7

The Spring Web
MVC Framework

Release 1, Week 6, Iteration 3

Steve: R%j, isn't Iifeﬁ 2
iteration 2, Spring is here, the leaves are growing
back, and there is an eclipse later this week.

Raj: Sounds great, Steve. By the way, this
integrated development environment I'm reading
about sounds pretty cool. Also, it has hundreds of
open source and commercial plug-ins available for
it. Can't wait to check it out!

(¢} Visual Patterns, Inc.

128

Chapter 7 The Spring Web MVC Framework

IN THE PREVIOUS CHAPTER, I gave you an overview of the Spring Framework. We
looked at what Spring is, how it is packaged, and the various modules it contains. I also
mentioned that with Spring, you do not have to take an all-or-nothing approach when
trying to decide whether you should use Spring. In other words, based on your needs,
you can phase in the Spring Framework one module at a time (along with any depend-
encies). In this chapter, I will demonstrate how to use Spring Web MVC Framework
(module), to build Time Expression, our sample web application.

Note that from this point on, I will refer to the Spring Web MVC Framework as sim-
ply Spring MVC, in most places.

What’s Covered in This Chapter

In this chapter, we will
= Look at the various benefits of using Spring MVC
= Take an in-depth look at the Spring Web MVC Framework

= Build three of the screens in Time Expression using Spring MV C: a no-form con-
troller, two form controllers, and a Spring HTTP interceptor.

Note
The complete code for the examples used in this chapter can be found within this book’s code zip file (avail-
able on the book's website).

This is an exciting chapter, so I won’t waste any more time boring you with introduc-
tory material. Let’s spring into action!

Benefits of the Spring Web MVC Framework

The Spring Web MVC Framework is a robust, flexible, and well-designed framework for
rapidly developing web applications using the MVC design pattern. The benefits
achieved from using this Spring module are similar to those you get from the rest of the
Spring Framework. Let’s review a few of these. I will demonstrate some of these benefits
later in this chapter.

= Easier testing—This is a common theme you will find across all the Spring classes.
The fact that most of Spring’s classes are designed as JavaBeans enables you to
inject test data using the setter methods of these classes. Spring also provides mock
classes to simulate Java HTTP objects (HttpServletRequest, for example), which
makes unit testing of the web layer much simpler.

= Bind directly to business objects—Spring MVC does not require your business

(model) classes to extend any special classes; this enables you to reuse your business
objects by binding them directly to the HTML forms fields. In fact, your

Spring Web MVC Concepts

controller classes are the only ones that are required to extend Spring classes (or
implement a Spring controller interface).

= Clear separation of roles—Spring MVC nicely separates the roles played by the
various components that make up this web framework. For example, when we dis-
cuss concepts such as controllers, command objects, and validators, you will begin
to see how each component plays a distinct role.

= Adaptable controllers—If your application does not require an HTML form, you
can write a simpler version of a Spring controller that does need all the extra
components required for form controllers. In fact, Spring provides several types of
controllers, each serving a different purpose. For example, there are no-form con-
trollers, simple form controllers, wizardlike form controllers, views with no con-
trollers, and even prepackaged controllers that enable you to write views without
your own custom controller.

= Simple but powerful tag library—Spring’s tag library is small, straightforward, but
powerful. For example, Spring uses the JSP expression language (EL) for arguments
to the <spring:bind> tag.

= Web Flow—This module is a subproject and is not bundled with the Spring core
distribution. It is built on top of Spring MVC and adds the capability to easily
write wizardlike web applications that span across several HTTP requests (an
online shopping cart, for example).

= View technologies and web frameworks—Although we are using JSP as our view
technology, Spring supports other view technologies as well, such as Apache
Velocity (jakarta.apache.org/velocity/) and FreeMarker (freemarker.org). This is a
powerful concept because switching from JSP to Velocity is a matter of configura-
tion. Furthermore, Spring provides integration support for Apache Struts (struts.
apache.org), Apache Tapestry (jakarta.apache.org/tapestry), and OpenSymphony’s
WebWork (opensymphony.com/webwork/).

» Lighter-weight environment—As I mentioned in the previous chapter, Spring
enables you to build enterprise-ready applications using POJOs; the environment
setup can be simpler and less expensive because you could develop and deploy
your application using a lighter-weight servlet container.

Spring Web MVC Concepts

The world of Java has seen many MVC design pattern-based web frameworks crop up in
the past few years (several are listed at the very end of this chapter). MVC was originally
conceived at XEROX PARC around the 1978-79 time frame and was later imple-
mented in the Smalltalk-80 class library (also at XEROX PARC). It is a relatively simple
concept to grasp and provides for a clean separation of presentation and data, as I'll
explain briefly here.

129

130 Chapter 7 The Spring Web MVC Framework

First, let’s look at our architecture diagram established earlier in the book and shown
here in Figure 7.1.

Objects managed by Spring IoC Container

I
I I
Web B oo ey |
el onirolier Business
Browser i Spring abjects, i RDBMS
|| DispatcherServiet Hibernate ! (HSQLDB)
! beans !
| |
} _‘ s
I View (Spring) :
| JSE/HTML . Scheduler 1
| N |
| i
| |
L

Java Servlet Container (Apache Tomcat)

Figure 7.1 High-level architecture diagram for Time Expression.

As you can see, all incoming HTTP requests from a web browser are handled by
Controllers. A controller, as the name indicates, controls the view and model by facilitating
data exchange between them. The key benefit of this approach is that the model can
worry only about the data and has no knowledge of the view. The view, on the other
hand, has no knowledge of the model and business logic and simply renders the data
passed to it (as a web page, in our case). The MVC pattern also allows us to change the
view without having to change the model.

Let’s review some basic Spring MVC concepts. First, we will look at the concepts
related to Java coding, and then we will look at the configuration required to make all
this work.

Spring MVC Java Concepts

Figure 7.1 provided us a high-level view of the architecture for Time Expression. Now
let’s take a slightly more detailed and focused look at the Spring MVC components.
Figure 7.2 shows an end-to-end flow for a typical screen in Time Expression. This dia-
gram shows many of the concepts we will discuss next.

Controller

Spring provides many types of controllers. This can be both good and bad. The good
thing is that you have a variety of controllers to choose from, but that also happens to be
the bad part because it can be a bit confusing at first about which one to use.

The best way to decide which controller type to use probably is by knowing what
type of functionality you need. For example, do your screens contain a form? Do you
need wizardlike functionality? Do you just want to redirect to a JSP page and have no
controller at all? These are the types of questions you will need to ask yourself to help
you narrow down the choices.

Spring Web MVC Concepts 131

Dispatch viet = = et Mkl
@ e] EntertioursContoller.dass |
aig 7 troier, class | Modelandh Lantrolier
= H tirnee-serviet.xml {ew = entathours)
balep) ¥ * ViewResoher resohaes
= =) “entorhaurs” to WEB- S
[INFfjsp/ enterfiours, Foeward Mo
Web Browser i Contorts of rendooed (80 Mm’glq::{!z;hﬂm] Dﬁ:ﬁd toview, 5 JWEB-INFjsplenterhours s
Y enberhours jsp which |5 sent to "
= Renderd HTM View

Figure 7.2 End-to-end flow for Enter Hours screen using
Spring and Hibernate.

Figure 7.3 shows a class diagram of some of the more interesting controllers that are part
of Spring MVC. Table 7.1 provides brief descriptions on the interface and classes shown
in Figure 7.3. (Note: The descriptions provided in this table are taken directly out of

the Spring Framework Javadocs.) I tend to use SimpleFormController,
UrlFilenameViewController, and AbstractController most often. We will see exam-
ples of these later in this chapter.

<< interface>>
Gontroller
T

AbstractControlier

AbstractiriView Controlier | ‘Baset.‘ommandcantmﬁer | ‘ParameterizabIe\n‘ieanntroIIer

‘AbstractFormContm ifer | |Ab stract CommandController ‘

urlFilenameVieviController|

‘SimplanrmCuntruller| |AbstractMﬁzardFormcantroﬁer |

CancellableForm Contraller

Figure 7.3 Class diagram showing a partial list of Spring controllers.

Table 7.1 Description of Various Spring Controllers

Description (Taken Directly from the Spring

Controller Javadocs)
AbstractCommandController Abstract base class for custom command controllers.
AbstractController Convenient superclass for controller implementations,

using the Template Method design pattern.

132

Chapter 7 The Spring Web MVC Framework

Table 7.1 Continued

Description (Taken Directly from the Spring

Controller Javadocs)

AbstractFormController Form controller that autopopulates a form bean from the
request.

AbstractUrlViewController Abstract base class for Controllers that return a view
name based on the URL.

AbstractWizardFormController Form controller for typical wizard-style workflows.

BaseCommandController Controller implementation that creates an object (the

command object) on receipt of a request and attempts to
populate this object with request parameters.
CancellableFormController Extension of SimpleFormController that supports
“cancellation” of form processing.
Controller Base Controller interface, representing a component that

receives HttpServletR equest and HttpServletR esponse
like a HttpServlet but is able to participate in an MVC

workflow.
Parameterizable ViewController Trivial controller that always returns a named view.
SimpleFormController Concrete FormController implementation that provides

configurable form and success views, and an onSubmit
chain for convenient overriding.

UrlFilenameViewController Controller that transforms the virtual filename at the end
of a URL into a view name and returns that view.

Model and View

Many of the methods in the Controller related subclasses return a org.
springframework.web.servlet.ModelAndview object. This object holds the model (as
a java.util.Map object) and view name and makes it possible to return both in one
return value from a method. We will see examples of this later in this chapter when we
build two of the screens for Time Expression.

Command (Form Backing) Object

Spring uses the notion of a command object, which essentially is a JavaBean style class
that gets populated with the data from an HTML form’s fields. This same object is also
passed to our validators (discussed next) for data validation, and if the validations pass, it
is passed to the onsubmit method (in controller related classes) for processing of valid
data. Given that this command object is a simple JavaBean-style class, we can use our
business objects directly for data binding instead of writing special classes just for data
binding. I will demonstrate this benefit later in this chapter.

Spring Web MVC Concepts

Validator

A Spring validator is an optional class that can be invoked for validating form data for a
given command (form) controller. This validator class is a concrete class that implements
the org.springframework.validation.Validator interface. One of the two methods
required by this interface is the validate method, which is passed a command object, as
mentioned previously, and an Errors object, which can be used to return errors. I will
demonstrate an example of a Validator class later in this chapter. Another notable valida-
tion class is org.springframework.validation.ValidationUtils, which provides
convenient methods for rejecting empty fields.

Spring Tag Library (spring:bind)

The spring bind tag library is simple yet powerful. It is typically used in JSP files via the
<spring:bind> tag, which essentially binds HTML form fields to the command object.
Furthermore, it provides access to special variables within JSP, such as ${status.value},
${status.expression}, and ${status.errorMessages}, which we will look at later in
the chapter.

Spring MVC Configuration Concepts

In this section, we will review some core concepts related to configuring the Spring Web
MVC Framework.

DispatcherServlet

DispatcherServlet (part of the org.springframework.web.servlet package) is the
entry point to the world of Spring Web MVC, as depicted in Figure 7.2. It essentially
dispatches requests to the controllers. If you have worked with Java web applications
before, you will not be surprised to find out that this class is configured in the web.xml
file, as shown in the following excerpt from the complete web.xml for Time Expression:

<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>

We will discuss DispatcherServlet in detail later in this chapter.

Handler Mappings

You can map handlers for incoming HTTP requests in the Spring application context
file. These handlers are typically controllers that are mapped to partial or complete URLs
of incoming requests. The handler mappings can also contain optional interceptors,
which are invoked before and after the handler. This is a powerful concept. I will
demonstrate an example of this later in this chapter when we use such a web interceptor
for authentication and close our Hibernate session for the given HTTP request.

133

134 Chapter 7 The Spring Web MVC Framework

The following code excerpt taken from our complete timex-servlet.xml file shows
how a handler can be mapped to a partial URL:

<bean id="urlMap"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping" >
<property name="urlMap">
<props>
<prop key="/signin.htm">signInController</prop>
<prop key="/signout.htm">signOutController</prop>
</props>
</property>
</bean>

View Resolvers

Spring uses the notion of view resolvers, which resolve view names to the actual
views (enterhours to enterhours.jsp, for example). We will use Spring’s
InternalResourceViewResolver class to resolve our view names. (This is covered in
the next section.)

Spring Setup for Time Expression

Now that I have provided you some fundamental concepts for Spring MVC, let’s begin
setting it up for development of Time Expression screens.

We need a couple of components to get Spring up and running for us. Figure 7.1
showed the Time Expression high-level architecture we established early in this book. As
you can see, we need a servlet container that Spring can run within for our web applica-
tion. So let’s start with the installation of a Servlet container first, and then we will
download and install the Spring Framework.

Installing a Servlet Container (Apache Tomcat)

I have chosen to use Apache Tomcat (http://tomcat.apache.org/) as the Servlet container
for the Time Expression application. However, you can use any other product you want;
this can be a servlet-container-only product, such as Tomcat, or a full-blown application
server, such as JBoss Application Server, BEA WebLogic, or IBM Websphere.

Note

If you have been following along the examples in this book, you will recall the timex/local.properties
file used by our Ant build.xml file (both files are provided in this book's code zip file). Note the
deploy.dir property in the timex/local.properties file; this can be adjusted to point to your
servlet container's deployment directory. For example, in my case, the deploy.dir property is set up as
shown here:

deploy.dir=/apache-tomcat-5.5.15/webapps

http://tomcat.apache.org/

Spring Setup for Time Expression 135

Now we can run the ant deploy from a command line using our build.xml file.
By running this ant command, a fresh new timex.war web archive file will be built
and deployed to the specified directory (in deploy.dir).

Hot Deploying WAR Files and HTTP Mock Style Testing

In 2001, | wrote an article titled "How Many Times Do You Restart Your Server During Development?”
(http://www.javaworld.com/javaworld/jw-04-2001/jw-0406-soapbox.html). Although various servlet con-
tainers or application servers handle reloading of applications differently, restarting the server every time
you make a change to your application can become a waste of time. Much of this has to do with the way
Java's class loading works, but it still doesn't make it any less frustrating.

If your server doesn't (hot) redeploy your war files successfully, you could consider tweaking your style of
coding and testing. One good alternative (discussed in this chapter) is to use Spring's mock classes to simu-
late a HTTP request and use JUnit to unit test the code instead of relying completely on the web application
server for your testing.

Incidentally, | recently came across an option for Apache Tomcat that will enable to us to avoid restarts
when deploying our application. This can be activated by setting the following attributes in the
conf /context .xml file found under the Tomcat install directory, <Context antiJARLocking=

"true" antiResourceLocking="true">.

Documentation on these attributes can be found at http://tomcat.apache.org/tomcat-5.5-doc/config/
context.html#Standard%20Implementation.

Alternatively, we could use the Tomcat Ant deploy tasks; however, | wanted to keep our build.xml generic
for most web servers. Nevertheless, documentation on these tasks can be found at the tomcat.apache.org
website.

Installing the Spring Framework

By now, you should have a thorough understanding of what Spring can do for you.
Next, it 1s time to download Spring, install it, and begin using it!

The Spring Framework can be downloaded from http://springframework.org. We
will now follow the instructions provided on the website to download and install it.

The following are one-time setup steps we will need to follow to get Spring set up
for our environment. From here, you might add external jars for added Spring function-
ality as needed to the timex/1ib/ directory. (In Chapter 10, “Beyond the Basics,” we
will add OpenSymphony’s quartz.jar file to our directory.)

s Spring—Copy spring.jar to the timex/1ib/ directory of Time Expression,
based on the directory structure we established in Chapter 3,“XP and AMDD-
Based Architecture and Design Modeling,” and shown here in Figure 7.4.

= JSTL—We also need to obtain JavaServer Pages Standard Tag Library (JSTL),
which is part of the Jakarta taglibs project and can be downloaded from
http://jakarta.apache.org/taglibs/. After downloading this package, copy the

http://www.javaworld.com/javaworld/jw-04-2001/jw-0406-soapbox.html
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://springframework.org
http://jakarta.apache.org/taglibs/

136 Chapter 7 The Spring Web MVC Framework

jstl.jar and standard.jar files to the timex/1ib/ directory. JSTL helps elimi-
nate (or at least significantly reduces) the amount of embedded scriptlet code in
our JSP files. For example, JSTL provides tags for iterations/loops (<forEachs, for
example), conditional tags (<if>, for example), formatting tags (fmt : formatDate,
for example), and several other tags. You will see examples of many of these tags in
this chapter.

Exploded web archive

—— | Compiled classes

; build.xml
3 dist

Ant build script
External JAR files

_| local.properties

[Properties for build.xml |

v [src
> l‘ conf [Config files |
v [jaa [Java source code |
v [J com
L 4 l- visualpatterns
4 1_‘_; timex
> |_ controller
> O
> | . model
b 5 test
> [_. util
> Gver
v | Static web files |
Figure 7.4 Development directory structure for Time Expression.

Running Our SpringTest

Incidentally, the three files we discussed in the previous chapter can now be created in
the following paths, and we could run ant springtest (from our timex/ top-level
directory) to test that we can use Spring in our code. The complete code for these files
can be found in this book’ code zip file:

» src/conf/springtest-applicationcontext.xml
® src/java/com/visualpatterns/timex/test/SpringTest.java

» src/java/com/visualpatterns/timex/test/SpringTestMessage.java

Spring Setup for Time Expression

Configuring Spring MVC

Now that we have the servlet container and Spring software installed, we need to con-
figure Spring MVC so that we can begin developing and deploying the Time Expression
sample application.

Configure DispatcherServlet in web.xml

The very first thing we need to do is to have all incoming HTTP requests (that match a
certain pattern) forwarded to Spring MVC, by Tomcat.

The following excerpt from our web.xml file demonstrates how we can configure
all requests ending with an .htm extension to be processed by the Spring’s org.

springframework.web.servlet .DispatcherServlet class:

<servlet>
<servlet-name>timex</servliet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet

</servlet-class>
<load-on-startup>1l</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>timex</servliet-name>
<url-pattern>*.htm</url-patterns

</servlet-mapping>

Later on we will see how requests with a .jsp extension are handled by Spring’s

DispatcherServlet.

Note

Our Spring application context file, timex-servlet .xml, will automatically be searched for and loaded
by Spring for us.

This file is stored under timex/src/conf but automatically copied to the timex/build/timex/
WEB-INF/ directory by our Ant build.xml file when the build, dist, or deploy targets are used.

Create Spring’s Application Context XML File (timex-servlet.xml)

Now we need to create our application context XML file, timex-servlet.xml. We will
review various parts of this file throughout the remainder of this chapter. You will see
how this file quickly becomes an essential part of working with Spring MVC.

The following excerpt from timex-servlet.xml shows how we configure a Spring
view resolver to resolve logical view names to the physical view (JSP) file:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass">
<value>org.springframework.web.servlet.view.Jst1lView</value>

137

138 Chapter 7 The Spring Web MVC Framework

</property>

<property name="prefix"s
<value>/WEB-INF/jsp/</value>

</property>

<property name="suffix"s>
<value>.jsp</value>

</property>

</bean>

Note

By storing our JSP files in the build/timex/WEB-INF/jsp/ directory, we are essentially hiding these files
so they cannot be accessed directly from a web browser using their actual filenames (that is, only views
ending with . htm are mapped to these files). To access . jsp files directly, they must be placed a couple of
levels up, under build/timex/, the same location where our welcome file, index.jsp, will reside.

Hiding files is a security precautionary measure. Appendix D, “Securing Web Applications,” provides addi-

tional security guidelines.

Developing Time Expression User Interfaces
with Spring

Now that we have Tomcat and Spring installed and set up, we can go through the steps
required to develop our sample screens. Let’s look at two Time Expression screens we

will develop in this chapter—one a nonform screen and the other an HTML form
screen.

Timesheet List Screen

Figure 7.5 shows the Timesheet List screen, which is a nonform screen (that is, it con-
tains no input fields a user can fill in because it is a display-only screen). From the per-
spective of coding a controller, this is the most basic screen that you can develop using
Spring MVC; we will review the code behind this shortly.

Enter Hours Screen

Figure 7.6 shows the Enter Hours screen, a form screen (that is, it contains input fields a
user can fill in). This is a little more complicated than the Timesheet List screen because
we will have to bind the HTML form fields to our Java code, perform validations on the
data entered, display errors, and so on.

Developing Time Expression User Interfaces with Spring

Timesheet List

Click here to add a new timesheet, or select one from the list below.

Period Ending Hours | Timesheet Id
January 21, 2007 39.50 1234
January 14, 2007 43.00 1239
January 07, 2007 40.00 1242
December 31, 2006 | 40.00 1299

Figure 7.5 Time Expression’s Timesheet List web page
(view name: timesheetlist).

Enter Hours

Period Ending: January 21, 2007

Deparment Mo Tu We Th Fr Sa Su

Total

Information Technology [52 | [4.00 8.00 4.00 0.00 0.00 0.00 0.00

16.00

Figure 7.6 Time Expression’s Enter Hours web page (view name: enterhours).

Java Files

By now we have enough information to come up with filenames for our Java classes and

JSP (view) filenames. Table 7.2 shows a map of the view, controller, and collaborator
(model) classes required to complete the two screens shown in Figures 7.5 and 7.6.You

might recall that we designed this map in Chapter 3 (see Table 3.5).

Table 7.2 Sample Application Flow Map (from Chapter 3)

Controller
Story Tag View Class Collaborators
Timesheet timesheetlist ~ TimeSheetListController ~ TimesheetManager
List
Enter Hours enterhours EnterHoursController TimesheetManager

Tables
Impacted

Timesheet

Timesheet
Department

139

140

Chapter 7 The Spring Web MVC Framework

Note that the collaborator classes mentioned here were already developed in Chapter 5,
“Using Hibernate for Persistent Objects,” so we need to develop the view and controller
classes now.

Figure 7.7 shows a rudimentary class diagram on how the controller and model
related classes fit together.

Chagter 7 - TmeX € uve J

EntertioursContraller
#larmB): Otyject.
#indindan . Jbinder: indar):vaid
2t FI LS A S Jadan
Jrespor K Obyject,
+gatT ager(): o
sget Trveshaet Timesh

M anager tManager): void

[——y Timesheotman ager

timmsheetid:int +QatTimachests().List
-amrelayantd:ing + otTim eshoets{ employeald:int) iList
+patTimeshests{ statusCode: String) 1List
+ GOLT plo i ind akn)
+ gatTim eshestsUsingNamed Query] empl opeeld: int, periodEnd rgDabe: Date):List
+QatTi ing A Lige
+ sy oo isheet{ tmesheot: | void
+5aveTim eshests{ tim eshests:List) :ink
+ dalogaTimeshoat{tim neheetld:int) void
reated)):ink
+eove T L)t
+atTi il dak

[}

[IstController]

+ha 3. L iy
+gat J:Times
+ kT i

Figure 7.7 Class diagram showing relationship between Time Expression
model and controller classes.

If you have developed web applications in Java before, you might question the placement
of .jsp files under the same directory structure as my Java classes (that is, java/com/
visualpatterns/timex/); this is purely a personal preference because I like to see my
MVC files grouped together under the same parent directory.

Let’s look at how to develop the Timesheet List and Enter Hours screens, step-by-
step. We will later look at how to develop the Sign In screen because it is a special case
because of the authentication (sign in) required.

Cascading Style Sheet (CSS)

Other than the Java and JSP files we discussed, we are also using a cascading style sheet
(CSS) file named timex.css (placed in our src/web/includes directory). CSS provides
a consistent look-and-feel across our user interfaces; furthermore, it helps reduce the size
of our JSP/HTML code because we don’t have as much formatting code in our view
(JSP) files.

Timesheet List Screen: A No-Form Controller Example

Timesheet List Screen: A No-Form Controller
Example

Developing a no-form controller in Spring is a relatively straightforward process. Let’s
look at the steps involved to do this.

Step-by-Step Configuration

The following are Spring-related items we need to configure in timex-servlet.xml,
our Spring application context file.

Map Handler

The first thing we need to do is to map the incoming request URL to an actual con-
troller, which will handle the request. The following excerpt from the timex-servlet.
xml file shows how we can map the timesheetlist.htm URL to an internal bean ref-
erence named timesheetListController (discussed next) with the help of Spring’s
SimpleUrlHandlerMapping class:

<bean id="urlMapAuthenticate"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="interceptors">
<list>
<ref bean="httpRequestInterceptor" />
</list>
</property>
<property name="urlMap">
<props>
<prop key="/timesheetlist.htm">
timesheetListController
</prop>

Also, notice the interceptors property; by configuring this, we can intercept HTTP
requests, for example, to implement authentication (interceptors are discussed in detail
later in this chapter).

Define Controller and Associated Class

The next step is to define the controller class referenced by the map handler. The follow-
ing excerpt from the timex-servlet.xml file demonstrates how this is done:

<bean name="timesheetListController"
class="com.visualpatterns.timex.controller.TimesheetListController">
<property name="timesheetManager">
<ref bean="timesheetManager" />
</propertys>
<property name="applicationSecurityManager">
<ref bean="applicationSecurityManager" />
</propertys>

141

142

Chapter 7 The Spring Web MVC Framework

<property name="successView">
<value>timesheetlist</value>
</property>
</bean>

Notice the ref attributes. As you might guess, these are references to other beans
defined in our application context, as shown in this XML excerpt:

<bean id="timesheetManager"
class="com.visualpatterns.timex.model.TimesheetManager"/>

<bean id="applicationSecurityManager"
class="com.visualpatterns.timex.util.ApplicationSecurityManager" />

We already developed the TimesheetManager class in Chapter 5; we will develop the
ApplicationSecurityManager class later in this chapter.

This is all we need to configure for the Timesheet List screen. Now we need to write
the controller and view code, referenced here. Let’s look at that next.

Step-by-Step Coding

The Timesheet List screen is a relatively simple screen and will be developed using the
most basic type of Spring controller because it contains no form fields; therefore, it will
not require things such as Command and Validator classes. Basically, if we look at this
from an MVC design pattern perspective, the files for this screen will include the
following:

= Model—TimesheetManager.java and Timesheet.java
= View—timesheetlist.jsp

= Controller—TimesheetController.java

We already developed the model files in the previous chapter, so all we need to develop
here are the controller and view files. Let’s dissect and review parts of our complete
code.

Let’s begin by writing the unit test code for our controller class.

Writing Our Test First with Mock Objects

The next few code excerpts from our TimesheetListControllerTest.java file show
how we can unit test controller classes. We will create this in the timex/src/java/com/
visualpatterns/timex/controller dhfctory

We start by creating an instance of the org.springframework.mock.web.
MockHttpServletRequest class to simulate a real HTTP request. This class not only pro-
vides the benefit of being able to unit test our code but also reduces the need to deploy
the application and potentially restart the servlet container (Tomcat, for example) each
time we want to test something.

mockHttpServletRequest = new MockHttpServletRequest ("GET",
"/timesheetlist.htm");

Timesheet List Screen: A No-Form Controller Example

Next, we will create some test dependency objects and inject them, as Spring will do
for us at runtime:
Employee employee = new Employee() ;
employee.setEmployeeId (EMPLOYEE_ID) ;
applicationSecurityManager.setEmployee (mockHttpServletRequest,
employee) ;

// inject objects that Spring normally would
timesheetListController = new TimesheetListController () ;
timesheetListController.setTimesheetManager (timesheetManager) ;
timesheetListController

.setApplicationSecurityManager (applicationSecurityManager) ;

In our test code, we instantiated our own TimesheetManager class for the sake of
simplicity. However in real-world applications, you might want to use Spring’s
FileSystemXmlApplicationContext or ClassPathXmlApplicationContext classes to
instantiate your classes. This way, you not only get an instance of a class but also have its
dependent objects loaded and injected by Spring.

Now we can complete our test by checking the java.util.List we just retrieved;
our test ensures that list is not empty and also that it contains Timesheet objects for the
employee we requested the records for:

ModelAndView modelAndView = timesheetListController.handleRequest (
mockHttpServletRequest, null);

assertNotNull (modelAndView) ;
assertNotNull (modelAndView.getModel ()) ;

List timesheets = (List) modelAndView.getModel () .get (
TimesheetListController .MAP_KEY) ;
assertNotNull (timesheets) ;

Timesheet timesheet;
for (int i = 0; 1 < timesheets.size(); i++)

{
timesheet = (Timesheet) timesheets.get(i);
assertEquals (EMPLOYEE ID, timesheet.getEmployeeId());
System.out.println(timesheet.getTimesheetId() + " passed!");
1

That’s about it for our unit test class; now let’s review the actual
TimesheetListController class.

143

144

Chapter 7 The Spring Web MVC Framework

Writing Unit Test and Actual Code in the Same Sitting

This book’s code zip file shows the complete code for our TimesheetListControllerTest.java class,
which is the JUnit test case for TimesheetController.java. As I've preached previously in this book,
development of a unit test and the actual code works best when it is done in the same sitting. For example,
| wrote the TimesheetListControllerTest.java and TimesheetListController.java in the
same sitting; that is, | coded a little, compiled and tested a little, and then repeated these steps until my
controller class provided all the functionality | needed. The obvious benefit of this approach was that my
code was unit tested by the time | was done!

Furthermore, our controller class will now contain only the code we need—nothing more, nothing less.

Another notable benefit worth mentioning is that at times | find myself getting programmer's block (similar
to writer's block). But starting out with the unit test code helps me get going. Note that what | have men-
tioned here is a personal style of working, but hopefully you will find value in it and give the test-first
approach a try (if you don't already do so).

One thing | do want to stress is that like everything else, you need to find the right balance. Although |
believe in the test-first approach, there are times when it isn't feasible for me to write a unit test code that
becomes more complicated than the actual code or is cumbersome to write. After all, you are writing Java
code to test other Java code, which raises an obvious question—do we also test the test code? Of course, I'm

kidding here, but my point is to find the right balance and in most cases, unit tests work out pretty well.

Last, unit testing works best if you write small methods that can be unit tested relatively easily.

Controller Code

Now it is time to review the code behind our controller class for the Timesheet List
screen, TimesheetListController.java. We will create this in the timex/src/java/
com/visualpatterns/timex/controller directory.

For starters, notice that we are implementing the org. springframework.web.

servlet.mvc.Controller interface; this is perhaps the most basic type of controller you

can develop using Spring.
public class TimesheetListController implements Controller

The next interesting thing to note is the handleRequest method,; this is the only
method we must implement to satisfy the requirements of the Controller interface.

public ModelAndView handleRequest (HttpServletRequest request,
HttpServletResponse response)

The handleRequest method returns a Modelandview object, which contains the
view name and the model data (a java.util.List, in our case). The view name is
resolved by gst1view, which we defined in the timex-servlet.xml file we saw earlier
in this chapter.

return new ModelAndView (VIEW NAME,
MAP_KEY,
timesheetManager.getTimesheets (employeeId)) ;

Timesheet List Screen: A No-Form Controller Example

There are a few more variations to how you can construct the ModelAndview class, as
shown in the following list (see the Spring Framework API Javadocs for details):

= ModelAndView ()

® ModelAndView (String viewName)

® ModelAndView (String viewName, Map model)

® ModelAndView (String viewName, String modelName, Object modelObject)
= ModelAndView (View view)

® ModelAndView (View view, Map model)

® ModelAndView (View view, String modelName, Object modelObject)

View/JSP Code

We already prototyped the screens in Chapter 2,“The Sample Application: An Online
Timesheet System,” so we now need to add some code to the related view (.jsp) files.
This book’s code zip file contains the before file, timesheetlist.html (prototyped,
static HTML), and the after file, timesheetlist.jsp (dynamic/JSP), versions of this file.

Let’s review our timesheetlist.jsp a bit closer. For starters, we will create this in
the timex/src/java/com/visualpatterns/timex/view dhﬁctory.PJ0“7kﬁ%look:n
some JSP code.

The following excerpt from our timesheetlist.jsp file shows the dynamic code
used for populating the HTML table on the Timesheet List screen; this is done in a loop
using JSTLs forEach tag. Within each loop, we are generating the HTML table’s rows
and columns (and also formatting the hours) using the JSTL core library.

<c:forEach items="${timesheets}" var="timesheet">
<tr>
<td align="center"><a
href='enterhours.htm?eid=<c:out
value="${timesheet.employeelId}"/>&tid=<c:out
value="${timesheet.timesheetId}"/>’><fmt:formatDate

value="${timesheet.periodEndingDate}" type="date"

Now let’s look at another interesting piece of code from our view file,
timesheetlist.jsp:

<c:if test="${not empty message}">
<font color="green"s<c:out value="${message}"/>

<c:set var="message" value="" scope="session"/>

</c:if>

All this code does is check for any messages stored in the message session attribute.
This message is set by the Enter Hours controller upon a successful save in the onsubmit
method, as you will see later in the chapter.

145

146

Chapter 7 The Spring Web MVC Framework

We just looked at how to configure and code the Timesheet List screen. Now it is
time to review more complex Spring MVC features.

Enter Hours Screen: A Form Controller
Example

The Timesheet List screen example we just looked at demonstrated how to develop a
simple no-form controller. Now let’s look at a slightly more complex example using the
Enter Hours screen shown in Figure 7.6.

As you can see from Figure 7.6, the Enter Hours screen enables users to enter their
hours and select the department these hours should be charged to (using a drop-down
list). This functionality will require us to get a list of department names, bind the HTML
form fields to a Java object, validate data entered on the screen, and display error/status
messages on the screen.

Step-by-Step Configuration

The following are steps required to configure the Enter Hours screen in our timex-
servlet.xml file. For the sake of brevity, I will not provide detailed explanations for the
same steps we covered previously for the Timesheet List screen.

Map Handler

The following line provides the mapping for the Enter Hours view to the controller
class:

<prop key="/enterhours.htm">enterHoursController</prop>

Define Controller and Associated Classes

The configuration for the Enter Hours controller is a bit more involved than the
Timesheet List controller, so let’s take a closer look at it.

First, you will notice that we have two model classes and one security-related (utility)
class; these are required for the Enter Hours screen to function, which are configured as
follows:

<property name="timesheetManager">
<ref bean="timesheetManager" />
</property>
<property name="departmentManager">
<ref bean="departmentManager" />
</property>
<property name="applicationSecurityManager">
<ref bean="applicationSecurityManager" />
</property>

Enter Hours Screen: A Form Controller Example

The following lines configure the command class for the EnterHoursController:

<property name="commandClass">
<value>com.visualpatterns.timex.model.Timesheet</value>
</propertys>

The remainder of the configuration for this controller is Spring specific. For example,
you will notice the validator property, which is an optional configuration but one we
will use to validate the input data from the screen. The formview is the name of the
actual form view and successview is the view you want Spring to redirect to upon a
successful form submittal. The sessionForm property allows us to keep the same
instance of the command object in the session versus creating a new one each time.

<property name="formView"s>
<valuesenterhours</values>

</propertys>

<property name="successView">
<value>redirect:timesheetlist.htm</value>

</propertys>

<property name="validator"s>
<ref bean="enterHoursValidator" />

</propertys>

ResourceBundle

One other configuration item we should look at is related to externalizing string mes-
sages for internationalization and other purposes, as shown here:

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource" >
<property name="basenames">
<list>
<values>messages</value>
</list>
</propertys>
</bean>

The ResourceBundleMessageSource Spring class relies on JDK’s
java.util.ResourceBundle class; we will use this to externalize our error and status
messages in a file called messages.properties (placed in our timex/src/conf direc-
tory), which contains the following messages:
typeMismatch.int=Invalid number specified in a numeric field
error.enterhours.missingdepartment=Please select a department
error.login.invalid=Invalid employee id or password
message.enterhours.savesuccess=Timesheet saved successfully

147

148

Chapter 7 The Spring Web MVC Framework

Alternatively, Spring also provides a class named
ReloadableResourceBundleMessageSource,“&ﬂch(Hn,betmedto Hﬂoadthe[noperﬁes
periodically using its cacheSeconds parameter setting. This can come in handy during
development, when the messages file can change often.

Step-by-Step Coding

The following is Spring-related Java code we need to write for our form controller. By
the end of this Enter Hours example, we will end up with the following files (under our
timex/src directory):

= conf/messages.properties

® java/com/visualpatterns/timex/controller/EnterHoursController.java
® java/com/visualpatterns/timex/controller/EnterHoursValidator.java

® java/com/visualpatterns/timex/controller/MinutesPropertyEditor.java

® java/com/visualpatterns/timex/view/enterhours.jsp

Controller Code

Let’s start by developing the controller. For starters, notice that instead of implementing
the org.springframework.web.servlet.mvc.Controller‘ﬁmeﬂﬁce:m we did for the
TimesheetListController, we are extending Spring’s org.springframework.
web.servlet.mvc.SimpleFormController (concrete) class.

public class EnterHoursController extends SimpleFormController

SimpleFormController implements the Controller interface but also is part of a
hierarchy of various abstract controller-related classes (as we saw in Figure 7.3). It can
also automatically redirect the user to the default form view in case of errors and to a
different (or same) view if the form submission is successful; this is controlled using the
successView and formView properties we set in our timex-servlet.xml for the
enterHoursController Spring bean, as we saw earlier.

Let’s take a look at the various Spring-related methods for form processing. However,
before looking at each method, let’s look at the order in which these methods are called.

Figure 7.8 shows three boxes: the first box is essentially when the user first enters the
screen; the second box is when the user submits the form with invalid fields (that is, vali-
dation fails), and the third/last box shows which methods are called when the validation
is successful. Now let’s review the type of code that goes into each of these methods.

The first method I will discuss is the formBackingObject, which returns a command
object that is used to hold the input data from the HTML form fields. Notice that we
fetch an existing Timesheet record from the database if parameters are passed into the
controller, indicating it is an edit operation versus an add operation, in which case, we
construct a new command object (which, incidentally, is a Time Expression domain/
business object).

Enter Hours Screen: A Form Controller Example

protected Object formBackingObject (HttpServletRequest request)
{
if (request.getParameter (TID) != null
&& request.getParameter (TID).trim().length() > 0)
return timesheetManager.getTimesheet (Integer.parselnt (request
.getParameter (TID)), false);

Timesheet timesheet = new Timesheet () ;

Employee employee = (Employee) applicationSecurityManager
.getEmployee (request) ;

timesheet.setEmployeeId (employee.getEmployeeId()) ;

timesheet.setStatusCode ("P") ;

timesheet.setPeriodEndingDate (DateUtil.getCurrentPeriodEndingDate()) ;

return timesheet;

}
1. Initial Form 2. Invalid Form
Display Submission
(GET) (POST)
+ formBackingObject + initBinder
+ initBinder = onBind
+ showForm + onBindAndValidate

+ processFormSubmission
+ showForm
+ referenceData

+ referenceData

Figure 7.8 Life cycle of EnterHoursController.

Binding Directly to Domain (Business) Objects
One vital benefit of Spring MVC is the capability to bind the form fields directly to a domain object
(Timesheet, for example)! This is one of the things that separates Spring from many other web frameworks.

Next up is the initBinder method, which provides a good place to register custom
property editors (discussed shortly), as shown here:

binder.registerCustomEditor (int.class, new MinutesPropertyEditor()) ;
The referencebata method is a good place to return read-only data for forms, typi-

cally for drop-down lists on the screen, as we have done by returning a list of depart-
ments for the Enter Hours screen:

model .put ("departments”, departmentManager.getDepartments());
Last, but not least, let’s look at one of the most important methods in our controller

class, the onsubmit method, shown next. As we saw in Figure 7.8, this method is called
only after all validations have passed through successtully:

149

150

Chapter 7 The Spring Web MVC Framework

protected ModelAndView onSubmit (
HttpServletRequest request,
HttpServletResponse response,
Object command,
BindException errors)

Timesheet timesheet = (Timesheet) command;
timesheetManager.saveTimesheet (timesheet) ;
request.getSession() .setAttribute (
"message",
getMessageSourceAccessor () .getMessage (
"message.enterhours.savesuccess")) ;
return new ModelAndView (getSuccessView()) ;

Also, notice the following code in the onSubmit method, which returns a successful
message via the HTTP session. This message is extracted from the messages.
properties file (using the message.enterhours.savesuccess key) and displayed on
the Timesheet List screen.

This is about all we will cover for the controller class. Now, let’s look at the other
related classes used by this controller.

Custom Property Editor

As I mentioned earlier in this chapter, Spring makes heavy use of JavaBean style property
editors (that is, java.beans.PropertyEditorSupport).

We will write a custom property editor class, MinutesPropertyEditor, to convert the
hours entered on the screen to minutes because that is how our database is designed. The
code for this class should be fairly straightforward because it performs the conversion
from minutes to hours and vice versa (that is, multiplying or dividing by 60 minutes).

Validation

Our validation example is very also fairly straightforward. The main code really is in the
validate method of this class, as shown in the following code excerpt:

Timesheet timesheet = (Timesheet)command;

if (timesheet.getDepartmentCode () == null ||
timesheet.getDepartmentCode () .trim() .length() < 1)
errors.reject ("error.enterhours.missingdepartment"”) ;

The error variable shown here is of type org.springframework.validation.
Errors, which provides several reject methods. The example I have shown here is use-
ful for displaying global messages for the entire screen; I tend to use this method rather
than the field-specific ones. For example, one of the field-specific reject methods has
the following signature: rejectvalue (String field, String errorCode).

Enter Hours Screen: A Form Controller Example

Also, you might have noticed an onBindAndvalidate method in Figure 7.8.This
method has the following signature:

onBindAndValidate (HttpServletRequest request,
Object command,
BindException errors)

This method is called by Spring automatically after the validator object has been
invoked. This is a great place to do additional validations—for example, validations based
on parameters sent in via HTTP request or database validations using one of the injected
model classes, perhaps to check for duplicate records in the database.

View/JSP Code

Now that we are done looking at Java classes for the Enter Hours screen, we can look at
the corresponding view code, located in our enterhours.jsp file. We will inspect a few
excerpts here.

The first interesting block of code in our view is the displaying of error messages set
in our EnterHoursValidator class, as shown here:
<spring:bind path="command.*">

<c:if test="${not empty status.errorMessages}">
<c:forEach var="error" items="${status.errorMessages}">

<c:out value="${error}
escapeXml="false"/>

</c:forEach>
</c:if>
</spring:bind>

This is the first time we are seeing the spring:bind tag, so let me explain a few
things about it.

The key class behind the spring bind tag library is org. springframework.web.
servlet.support.BindStatus. This tag enables you to bind the HTML form fields to
the command object (Timesheet, in our case). However, it also provides access to a spe-
cial variable named stafus. The status object contains some of the following attributes,
which can be used in the JSP code:

= status.value—The value of a given attribute in the command object

= status.expression—The name of a given attribute in the command object
= status.erro—A Boolean flag indicating whether an error exists

= status.errorMessage—A field-specific error message

= status.errorMessages—Global error messages for the view

= status.displayValue—Get a string value suitable for display using tostring

151

152

Chapter 7 The Spring Web MVC Framework

Now let’s look at how fields are bound. The following code shows how the
departmentCode JSP/HTML variable is bound to the matching variable in our
Command object (that is, Timesheet . departmentCode).

<spring:bind path="command.departmentCode" >

That is really all there is to enterhours.jsp; some of the code I have not explained
here is because we already covered similar code for the Timesheet List screen example
earlier in this chapter (such as looping through code using the JSTL forEach tag).

I wish I could tell you there is more to Spring’s bind tag library, but as I mentioned
earlier, this library is fairly simple; but what you can do with it is quite powerful.

Binding to Custom (Nonbusiness) Command Objects

One of the key benefits of Spring MVC is that it enables you to bind HTML form
fields directly to your domain object. Spring refers to these objects as command objects,
perhaps based on the “Command” design pattern, which basically involves encapsulation
of a request in an object. Another way to view the concept of a command object is to
view it as our form object because it can hold all the values entered on the HTML form.
However, because we can bind our HTML form fields directly to our business objects or
have other data stored in this object, the term command is more appropriate.

For the Time Expression screens, we bind directly to Timesheet, our domain object.
However, you always have the option to create a custom Command class, which could,
for example, extend or contain the Timesheet class and provide some additional meth-
ods. For instance, I worked on a project where I need to assemble and disassemble a
java.util.Date object because the HTML form had separate drop-downs for month,
date, and year. In that case, I used methods such as assembleDate and disassembleDate
in a custom command class.

There are a couple of ways you can approach a custom command class. For example,
we could have done something like the following:

public class TimesheetCommand extends Timesheet

By doing this, you can still bind directly to the setter/getter methods of our business
object, but also extend it by adding additional methods, as needed. Also, to construct a
custom command class, you would need to specify it in the timex-servlet.xml file and
also construct/return an object of this type in the formBackingObject method.

The other approach is to have the TimesheetCommand class contain a reference to the
Timesheet object. For example, this class could have a constructor as follows:

public TimesheetCommand (Timesheet timesheet) {...}
Using this approach, you would bind the HTML form fields to the Timesheet object
using a notation similar to this:

command. timesheet .minutesMon

Views with No Controllers

The one problem you run into with this approach is related to JavaScript validation
checking because JavaScript gets confused with the dots in HTML field names. For
exanqﬂe,command.timesheet.minutesMon.“Knﬂd translate into timesheet .minutesMon
for the HTML input text field name if we used ${status.expression} to fill in the
name of this input field.

DateUtil.java

The one other notable file is DateUtil.java; this file provides some utility type date
methods. For example, our EnterHoursController class uses one of these methods in its
formBackingObject method:

timesheet.setPeriodEndingDate (DateUtil.getCurrentPeriodEndingDate()) ;

JSP Taglib Directives

The one thing I haven’t pointed out explicitly until now are the following lines of code
you might have noticed in our JSP files:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<%@ taglib prefix="spring" uri="http://www.springframework.org/tags" %>

These directives are required before using a JSP tag library. More information on this
and other JSP features can be found on the java.sun.com website.

Views with No Controllers

There might be times when you do not need or want to write a controller. For exam-
ple, suppose we want to implement a help screen for Time Expression. We want this help
screen to be accessible as /help.htm and have the real file (help.jsp) hidden in /WEB-
INF/jsp. In this case, we would first define UrlFilenameViewController in timex-
servlet.xml, as shown next:

<bean id="urlFilenameController"
class="org.springframework.web.servlet.mvc.UrlFilenameViewController"/>

Then we can reference urlFilenameController in our handler mapping (the
urlMap bean in timex-servlet.xml, for example):

<prop key="/help.htm">urlFilenameController</prop>

153

154

Chapter 7 The Spring Web MVC Framework

Spring HandlerInterceptors

Until now, we developed our Timesheet List and Enter Hours screens without worrying
about authentication. However, one of our fundamental requirements from Chapter 2 is
that employees can see only their own timesheets, which brings us to our Sign In and
Sign Out features.

Spring provides the concept of interceptors for web application development; these
enable you to intercept HTTP requests. We will use this feature to provide authentica-
tion for Time Expression.

To implement our sign in/out features, we will need to create the following files
under the src/java/com/visualpatterns/timex dhectory:

» controller/HttpRequestInterceptor.java
m controller/SignInController.java

® controller/SignInValidator.java

m controller/SignOutController.java

= util/ApplicationSecurityManager.java

m util/DateUtil.java

® view/signin.jsp

Authentication for Time Expression

The authentication for Time Expression is enabled by having all HTTP requests requir-
ing authentication to be mapped as they go through our interceptor class,
HttpRequestInterceptor.java. The following code excerpt demonstrates how an
intercepted request can be preprocessed:

public class HttpRequestInterceptor extends HandlerInterceptorAdapter

{

private ApplicationSecurityManager applicationSecurityManager;

public boolean preHandle (HttpServletRequest request,
HttpServletResponse response,
Object handler)
throws Exception

Employee employee =

(Employee) applicationSecurityManager.getEmployee (request) ;
if (employee == null)
{

response.sendRedirect (this.signInPage) ;

return false;

return true;

Our Sample Application—in Action! 155

Notice the use of ApplicationSecurityManager here (and referenced several times
earlier in this chapter). The complete code for this class should be fairly straightforward
to follow because it essentially provides methods for seting, getting, and removing a
HTTP session attribute named user (of type Employee, one of our domain objects), as
demonstrated in the following code excerpt, which sets this attribute:

public static final String USER = "user";
public void setEmployee (HttpServletRequest request, Object employee)

{

request.getSession(true) .setAttribute (USER, employee);

e SignInController class validates the login and also sets the Employee domain
The si c ller cl lidates the log d al ts th 1 d
object using the ApplicationSecurityManager.setEmployee method, as shown next:

Employee formEmployee = (Employee) command;
Employee dbEmployee = (Employee) command;
if ((dbEmployee = employeeManager.getEmployee (formEmployee
.getEmployeeId())) == null)
errors.reject ("error.login.invalid") ;
else
applicationSecurityManager.setEmployee (request, dbEmployee) ;

Our signoutController class signs the user out by removing the Employee attribute
from the session, as shown here:

applicationSecurityManager.removeEmployee (request) ;

Note
Our application uses a minimal index.jsp file, which will serve as our welcome file; this is placed under our
src/web directory and forwards the request to the our signin.htm URL, as shown here:

<c:redirect url="signin.htm"/>

Our Sample Application—in Action!

Now that we have our web user-interface components (controller and view) and our
model code developed, we have a completely functional application that can be built,
deployed, and test driven!

For example, we can now type ant deploy on the command line and have it (hot)
deploy to our Tomcat webapps directory. After deployment, the application can be
accessed from a web browser using a URL such as http://localhost:8080/timex/.
Figures 7.9 through 7.11 show our screens in action.

http://localhost:8080/timex/

156 Chapter 7 The Spring Web MVC Framework

SPILESSI0N gniln - Mo

ne
Fle Edit View Go Bookmarks Tools Help

EEX

a-5-820 R | = (©) | & | http:focanost:8080/tmex/sanin.htm

B © oo

Sign In

Please provide your authentication infoarmation below.

Employee Id: Password: El

Figure 7.9 Sign In screen.

LPIE 21 MIESTIEE] =

a2 IEERIE =52

- O[]

ne
Fle Edt View Go Bookmarks Tools Help

a@--2£ 064 ‘ S &) ‘ & [nitp:/flocahost:8080/ tmex/timesheetist.htm @ o

Timesheet List

Click here to add a new timesheet, aor select ane from the list below.

Period Ending | Hours Status Timesheet Id
08/19/2006 3B8.00 | Information Technology 1

Sign out

Figure 7.10 Timesheet List screen.

Our Sample Application—in Action!

: @ Jome Expression = Enter Hours = Mozilla Firefox: ‘_.J‘L__jm

\ Fle Edit View Go Bookmarks Tools Help

1 ‘,ZI . g~ L’[‘E'j ‘ 1;7.} % @U '_1) Q [http://localhost:8080/tmex/enterhours.htm?tid=1 [© Go
Enter Hours Sian out

|
|
|
| Period Ending: August 19, 2006
|
|
|

Deparment Mo Tu We Th Fr Sa Su Total
Information Technology [| 8.00 8.00 6.00 8.00 8.00 00 00 38.00
‘

Figure 7.11 Enter Hours screen.

Personal Opinion: Designing and Coding with Interfaces
The Spring reference documentation and many articles on the web recommend designing and coding
with interfaces. Spring supports both interface-based and class-based beans.

You might have noticed in Time Expression’s class design that | have not used Java interfaces. This is
related to my philosophy on when and where to use interfaces.

Let me start out by saying that | like programming with Java interfaces a lot! However, similar to the
way many people jumped on the EJB bandwagon a few years ago, | see people jumping on the interface
bandwagon recently. So, allow me to share my thoughts on this matter; you may agree or disagree with
them. | would like to begin by telling you a little story on the topic of designing and coding with
interfaces.

| have been using interfaces since 1996 and love the concept behind them. In 1997, | developed a 100%
pure Java-based backup software named BackOnline (http://visualpatterns.com/backonline/). This prod-
uct was mentioned in several well-known trade journals and won a Best Client award at JavaOne; it was
even nominated by Scott McNealy (CEO, Sun Microsystems) for a Computerworld-Smithsonian award.
BackOnline is a client-server product; the server is a multithreaded and multiuser server that essentially
receives the files and stores them using an implementation class for an interface named DataStore. The
DataStore interface has FTP-like methods, such as get, put, open, close, and so on; these, had to be
implemented by concrete classes. The BackOnline software (which is no longer being sold) came
prepackaged with two default DataStore implementation classes, DataStoreFileSystem and
DataStoreJDBC (the fully qualified implementation class names were specified in a configuration file and
dynamically loaded at runtime). DataStoreFileSystem essentially used the java.io package to store the
files using the local file system. DataStoreJDBC used JDBC to store the file contents as Binary Large
Objects (BLOBs) in a relational database.

157

http://visualpatterns.com/backonline/

158

Chapter 7 The Spring Web MVC Framework

| provided Javadoc and additional technical documentation for the DataStore interface, so Internet
Service Providers (ISPs) and products vendors who signed an OEM (original equipment manufacturer)
with my company could write their own custom implementations, if necessary. For example, an ISP
might have wanted to take advantage of the native operating system's features, such as extended file

permissions.

For the BackOnline example | just went through, using interfaces was an obvious choice. Also, many
times | find that interfaces work well for lower-level APIs, such as the one | described for BackOnline or
ones you find in frameworks such as the JDK or the Spring Framework (for example, java.util.
Collections OF java.sql.Connection). Furthermore, interfaces are great, if you think the under-
lying implementation can change (such as logging, authentication service, and OS specific functionality).
Of course, with remote technologies (EJB, for example), you have no choice but to use interfaces.

For business applications, more times than not, especially on smaller projects, | have found that you
need only one implementation of domain (business) objects or service objects (such as the
TimesheetManager class for Time Expression). Furthermore, it doesn't make sense to have interfaces for
domain objects (such as Timesheet.java, for example).

Creating one interface file for each implementation class amounts to unnecessary overhead, in my opin-
ion. For large projects, this can amount to lots of extra .java (and .class) files without potentially
adding much value. On the flip side, there are times when using interfaces makes sense. For example, in
Chapter 2, we discussed multiple user types (roles) for the Time Expression application, such as
Employee, Manager, and Executive. These could easily be created as concrete classes that implement an
interface named Person or Role. On the other hand, given the common behavior in these objects, an
abstract class would also make a lot of sense because the common methods could be pulled up into a
super (parent) class (called Person, for example).

In summary, given the right opportunity, you should use interfaces—but do not use them because it has
been preached in some book or article as the right thing to do. Furthermore, you should not feel at fault
for not using interfaces for each and every concrete class you write. Focus more on having a sound
design for your application—for example, clean separation of layers, good database design, easy-to-
follow code, appropriate use of architecture/design patterns, and so on. | hope | do not sound dismissive
about interfaces because that is certainly not my intention; my point is to use everything in moderation
and appropriately.

New Tag Libraries in Spring Framework 2.0

At the time of this writing, the Spring team was getting close to releasing additional tag
libraries to make it simpler to work with Spring with JSP. However, the design of these
new tag libraries was still evolving, so I was unable to cover this with accuracy.

A Word About Spring Web Flow and Portlet API

Two additional user-interface Spring technologies might be of interest to you, if you
have the need for features they provide.

Summary

Spring Web Flow

Spring Web Flow, based on similar concepts as Spring Web MVC Framework, essentially
provides wizardlike screen functionality to implement a business process. Good examples
of such applications include an online shopping site such as amazon.com, which requires
you to go through several screens before the transaction is considered complete. This
type of functionality requires session/state management, which provides the capability to
go back and forth through the screens without losing the information you have already
entered. This is precisely the type of functionality Web Flow eases. However, our applica-
tion, Time Expression, does not require such a feature and would not be a good example
for the Spring’s Web Flow.

Even though Web Flow is not covered in this book, given the scope of this book, I
highly recommend that you give this technology a serious look if your requirements call
for this type of functionality.

Spring Portlet API

The Spring Portlet API is a new addition to Spring 2.0. It essentially implements the
JSR-168 Portlet Specification defined on the Java Community Process (JCP) website
(http://www.jcp.org/en/jsr/detail?id=168). According to this, the Portlet API can be
used for “Portal computing addressing the areas of aggregation, personalization, presenta-
tion and security”” Another way to look at this is that portlets are part of a portal website,
which might contain several portlets. Portlets are different from servlets in that they do
not redirect or forward any requests from or to the browser; instead, they are managed
by a portlet container.

If you are interested in this API, you should check out the JCP website. Also, you
might want to check out Apache’s Pluto, a reference implementation for the Portlet API.

Summary
In this chapter, we
= Looked at the various benefits of using Spring MVC
= Took an in-depth look at the Spring Web MVC Framework

= Built three of the screens in Time Expression using Spring MVC: one as a no-
form screen, the others as form screens

We covered a lot material in this chapter, but we aren’t done with Spring just yet. In the
next few chapters, we will touch on various additional facets of the Spring Framework,
including

= The Spring IDE plug-in for Eclipse
= Job Scheduling

= Emailing

159

http://www.jcp.org/en/jsr/detail?id=168

160 Chapter 7 The Spring Web MVC Framework

Meanwhile, if you want to dig into more Spring, take a look at Spring’s JPetstore exam-
ple and Reference Documentation, both part of the Spring distribution software.

In the next chapter, we will look at Eclipse, which will completely change the way
we have been working in this book! In other words, we will change from command-line
programming to a sophisticated Integrated Development Environment (IDE), which will
make coding, unit testing, and debugging much easier—in short, agile Java development!

Recommended Resources

The following websites are relevant to or provide additional information on the topics
discussed in this chapter:

Websites for competing technologies to ones discussed in this chapter:
= Apache Jakarta Tapestry http://jakarta.apache.org/tapestry/
= Apache Jakarta Turbine http://jakarta.apache.org/turbine/
= Apache Struts http://struts.apache.org/
= Apache Tapestry http://jakarta.apache.org/tapestry/
= Apache Tomcat http://tomcat.apache.org/

= Apache Tomcat antiJARLocking and antiResourceLocking configuration
attribute http://tomcat.apache.org/tomcat-5.5-doc/ config/
context.html#Standard%20Implementation

= Apache Tomcat Ant Tasks http://tomcat.apache.org/tomcat-5.0-doc/ catalina/
docs/api/org/apache/catalina/ant/package-summary.html

= Apache Velocity http://jakarta.apache.org/velocity/

= FreeMarker http://www.freemarker.org/

= JavaServer Faces http://java.sun.com/j2ee/javaserverfaces/

= Jetty Servlet Container http://jetty.mortbay.org/jetty/

= Mock Objects http://mockobjects.com

= OpenSymphony WebWork http://www.opensymphony.com/webwork/
= Spring Discussion Forums http://forum.springframework.org/

= Spring Framework http://springframework.org

s The original MVC http://heim.ifi.uio.no/~trygver/themes/mvc/
mvc-index.html

http://jakarta.apache.org/tapestry/
http://jakarta.apache.org/turbine/
http://struts.apache.org/
http://jakarta.apache.org/tapestry/
http://tomcat.apache.org/
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://tomcat.apache.org/tomcat-5.5-doc/config/context.html#Standard%20Implementation
http://tomcat.apache.org/tomcat-5.0-doc/catalina/docs/api/org/apache/catalina/ant/package-summary.html
http://tomcat.apache.org/tomcat-5.0-doc/catalina/docs/api/org/apache/catalina/ant/package-summary.html
http://jakarta.apache.org/velocity/
http://www.freemarker.org/
http://java.sun.com/j2ee/javaserverfaces/
http://jetty.mortbay.org/jetty/
http://mockobjects.com
http://www.opensymphony.com/webwork/
http://forum.springframework.org/
http://springframework.org
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

