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ABSTRACT
Research on information visualization has reached the
place where a number of successful point designs have
been proposed and a number of techniques of been
discovered.  It is now appropriate to begin to describe and
analyze portions of the design space so as to understand
the differences among designs and to suggest new
possibilities.  This paper proposes an organization of the
information visualization literature and illustrates it with a
series of examples.  The result is a framework for
designing new visualizations and augmenting existing
designs.

Keywords
information visualization, taxonomy, design space,
morphological analysis

INTRODUCTION
In recent years, information visualization, the computer
assisted use of visual processing to gain understanding,
has become a topic of significant development and
research.  Advances in this area are spurred on by
increases in the power and availability of graphically agile
computers and by advances in communications,
particularly the growth of the World-Wide Web, which
increases the amount of data available to a worker by
orders of magnitude.

This new field has grown to a series of point designs that
exploit the new graphical capabilities. It is typical for
technologies to proceed at this point from point designs to
abstractions that organize regions on the design space.  In
this paper, we propose a framework and illustrate the
framework from samples from the literature.  Our analysis
builds on recent attempts to understand parts of the design
space.  Keller[1] lists techniques used in scientific
visualization. Chuah and Roth[2] taxonomizes the tasks of
information visualization.  Shneiderman[3] proposes a
data type by task matrix.  Our analysis is closest in spirit
to Tweedie’s [4], who also starts from Bertin.  Our
analysis, starts from an expanded version of Bertin’s [5, 6]
and Mackinlay’s  [7] analysis of the semiotics of graphics
and notes groups of techniques based on similarities of
their data to visualization mappings.

SEMIOLOGY OF GRAPHICAL DATA COMMUNICATION
Graphics, according to Bertin[5], have at least two distinct
uses, which should not be confused: first, as the means of
communicating some information (in which case the
communicator already understands this information in
advance) and second, for graphical processing (in which
case a person uses the manipulation and perception of
graphical objects to solve a problem).  As Bertin puts this
latter use:

Graphics is the visual means of resolving logical
problems.  [5, p. 16].

It is this visual processing use with which we are mostly
concerned in information visualization, but interactive
visual processing depends on a series of visual
communication acts by the machine.  These
communicative acts map data and intent into
visualization.

Data.  Information visualization starts with information in
the form of data.  There are many forms that this data
could take, from spreadsheets to the text of novels, but
much of it can be represented as cases by variable arrays
or can be transformed (perhaps with loss of information)
into this form.  Text, for example, can be used to compute
document vectors, normalized vectors in a space with
dimensionality as large as the number of words.  Each
document becomes a case and the direction of the vector
becomes a variable.  The different data types are
important in their own right; text has its own characteristic
operations, in fact the subcategories of patent text or
financial report text have their own unique characteristics
and potential unique operations on them, but  for our
purposes in this paper, we start with what can eventually
be represented as the set of values taken on by a set of
variables.

The major distinction we wish to make for data is whether
their values are

Nominal (are only = or • to other values),
Ordered (obey a < relation), or are
Quantitative (can manipulated by arithmetic).

We notate these as N, O, and Q respectively.  In a more
detailed analysis, we would also note the cardinality of a



variable, since one of the points of information
visualization is to allow visual processing in regions of
high cardinality.   We distinguish subtypes of Q for
intrinsically spatial variables and spatial variables that are
actually geophysical coordinates.  We also distinguish
between data D that is in an original dataset and data D’
that has been selected from this set and possibly
transformed by some filter or recoding function F,

D --> F --> D’  .

Visualizations.  Visualizations are basically made from (1)
Marks, (2) their Graphical Properties, and (3) elements
requiring human Controlled Processing (such as text)[7].
Human visual processing works on two levels:  automatic
and controlled processing[8].  Automatic processing,
which works on visual properties such as position and
color, is highly parallel, but limited in power; controlled
processing, which works on for example text, has
powerful operations, but is limited in capacity.  The
distinction between these two types of capacity is
important for visual design.

There are a limited set of available Graphical Properties,
the basic set of which have been identified by Bertin [6]
and expanded by Mackinlay [7] (and we expand further
here):  An elementary visual presentation consists of a set
of Marks (which could be Points, Lines, Areas, Surfaces,
or Volumes), a Position in space and time (the X, Y plane
in classical graphics, but X, Y, Z, T 3D space plus time in
information visualization), and a set of “Retinal”
properties, such as Color and Size).  We also add,
following [7], the properties of Connection (notated “—”)
and Enclosure (notated “[]”).  Thus, visualizations are
composed from the following visual vocabulary:

Marks: (Point, Line, Area, Surface, Volume)
Automaticity Processed Graphical Properties

Position: (X, Y, Z, T)
Retinal encodings: (Color, Size, Shape,
Gray-level, Orientation, Texture)
Connections
Enclosure

Controlled Processing Graphical Properties

To make comparisons easy, we use a common table
format for these properties:

Data Automatic Properties Controlled

Variabl
e

D F D’ X Y Z T R — [] CP

The table is divided into the major sections of Data,
Automatic Processing, and Controlled Processing by
double lines.  In the table we use codings (which we
develop in context) summarized as follows:

Symbol Meaning
Variable Name of data dimension

D Data Type ::= N (= Nominal),
O (= Ordinal),
Q (= Quantitative).
QX (= Quantitative and intrinsically spatial),
QXlon (= Geographical)
NxN (=Nominal set mapped to itself as in
graphs)

F Filter or function for recode data ::=
f (= unspecified filter fn)
fs (= sorting)
mds (= multidimensional scaling
> (= data reduction filter vis sliders and
menus)
sl (= slider)

D’ Recoded Data Type
XYZT Position in space time

* Non-semantic use of space-time

R Retinal properties ::= C (= Color), S (= Size)
---- Connection

[] Enclosure
CP Control Processing (tx)

P,L,A,S,V Mark types ::= P (= Point), L (= Line),
S (= Surface), A (= Area), V (= Volume)

Using these distinctions, we can see the major types of
visualizations that have emerged.

SCIENTIFIC VISUALIZATION
Scientific visualization generally starts from data whose
variables are intrinsically spatial.  An example is
Treinish’s animated and very beautiful map of the earth’s
ozone layer[9](see Fig. 1).  Because spatial and
geographical variables are so frequent, we adopt the
special notation of QX and QY for Q (Quantitative)
variables that are intrinsically spatial and QXlon and
QYlat for Q variables that are earth coordinates.
Scientific visualizations, then, usually have mappings

QX-->X:P (i.e., a spatial quantitative variable is
mapped into a position in X)

QY-->Y:P,

and often

QZ--> Z:P

as in Table 1 (We ignore for now the distinction between
Cartesian and radial coordinates). Ozone density is
mapped into the Retinal variable Color.

Fig. 1. Ozone concentration[9]



GIS
GIS-based visualizations are similar to other scientific
visualizations, but more specialized, with intrinsically
geo-coordinate variables mapped onto X and Y:

QXlon-->X:P,
QYlat -->Y:P.

In Fig. 2, from Roth’s group (Fig. 2), this leaves the Z axis
free and it is used for another data variable.

Q --> Z:L.

A final variable, Profit, is mapped onto a Retinal
presentation, Color,

Q --> R:Color.

Fig. 2.  SDM[10]

Table 2. SDM (See Fig. 2)

Name D F D’ X Y Z T R — [] CP

Long QX
lon

QX
lon

P

Lat QY
lat

QY
lat

P

Profit Q Q L

Region N N C

MULTI-DIMENSIONAL SCATTERGRAPHS
These type of visualizations take variables which are not
intrinsically spatial and map them onto X and Y, e.g.,

Q --> X:P

Other (often ordinal) variables can be placed on sliders

O --> sl

and the sliders used to control the variables for filters.  In
the FilmFinder [11], Fig. 3, sliders (which appear as sl in
Table 3), control filters on which cases are shown on the
scattergraph.  The sliders are separate, visual
presentations, and so are separated from the rest of the
table.  The essence of the dynamic queries technique, of
which the FilmFinder is an example, is that changes in the
sliders have instantaneous effect on the  items included.
In this way, the effects of multiple variables with a large
number of values can be taken into account without being
coded as Retinal variables, keeping the display simple and
easily interpretable.

Table 1.  Ozone visualization  (See Fig. 1)

Name D F D’ X Y Z T R — [] CP

Lon. QX
lon

f QX
lon

P

Lat. QY
lat

f QY
lat

P

Height QZ f QZ P

Ozone Q O C



Feiner’s Worlds-Within-Worlds technique is another way
of showing higher dimension data.  Three variables are
mapped

Q1 -->X
Q2 -->Y, and
Q3 --> Z.

At the places in this coordinate system where other
variables are to be examined, the x, y, z location is used as
the origin of another coordinate system (for only a few
points at a time) allowing another overloaded mapping

Q4 -->X
Q5 -->Y, and
Q6 --> Z.

The overlapped coordinate space essentially is a kind of
details-on-demand display at the cost of occlusions in the
original coordinate system.  As in the dynamic queries
technique, allowing the user to move rapidly in time
through the first three variables increases the amount of
the variable space that can be examined with a simple
display.

Fig. 4. World within worlds[12]

MULTI-DIMENSIONAL TABLES
Another interesting visualization for multidimensional
data is to start with a matrix or table and to add visual
properties to it directly as in the Table Lens [13].  The
mixing of data and visualization makes it possible to drill
down in place.  This hybrid visualization produces an
analysis quite different from previous analyses.  In Fig. 6,
Team is a Nominal variable and Batting Ave. a
Quantitative variable, but we have used ?s in the Filter
column because the variable may or may not be sorted,
according to the action of the user.  This is important
because sorting determines whether Y in the diagram is a
semantically meaningful ordering.   In the Table Lens, the
user is changing the particular mapping

Fig. 5. Table Lens  [13]

Fig. 3.  FilmFinder [11]

Table 3. FilmFinder  (See Fig. 3)

Name D F D’ X Y Z T R — [] CP

Year Q > Q P

Quality Q > Q P

Type N > N C

Title O sl>

Actor O sl>

Actress O sl>

Director O sl>

Length Q br>

Rating N br>

Table 4.  Worlds Within Worlds (Fig. 5)

Name D F D’ X Y Z T R — [] CP

V1 Q f P P

V2 Q f P P

V3 Q f P P

V4 Q f> Q S

V5 Q f> Q S

V6 Q f> Q S

V7 Q Q C



INFORMATION LANDSCAPES AND SPACES
Landscapes lay information out on a surface, typically the
XY plane.  Landscapes may be of several sorts:  They may
be a mapping of real geographical coordinates into the XY
plane,

QXlon --> X:P
QYlat --> Y:P

as in Fig. 2.  They could be just real spatial variables QX,
QY into X and Y or they could be completely abstract
mappings

Q --> X:P
Q --> Y:P.

If the mapping extends to

Q--> Z:P

Then we call it an information space.  In Fig. 6, the actual
physical trading room of the New York Stock exchange is
mapped into an information space.  The stock names on
the kiosks are Ordinal variables mapped onto the Z axis
(as in the physical room).  But the visualization overloads
stock volume, mapping it onto the X axis (actually onto a
radial axis from the center of each kiosk, but we
approximate here for simplification).  The Y and Z
locations of the bar are not semantic mappings.  This bar
is a Length mark, which is an instance of a Retinal Size
encoding.

Fig. 6. New York Stock Exchange (Visible Decisions)

NODE AND LINK DIAGRAMS
Node and link diagrams allow the encoding of linkage
information between entities.  They can be thought of as a
mapping from a set of Nominal variables into itself
{NxN}.  These are then mapped into XY coordinates .
One type of node and link diagram uses points that comes
from physical space, then links them.  Cox and Eick’s
mapping of Internet traffic [14] is an example of this type.
As in landscapes, longitude and latitude are mapped onto
XY (really onto a sphere)

QXlon --> X:P
QYlat --> Y:P

and the links are mapped onto Connection Lines:

  NxN --> X:*, Y:*, Connection: Line.

Other variables are mapped onto Retinal properties.

Table 5.  Table Lens (Fig. 6)

Name D F D’ X Y Z T R — [] CP

Team N ?s N L ?P S >A

Hits Q ?s Q P ?P >A Table 6.  New York Stock Exchange

Name D F D’ X Y Z T R — [] CP

Lat Q Q P

Lon Q P

Name T s O P

Volume Q Q L * * S



Table 7.  Internet traffic on earth (See Fig. 7)

Name D F D’ X Y Z T R — [] CP

Lon. QX
lon

Q P

Lat. QY
lat

Q P

Set Nx
N

f xxy * * L

Type O O C

TREES
But of course, the nodes for graphs do not have to be
anchored in any spatial variable and the plane can be used
merely as a substrate to keep the visual identities of the
nodes distinct.  An especially interesting visualization of
this sort is the Hyperbolic Browser  [15], where the space
itself is distorted into hyperbolic coordinates (then
projected back into the Euclidean plane).  Since the space
expands exponentially, it is a good place to lay out
exponentially-expanding graphs, such as trees.

Table 8.  Hyperbolic Browser  (See Fig. 8)

Name D F D’ X Y Z T R — [] CP

Set Nx
N

hb xxy * * L

Trees can also be visualized as nested enclosures

NxN --> X:*, Y:*, Enclosure: *

Shneiderman and colleagues  [16] have done a space-
filling form of enclosure tree called Tree-Maps.  At one

level in a tree, the children of a node divide up the X
dimension of the visualization, at the next level they
divide up the Y dimension of the node in which they are
enclosed.  The division proceeds alternating between X
and Y until the leaves of the tree are reached.  This
method uses all of the space.  An example showing the use
of space by the Mac filing system is shown in Fig. 9.  The
problem is that the same variable is mapped onto two
different position presentations, each half of the time

Q --> X (half time)

Q --> Y (half time)

giving an inconsistent mapping and prohibiting the user
from forming an easy image.  What the user should be
able to take from the image is essentially Retinal: Size
coding, but the same Size can have many different visual
manifestations, each with a different aspect ratio.  Thus
the space-filling property of the visualization comes at a
cost.

Fig. 7. Internet traffic [14] Fig. 8. Hyperbolic browser [15]



Fig. 9. [16]

SPECIAL DATA TRANSFORMS: TEXT
We have discussed some of the main classes of
visualizations.  But an important point to make is that
techniques for transforming data types into the data forms
that can be mapped into these visualizations are also
important.  A case in point is text.  Text itself can, of
course, be visualized directly.

Q --> CP.

But this does not work for a large mount of text and the
text has to be processed with Controlled instead of
Automatic processing from a human point of view.  One
approach to visualizing large amounts of text is to map it
line by line onto long strips

Q --> Y:P

as Eick and colleagues have done for English text and
program code in SeeSoft [18].  By means of a slider, those
lines of text having certain properties can be turned off or
on as with the dynamic queries work.  For example Fig.

Table 9.  Tree-Map  (See Fig. 9)

Name D F D’ X Y Z T R — [] CP

Files Nx
N

tree xxy * * *

Type N N C

Size Q Q L/2
<--

L/2
-->

(S)

Cone trees try to handle the problem that trees are large in
width because they exponentially increase in this
dimension as a function of depth.  The cone tree solution
is to wrap the width around in a circle, then use time to
allow the user to make the relevant part of the circle come
forward.

  NxN --> X:*, Y:P, Z:*, Connection: Line.

This visualization uses space to establish position in the
tree.  It thereby has a more consistent mapping than the
Tree-Map, but at the cost of spending space to establish
the structure.  The Tree-Map spends almost all of its space
on content.

Fig.  10. Cone tree[17]

Table 10.  Cone-tree (See Fig. 10)

Name D F D’ X Y Z T R — [] CP

Files Nx
N

tree xyz * P * L tx



11 shows the entire text of the Jungle Book.  Lines
mentioning different characters are rendered in different
colors.  Various combinations of characters can be
rendered together by means of the slider.

Fig. 11. SeeSoft[18]

Table 13.  SeeSoft (See Fig. 11)

Name D F D’ X Y Z T R — [] CP

Line# Q Q * P

Type O > O C

Type O sl> O C

Another mapping of text is represented in Themescapes
[19].  The text for each document  (for example, a news
story) is transformed into a document vector.  Document
vectors are compared giving rise to a matrix of
similarities.  The matrix is mapped onto a 2D landscape
by means of multi-dimensional scaling.

A --> mds-->X:P, Y:P

This gives a 2D map of “themes”.  The frequency with
which the various themes occur is mapped onto Z in the
form of a surface.

Q --> Z:S .

The result is shown in Fig. 12, which depicts as a
landscape, themes from CNN news.  Thus in text, as in
other specialized data areas, the transformations from the
raw data type to a visualizable data type can be as
important as the actual visualization.

Fig. 12. Themescapes[19]

Table 14. Themescapes

Name D F V X Y Z T R — [] A

Content A mds xy P P

Number Q S C

SUMMARY
In this paper we have sketched part of a scheme for
mapping the morphology of the design space of
visualizations.  Because of space limitations, we have only
sampled from the set of techniques being used.  Two
levels of analysis we have not addressed in this short
paper are the larger organizational structure of information
spaces and the organization of user tasks.  With respect to
the larger organizational structure, we have suggested in
the text area an analysis into information space,
workspace, sensemaking tools, and documents and
surveyed systems in each of these areas  [20].  For users
tasks, we have suggested notions of “knowledge
crystallization”, comprising in part “information foraging”
[21] and “sensemaking”[22].  These notions have been
applied to the analysis of users of information
visualization [23, 24] but considerable work remains to be
done  before a characterization of parts of the design space
is possible.  Our present analytical scheme does not
express all of the important distinctions that could be
made relative to these distinctions.  Partially, this is
because a more elaborate notation would require a much
longer paper with more examples and partially this is
because too complex a notation reduces its practical use—
our main object.  Besides helping to organize the
literature, our present  analysis suggests regions of new
visualizations because it concentrates on the mappings
between data and presentation.

During the next several years we believe that information
visualization will enter mainstream use and that much



information will be learned to guide new designs or apply
established techniques.  As for any technology area, is
necessary to develop abstractions that rise above particular
point designs in order to allow this codification of art into
technology to occur.
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