
The Specification of Agent Behavior by Ordinary
People: A Case Study

Luke McDowell, Oren Etzioni, and Alon Halevy

University of Washington, Department of Computer Science and Engineering
Seattle, WA 98195 USA

{lucasm,etzioni,alon}@cs.washington.edu,
http://www.cs.washington.edu/research/semweb/email

Abstract. The development of intelligent agents is a key part of the Semantic
Web vision, but how does an ordinary person tell an agent what to do? One ap-
proach to this problem is to use RDF templates that are authored once but then
instantiated many times by ordinary users. This approach, however, raises a num-
ber of challenges. For instance, how can templates concisely represent a broad
range of potential uses, yet ensure that each possible instantiation will function
properly? And how does the agent explain its actions to the humans involved?
This paper addresses these challenges in the context of a case study carried out
on our fully-deployed system1 for semantic email agents. We describe how high-
level features of our template language enable the concise specification of flexi-
ble goals. In response to the first question, we show that it is possible to verify, in
polynomial time, that a given template will always produce a valid instantiation.
Second, we show how to automatically generate explanations for the agent’s ac-
tions, and identify cases where explanations can be computed in polynomial time.
These results both improve the usefulness of semantic email and suggest general
issues and techniques that may be applicable in other Semantic Web systems.

1 Introduction

The vision of the Semantic Web has always encompassed not only the declarative rep-
resentation of data but also the development of intelligent agents that can consume this
data and act upon their owner’s behalf. For instance, agents have been proposed to
perform tasks like appointment scheduling [2], meeting coordination [26], and travel
planning [22]. A significant difficulty with this vision, however, is the need to translate
the real-world goals of untrained users into a formal specification suitable for agent
execution [31, 30]. In short, how can an ordinary person tell an agent what to do?

One approach to this problem is to encapsulate classes of common behaviors into
reusable templates (cf., program schemas [7, 10] and generic procedures [22]). Tem-
plates address the specification problem by allowing a domain-specific template to be
authored once but then instantiated many times by untrained users. In addition, spec-
ifying such templates declaratively opens the door to automated reasoning with and

1 See http://www.cs.washington.edu/research/semweb/email for a publicly
accessible server (no installation required); source code is also available from the authors.

composition of templates. Furthermore, the resulting declarative specifications can be
much more concise than with a procedural approach (see Table 1).

However, specifying agent behavior via templates presents a number of challenges:
• Generality: How can a template concisely represent a broad range of potential

uses?
• Safety: Templates are written with a certain set of assumptions — how can we

ensure that any (perhaps unexpected) instantiation of that template by a naive user
will function properly (e.g., do no harm [32], generate no errors)?

• Understandability: When executing a template, how can an agent explain its ac-
tions to the humans (or other agents) that are involved?

This paper investigates these challenges via a case study that leverages our deployed
system for semantic email agents (E-Agents).2 E-Agents provide a good testbed for ex-
amining the agent specification problem because they offer the potential for managing
complex goals and yet are intended to be used by a wide range of untrained people.
For instance, consider the process of scheduling a meeting with numerous people sub-
ject to certain timing and participation constraints. E-Agents support the common task
where an originator wants to ask a set of participants some questions, collect their re-
sponses, and ensure that the results satisfy some set of constraints. In order to satisfy
these constraints, an E-Agent may utilize a number of interventions such as rejecting a
participant’s response or suggesting an alternative response.

Our contributions are as follows. First, we identify the three key challenges for
template-based agents described above. We then examine specific solutions to each
challenge in the context of our fully-deployed system for semantic email. For gener-
ality, we describe the essential features of our template language that enable authors
to easily express complex constraints without compromising important computational
properties. The sufficiency of these features is demonstrated by our implementation of
a small but diverse set of E-Agents. For safety, we show how to verify, in polynomial
time, that a given template will always produce a valid instantiation. Finally, for under-
standability, we examine how to automatically generate explanations of why a particular
response could not be accepted and what responses would be more acceptable. We also
identify suitable restrictions where such constraint-based explanations can be generated
in polynomial time. These results both greatly increase the usefulness of semantic email
as well as highlight important issues for a broad range of Semantic Web systems.

2 Our prior work [19] referred to semantic email processes; in this work we call them E-Agents
to be more consistent with standard agent terminology.

Table 1. Comparison of the size of an E-Agent specification in our original procedural proto-
type [9] (using Java/HTML) vs. in the declarative format described in this paper (using RDF).
Overall, the declarative approach is about 80-90% more concise.

Procedural approach Declarative approach Size Reduction
E-Agent name (number of lines) (number of lines) for Declarative
Balanced Potluck 1680 170 90%
First-come, First-served 536 99 82%
Meeting Coordination 743 82 89%
Request Approval 1058 109 90%
Auction 503 98 81%

����� ��� �	��
 ���

�� ���������
� ��� ��� �����

�� ���������
���! #"$� %&� �

�� ���!�$���
'���(&� %!) %��+* �$�

,.-
 /	���

0 ��1�
 ���2
 � ��
 � ���34�$5
6���)+

798���8��:��
 � ���,.-
 /����;� ���

< ���;=?>�����@

Fig. 1. The creation of a Semantic Email Agent (E-Agent). Initially, an “Author” authors an E-
Agent template and this template is used to generate an associated web form. Later, this web form
is used by the “Originator” to instantiate the template. Typically, a template is authored once and
then instantiated many times.

The next section gives a brief overview of E-Agents while Section 3 discusses the
salient features of our template language with an extended example. Sections 4 and
5 examine the problems of instantiation safety and explanation generation that were
discussed above. Finally, Section 6 considers related work and Section 7 concludes
with implications of our results for both email-based and non-email-based agents.

2 Overview of Semantic Email Agents

We illustrate E-Agents with the running example of a “balanced potluck, ” which op-
erates as follows. The E-Agent originator initially creates a message announcing a
“potluck-style” event — in this case, the message asks each participant whether they
are bringing an Appetizer, Entree, or Dessert (or Not-Coming). The origi-
nator also expresses a set of constraints for the potluck, e.g., that the difference in the
number of appetizers, entrees, or desserts should be at most two (to ensure “balance”).

Figure 1 demonstrates how a template is used to create a new E-Agent. Initially,
someone who is assumed to have some knowledge of RDF and semantic email authors
a new template using an editor (most likely by modifying an existing template). We
call this person the E-Agent author. The template is written in RDF based on an ontol-
ogy that describes the possible questions, constraints, and notifications for an E-Agent.
For instance, the potluck template defines some general balance constraints, but has
placeholders for parameters such as the participants’ addresses, the specific choices to
offer, and how much imbalance to permit. Associated with each template is a simple
web form that describes each needed parameter; Section 4 describes a tool to automati-
cally generate such forms. An untrained originator finds an appropriate web form from
a public library and fills it out with values for each parameter, causing the correspond-
ing template to be instantiated into an E-Agent declaration. The semantic email server
executes the declaration directly, using appropriate algorithms to direct the E-Agent
outcome via message rejections and suggestions.

In our implementation, E-Agents are executed by a central server. When invoked,
this server sends initial messages to the participants that contain a human-readable an-
nouncement along with a corresponding RDF component. These messages also contain
a simple text form that can be handled by a human with any mail client, or by another
agent based on an associated RDQL query. Participants fill out the form and reply via
mail directly to the server, rather than to the originator, and the originator receives status
messages from the server when appropriate.

3 Concise and Tractable Representation of Templates
Our first challenge is to ensure that a template can concisely represent many possible
uses while still ensuring the tractability of E-Agent reasoning (e.g., to check the accept-
ability of a participant’s response). This section first describes our template language
via an extended example and then discusses how the language meets this challenge.

3.1 Template Example

An E-Agent template is a (parameterized) RDF document that specifies
• a set of participants,
• questions to ask the participants,
• constraints to enforce on the participants’ responses, and
• notifications to send to the originator and/or participants at appropriate times.

We illustrate the latter three parts below with a balanced potluck template. In these
declarations (shown in N3 format), variables in bold such as $Choices$ are parameters
provided by the originator; other variables such as x are computed during execution.

Questions: the set of questions to ask each participant. For instance, a potluck E-Agent
might ask everyone for the food items and number of guests that they are bringing:

[a :StringQuestion;
:name "Bring";
:enumeration "$Choices$";]

[a :IntegerQuestion;
:guard "$AskForNumGuests$";
:name "NumGuests";
:minInclusive "0";]

The enumeration and minInclusive properties constrain the legal responses to
these questions. In addition, the latter question is “guarded” so that it applies only if the
parameter AskForNumGuests is true. Because a question defines data that may be
accessed in multiple other locations in the template, it is important to be able to reason
about whether its guard might evaluate to false (see Section 4). Finally, each question
item also specifies a RDQL query (not shown) that defines the semantic meaning of the
requested information and is used to map the participant’s textual response to RDF [19].

Constraints: the originator’s goals for the E-Agent’s outcome. Each goal may be ex-
pressed either as a constraint that must be satisfied at every point in time (a Must-
Constraint) or as a constraint that should, if possible, be ultimately satisfied by the
final outcome (a PossiblyConstraint). Section 5 defines the behavior of these
constraints more precisely. Our simple example uses a quantified MustConstraint
to require balance among the counts of the different choices:

[a :MustConstraint;
:forAll ([:name "x"; :range "$Choices$-$OptOut$"]

[:name "y"; :range "$Choices$-$OptOut$"]);
:suchThat "x != y";
:enforce "abs($Bring.{$x$}.count()$ - $Bring.{$y$}.count()$)

<= $MaxImbalance$";
:message "Sorry, we can’t accept a $Bring.last()$ now.";]

The constraint applies to every possible combination (x,y) from the set (Choices -
OptOut); OptOut is for choices such as “Not Coming” that should be excluded from
the constraints. The message property is an optional message to send to a participant

in case this constraint causes their message to be rejected. This particular message is
not very helpful, but specifying messages with enough detail to entice the desired co-
operation from the participants can be a challenge for the E-Agent author. Section 5
discusses techniques for automatically constructing more informative messages.

Notifications: a set of email messages to send when some condition is satisfied, e.g., to
notify the originator when the total number of guests reaches GuestThreshold:

[a :OnConditionSatisfied;
:guard "$GuestThreshold$ > 0";
:define [:name "TotalGuests";

:value "[SELECT SUM(NumGuests) FROM CURR_STATE]"];
:condition "$TotalGuests$ >= $GuestThreshold$";
:notify :Originator;
:message "Currently, $TotalGuests$ guests are expected.";]

3.2 Discussion

The example above illustrates two different ways for accessing the data collected by the
E-Agent: via a pre-defined variable (e.g., Bring.last(),Bring.x.count())
or, less commonly, by utilizing an explicit SQL query over a virtual table constructed
from the RDF (e.g., as with TotalGuests). The former method is more convenient
and allows the author to easily specify decisions based on a variety of views of the un-
derlying data. More importantly, if the constraints refer to response data only through
such pre-defined variables, then they are guaranteed to be bounded, because they enable
the agent to summarize all of the responses that have been received with a set of coun-
ters, where the number of counters is independent of the number of participants. For
this type of constraints (which still enables many useful E-Agents), the optimal deci-
sion of whether to accept a message can always be computed in polynomial time [19].
Thus, the language enables more complex data access mechanisms as necessary but
helps authors to write E-Agents that are computationally tractable.

This example also highlights additional key features of our language, including:
• Guards (e.g., with $AskForNumGuests$)
• Sets, membership testing, and set manipulation (e.g., $Choices$-$OptOut$)
• Universal quantification (e.g.. forAll x... enforce this constraint)
• Question types/restrictions (e.g., IntegerQuestion, minInclusive)
• Multiple constraint types (e.g., MustConstraint vs. PossiblyConstraint)
• Math. functions and comparisons (e.g., abs(x-y) <= $MaxImbalance$)
• Pre-defined queries over the supporting data set (e.g., $Bring.last()$)

Among other advantages, guards, sets, and universal quantification enable a single,
concise E-Agent template to be instantiated with many different choices and configura-
tions. Likewise, question types and restrictions reduce template complexity by ensuring
that responses are well-formed. Finally, multiple constraint/notification types, mathe-
matical functions, and pre-defined queries simplify the process of making decisions
based on the responses that are received. Overall, these features make it substantially
easier to author useful agents with potentially complex functionality.

Using this template language, we have authored and deployed a number of E-Agents
for simple tasks such as collecting RSVPs, giving tickets away (first-come, first-served),
scheduling meetings, and balancing a potluck. Our experience has demonstrated that
this language is sufficient for specifying a wide range of useful E-Agents (see Table 1).

4 Template Instantiation and Verification

The second major challenge for template-based specifications is to ensure that origina-
tors can easily and safely instantiate a template into an E-Agent declaration that will
accomplish their goals. This section first briefly describes how to acquire and validate
instantiation parameters from the originator. We then examine in more detail the prob-
lem of ensuring that a template cannot be instantiated into an invalid declaration.

Each E-Agent template must be accompanied by a web form that enables origina-
tors to provide the parameters needed to instantiate the template into a declaration. To
automate this process, our implementation provides a tool that generates such a web
form from a simple RDF parameter description:

Definition 1. (parameter description) A parameter description φ for a template τ is a
set {R1, ..., RM} where each Ri provides, for each parameter Pi in τ , a name, prompt,
type, and any restrictions on the legal values of Pi. Types may be simple (Boolean,
Integer, Double, String, Email address) or complex (i.e., a set of simple types). Possible
restrictions are: (for simple types) enumeration, minimal or maximal value, and (for
sets) non-empty, or a subset relationship to another set parameter.

For instance, the following (partial) parameter description relates to asking participants
about the number of guests that they will bring to the potluck:

[a :TypeBoolean;
:name "AskForNumGuests";
:enumeration (
[:value :True; :prompt "Yes, ask for the number of guests";]
[:value :False; :prompt "No, don’t ask about guests";])]

[a :TypeInteger;
:name "GuestThreshold";
:prompt "Notify me when # of guests reaches (ignored if 0):";
:minInclusive "0";]
The form generator takes a parameter description and template as input and outputs

a form for the originator to fill out and submit. If the submitted variables comply with
all parameter restrictions, the template is instantiated with the corresponding values
and the resulting declaration is forwarded to the server for execution. Otherwise, the
tool redisplays the form with errors indicated and asks the originator to try again.

4.1 Instantiation Safety
Unfortunately, not every instantiated template is guaranteed to be executable. For in-
stance, consider instantiating the template of Section 3 with the following parameters:

AskForNumGuests = False
GuestThreshold = 50

In this case the notification given in Section 3 is invalid, since it refers to a question
symbol NumGuests that does not exist because the parameter AskForNumGuests
is false. Thus, the declaration is not executable and must be refused by the server. This
particular problem could be addressed either in the template (by adding an additional
guard on the notification) or in the parameter description (by adding a restriction on
GuestThreshold). However, this leaves open the general problem of ensuring that
every instantiation results in a valid declaration:

Definition 2. (valid declaration) An instantiated template δ is a valid declaration if:
1. Basic checks: δ must validate without errors against the E-Agent ontology, and

every expression e ∈ δ must evaluate to a valid numerical or set result.
2. Enabled symbols: For every expression e ∈ δ that is enabled (i.e., does not have

an unsatisfied guard), every symbol in e is defined once by some enabled node.
3. Non-empty enumerations: For every enabled enumeration property p ∈ δ, the

object of p must evaluate to a non-empty set.

Definition 3. (instantiation safety) Let τ be a template and φ a parameter description
for τ . τ is instantiation safe w.r.t. φ if, for all parameter sets ξ that satisfy the restrictions
in φ, instantiating τ with ξ yields a valid declaration δ.

Instantiation safety is of significant practical interest for two reasons. First, if er-
rors are detected in the declaration, any error message is likely to be very confusing to
the originator (who knows only of the web form, not the declaration). Thus, an auto-
mated tool is desirable to ensure that a deployed template is instantiation safe. Second,
constructing instantiation-safe templates can be very onerous for authors, since it may
require considering a large number of possibilities. Even when this is not too difficult,
having an automated tool to ensure that a template remains instantiation safe after a
modification would be very useful.

Some parts of verifying instantiation safety are easy to perform. For instance, check-
ing that every declaration will validate against the E-Agent ontology can be performed
by checking the template against the ontology, and other checks (e.g., for valid numer-
ical results) are similar to static compiler analyses. However, other parts (e.g., ensuring
that a symbol will always be enabled when it is used) are substantially more complex
because of the need to consider all possible instantiations permitted by the parameter
description φ. Consequently, in general verifying instantiation safety is difficult:

Theorem 1. Given τ , an arbitrary E-Agent template, and φ, a parameter description
for τ , then determining instantiation safety is co-NP-complete in the size of φ.

This theorem is proved by a reduction from SAT . Intuitively, given a specific
counter-example it is easy to demonstrate that a template is not instantiation-safe, but
proving that a template is safe potentially requires considering an exponential number
of parameter combinations. In practice, φ may be small enough that the problem is
feasible. Furthermore, in certain cases this problem is computationally tractable:

Theorem 2. Let τ be an E-Agent template and φ a parameter description for τ . Deter-
mining instantiation safety is polynomial time in the size of τ and φ if:
• each forAll and enumeration statement in τ consists of at most some con-

stant J set parameters combined with any set operator, and
• each guard consists of conjunctions and disjunctions of up to J terms (which are

boolean parameters, or compare a non-set parameter with a constant/parameter).

These restrictions are quite reasonable and still enable us to specify all of the E-Agents
described in this paper (using J ≤ 4). Note that they do not restrict the total num-
ber of parameters, but rather the number that may appear in any one of the identified

statements. The restrictions ensure that only a polynomial number of cases need to be
considered for each constraint/notification item, and the proof relies on a careful analy-
sis to show that each such item can be checked independently while considering at most
one question at a time.3

4.2 Discussion

In our implementation, we provide a tool that approximates instantiation safety testing
via limited model checking. The tool operates by instantiating τ with all possible pa-
rameters in φ that are boolean or enumerated (these most often correspond to general
configuration parameters). For each possibility, the tool chooses random values that sat-
isfy φ for the remaining parameters. If any instantiation is found to be invalid, then τ is
known to be not instantiation safe. Extending this approximate, non-guaranteed algo-
rithm to perform the exact, polynomial-time (but more complex) testing of Theorem 2
is future work.

Clearly nothing in our analysis relied upon the fact that our agents are email-based.
Instead, similar issues will arise whenever 1.) an author is creating a template that is de-
signed to be used by other people (especially untrained people), and 2.) for flexibility,
this template may contain a variety of configuration options. A large number of agents,
such as the RCal meeting scheduler [26], Berners-Lee et al.’s appointment coordina-
tor [2], and McIlraith et al.’s travel planner [22], have the need for such flexibility and
could be profitably implemented with templates. This flexibility, however, can lead to
unexpected or invalid agents, and thus produces the need to verify various safety prop-
erties such as “doing no harm” [32] or the instantiation safety discussed above. Our
results highlight the need to carefully design the template language and appropriate
restrictions so that such safety properties can be verified in polynomial time.

5 Automatic Explanation Generation

While executing, an E-Agent utilizes rejections or suggestions to influence the eventual
outcome. However, the success of these interventions depends on the extent to which
they are understood by the participants. For instance, the rejection “Sorry, the only dates
left are May 7 and May 14” is much more likely to elicit cooperation from a participant
in a seminar scheduling E-Agent than the simpler rejection “Sorry, try again.” The E-
Agent author can manually encode such explanations into the template, but this task can
be difficult or even impossible when constraints interact or depend on considering pos-
sible future responses. Thus, below we consider techniques for simplifying the task of
the E-Agent author by automatically generating explanations based on what responses
are acceptable now and why the participant’s original response was not acceptable.

We begin by defining more precisely a number of relevant terms. Given an E-Agent,
the supporting data set is an RDF data store that holds responses from the participants
to the questions posed by the E-Agent. The current state D is the state of this data set
given all of the responses that have been received so far. We assume that the number of
participants is known and that each will eventually respond.

3 See McDowell [18] for details on the proofs of this paper’s theorems.

A constraint is an arbitrary boolean expression over constants, parameters, and vari-
ables. Variables may be arbitrary expressions over constants, parameters, other vari-
ables, and queries that select or aggregate values for some question in the data set.
Constraint satisfaction may be defined in two different ways. First,

Definition 4. (MustConstraint) A MustConstraint C is a constraint that is satis-
fied in state D iff evaluating C over D yields True.

If a response would lead to a state that does not satisfy a MustConstraint C, it
is rejected. For example, for the potluck we would not accept a dessert response if
that would lead to having 3 more desserts than entrees or appetizers. In many cases,
however, such a conservative strategy will be overly restrictive. For instance, we may
want to continue accepting desserts so long as it is still possible to achieve a balanced
final outcome. Furthermore, a MustConstraint is usable only when the constraints
are initially satisfied, even before any responses are received, and thus greatly limits the
types of goals that can be expressed. Hence, we also define a second constraint type:

Definition 5. (PossiblyConstraint) A PossiblyConstraint C is a constraint that
is ultimately satisfiable in state D if there exists a sequence of responses from the re-
maining participants that leads to a state D′ so that evaluating C over D′ yields True.

This approach permits more flexibility with the constraints and with the sequence of
responses, though computing satisfaction for such constraints is more challenging.

For simplicity, we assume that the constraints CD are either all MustConstraints
or all PossiblyConstraints, though our results for PossiblyConstraints
also hold when CD contains both types. In addition, some results below mention bounded
constraints (see Section 3.2), a restricted type that still supports a wide range of agents
(including all those discussed in this paper). Recall that a sufficient condition for being
bounded is for the constraints to access data only via “pre-defined” variables.

5.1 Acceptable Responses

Often the most practical information to provide to a participant whose response led to
an intervention is the set of responses that would be “acceptable” (e.g., “An Appetizer
or Dessert would be welcome” or “Sorry, I can only accept requests for 2 tickets or
fewer now”). This section briefly considers how to calculate this acceptable set.

Definition 6. (acceptable set) Let Λ be an E-Agent with current state D and constraints
CD on D. Then, the acceptable set A of Λ is the set of legal responses r such that D

would still be satisfiable w.r.t. CD after accepting r.

For a MustConstraint, this satisfiability testing is easy to do and we can com-
pute the acceptable set by testing a small set of representative responses. For a Pos-
siblyConstraint, the situation is more complex:

Theorem 3. Given an E-Agent Λ with N participants and current state D, if the con-
straints CD are bounded, then the acceptable set A of Λ can be computed in time
polynomial in N , |A|, and |CD|. Otherwise, this problem is NP-hard in N .

In this case we can again compute the acceptable set by testing satisfiability over a
small set of values; this testing is polynomial if CD is bounded [19]. In addition, if
CD is bounded then either |A| is small or A can be concisely represented via ranges of
acceptable values, in which case the total time is polynomial in only N and |CD|.

5.2 Explaining Interventions
In some cases, the acceptable set alone may not be enough to construct a useful ex-
planation. For instance, suppose an E-Agent invites 4 professors and 20 students to a
meeting that at least 3 professors and a quorum of 10 persons (professors or students)
must attend. When requesting a change from a professor, explaining why the change is
needed (e.g., “We need you to reach the required 3 professors”) is much more effective
than simply informing them what response is desired (e.g., “Please change to Yes”).
A clear explanation both motivates the request and rules out alternative reasons for the
request (e.g., “We need your help reaching quorum”) that may be less persuasive (e.g.,
because many students could also help reach quorum). This section discusses how to
generate explanations for an intervention based on identifying the constraint(s) that led
to the intervention. We do not discuss the additional problem of translating these con-
straints into a natural language suitable for sending to a participant, but note that even
fairly simple explanations (e.g., “Too many Appetizers (10) vs. Desserts (3)”) are much
better than no explanation.

Conceptually, an E-Agent decides to reject a response based on constructing a proof
tree that shows that some response r would prevent constraint satisfaction. However,
this proof tree may be much too large and complex to serve as an explanation for
a participant. This problem has been investigated before for expert systems [24, 29],
constraint programming [14], description logic reasoning [20], and more recently in
the context of the Semantic Web [21]. These systems assumed proof trees of arbitrary
complexity and handled a wide variety of possible deduction steps. To generate useful
explanations, key techniques included abstracting multiple steps into one using rewrite
rules [20, 21], describing how general principles were applied in specific situations [29],
and customizing explanations based on previous utterances [4].

In our context, the proof trees have a much simpler structure that we can exploit.
In particular, proofs are based only on constraint satisfiability (over one state or all
possible future states), and each child node adds one additional response to the parent’s
state in a very regular way. Consequently, we will be able to summarize the proof tree
with a very simple type of explanation. These proof trees are defined as follows:

Definition 7. (proof tree) Given an E-Agent Λ, current state D, constraints CD, and a
response r, we say that P is a proof tree for rejecting r on D iff:
• P is a tree where the root is the initial state D.
• The root has exactly one child Dr, representing the state of D after adding r.
• If CD is all MustConstraints, then Dr is the only non-root node.
• If CD is all PossiblyConstraints, then for every node n that is Dr or one of

its descendants, n has all children that can be formed by adding a single additional
response to the state of n. Thus, the leaf nodes are only and all those possible final
states (e.g., where every participant has responded) reachable from Dr.

• For every leaf node l, evaluating CD over the state of l yields False.

A�B�C;A�D

E

F�G�H I JKI L I MON�PQL M:L RKS

F&T

A$U A$UQC;A�V A$U

E

F�G�H I JOI L I MWNXP�L MKL RKS

F T

Y[Z+\ \] ^+_ `a] b c[_ \ d c d `+\

e�f gih	jKk:l m�npoOkKl q rWs o:l t!f gWu�nikKkWs viw xOm!npoKkKl q ris oKl

Fig. 2. Examples of proof trees for rejecting response r. Each node is a possible state of the data
set, and node labels are constraints that are not satisfied in that state. In both cases, response r

must be rejected because every leaf node (shaded above) does not satisfy some constraint.

Figure 2A illustrates a proof tree for MustConstraints. Because accepting r

leads to a state where some constraint (e.g., cT) is not satisfied, r must be rejected.
Likewise, Figure 2B shows a proof tree for PossiblyConstraints, where CP and
CQ represent the professor and quorum constraints from the example described above.
Since we are trying to prove that there is no way for the constraints to be ultimately
satisfied (by any outcome), this tree must be fully expanded. For this tree, every leaf
(final outcome) does not satisfy some constraint, so r must be rejected.

We now define a simpler explanation based upon the proof tree:

Definition 8. (sufficient explanation) Given an E-Agent Λ, current state D, constraints
CD , and a response r such that a proof tree P exists for rejecting r on D, then we say
that E is a sufficient explanation for rejecting r iff,
• E is a conjunction of constraints that appear in CD, and
• for every leaf node n in P , evaluating E over the state of n yields False.

Intuitively, a sufficient explanation E justifies rejecting r because E covers every
leaf node in the proof tree, and thus precludes ever satisfying CD . Note that while the
proof tree for rejecting r is unique (modulo the ordering of child nodes), an explanation
is not. For instance, an explanation based on Figure 2A could be CS , CT , or CS ∧ CT .
Likewise, a valid explanation for Figure 2B is CP ∧ CQ (e.g., no way satisfy both the
professor and quorum constraints) but a more precise explanation is just CP (e.g., no
way to satisfy the professor constraint). The smaller explanation is often more com-
pelling, as we argued for the meeting example, and thus to be preferred [6]. In general,
we wish to find the explanation of minimum size (i.e., with the fewest conjuncts):

Theorem 4. Given an E-Agent Λ with N participants, current state D, constraints
CD , and a response r, if CD consists of MustConstraints, then finding a minimum
sufficient explanation E for rejecting r is polynomial time in N and |CD|. If CD consists
of PossiblyConstraints, then this problem is NP-hard in N and |CD|.

Thus, computing a minimum explanation is feasible for MustConstraints but
likely to be intractable for PossiblyConstraints. For the latter, the difficulty
arises from two sources. First, checking if any particular E is a sufficient explanation is

NP-hard in N (based on a reduction from ultimate satisfiability [19]); this makes scal-
ing E-Agents to large numbers of participants difficult. Second, finding a minimum
such explanation is NP-hard in the number of constraints (by reduction from SET-
COVER [12]). Note that this number can be significant because we treat each forAll
quantification as a separate constraint; otherwise, the sample potluck described in Sec-
tion 3 would always produce the same (complex) constraint for an explanation. Fortu-
nately, in many common cases we can achieve a polynomial time solution:

Theorem 5. Given an E-Agent Λ with N participants, current state D, constraints CD,
and a response r, if CD is bounded and the size of a minimum explanation is no more
than some constant J , then computing a minimum explanation E is polynomial time in
N and |CD|.

This theorem holds because a candidate explanation E can be checked in poly-
nomial time when the constraints are bounded, and restricting E to at most size J

means that the total number of explanations that must be considered is polynomial in
the number of constraints. Both of these restrictions are quite reasonable. As previously
mentioned, bounded constraints arise naturally when using our template language and
permit a wide range of functionality. Likewise, E-Agent explanations are most useful
to the participants when they contain only a small number of constraints, and this is
adequate for many E-Agents (as in the meeting example above). If no sufficient ex-
planation of size J exists, the system could either choose the best explanation of size
J (to maintain a simple explanation), approximate the minimum explanation with a
greedy algorithm, or fall back on just providing the participant with the acceptable set
described in the previous section.

Many different types of agents can describe their goals in terms of a set of con-
straints [17, 23], and often need to explain their actions to users. Our results show that
while generating such explanations can be intractable in general, the combination of
simple explanations and modest restrictions on the constraint system can enable expla-
nation generation in polynomial time.

6 Related Work

McDowell et al. [19] describe work related to the general notion of semantic email,
including its relation to existing workflow and collaboration systems. Here we focus on
research relevant to the agent specification problem.

Other projects have considered how to simplify the authoring of Semantic Web
applications, e.g., with Haystack’s Adenine programming language [27]. Adenine re-
sembles our template language in that it can be compiled into RDF for portability and
contains a number of high-level primitives, though Adenine incorporates many more
imperative features and does not support the types of declarative reasoning that we
describe. Languages such as DAML-S and OWL-S [5] enable the description of an
application as a Semantic Web service. These languages, however, focus on providing
details needed to discover and invoke a relevant service, and model every participant as
another web service. Our work instead concisely specifies an E-Agent in enough detail
so that it can be directly executed in contexts involving untrained end users.

More generally, E-Agent templates could be viewed as an instance of program
schemas [7, 10] that encapsulate a general class of behavior, e.g., for automated program
synthesis [10] or software reuse [7, 1]. Similarly, McIlraith et al. [22] propose the use
of generic procedures that can be instantiated to produce different compositions of web
services. Concepts similar to our definition of instantiation safety naturally arise in this
setting; proposals for ensuring this safety have included manually-generated proofs [7],
automatically-generated proofs [10], and language modification [1]. Our work focuses
on the need for such schemas to be safely usable by ordinary people and demonstrates
that the required safety properties can be verified in polynomial time.

Recent work on the Inference Web [21] has focused on the need to explain a Se-
mantic Web system’s conclusions in terms of base data and reasoning procedures. In
contrast, we deal with explaining the agent’s actions in terms of existing responses and
the expected impact on the E-Agent’s constraints. In this sense our work is similar to
prior research that sought to explain decision-theoretic advice (cf., Horvitz et al. [11]).
For instance, Klein and Shortliffe [16] describe the VIRTUS system that can present
users with an explanation for why one action is provided over another. Note that this
work focuses on explaining the relative impact of multiple factors on the choice of
some action, whereas we seek the simplest possible reason why some action could not
be chosen (i.e., accepted). Other relevant work includes Druzdzel [8], which addresses
the problem of translating uncertain reasoning into qualitative verbal explanations.

For constraint satisfaction problems (CSPs), a nogood [28] is a reason that no cur-
rent variable assignment can satisfy all constraints. In contrast, our explanation for a
PossiblyConstraint is a reason that no future assignment can satisfy the con-
straints, given the set of possible future responses. Potentially, our problem could be
reduced to nogood calculation, though a direct conversion would produce a problem
that might take time that is exponential in N , the number of participants. However, for
bounded constraints, we could create a CSP with variables based on the aggregates of
the responses, rather than their specific values [19]. Using this simpler CSP, we could
then exploit existing, efficient nogood-based solvers (e.g., [15, 13]) to find candidate
explanations in time polynomial in N . Note though that most applications of nogoods
have focused on their use for developing improved constraint solving algorithms [28,
15] or for debugging constraint programs [25], rather than on creating explanations for
average users. One exception is Jussien and Ouis [14], who describe how to gener-
ate user-friendly nogood explanations, though they require that a designer explicitly
model a user’s perception of the problem as nodes in some constraint hierarchy.

7 Conclusions and Implications for Agents

This paper has examined how to specify agent behavior. We adopted a template-based
approach that shifts most of the complexity of agent specification from untrained orig-
inators onto a much smaller set of trained authors. We then examined the three key
challenges of generality, safety, and understandability that arise in this approach. For
E-Agents, we discussed how high-level features of our template language enable the
concise specification of complex agent behavior. We also demonstrated that it is possi-
ble to verify the instantiation-safety of a template in polynomial time, and showed how

to generate explanations for the agent’s actions in polynomial time. Together, these tech-
niques both simplify the task of the E-Agent author and improve the overall execution
quality for the originator and the participants of an E-Agent. In addition, our polyno-
mial time results ensure that these features can scale to E-Agents with large numbers of
participants, choices, and constraints.

While we focused on the context of semantic email, our results are relevant to many
other agent systems. For instance, almost any agent needs some ability to explain its be-
havior, and many such agents react to the world based on constraints. We showed that
generating explanations can be NP-hard in general, but that the combination of simple
explanations and modest constraint restrictions may enable explanation generation in
polynomial time. Likewise, an agent template should support a wide range of function-
ality, yet ensure the safety of each possible use. There are several different types of
safety to consider, including that of doing no harm [32], minimizing unnecessary side-
effects [32], and accurately reflecting the originator’s preferences [3]. We motivated
the need for instantiation safety, a type that has been previously examined to some
extent [10, 1], but is particularly challenging when the instantiators are non-technical
users. Our results also highlight the need to carefully design template languages that
balance flexibility with the ability to efficiently verify such safety properties.

Thus, many agents could benefit from a high-level, declarative template language
with automatic safety testing and explanation generation. Collectively, these features
would simplify the creation of an agent, broaden its applicability, enhance its interaction
with the originator and other participants, and increase the likelihood of satisfying the
originator’s goals. Future work will consider additional ways to make agent authoring
and instantiation easier with the goal of bringing the Semantic Web vision closer to
practical implementation.

8 Acknowledgements
This research was supported in part by NSF grant DARPA contract NBCHD030010,
IIS-0312988, and ONR grant N00014-02-1-0324 for Oren Etzioni; NSF CAREER grant
IIS-9985114 and ITR grant IIS-0205635 for Alon Halevy; and by NSF Graduate Re-
search and Microsoft Endowed Fellowships for Luke McDowell. Jeff Lin assisted with
the implementation. Thanks to Gerome Miklau, Natasha Noy, Stani Vlasseva, and the
anonymous reviewers for their helpful comments on improving this work.

References
1. E. E. Allen. A First-Class Approach to Genericity. PhD thesis, Rice University, Houston,

TX, 2003.
2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May

2001.
3. C. Boutilier. A POMDP formulation of preference elicitation problems. In AAAI-02, pages

239–246, 2002.
4. G. Carenini and J. D. Moore. Generating explanations in context. In Intelligent User Inter-

faces, pages 175–182, 1993.
5. DAML Services Coalition. DAML-S and OWL-S. http://www.daml.org/services.
6. M. G. de la Banda, P. J. Stuckey, and J. Wazny. Finding all minimal unsatisfiable subsets. In

Proceedings of the 5th ACM SIGPLAN international conference on Principles and practice
of declarative programming, pages 32–43. ACM Press, 2003.

7. N. Dershowitz. Program abstraction and instantiation. ACM Trans. Programming. Language
Systems, 7(3):446–477, 1985.

8. M. Druzdzel. Qualitative verbal explanations in bayesian belief networks. Artificial Intelli-
gence and Simulation of Behaviour Quarterly, 94:43–54, 1996.

9. O. Etzioni, A. Halevy, H. Levy, and L. McDowell. Semantic email: Adding lightweight data
manipulation capabilities to the email habitat. In WebDB, 2003.

10. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of correct
schemas for program synthesis. Journal of Symbolic Computation, 30(1):93–127, July 2000.

11. E. J. Horvitz, J. S. Breese, and M. Henrion. Decision theory in expert systems and artificial
intelligence. International Journal of Approximate Reasoning, 2:247–302, 1988.

12. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

13. U. Junker. QUICKXPLAIN: Conflict detection for arbitrary constraint propagation algo-
rithms. In IJCAI’01 Workshop on Modelling and Solving problems with constraints, 2001.

14. N. Jussien and S. Ouis. User-friendly explanations for constraint programming. In ICLP
11th Workshop on Logic Programming Environments, Paphos, Cyprus, Dec. 2001.

15. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in csp search. In Principles
and Practice of Constraint Programming, October 2003.

16. D. A. Klein and E. H. Shortliffe. A framework for explaining decision-theoretic advice.
Artificial Intelligence, 67(2):201–243, 1994.

17. A. K. Mackworth. Constraint-based agents: The ABC’s of CBA’s. In Constraint Program-
ming, pages 1–10, 2000.

18. L. McDowell. Meaning for the Masses: Theory and Applications for Semantic Web and
Semantic Email Systems. PhD thesis, University of Washington, Seattle, WA, 2004.

19. L. McDowell, O. Etzioni, A. Halevey, and H. Levy. Semantic email. In Proc. of the Thir-
teenth Int. WWW Conference, 2004.

20. D. L. McGuinness and A. Borgida. Explaining subsumption in description logics. In IJCAI
(1), pages 816–821, 1995.

21. D. L. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations. In Second
International Semantic Web Conference, October 2003.

22. S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent Systems. Special
Issue on the Semantic Web, 16(2):46–53, March/April 2001.

23. A. Nareyek. Constraint-Based Agents, volume 2062 of Lecture Notes in Computer Science.
Springer, 2001.

24. R. Neches, W. R. Swartout, and J. D. Moore. Explainable (and maintainable) expert systems.
In IJCAI, pages 382–389, 1985.

25. S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint programming.
In FLAIRS’03, St. Augustine, Florida, USA, May 2003. AAAI press.

26. T. Payne, R. Singh, and K. Sycara. Calendar agents on the semantic web. IEEE Intelligent
Systems, 17(3):84–86, 2002.

27. D. Quan, D. Huynh, and D. R. Karger. Haystack: A platform for authoring end user semantic
web applications. In Second International Semantic Web Conference, October 2003.

28. T. Schiex and G. Verfaillie. Nogood Recording fot Static and Dynamic Constraint Satisfac-
tion Problems. International Journal of Artificial Intelligence Tools, 3(2):187–207, 1994.

29. W. Swartout, C. Paris, and J. Moore. Design for explainable expert systems. IEEE Expert,
6(3):58–647, 1991.

30. L. G. Terveen and L. T. Murray. Helping users program their personal agents. In CHI, pages
355–361, 1996.

31. R. Tuchinda and C. A. Knoblock. Agent wizard: building information agents by answering
questions. In Intelligent User Interfaces, pages 340–342, 2004.

32. D. Weld and O. Etzioni. The first law of robotics (a call to arms). In Proc. of AAAI, 1994.

