

ρ0(ΣN) |0〉 .

As an transformation invariant functional, one may consider the trace in the
basis of spins in the z-direction (cf. |1〉 , |0〉 above). In the representation of
this basis, σx has no diagonal elements such that only the zeroth order term
in the canonical expansion (3.1.3) contributes to the trace. This fact justi�es
the initial choice of σx as spin operators and it allows to consider only the
vacuum state if the calculation of the trace is taken into account and if its
contribution is counted 2M times. This number corresponds the number of
possible spin con�gurations in the N th row. It is

Z := TrΣN [ρN(ΣN)] = 2M 〈0| ρN(ΣN) |0〉 (3.1.7)

The aim of the next chapter will be to calculate (3.1.7) before determining
the transition temperature Tc Onsager once obtained. In the following, the
external �eld H will not be taken into account anymore since it causes yet un-
solved problems in the computation. Nonetheless, in the thermodynamic limit
the density of the free energy will be non-analytic and will hence represent a
phase transition.

3.2 Diagonalization of ρredN (ΣN)

Preliminaries: Z can be rewritten as follows

Z = Tr(V N)

V := V
1
2

2 V1V
1
2

2

V1 ; = (2 coshK1)M exp(−2K∗1
∑

σ+
mσ
−
m)

(3.2.3)
= (2 sinh(2K1))

M
2 exp[−2K∗1

∑
(σ+

mσ
−
m −

1

2
)] (3.2.1)

V2 := exp(K2

∑
σxmσ

x
m+1) (3.2.2)
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where the boundary conditions set by ρ0(ΣN) are dropped and replaced by
the normalization

ρ0(ΣN) := 2−M .

In addition, one used the following trigonometrical identity

2 sinhx coshx = sinh(2x)

⇒ 2 coshK1 exp(−K∗1)
(3.1.6)

= 2 coshK1

√
tanhK1 =

√
2 sinh(2K1).

(3.2.3)

One can diagonalize V using the so-called fermionization.

3.2.1 De�nition. Let F := {f1; f2; . . . ; f+
1 ; f+

2 ; . . .} be a set of operators. F
is said to be a set of fermion operators if the elements obey the following
algebra:

∀m,n : {f+
m, f

+
n } = {fm, fn} = 0,

{f+
m, fn} = δmn.

By {·, ··} : F2 → R we denote the anti-commutator. This fermion operators
are also called Grassmann numbers because of their algebra.

3.2.2 Remark. It can already be seen that f ∈ F represents a fermion. f ,
namely, obeys the Pauli principle:

f 2 =
1

2
{f, f} = 0

If a state is de�ned by
∏
j∈J

f+
j |0〉 for |0〉 being the vacuum de�ned by

∀j : fj |0〉 = 0,

one has to �x the order of the f+
j in the product

∏
j∈J

f+
j , as to not have an

ambiguity in this expression. The sign will be speci�ed in the particular cases.

The algebra for the spin creation and annihilation operators is given by

∀m 6= n :
(
[σ±m.σ

±
n ] = 0 ∧ {σ+

m, σ
−
m} = 1 ∧ (σ+

m)2 = (σ−m)2 = 0
)

In here, bosonic as well as fermionic features appear. So, it is necessary to
�nd a transformation which turns spin operators into fermions with regard
to re�ecting the physical properties of the considered particles.
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Jordan-Wigner-transformation

The annihilation and creation operators for the new set of fermions are given
by the following transformation

cm := exp(πi
m−1∑
j=1

σ+
j σ
−
j )σ−m

c+
m := exp(πi

m−1∑
j=1

σ+
j σ
−
j )σ+

m

(3.2.4)

This transformation was introduced by Pascual Jordan (1902-1980) and Eu-
gene Wigner (1902-1995) [JW28] in 1928. Before proceeding, we shall show
that these annihilation and creation operators indeed are fermionic operators.

3.2.3 Lemma. The cm/c
+
m are fermion operators.

Proof. Let m,n ∈ {1, 2, . . . ,M}, m > n. First of all, one obtains

{cm, cm} = 2e
πi
m−1∑
j=1

σ+
j σ
−
j

σ−me
πi
m−1∑
j=1

σ+
j σ
−
j

σ−m

= 2σ−m e
2πi

m−1∑
j=1

σ+
j σ
−
j︸ ︷︷ ︸

=1

σ−m = 2(σ−m)2 = 0

by using the Baker-Campbell-Hausdor� formula

eAeB = eA+Be−[A,B]/2

which holds for operators A,B : H → H on an arbitrary Hilbertspace H if
[A, [A,B]] = [B, [A,B]] = 0, where [·, ··] : B(H)2 → B(H) is the commutator.
We also took into account that σ±m and σ+

j σ
−
j , 1 ≤ j ≤ m−1, act on di�erent

spaces, so in particular,

[σ±m, e
πi
m−1∑
j=1

σ+
j σ
−
j

] = 0.

Furthermore, one has

{cm, cn} = e
πi
m−1∑
j=1

σ+
j σ
−
j

σ−me
πi
n−1∑
j=1

σ+
j σ
−
j

σ−n + Term with m↔ n

[σ−m,σ
−
n ]=0

= e
πi
m−1∑
j=n

σ+
j σ
−
j

σ−n σ
−
m + σ−n e

πi
m−1∑
j=n

σ+
j σ
−
j

σ−m.
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Now let for the moment |0〉 be any state with the nth spin down and |1〉
conversely be a state with the nth spin up. Then

{cm, cn} |0〉 = 0 + 0 = 0

{cm, cn} |1〉 = e
πi

m−1∑
j=n+1

σ+
j σ
−
j

σ+
m |0〉+ σ−n eπie

πi
m−1∑
j=n+1

σ+
j σ
−
j

σ+
m |1〉

[σ−n ,e···]
= 0

In here, 0 means 0 in the considered Hilbert space. So again, the demanded
operator identity shall be obtained due to applying the operator to a state,
in this case to any state. Hence, in this space holds the operator identity
demanded in the claim. With analogous steps one obtains {c+

m, c
+
n } = 0.

Then

{c+
m, cm}

cf. above
= {σ+

m, σ
−
m} = 1

Finally, the two last anti-commutators {c+
m, cn} and {c+

n , cm} can be treated
by following the same arguments as above.

3.2.4 Remark. Since

c+
mcm = σ+

mσ
−
m, (3.2.5)

implicated by (3.2.4), one can easily invert (3.2.4) to see that

σ−m = exp(πi
m−1∑
j=1

c+
j cj)cm

σ+
m = exp(πi

m−1∑
j=1

c+
j cj)c

+
m.

Eq. (3.2.5) means that the occupation number operator for the c- and the
σ-fermions remains the same. By eq. (3.2.1), V1 stays diagonal in this rep-
resentation

V1 = (2 sinh(2K1))M/2 exp[−2K∗1
∑
m

(c+
mcm −

1

2
)]. (3.2.6)

With respect to calculating V2, σ
x
mσ

x
m+1 will be transformed in the next lemma.

We will not prove the lemma since it is easy to obtain the results by applying
the techniques of the proof above.
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3.2.5 Lemma. For the operators de�ned in (3.2.4) and in the case cyclic
boundary conditions are imposed, the following relation to the σ±m hold:

∀m < M :


σ+
mσ
−
m+1 = c+

mcm+1

σ+
mσ

+
m+1 = c+

mc
+
m+1

σ−mσ
+
m+1 = −cmc+

m+1

σ−mσ
−
m+1 = −cmcm+1

Furthermore,

σ+
Mσ
−
1 = − exp(πiM)c+

Mc1

σ+
Mσ

+
1 = − exp(πiM)c+

Mc
+
1

σ−Mσ
+
1 = exp(πiM)cMc

+
1

σ−Mσ
−
1 = exp(πiM)cMc1.

With this lemma one can rewrite V2 as

V2
(3.2.2)

= exp[K2

M∑
m=1

(σ+
m + σ−m)(σ+

m+1 + σ−m+1)]

= exp[K2

M∑
m=1

(c+
mc

+
m+1 + c+

mcm+1 − cmc+
m+1 − cmcm+1)

− eπiM(c+
Mc

+
1 + c+

Mc1 − cMc+
1 − cMc1)]

= exp[K2

M∑
m=1

(c+
m − cm)(c+

m+1 + cm+1)− eπiM(c+
M − cM)(c+

1 + c1)]

Since it is

{eπiM, cm} = {eπiM, c+
m} = 0

and since the exponents in V1 and V2, respectively, only contain the product
of exactly two cm/c+

m-operators, one gets using

[exp(πiM), V1] = [exp(πiM), V2] = 0,

that the parity ofM is conserved. So in the following one may consider the
single subspaces, with odd and even particle number respectively, in order to
simplify the calculation. This allows to rewrite V2 as

V ±2 = exp[K2

M∑
m=1

(c+
m − cm)(c+

m+1 + cm+1)] (3.2.7)



3.2. DIAGONALIZATION OF ρREDN (ΣN) 51

with

cM+1 := −c1 c+
m+1 = −c+

1 if acting on an odd #fermions
cM+1 := c1 c+

m+1 = c+
1 if acting on an even #fermions

(3.2.8)

In the case of an odd number of fermions, we will speak of cyclic boundary
conditions and otherwise we will speak of anti-cyclic boundary conditions.
V +

2 is de�ned to act on an even number of particles, V −2 on an odd number
of states respectively. The challenge we now face is to diagonalize V1, V2 and
V3 simultaneously. The aim of the next paragraph will be to write V in the
simple form

V = exp(−
∑
q

εqa
+
q aq + E0)

It will be seen that this is possible with a simple linear transformation as

aq =
∑
m

(aqmcm + bqmc
+
m), 4

a so-called Bogoliubov transformation This transformation will be obtained
in two steps.

Bogoliubov-Valatin transformation

The translation invariance due to periodic boundary conditions yields oper-
ators ηq by

cm =: M− 1
2 e−iπ/4

∑
q

eiqmηq = M− 1
2 e−iπ/4

(∑
q>0

(
eiqmηq + e−iqmη−q

)
+ η0

)
(3.2.9)

There are two problems one has to be aware of: The �rst problem one faces
is the range of the sum in eq. (3.2.9), the second is to invert eq. (3.2.9). To
phrase this: One is looking for the discrete inverse Fourier transform. The
�rst problem will be treated with the following lemma.

3.2.6 Lemma. For any even k ∈ {0, 1, . . . , 2M}, one has
1

M

∑
m

ei km
M
π = δk,0 + δk,2M

.
4If it is not mentioned otherwise the summation on m will run from 1 to M in this

chapter.
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Proof. Let k 6∈ {0, 2M} be even. Then

∑
m

ei km
M
π =

∑
m

(ei k
M
π)m =

1− ei
k(M+1)
M

π

1− ei k
M
π
− 1 =

=
ei k
M
π(1− eikπ)

1− ei k
M
π

= 0

The formula for the geometric sum is used in here. On the other hand, one
has for k ∈ {0, 2M}:

1

M

∑
m

ei km
M
π︸ ︷︷ ︸

=1

= 1

Lemma 3.2.6 is an orthonormal relation for eiqm. With its help, eq. (3.2.9)
can be inverted,

ηq = eiπ/4
∑
m

e−iqmcm

This yields that the operators ηq themselves are fermionic operators. So, they
also obey the anti-commutation relations that are given for the cm. Equation
(3.2.8) implies

0 = cM+1 + c1 = M− 1
2 e−iπ/4

∑
q

eiqηq(e
iqM + 1)

Since the ηq-operators are linear independent for di�erent q, this can only be
the case if q = (2k + 1)π/M for k ∈ Z. One is free to choose M to be even.
Because of ei((2k+1)+2M)π/M = ei(2k+1)π/M , one can further impose w.l.o.g. the
condition

q ∈ O := {±π/M ;±3π/M ; . . . ;±(M − 1)π/M}.
Analogously, one obtains from

0 = cM+1 − c1 = M− 1
2 e−iπ/4

∑
q

eiqηq(e
iqM − 1)

the following range for q for the case of an even number of states,

q ∈ E := {0;±2π/M ; . . . ;±(M − 2)π/M ; π}.
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In the case of "even states" one must be careful with q ∈ {0;π}. Both values
only appear with only one sign; that causes some subtleties in the calculations
below.
In both cases, even or odd number of η-fermions, the summation includes
the �rst Brillouin zone. It is

|O| = |E| = M,

which guarantees that one does not miss out a state5. The number of η-
particles equals the number of c-particles, in particular

M =
∑
m

c+
mcm =

1

M

∑
m,q1,q2

ei(q2−q1)mη+
q1
ηq2

3.2.6
=
∑
q

η+
q ηq (3.2.10)

From now on a summation/product on q runs on q ∈ X ∈ {E;O} depend-
ing on whether one is dealing with cyclic respectively anti-cyclic boundary
conditions. It will be clear which summation/product shall be used in the
particular case. V ± will be expressed in terms of the new fermion set in the
next lemma.

3.2.7 Lemma. V can be written in the form

V ± = (2 sinh(2K1))M/2 (V1Vπ)
1±1

2

∏
0<q<π

Vq (3.2.11)

where

∀0 < q < π :


Vq = V

1
2

2qV1qV
1
2

2q

V1q = exp[−2K∗1(η+
q ηq + η+

−qη−q − 1)]

V2q = exp
[
2K2[cos q(η+

q ηq + η+
−qη−q − 1)6

+ sin q(ηqη−q + η+
−qη

+
q )]
]

and

V0 = exp[−2(K∗1 −K2)(η+
0 η0 −

1

2
)]

Vπ = exp[−2(K∗1 +K2)(η+
π ηπ −

1

2
)]

5Small remark to the terminology: The term state will be used for ω ∈ EMN and an
eigenstate of f+f for a fermion operator f will be called an f−particle/fermion.

6In [LMS64] Lieb, Mattis and Schultz had a �aw in here: Instead of (η+
q ηq+η+

−qη−q−1),

they obtained (η+
q ηq + η+

−qη−q). Mattis corrects this in [Mat03], but this solution was
independently obtained.
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Proof. For the exponent of V1 (cf. eq. (3.2.6)) one obtains

∑
m

(c+
mcm −

1

2
) =

1

M

∑
mq1q2

ei(q2−q1)mη+
q1
ηq2 −

M

2

3.2.6
=

∑
0<q<π

(η+
q ηq + η+

−qη−q − 1) + [(η+
0 η0 −

1

2
)

+ (η+
π ηπ −

1

2
)]1{even}.

1even means that one should only take care of this term with regard to cyclic
boundary conditions. Since all the terms are occupation number operators
and these commute one with each other, it is possible to factorize V1 in virtue
of

V1 = (2 sinh(2K1))M/2
(

e−2K∗1 (η+
0 η0− 1

2
)e−2K∗1 (η+

π ηπ− 1
2

)
)1−1{even} ∏

0<q<π

V1q,

∀0 < q < π : V1q := e−2K∗1 (η+
q ηq+η

+
−qη−q−1).

With

∑
m

e−i(q2+q1)m 3.2.6
= δq1,−q2 + δq1,q2δq1,π∑

m

ei(q2−q1)m 3.2.6
= δq1,q2
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one obtains for the exponent of V2 (cf. eq. (3.2.7))∑
m

(c+
m − cm)(c+

m+1 + cm+1) =
1

M

∑
mq1q2

(
e−iπ/4e−iq1mη+

q1
− eiπ/4eiq1mηq1

)
·
(
e−iπ/4e−iq2(m+1)η+

q2
+ eiπ/4eiq2(m+1)ηq2

)
=

1

M

∑
mq1q2

(
e−iπ/2e−i(q2+q1)me−iq2η+

q1
η+
q2

+ ei(q2−q1)meiq2η+
q1
ηq2 − ei(q1−q2)me−iq2ηq1η

+
q2

− eiπ/2ei(q1+q2)meiq2ηq1ηq2
)

3.2.6
= [2(η+

0 η0 −
1

2
)− 2(η+

π ηπ −
1

2
)]1{even}

+2
∑
q

[sin q(−η+
q η

+
−q︸ ︷︷ ︸

=η+
−qη

+
q

+ηqη−q)

+ cos q(η+
q ηq + η+

−qη−q − 1)].

Here again, the result means that one should only take care of the η0 and
the ηπ terms if cyclic boundary conditions are imposed. Using the property
that η+

0 η0 and η+
π ηπ commute with all the other operators since they act on

other states, one obtains

V2 =
(

e2K2(η+
0 η0− 1

2)e−2K2(η+
π ηπ− 1

2)
)1{even} ∏

0<q<π

V2q,

∀0 < q < π : V2q := e2K2(sin q(η+
−qη

+
q +ηqη−q)+cos q(η+

q ηq+η
+
−qη−q−1)).

Gathering the η+
0 η0- and η+

π ηπ-terms from V1 and V2 gives

V0 := e−2(K∗1−K2)(η+
0 η0− 1

2
),

Vπ := e−2(K∗1 +K2)(η+
π ηπ− 1

2
).

Rearranging the factors in V ± = V
1
2

2 V1V
1
2

2 by using that

∀q1 6= q2 : [V
1
2

2q1
, V

1
2

2q2
] = 0

yields the claim.
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An important feature of the representation of V ± given in the last lemma
is that all Vq, q ∈ X ∈ {E;O}, commute one with each other. Hence, they
can be independently diagonalized. Starting with the usual de�nition the
η-vacuum Φ0 in virtue of

∀q ∈ X ∈ {E;O} : ηqΦ0 = 0

one sets

∀q ∈ X ∈ {E;O} :


Φq := η+

q Φ0

Φ−q := η+
−qΦ0

Φ−q,q := η+
−qη

+
q Φ0.

Note that these are the only 4 possible particle number con�gurations be-
longing to one q ∈ X ∈ {E;O} because of the Pauli principl. V0 and Vπ
are diagonal in the occupation number representation. Let q ∈ X \ {0},
X ∈ {E;O}.

Φ0 Φ−q,q Φq Φ−q
ηqη−q 0 Φ0 0 0
η+
−qη

+
q Φ−q,q 0 0 0

η+
q ηq + η+

−qη−q 0 2Φ−q,q Φq Φ−q

Table 3.1: E�ect of the operators appearing in Vq on the Φ, 0 < q < π

Considering table 3.1, Vq is already diagonal in {Φq,Φ−q},

VqΦ±q = Φ±q,

and V1q is diagonal in {Φ0,Φ−q,q},

V1q =

(
e2K∗1 0

0 e−2K∗1

)
7,

whereas in that basis, V2q has the representation

V2q = e2K2(− cos qτ3+sin qτ1),

7The standard notation is used in here. The "="-sign should not be interpreted as an
identity, but as an identi�cation.
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where {τ1; τ2; τ3} are the Pauli matrices. From now on, one will stay in the
representation of {Φ0,Φ−q,q}. Let τ := (τ1, τ2, τ3) and de�ne

nq := (sin q, 0,− cos q)T .

With the identity

∀φ ∈ R3 \ {0} : eφ·τ = I2 cosh |φ|+
(
φ

|φ|
· τ
)

sinh |φ|8, (3.2.12)

one gets

V
1
2

2q = eK2nq ·τ = I2 coshK2 + (nq · τ) sinhK2

=

(
coshK2 − cos q sinhK2 sin q sinhK2

sin q sinh (2K2) coshK2 + cos q sinhK2

)
.

Hence it is

Vq = V
1
2

2qV1qV
1
2

2q =

(
Aq Bq

Bq Cq

)
with

Aq := (coshK2 − cos q sinhK2)2e2K∗1 + (sin q sinhK2)2e−2K∗1 ,

Bq := (coshK2 − cos q sinhK2)(sin q sinhK2)e2K∗1

+(sin q sinhK2)(coshK2 + cos q sinhK2)e−2K∗1

= 2 sin q sinhK2 (coshK2 cosh (2K∗1)− cos q sinhK2 sinh (2K∗1)) ,

Cq := (sin q sinhK2)2e2K∗1 + (coshK2 + cos q sinhK2)2e−2K∗1 .

The eigenvalues of Vq are9

e±εq :=
1

2
(Aq + Cq)±

√
1

4
(Aq + Cq)2 +B2

q ,

8For the proof see the appendix. In means the identity matrix in n dimensions
9From here on the calculation coincides with that of [LMS64].
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where10

εq = arcosh [
1

2
(eεq + e−εq)] = arcosh [

1

2
(Aq + Cq)]

= arcosh [(sin2 q sinh2K2 + cosh2K2 + cos2 q sinh2K2) cosh (2K∗1)

− 2 cos q sinhK2 coshK2 sinh (2K∗1)]

= arcosh [cosh (2K2) cosh (2K∗1)− cos q sinh (2K2) sinh (2K∗1)].
(3.2.13)

Note
εq = ε−q. (3.2.14)

Orthonormalized eigenvectors belonging to these eigenvalues are

Ψ0 := cosαqΦ0 + sinαqΦ−q,q, VqΨ0 = eεqΨ0

Ψ−q,q := − sinαqΦ0 + cosαqΦ−q,q, VqΨ−q,q = e−εqΨ−q,q
(3.2.15)

where inserting these linear combinations into the eigenvalue equation yields

tanαq =
Bq

eεq − Cq
.

This gives

tan (2αq) =
2 tanαq

1− tan2 αq
=

2Bq(e
εq − Cq)

(eεq − Cq)2 −B2
q

eεq EV
=

of Vq

2Bq(e
εq − Cq)

(Aq − Cq)eεq + Cq(Cq − Aq)
=

2Bq

Aq − Cq
,

which de�nes αq up to a multiple of π/2. Now one introduces the Bogoliubov-
Valatin transformation11 in order to rewrite the eigenvectors. Let

ξq := cosαqηq + sinαqη
+
−q

ξ−q := cosαqη−q − sinαqη
+
q

(3.2.16)

and de�ne

Ψq := ξ+
q Ψ0 = (cosαqη

+
q + sinαqη−q)(cosαq + sinαqη

+
−qη

+
q )Φ0 = Φq

Ψ−q := ξ+
−qΨ0 = . . . = Φ−q.

10In here, the notation "arcosh a" which is not very common in the Anglo-Saxon region
is used for the positive root of coshx = a. Analogously arsinh a, artanh a and so on are
de�ned.

11cf. [LMS64], p. 863
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Then

ξqΨ0 = ξ−qΨ0 = 0

ξ+
−q ξ+

q Ψ0︸ ︷︷ ︸
=Φq=η

+
q Φ0

= (cosαqη
+
−q − sinαqηq)η

+
q Φ0 = Ψ−q,q.

These relations justify the notations in (3.2.15). Thus Ψ0,Ψq,Ψ−q and Ψ−q,q
are the four possible eigenvectors of Vq modulo the de�ned ground state Φ0

12.
With these, one can rewrite Vq in virtue of

Vq = eεq(ξ
+
q ξq+ξ

+
−qξ−q−1).

De�ning

α0 := 0, ε0 := 2(K∗1 −K2),

απ := 0, επ := 2(K∗1 +K2), 13

one �nds

V ± = (2 sinh (2K1))M/2e
−

∑
q
εq(ξ

+
q ξq− 1

2
)

. (3.2.17)

Before continuing, (3.2.16) shall be inverted. One has

∀q :


ξq
ξ+
q

ξ−q
ξ+
−q

 =


cosαq sinαq

cosαq sinαq
− sinαq cosαq

− sinαq cosαq


︸ ︷︷ ︸

=:D(αq)

·


ηq
η+
q

η−q
η+
−q



with D(αq)
−1 = D(αq)

+ = D(−αq). In order to determine the eigenvectors
belonging to V , one picks up the above discussion on the parity of the particle
number. It holds

M (3.2.10)
=

∑
q

η+
q ηq =

∑
0<q<π

(η+
q ηq + η+

−qη−q) + (η+
0 η0 + η+

π ηπ)1{even}

=
∑
q

(D(−αq)ξq)+D(−αq)ξq =
∑
q

ξ+
q ξq,

12E.g. there is a U(1)-symmetry of the ground state.
13Note, that these pure de�nitions obey ε0 = ± lim

q→0
εq for T{>Tc

<Tc
} because εq is de�ned

to be positive for 0 < q < π, επ = lim
q→π

εq respectively. Tc is de�ned in virtue of K∗1 =

K2 ⇔ sinh (2J1βc)) sinh (2J2βc) = 1.
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i.e., the total number of η-particles equals the number of ξ-particles. With
this observation, one may just consider the eigenvectors with an even number
of particles in the case of V + and for V − these with an odd number of
particles. Now the largest eigenvalue for both cases has to be determined
because the other eigenvalues will be suppressed in the thermodynamic limit
as we will below in more detail. The largest eigenvalue for V + is

Λ+ := (2 sinh (2K1))M/2e
1
2

∑
q εq ,

V +Ψ0 = Λ+Ψ0,

since the vacuum contains an even number of particles (namely 0). For V −

the eigenvector with the largest eigenvalue must contain at least one particle.
Using the fact that

∀q > 0 : εq
(3.2.13)

= arcosh [cosh (2K2) cosh (2K∗1)− cos q︸︷︷︸
≤1

sinh (2K2) sinh (2K∗1)]

arcosh

≥
increasing

arcosh [cosh[2(K2 −K∗1)]] = |2(K2 −K∗1)| ≥ ε0,

one obtains the largest eigenvalue Λ− of V − for one particle with "momen-
tum" q = 0, i.e.,

Λ− := (2 sinh (2K1))M/2e
−ε0/2+ 1

2

∑
q 6=0

εq

V −ξ+
0 Ψ0 = Λ−ξ+

0 Ψ0.

As noted above in a footnote, ε0 is related to εq, q 6= 0, in virtue of

ε0 = 2(K∗1 −K2) =

lim
q→0

εq T ≥ Tc

− lim
q→0

εq T < Tc
, (3.2.18)

where Tc is de�ned by

sinh(
J1

kbTc
) sinh(

J2

kbTc
) = 1. (3.2.19)

(3.2.18) can easily veri�ed using �gure 3.1.
For both cases, Λ+ and Λ−, one can rewrite the exponent for T < Tc as

follows
1

2

∑
q

|εq| =
M

4π

∑
q

2π

M
|εq|,
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Tc
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Figure 3.1: Graphs for K2(kbT/J) = J
kBT

, K∗1(kbT/J) = −1
2

log[tanh ( J
kBT

)],
the isotropic case.

This can be identi�ed with a Riemann sum. One �nally obtains

f{1;2;...;M}×{1;2;...;N}(T ) := − kbT

MN
logZ± = − kbT

MN
log [TrΣN ((V ±)N)]

= −kbT

 1

MN
log
[(

Λ±
)N]

+
1

MN
log

 ∑
λ∈σ(V ±)

λN

(Λ±)N


= −kbT

[
1

2
log (2 sinh (2K1)) +

1

4π

∑
q

2π

M
|εq|

− |ε0|+ ε0
2M

1{even} +
1

MN
log

 ∑
λ∈σ(V ±)

λN

(Λ±)N


→

M,N→∞
−kbT

2

log (2 sinh (2K1)) +
1

2π

π∫
−π

|εq| dq

 ,

where we used that λN ∈ σ((V ±)N)⇔ λ ∈ σ(V ±) and

1 ≤
∑

λ∈σ(V ±)

λN

(Λ±)N
≤ 2M ,
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since σ(V ±) 3 λ > 0 by eq. (3.2.17) and the con�guration space of ΣN with
respect to which the trace is taken, is 2M -dimensional. Ao the degeneracy of
Λ± does not a�ect the result. One sets

∀β ∈ R+ : f(β) := lim
M,N→∞

f{1;2;...;M}×{1;2;...;N}(
kb
β

).

3.3 Critical phenomena

The free energy per volume f shall now be analyzed with regard to assuring
that f exhibits a phase transition. One could also look at the spontaneous
magnetization (resp. its the second momentum) de�ned by

msp := lim
n→∞

1

|Λn|
〈
∑
i∈Λn

σi〉 = lim
n→∞

1

|Λn|

∑
σ∈ΩΛn

∑
i∈Λn

σie
−βHΛn (σ)∑

σ∈ΩΛN

e−βHΛn (σ)

for β ∈ R+. One usually considers the correlation of spins, the distance of
which grows to in�nity. The expectation value of the correlation is positive
below Tc and 0 above14. Nonetheless, neither the existence of the limit in
the de�nition of msp, nor the existence of n-point spin-correlation functions,
n ≥ 2, can be established easily. In contrast to the free energy, the limit of
the correlation function depends very much on the boundary conditions15.
Nevertheless, a spontaneous symmetry breaking is re�ected in the speci�c
heat capacity. Initially, the integral appearing in f shall be transformed in
order to make it treatable16. With the identity given by Onsager

∀z ∈ R : |z| =
1

π

π∫
0

log[2(cosh z − cos t)]dt (3.3.1)

and assuming K1 = K2 =: K, K∗ := K∗1 , the integral becomes

1

π2

π∫
0

dq

π∫
0

dk log[2(cosh (2K) coth (2K)︸ ︷︷ ︸
=:Q

− cos k − cos q︸ ︷︷ ︸
=−2 cos q+k

2
cos q−k

2

)], (3.3.2)

14Cf. [LMS64], p. 864-871; [Bax89] recommends [MW73].
15Cf. [KS04], p.106
16For this section cf. [Hua87].
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In here, one already used that ε−q = εq ≥ 0∀q 6= 0 and ε0 := lim
q→0

εq was

rede�ned in order to have the continuous extension to [−π, π]\{0} → R, q 7→
εq. In addition, the identities

cosh (2K∗)
(3.1.6)

=
1

2
(cothK + tanhK) =

1

2

cosh2K − sinh2K

sinhK coshK
= coth (2K),

sinh (2K∗1)
(3.1.6)

=
1

2
(cothK − tanhK) =

1

sinh (2K)
17

were used. With regard to applying the transformation rule, one must assure
thatG : R2 → R, (q, k) 7→ log[2(cosh (2K) coth (2K)−cos k−cos q)]1[0,π](q)1[0,π](k)
is a integrable function. Clearly, G is measurable. For K 6= K∗ one has

∀q, k ∈ [0, π] : −∞ < log[cosh(2(K∗ −K))− 1]

≤ log[cosh(2K∗) cosh(2K)− cos q − cos k]

≤ log[cosh(2(K∗ +K)) + 1] <∞,

where trigonometrical identities and the fact that sinh(2K∗) sinh(2K) = 1
are used. Thus, G is integrable. By the transformation rule, one may now
transform

φ : R2 → R2,

(
q
k

)
7→
(

1
2
(q + k)

1
2
(q − k)

)
.

Since | det (φ)| = 1
2
6= 0 and the characteristic functions in G transform as

∀q, k ∈ R2 : 1[0,π](q)1[0,π](k) = 1[0,π](φ1(q, k))1[−π/2,π/2](φ2(q, k)),

17One does not use the transformation sinh 2K∗ =
√

1 + cosh 2K∗ since it requires case
analyses.
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one obtains

I :=
1

π2

π∫
0

dq

π∫
0

dk log[2(Q− 2 cos
q + k

2
cos

q − k
2

)]

=
1

π2

π∫
0

dx

π/2∫
0

dy log[2(Q− 2 cosx cos y)]

=
1

π2

π∫
0

dx

π/2∫
0

dy log

(
Q

cos y
− 2 cosx

)

+
1

π2

π∫
0

dx

π/2∫
0

dy log(2 cos y)

(3.3.1)
=

1

π

π/2∫
0

dy log(2 cos y) +
1

π

π/2∫
0

dy arcosh

(
Q

2 cos y

)
.

Short trigonometrical excursus: Let x ∈ [1,∞) = Ran(arcosh ).

y := arcosh x ≥ 0 ⇒ x = cosh y =
1

2

(
ey + e−y

)
⇔ e2y − 2xey + 1 = 0

⇔ ey ∈
{
x±
√
x2 − 1

}
ey≥1⇒ y = log(x+

√
x2 − 1).

With that one obtains

I =
1

π

π/2∫
0

dy log[D(1 +
√

1− (2/D)2 cos2 y)]

y→π
2
−y

=
1

π

π/2∫
0

dy log[D(1 +
√

1− (2/D)2 sin2 y)].
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One then has for β ∈ R+:

βf(β) = −1

2
[log(2 sinh(2K)) + I]

= − log(2 cosh(2K))− 1

π

π/2∫
0

dφ log

[
1

2

(
1 +

√
1− k2 sin2 φ

)]
,

where we de�ned

k :=
2

D
=

2 sinh (2K)

cosh2 (2K)
.

It is now possible to determine the density of the internal energy18 by denot-
ing Σ :=

√
1− k2 sin2 φ

u(β) =
∂βf(β)

∂β
= −2J tanh (2K) +

k

π

∂k

∂β

π/2∫
0

dφ
sin2 φ

Σ(1 + Σ)

k2 sin2 φ=
=

(1−Σ)(1+Σ)
−2J tanh (2K) +

k

π

∂k

∂β

− π

2k2
+

1

k2

π/2∫
0

dφ
1

Σ

 .

It is

1

k

∂k

∂β
=

∂ log k

∂β
= 2J (coth (2K)− 2 tanh (2K))

= 2J coth (2K)
(
1− 2 tanh2 (2K)

)︸ ︷︷ ︸
=:l

and so

u(β) = −J coth (2K)

(
1− 2l

π
K1(k)

)
,

where

K1(k) :=

π/2∫
0

dφ√
1− k2 sin2 φ

18Again, in here one has to be cautious in switching the order of integration and deriva-
tion, but that issue shall not be discussed in here because the theory of elliptic integrals
requires more care.
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is the complete elliptic integral of the �rst kind. In order to prevent more not-
instructive analysis, only the solution for the speci�c heat shall be presented
as stated in [Hua87]

c(β) = −kbβ2 ∂u

∂β
(β)

=
2kb
π

(βJ coth 2K)2
[
2K1(k)− 2E1(k)− (1− l)

(π
2

+ lK1(k)
)]
.

E1(k) is the complete elliptic integral of the second kind,

E1(k) :=

π/2∫
0

dφ

√
1− k2 sin2 φ.

The complete elliptic integrals shall be approximated near k = 1 since

sinh (2Kc) = 1 cosh (2Kc) =

√
1 + sinh2 (2K) =

√
2

⇒ lim
T→Tc

k = 1, K−1
c =

2

arcosh
√

2
=

2

log[
√

2 + 1]
≈ 2.269

One can approximate

K1(k) ≈ log 4l,
∂K1

∂k
(k) ≈ π

2
,

E1(k) ≈ 1

and thus

c(β) ≈ 2kb
π

(
2J

kbTc

)2 [
− log

∣∣∣∣1− T

Tc

∣∣∣∣+ log

(
kbTc
2J

)
− (1 +

π

4
)

]
In �g. 3.2a it is shown the graph for the spontaneous magnetization Chen
Ning Yang (*1922) [Yan52] obtained19.

19cf. [Hua87], p. 391
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Chapter 4

Conclusio

As seen, the concept of spontaneous symmetry breaking can be rigorously
established. Although the Lenz-Ising model might not explain ferromag-
netism in general materials, one learned how to give a complete discussion
of a physical model. Taking into consideration that the Lenz-Ising model
is a very crude description based on many assumptions which were neither
physically explicable nor mathematically understood, it gives hope that con-
temporary physical attempts may become well-understood models. It was
tried to carve out the importance of the correlation between mathematics
and physics, although other factors (e.g. the economical factor) may play
a big role in contemporary research. Though physicists argue with the fact
that one is only given �nite lattices in nature, it is now clear that the spon-
taneous symmetry breaking can only occur if one deals with in�nite systems.
Moreover, the �nite systems appearing in nature are still huge compared to
the micro-structure.
Still, the Ising model is investigated with regard to a solution in d dimensions.
There are di�erent generalizations to the Ising model as the Potts model and
di�erent vertex models, and there is also the Heisenberg model, seen in the
�rst chapter. These were not discuss in here in order to present a closed
treatment which is not possible for the other models. Also the historical
aspect of the Ising model should be stressed, in particular, that Lenz needed
a certain physical feeling to provide his model. It was quite disillusioning to
Lenz when his PhD student Ising could not provide spontaneous magnetiza-
tion in the linear chain and it might have been even more disillusioning when
Heisenberg derived his model of ferromagnetism out of Quantum mechanical
considerations. However, the fact that the 2D Ising model displays magneti-
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zation in the thermodynamic sheds a better light on the Ising model. It was
seen that the concept of spontaneously broken symmetries was unavoidable
in here and it also plays a big role in most recent research, as well in solid
state as in particle physics.



Appendix A

Further comments

A.1 Bethe ansatz

Since it is a powerful tool which can be applied in variations to modern
problems, the idea of the Bethe ansatz mentioned in section 1.3.2 shall be
displayed on the 1D spin-1/2 Heisenberg Hamiltonian1:
First of all, one rewrites the Hamiltonian in terms of Spin creation and an-
nihilation operators

S±k := Sxk ± iSyk

in order to obtain

H = −J
N∑
k=1

(
S+
k S
−
k+1 + S−k S

+
k+1 + 2SzkS

z
k+1

)
.

1[KM98] was consulted to understand the basic ideas
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The emerging operators S+
i , S

−
j and Szk (i, j, k ∈ {1; 2; . . . ;N}) ful�ll the

following algebra2

[S+
i , S

−
j ] = 2Szi δij

[Szi , S
±
j ] = ±δijS±δij.

With these relations, one obtains that the total momentum in the z−direction
is conserved,

Sz :=
N∑
k=1

Szk ,

and the complete ordered state

|1〉 := |1, 1, . . . , 1︸ ︷︷ ︸
N spins

〉

is an eigenvector with eigenvalue E(0) := −JN/4. In order to determine all
the eigenvectors, one can �x the total z-spin, i.e., one considers the problem∣∣∣∣H |ψ(r)〉 = E(r) |ψ(r)〉

Sz |ψ(r)〉 = (N/2− r) |ψ(r)〉

∣∣∣∣ .
This problem divides the union of eigenspaces toH into orthogonal subspaces
with �xed total z-spin component. With respect to understanding the con-
cept of the Bethe ansatz, one will only perform the case r = 1 and then look
at the general case.
For r = 1 de�ne

|n〉 := S−n |1〉 ∀n ∈ {1; 2; . . . ;N}

and make the ansatz

|ψ(1)〉 =
N∑
n=1

a(n) |n〉 .

2In here, one is dealing with spin-1/2 operators, so

Szi |. . . {10}︸︷︷︸
ith position

. . .〉 = (2 · {10} − 1)
1

2
|. . . {10} . . .〉 ,

S±i |. . . 1 . . .〉 = {01} · |. . . 0 . . .〉
S±i |. . . 0 . . .〉 = {10} · |. . . 1 . . .〉

.
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Since for n ∈ {1; 2; . . . ;N}∑
k

S−k S
+
k+1S

−
n |1〉 =

∑
k

(S−k S
−
n S+

k+1︸︷︷︸
S+
k+1|1〉=0

+2δk+1,nS
−
k S

z
k+1) |1〉 = |n− 1〉

∑
k

S−k+1S
+
k S
−
n |1〉 =

∑
k

(S−k+1S
−
n S

+
k + 2δk,nS

−
k+1S

z
k) |1〉 = |n+ 1〉∑

k

2SzkS
z
k+1S

−
n |1〉 =

∑
k

(2SzkS
−
n S

z
k+1 − 2δn,k+1S

z
kS
−
k+1) |1〉

=
∑
k

(2S−n S
z
kS

z
k+1 − 2δn,kS

−
n S

z
k+1 − 2δn,k+1S

−
k+1) |1〉

∑
k

2SzkS
z
k+1|1〉

=
= H
−J |1〉=−

E(0)
J
|1〉

−(
E(0)

J
+ 2) |n〉

one obtains the following equation for the coe�cients a(1), a(2), . . . , a(N)
imposing a(N+1) = a(1) through equating the coe�cients in the Schrödinger
equation: H |ψ(1)〉 = E(1)H |ψ(1)〉

(E(1)−E(0)−2J)a(n)+J (a(n+ 1) + a(n− 1)) = 0 ∀n ∈ {1; 2; . . . ;N}.

ak(n) = e2πikn/N∀k, n ∈ {1; 2; . . . ;N} solves this equation and yields for
k ∈ {0; 1; . . . N}

|ψ(1)
k 〉 =

1√
N

N∑
n=1

e2πikn/N |n〉

E
(1)
k = E(0) + 2J

N∑
n=1

(1− cos(2πkn/N)),

where
H |ψ(1)

k 〉 = E
(1)
k |ψ

(1)
k 〉 .

The n linear independent solutions obtained this way correspond to the
(
n
1

)
possible choices for 1 �ipped spin. For general r ∈ {0; 1; . . . ;N}, one uses
the ansatz

|ψ(1)〉 =
∑

1≤n1<n2<...<nr≤N

a(n1, n2, . . . , nr) |n1, n2, . . . , nr〉 ,
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where

∀1 ≤ n1 < n2 < . . . < nr ≤ N : |n1, n2, . . . , nr〉 :=
r∏

k=1

S−nk |1〉 .

Bethe could show in [Bet31] that this procedure leads to 2N solutions which
is the total number of possible spin con�gurations.

A.2 Proof of the Pauli matrix exponential

Eq. (3.2.12) shall now be deduced. Let {τ1; τ2; τ3} be the Pauli matrices and
τ := (τ1, τ2, τ3).

A.2.1 Lemma.

∀a, b ∈ C3 : (a · τ)(b · τ) = (a · b)I2 + i(a× b) · τ

Proof. Let a, b ∈ C3. Then it is

(a · τ)(b · τ) =
3∑

i,j=1

aibj τiτj︸︷︷︸
= 1

2
({τi,τj}+[τi,τj ])

=
∑
i,j

aibj(δi,jI2 + i
3∑

k=1

εijkστk)

= (a · b)I2 + i
3∑

k=1

(
∑
i,j

εijkaibj)︸ ︷︷ ︸
=(a×b)k

τk = (a · b)I1 + i(a× b) · τ,

where one used

∀i, j ∈ {1; 2; 3} :

{τi, τj} = 2δi,jI2

[τi, τj] = 2i
3∑

k=1

εijkτk

and (εijk)ijk is the Levi-Civita symbol.

A.2.2 Proposition.

∀φ ∈ R3 \ {0} : eφ·τ = cosh |φ|+
(
φ

|φ|
· τ
)

sinh |φ|. (A.2.1)
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Proof. With (
φ

|φ|
· τ
)2

A.2.1
=

(
φ

|φ|

)2

I2 + i(
φ

|φ|
× φ

|φ|
) · τ = I2

one obtains

eφ·τ = I2 +
∞∑
n=1

1

n!
|φ|n

(
φ

|φ|
· τ
)n

= I2 +
∞∑
n=1

|φ|2n

(2n)!

(
φ

|φ|
· τ
)2n

︸ ︷︷ ︸
=I2

+
∞∑
n=0

|φ|2n+1

(2n+ 1)!

(
φ

|φ|
· τ
)2n+1

︸ ︷︷ ︸
= φ
|φ| ·τ

= I2 cosh |φ|+
(
φ

|φ|
· τ
)

sinh |φ|

by the de�nition of the matrix exponential.
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