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The supply of non-physician clinicians (NPCs), such as physician assistant 

(PAs), could significantly influence demand requirements in medical workforce 

projections. This study predicts supply of and demand for PAs from 2006 to 2020. The 

PA supply model utilized the number of certified PAs, the educational capacity (at 10% 

and 25% expansion) with assumed attrition rates, and retirement assumptions. Gross 

domestic product (GDP) chained in 2000 dollar and US population were utilized in a 

transfer function trend analyses with the number of PAs as the dependent variable for 

the PA demand model.   

 Historical analyses revealed strong correlations between GDP and US population 

with the number of PAs. The number of currently certified PAs represents approximately 

75% of the projected demand. At 10% growth, the supply and demand equilibrium for 

PAs will be reached in 2012. A 25% increase in new entrants causes equilibrium to be 

met one year earlier. 

 Robust application trends in PA education enrollment (2.2 applicants per seat for 

PAs is the same as for allopathic medical school applicants) support predicted 

increases. However, other implications for the PA educational institutions include 

recruitment and retention of qualified faculty, clinical site maintenance and diversity of 

matriculates. Further research on factors affecting the supply and demand for PAs is 

needed in the areas of retirement age rates, gender, and lifestyle influences. 

Specialization trends and visit intensity levels are potential variables.  
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CHAPTER I 

INTRODUCTION TO THE STUDY PROBLEM 

Introduction 

 The physician assistant (PA) profession and its role in the delivery of care in the 

US continues to expand as the debate of the physician workforce flourishes. As of 2006, 

70,612 individuals were ever eligible to practice as PAs according to the American 

Academy of Physician Assistants (AAPA) and approximately 65,000 were clinically 

active (American Academy of Physician Assistants, 2006a). While the majority of 

healthcare workforce researchers concentrate on physician components, attention to 

nonphysician clinicians (NPCs) such as PAs remains an area poorly studied in terms of 

supply and demand. Calls for a more detailed look at the PA profession have yet to be 

answered (Cooper, 1995; Cooper, 2004; Council on Graduate Medical Education, 2005; 

Mullan, Rivo, & Politzer, 1993). This dissertation is an analysis of the supply of and 

demand for PAs, as it relates to the healthcare workforce of the US. Factors affecting 

these dynamics are examined and utilized to develop forecast models to comparatively 

assess their implications over the next fifteen years. 

Background 

 The establishment of the PA profession in the US occurred in 1967 with the 

graduation of 3 PAs from the first program to formally train PAs in primary care. This 

event followed the convergence of a number of social, political, and medical policy shifts 

that included the return of former medics and corpsmen from the Viet Nam War, a social 

zeal for correcting the inequities of poverty during the Great Depression, the period of 

the sixties and its social revolution, and a belief that technology could solve many 
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problems. Over the ensuing decades the emergence of the PA has met with varying 

levels of acceptance and integration as the profession moved from its infancy to its 

attainment of “professional” status (Cawley, 1996). Envisioned as new generalist 

providers of healthcare, the first PA students were recruited from the ranks of veterans. 

Following a suggestion by Hudson, then the President of the National Board of Medical 

Examiners, the first students were trained in a condensed educational program 

paralleling that of their future physician employers. Noting changes in medical 

labor/hospital staffing demands and advancing technology, he fostered the idea that has 

ultimately become the PA of today (Hudson, 1961). Following the development of the 

first program at Duke University School of Medicine, other programs were established to 

train providers that would enhance access to basic medical care service, fill gaps 

resulting from geographic and specialty maldistribution of physicians, and to control 

healthcare costs (Jones & Cawley, 1994). 

PA scope of practice, governed by state legislation, prohibits PAs from the 

unlicensed practice of medicine and stipulates that they function under the supervision 

of a licensed physician. This dependent role and its continued affirmation across the 

profession is one of the significant differences between PAs and all other types of 

NPCs. Because of the similarities in physician and PA training, the PA profession 

reflects its commitment to practice under the supervision of a licensed physician in its 

definition. This commitment has resulted in wider support from medicine as evidenced 

by the American Medical Association (AMA) Guidelines for Physician/Physician 

Assistant Practice, American Academy of Family Physician policies, and the Pew Health 

Professions Commission recommendations. Each of these documents support the 
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continuation of the traditional physician-PA team in which PAs regularly consult with, 

refer to and are supervised by their physician colleague.(American Academy of Family 

Physicians, 1997; American Medical Association, 1998; The Pew Health Professions 

Commission, 1998) 

 The sociocultural shifts that gave rise to the PA profession in the 1960’s are 

paralleled in scope and tumult in today’s healthcare environment. Despite multiple 

reports of physician surpluses, what has emerged is a shortage of both primary care 

and specialty physicians (Cooper, 2004; Cooper, Getzen, McKee, & Laud, 2002; 

Council on Graduate Medical Education, 2005). Continued escalation of healthcare 

expenditures and recognition of growing health disparity in this country contribute to the 

shaping of the healthcare workforce of the 21st century. A number of factors can be 

implicated; the changing demographics of the nation’s population, the unprecedented 

pace of biomedical breakthroughs, and productivity in the delivery of healthcare 

represent the major contributors to overall cost escalations. The potential of PAs to 

reduce the impending shortages and their ability to contribute cost effective healthcare 

has led to increased interest in the supply of and demand for these providers. This work 

contributes the first known analysis of the PA workforce as it exists in 2006 and projects 

its possible evolution over the next fifteen years.  

 In an attempt to clarify the issues in healthcare workforce policy development 

and reform, McLaughlin suggested dividing the discussion into three thematic issues: 

demand for healthcare services, the supply of healthcare professionals, and the 

roles/responsibilities of policy makers in regard to supply and demand. The demand 

side of the equation is influenced by both micro and macro-level factors. On the micro 
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level, patient real or perceived need for services is a major driving force of healthcare 

demand. Age, socioeconomic status, health status, and prevalence of disease 

contribute to a significant degree. The demand for healthcare service is also influenced 

by a person’s access to services and their degree of insurance coverage. Other factors 

include the patient’s personal understanding of the medical condition and its available 

treatment, medical advances in technology, and practitioner preferences (McLaughlin, 

1994).  

The aging of American society represents the single most significant macro-level 

factor affecting the demand for healthcare services. Representing eight percent of the 

US population in 1950, the elderly are projected to account for over 17% by the year 

2020. The rising levels of sustained chronic diseases such as hypertension, diabetes, 

and obesity will amplify the impact of this aged cohort. Other important macro level 

factors that influence heath care service demand include the organization of the 

healthcare market and its financial structure, roles that various health professionals play 

within the delivery system, and the level of health technology advances (McLaughlin, 

1994).  

 The supply side determinants of the health workforce encompass the geographic 

location of providers, the number and type of students in health education programs, the 

number and capacity of such programs, retention rates, retirement rates and level of 

productivity of various providers. Despite a variety of attempts to correct the geographic 

maldistribution of physicians, many rural and urban Americans lack sufficient access to 

healthcare services (McLaughlin, 1994). Since the turn of the 21st century the majority of 

workforce researchers suggest that shortages of both primary care and specialist 
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physicians will occur by 2015. While medical school enrollment has been expanded 

since the late 1990’s, other health profession schools are varied in terms of enrollment 

and capacity. Retention and retirement rates for other professions such as PAs need 

further examination as do productivity levels (Cooper, 2001; Cooper, 2004; Council on 

Graduate Medical Education, 2005; Goodman, 2004; Sox, 2004).  

 Several interested parties have roles and responsibilities in the development of 

healthcare policy. The federal and state governments actively participate through 

initiatives such as Titles VII and VIII of the Public Health Service Act, grants, 

scholarships, loans and loan repayment programs to influence and support the 

educational institutions training future healthcare providers including PAs. Federal 

legislative initiatives, such as the National Health Service Corps, addresses geographic 

maldistribution. The Council on Graduate Medical Education (COGME) continually 

assesses the state of the US health workforce. State governments’ oversight of 

Medicaid expenditures and reimbursement, licensing and creditentialing of providers 

and regulation of scope of practice issues provides the basis of its role. Academic 

institutions and professional organizations provide the necessary information to inform 

policy maker decisions on the various supply dimensions, anticipated changes in 

demographics, and evolution of roles within the healthcare delivery system (McLaughlin, 

1994).  

The analysis herein applies a similar approach to the examination of the PA 

workforce. It examines factors contributing to the demand for these healthcare 

professionals, the supply capacity of its educational programs, and provides interested 

parties much needed information for policy determinations. 
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Problem Statement 

 One of COGME’s central charges is to make policy recommendations with 

respect to the adequacy of the supply and distribution of physicians in the US. Utilizing 

existing models to forecast physician supply and demand, COGME’s reassessment 

seeks to guide decisions by the medical education community, policy makers, and 

others concerned with the health of Americans. This report acknowledges its inability to 

consider the contributions of PAs and other NPCs in healthcare delivery. It further 

recognizes that these contributions have the potential to reduce the projected shortages 

(Council on Graduate Medical Education, 2005).  

 While the PA educational and professional organizations provide ongoing 

support and information to assist in the development of national health workforce policy, 

to date no attempts have been made to provide projections of the demand for or supply 

of PAs. While individual research efforts have encompassed several of the leading 

factors influencing the supply of and demand for physicians in the US, no single effort 

has extended these findings to investigate the impact on the future of the PA workforce. 

This lack effectively causes national recommendations, such as those suggested by 

COGME, to exclude the effect of PA practice on the Nation’s delivery of healthcare.  

 Attempts to forecast the future US medical workforce encompass a variety of 

methodologies and assumptions including needs-based models, demand or utilization-

based models, and benchmarking or requirements models. These models focus their 

predictions on the premise that specific components of the workforce (primarily its 

physician component) could be quantified, associated with full time equivalents and that 

this greater detail would lead to greater medical workforce predictive accuracy. While 
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each of these methodologies differs in design, all represent micro-analytic approaches 

that focus on what ought to occur in the workforce and have extensive data 

requirements (more fully delineated in Chapter II). Of note, each of these methodologies 

arrived at similar predictions of physician workforce oversupply by 15% to 30% by the 

year 2000, predictions which never manifested (Cooper et al., 2002; Council on 

Graduate Medical Education, 2005). Equally important, the most often used national 

databases required by these methodologies do not accurately account for PA utilization, 

thus making them unsuitable for the examination of PA workforce issues (Morgan, 

Strand, Ostbye, & Albanese, 2007).  

In contrast, Cooper adopted a macro-analytic approach that attempts to define 

what is most likely to occur in the workforce. Based on historical long-term economic 

and demographic trends, this methodology links the demand for healthcare services to 

the growth of the economy expressed in terms of economic well-being using gross 

domestic product (GDP) with number of physicians per 100,000 population. The results 

are then compared to supply projections based on the number of new entrants into the 

profession, work effort, retirement, mortality, and attrition rates. Even with significantly 

fewer data requirements, Cooper’s predictions have demonstrated a higher level of 

accuracy than the micro-analytic approaches discussed above. Given the constraints of 

available data sources reflective of PA practice, the approach to healthcare workforce 

supply and demand championed by Cooper and colleagues is considered applicable to 

this endeavor. 

In addition, Cooper’s trend model provides the most parsimonious approach to 

health workforce forecasting. Through the elimination of “dissecting and reconstituting 
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the healthcare system . . .to the metric of time,” the errors associated with predictions of 

utilization rates, diseases rates, and derivation of full time equivalents is minimized 

(Cooper, 2000), page 88). This simplicity coupled with its noted accuracy makes it an 

appropriate approach for this initial effort in PA workforce forecasting.  

Research Question and Objectives 

No research currently exists that examines the demand for PA services and the 

relationship to its supply. With the growing number of studies suggesting shortages of 

their physician colleagues in both primary care and specialty practice, PAs have an 

increasing role in the solution to providing adequate levels of healthcare delivery. Given 

the increased utilization of PAs in the US and the need for more accurate estimation of 

the US health workforce as a whole, the research question posed is: 

“Will the projected supply of PAs in the US meet the projected demand  

over the next fifteen years?”  

The following objectives were established as the focus of this dissertation: 

1) Describe the current status of PA practice in the US to include:  

a) demographic composition and distribution trends 

b) practice selection by specialty and practice setting trends 

c) scope of practice prerogatives effecting PA utilization 

2) Delineate a demand model for the utilization of PAs that utilizes: 

a) the past and future estimates of gross domestic product as chained in 

2000 dollar  

b) the past and future estimates of US population growth  

3) Delineate a supply model for the PA profession that utilizes: 
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a) the current pool of certified PAs  

b) educational institution capacity and assumed attrition rates 

c) assumptions for retirement rates 

4) Utilize the developed models to consider whether the demand for PA services 

would be met by supply based on status quo, a 10% increase and a 25% 

increase in institutional capacity as alternative scenarios. 

5) Discuss the implications posed by the results of the developed PA supply and 

demand prediction models given the alternative scenarios examined.  

Professional Significance 

 The development of PA Supply and Demand Models begins to answer the calls 

from other healthcare workforce researchers for better understanding of the potential for  

PAs to reduce the projected physician shortages.(Cooper, 2004; Council on Graduate 

Medical Education, 2005; Mullan et al., 1993). These projections will enhance 

discussions concerning workforce issues of a nation faced with rising numbers of 

elderly, immigrants, and underinsured. This expansion on what is likely to occur in the 

demand for PAs and considering supply projections provides the PA educational 

community information as they develop strategic plans for enrollment initiatives.  

 Consideration of this study’s implications will provide a much needed plank in the 

discussion platform of healthcare delivery in the US. A forecast offers interested parties 

a more detailed examination of a portion of the healthcare workforce that has previously 

been acknowledged as part of the solution to the anticipated shortages in primary and 

specialty healthcare. As workforce researchers, medical professional organizations, and 

policy makers continue to assess the ability of the US to meet the healthcare needs of 
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its residents, this study contributes to the understanding of how PAs will fit into the 

equation. This forecast serves as a catalyst for the PA community of researchers to 

consider efforts that would further extend the understanding of the factors that affect the 

supply of and demand for PA services.  

Overview of Data Sources and Methodologies  

Data Sources 

 The American Academy of Physician Assistants (AAPA) is the national 

professional organization for PAs. The Academy’s Research Division conducts a variety 

of annual surveys to include clinically active PA census, membership census, and 

student census. The Academy is recognized for its maintenance of a remarkably 

complete and highly reliable master file and series of databases. Results provided in the 

annual census survey were extracted to describe the current status of the PA 

profession. Historical values required for the development of the demand model were 

also extracted.  

 The Physician Assistant Education Association (PAEA) is the national 

organization representing PA educational programs. Its Annual Report on Physician 

Assistant Educational Programs in the US provides comprehensive analyses of 

institutional, faculty, and student characteristics to include annual attrition rates. The 

Directory of Physician Assistant Programs is a resource on institutional capacity. These 

PAEA publications were utilized to obtain the required variable values in the 

development of the PA Supply Model. 

 The National Commission on the Certification of Physician Assistants (NCCPA) 

is the only credentialing organization for PAs in the US. As all states require NCCPA 
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certification of PAs for licensure and the right to prescribe medications, the database 

maintained by the organization contains information on all PAs eligible to practice 

medicine. Data on gender, birth date, geographic location, and self-reported practice 

specialty for each currently certified PA were obtained. The total number of certified PAs 

and birth date provide the base year values for the supply model. The other data points 

contributed to the description of the current status of the PA profession. 

The Bureau of Economic Analysis (BEA) provides annual estimates of national 

income and product accounts (NIPAs) that include estimates of current-dollar gross 

domestic product (GDP) and real (inflation-adjusted) GDP. These estimates are made 

available for public use on the BEA website in Excel spreadsheets that can easily be 

transferred to other statistical software databases for the purposes of analyses. The real 

GDP estimates were utilized to examine the long term trends in relation to PA demand.  

The Integrated Public Use Microdata Series (IPUMS) is a coherent national 

database that combines census microdata files produced by the US Census Bureau for 

the period since 1960 with new historical census files produced at the University of 

Minnesota and elsewhere. The IPUMS is designed to facilitate the use of the census 

samples as a time series and provides both the database and the documentation 

through an on-line data access system. Population estimates required to consider the 

ratio of PAs to population occurring over the last decade and for future projections were 

obtained from this source.  

Methodologies 

 To describe the current status of the PA profession, secondary data analyses of 

the preceding ten years of the AAPA census survey data were conducted. Descriptive 
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statistics and frequency tables were analyzed to provide the demographic composition, 

distribution trends, and practice selection trends by specialty and practice setting.  

Representing a modification of Cooper’s “Trend Model,” the PA Demand Model 

considered the number of PAs per 100,000 population as the dependent variable (PA-

Demand) with GDP and US population trends as the predictor variables. Values for PA-

Demand were derived utilizing historical numbers reported by AAPA divided by the US 

population as reported by the IPUMS. The predictor variable values were obtained from 

public use data files of the IPUMS and the BEA. Time series analysis techniques were 

performed and 15-year forecasts obtained using SAS/ETS® Version 9.1. 

 The future supply of PAs is a function of the number of currently eligible PAs, the 

number of PAs that will be produced by educational institutions minus those lost to 

attrition, and losses due to the retirement or mortality of the overall eligible PA pool. The 

PA Supply Model base year 2006 began with the number of PAs eligible to practice in 

the US as represented by the number currently maintaining national certification, as 

reported by the NCCPA. This baseline number of PAs was adjusted to reflect the 

estimated number of PAs entering and exiting the workforce for each year of the 

forecast. Using the PAEA annual report and program directory, the anticipated annual 

number of new graduates (by age and gender), with attrition rates applied, was added 

to the pool of PAs eligible to practice. For each forecast year, the pool was aged and 

assumed retirement rates applied. As no data exists on retirement of PAs, an assumed 

retirement age of 68 was utilized. Final values were expressed as number of PAs per 

100,000 population. These processes provided the estimated number of PAs eligible to 

practice and thus deliver healthcare services for each forecast year. Three supply 
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scenarios were developed using these methods to reflect no change (status quo) in PA 

education institution capacity, a 10% increase and a 25% increase.  

Consideration of the implications of these analyses began with the comparison of 

the projected supply scenarios to that of the projected demand for PA services. The 

current status of PA demographic composition, distribution, practice selection by 

specialty and practice setting were extrapolated to future time points at 5 year intervals. 

The impact of the various predictions to the overall delivery of healthcare in the US is 

discussed with recommendations for future research suggested. 

Limitations  
 

A number of factors regarding PA practice remain to be elucidated in regard to 

the predictions of overall supply of PAs eligible to deliver healthcare services in the US, 

thereby limiting the scope of the current study. These factors include activity rates of 

currently certified PAs, work effort trends of the current and future generation of PAs, 

the affect of the feminization of the profession, retirement and mortality rates. 

Like their physician colleagues, PAs are involved in a variety of activities outside 

that of patient care including PA education, research, and administration. This activity 

rate affects the number of available PAs to provide direct patient care. Furthermore, 

changes in the distribution of activities will have an effect on the overall supply of PAs. 

The use of the number of currently certified PAs as a proxy for those available to 

provide direct healthcare services likely overestimates the supply of PAs, however, no 

studies examining the activity of PAs have been conducted to account for these effects.  

Studies on the physician workforce suggest a trend in changing lifestyles of the 

newest entrants with a predilection towards decreased work effort and plans for 
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retirement at an earlier age in comparison to their predecessors. In addition, female 

physicians tend to work fewer hours over the course of their professional careers than 

men (Council on Graduate Medical Education, 2005). Whether or not female PAs work 

fewer hours has not yet been researched. While the AAPA has begun collection of work 

effort in terms of number of hours per week and number of patients seen, trend 

analyses based on age, gender, and year of entry into the profession have not been 

conducted or published. In addition, the currently available databases maintained by the 

three major professional organizations (AAPA, PAEA, and NCCPA) do not collect data 

regarding age at retirement or future retirement plans. This lack of available data 

constrained the scope of considerations in the present study.  

 Modeling demand using a time-series analytic approach requires historical data 

to produce future forecasts or projections. It would be desirable to test the developed 

PA Demand Model accuracy by taking early historical data points and project over a 

period that has already occurred. The relative youth of the PA profession and its early 

slow growth precluded the ability to assess PA Demand Model’s accuracy 

retrospectively at different points in time over the past decades.  

Delimitations 

 Various assumptions serve as the delimitations of this study. These include 

retirement rates of PAs from active practice, attrition rate of matriculated PA students, 

and productivity factors.  

 As retirement rate trends have not been adequately documented in the PA 

literature, the proposed trend analyses will assume retirement of PAs to be at the age of 

67. This assumption is made without regard to gender or age at entry into the 
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profession and is based on Social Security data that most individuals will retire by age 

67.  

 As actual graduation numbers of PAs are not reported in aggregate form, it was 

necessary to use anticipated matriculation capacity to add to the pool of PA supply for 

each forecast year. To more accurately reflect measures of PA supply, the attrition rate 

of matriculated PA students was assumed to be 7%. This level reflects a compromise 

between the twenty year trend in PA education and a lower rate seen in the last two 

years.  

 Although physician workforce models consider that productivity levels vary by 

gender, age, life-style, employment status, and efficiency, little research has been 

conducted in this area for the PA profession. While physician levels may be reflected in 

PA practice, no assumptions were applied in this regard.  

Key Term Definitions 

 The following alphabetical listing of key terms is provided to ensure consistency 

of interpretation.  

Demand: a term used to describe the projected size of labor force that will be required 

in order to deliver the quantity of service that is predicted, expressed relative to 

the number of active PAs per 100,000 population. 

Modeling: finding a suitable statistical model to describe the data-generating process 

used to forecast future values. A univariate model is based only on the past 

values of the variable of interest while multivariate models are based on the past 

values of the interest variable and also on past values of other predicator or 

explanatory variables. 
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Nonphysician clinicians: a term applied to a group of licensed professionals who have in 

common the authority to be the point of first contact for patients, to take the 

principal responsibility for the care of patients and to provide elements of care 

that fall within the “practice of medicine.” Professionals included in this aggregate 

term include PAs, NPs, certified nurse-midwives, clinical nurse specialists, nurse 

anesthetists, optometrists, podiatrists, and the alternative disciplines of 

chiropractic, acupuncture and naturopathy. 

Physician assistant: healthcare professionals licensed to practice medicine with 

physician supervision. PAs conduct physical exams, diagnose and treat 

illnesses, order and interpret tests, counsel on preventive healthcare, assist in 

surgery, and in virtually all states can write prescriptions. 

Primary care: the group of medical practices encompassed by family/general medicine, 

general internal medicine, pediatrics, and obstetrics/gynecology. 

Supply: the number of active PAs who will be in the labor forces relative to the base 

year of 2006, extrapolated based on the number who are currently certified, the 

number of PA graduates, and the number who leave the profession due to 

retirement.  

Substitution rate:  the amount of healthcare services a nonphysician clinician provides 

relative to physician delivery of the same service. 

Time-series: a set of observations measured sequentially through time, taken at 

discrete set of time points or continuously. 

Trend: The type of variation present in a time-series that exhibits steady upward growth 

or downward declines over several successive time periods. 
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Summary 

 Research about the supply of and demand for PAs in the US has not been 

undertaken. Having provided an overview for the need of such an examination, a brief 

introduction to the PA profession and a limited review of healthcare workforce 

approaches, an outline of the research question and objectives was delineated. Chapter 

II extends these concepts through the review of relevant literature. 



18 

CHAPTER II 
 

LITERATURE REVIEW 
 

Introduction 
 

 A historical perspective of physician workforce investigation and the development 

of various approaches used to project its adequacy to meet the healthcare needs of 

Americans set the stage for the explicit examination and projection of the supply of and 

demand for PAs in the US. Following a justification for the selection of the Cooper trend 

model and its conceptual framework, this literature review focuses on its application to 

this physician assistant (PA) workforce analysis. Understanding the current thinking on 

the utilization of nonphysician clinicians (NPCs) and their adequacy of service provides 

the background required to support the establishment of PA workforce projections. 

Expounding on the trends affecting the supply and demand of healthcare professionals 

provides the underpinnings for the proposed workforce projection variables. In particular 

the trends of provider productivity, attrition from the profession, the US economy and 

the changing US population demographics are examined. Constraints on the training of 

PAs are delineated through the discussion of the PA educational system as the provider 

of new PAs and the effect of attrition rates on future projections. Discussion of the fiscal 

constraints on healthcare spending such as Medicare and Medicaid expenditures 

completes the review.  

Physician Workforce Studies in the US 
 

 The interest in physician workforce studies in the US gained considerable 

momentum during the mid-1900’s and has continued into the 21st century. Historically, 

the projected shortage of physicians in primary care and the geographic maldistribution 
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of physicians gave rise to the “initial demand” for PAs. In response to this demand, the 

PA profession became a reality. Because PAs are dependent practitioners required to 

work under the supervision of physicians, the demand for PAs is closely linked to that of 

their physician colleagues. A clear understanding of the past and current physician 

workforce projections is required in order to extend the discussion to that of the PA 

workforce. In addition, the following historical perspective on physician workforce 

analysis illustrates the various approaches undertaken in these efforts. 

Prior to the early twentieth century, the US healthcare system was more or less a 

traditional free market for physician services, largely devoid of third-party payment 

systems with patients incurring most of the healthcare costs. The publication of the 

Flexner report Medical Education in the US and Canada in 1910 marked the first distinct 

shift in physician workforce policy. In the decade following its release, over 30 medical 

schools were closed, resulting in a drop from 175 physicians per 100,000 population to 

125 per 100,000 by 1930. While geographic maldistribution of the physician supply was 

documented particularly in rural America, Grumbach suggested that planners of the era 

“conveniently sidestepped complicated computations of physician requirements 

involving interactions among supply, productivity, service delivery, and health 

outcomes” (Grumbach, 2002), page 17).  

Following World War II, pressures from society at large pushed for increases in 

the supply of physicians, not only from swelling enrollments at the undergraduate level 

demanding more opportunities for medical school seats but also from rural and 

medically underserved communities in need of more physician coverage. While little 

growth in the number of medical schools or graduation rates resulted in the near term, 
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the publication of the “Bane report” in 1959 shocked the public and the medical 

community by projecting a nationwide shortfall of nearly 40,000 physicians by 1975. 

Advocating the increase of the number of medical school graduates from the existing 

7,400 per year to 11,000 over the next twenty-years, the report became the catalyst for 

passage of the Health Professions Educational Assistance Act of 1963 and marked the 

beginnings of intense focus on health workforce projections in the US As a result of 

federal assistance, the number of medical schools grew from 87 to 126 from 1963 to 

1980. The number of graduates correspondingly increased from 7,264 to near 16,000 

(Ludmerer, 1999).  

During this post-war period, the broader cultural change in which medical care 

became viewed as a basic right was realized in the establishment of the Social Security 

Act. An abundant supply of well-trained physicians was deemed necessary to meet the 

needs of the public health. Noted economist, Eli Ginzberg cautioned at the time, that the 

demand for medical care might be limitless and that producing more physicians might 

increase the costs of medical care without appreciably improving the nation’s health, a 

warning still much ignored in today’s healthcare delivery system. He went on to criticize 

the lack of scientific basis of supply and demand for physician services in either the pre- 

or post- WWII efforts in this regard (Blumenthal, 2004; Ginzberg, 1989; Ludmerer, 

1999).  

The 1963-1990 era of increased physician supply was also supported by 

Medicare funding of graduate medical education. This, coupled with prior legislative 

support, marked the first time the US federal government became heavily invested in 

medical education and physician supply. During the Carter administration, the Graduate 
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Medical Education National Advisory Committee (GMENAC) made dramatic efforts to 

analyze in detail the expected healthcare needs for the US The resultant needs-based 

workforce policy attempted to forecast supply and demand for physicians for the years 

1990 and 2000. Its detailed projections of the required supply by individual specialty 

concluded that excesses in physician supply were fast approaching. GMENAC 

recommended curtailment of medical school enrollments and the numbers of 

international medical graduates (IMGs) utilized within the system. The Reagan 

administration that followed more narrowly defined government’s role in physician 

supply issues and focused on the continued maldistribution of the supply with its 

introduction of the National Health Service Corps (Grumbach, 2002). The “promarket, 

antiplanning mentality” led to no Congressional requests for federal support for health 

professions programs nor projection of workforce needs. This mentality virtually 

eliminated scholarly interest in the field (Mullan et al., 1993). Congress responded by 

discontinuing of federal funding for new physician training; however, it also inadvertently 

provided teaching hospitals with greater incentives to utilize IMGs in the 1983 Medicare 

hospital reimbursement reforms. The net result of these reforms was the growth in the 

number of graduate medical education trainees in the form of IMGs while numbers of 

US medical school graduates only moderately increased (Blumenthal, 2004). 

In 1986, Congress authorized the establishment of the Council on Graduate 

Medical Education (COGME). Title VII of the Public Health Service Act requires the 

Council to provide advice and recommendations to the Secretary of the Department of 

Health and Human Services and to Congress on issues related to the physician 

workforce. These issues include the supply and distribution of physicians in the US, 
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current and future shortages/excess of physicians by specialty, international medical 

school graduates, financing of undergraduate and graduate medical education, 

appropriate efforts to be carried out by hospitals, medical schools and accrediting 

bodies in light of physician supply as well as deficiencies and needs for improvement in 

databases concerning physician demand and supply. Since its inception, the Council 

has produced and released sixteen reports (Council on Graduate Medical Education, 

2005).  

The COGME Reports of the early 1990s predicted a surplus of about 80,000 

physicians by the year 2000, particularly in specialty areas. Over the same period, the 

number of generalists or primary care physician ranks would remain stable. To stem 

these problems, the Council recommended policies to ensure that a 50/50 split into 

generalist and specialty practice occur for all new physician entry. In addition, the 

Council recommended decreasing the available residency slots from 140% of the 

number of US medical graduates to 110%, thus limiting the utilization of IMGs. These 

recommendations, known as the 110/50/50 rule became widely accepted and the basis 

for much of the response to the physician supply debates of the 1990’s (Blumenthal, 

2004).  

The surplus projections gained further support when reexamined by Weiner’s 

work contracted by the Bureau of Health Professions (BHPr), and COGME’s fourth 

report. Using health maintenance organization staffing models, Weiner projected a 28% 

surplus or 165,000 physicians by the year 2000. He subsequently revised the 

predictions raising the percentage to 38% of all practicing physicians by the year 2020 

(Weiner, 1994; Weiner, 1995). COGME’s fourth report suggested lower values with 
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projected surpluses of 15% or 80,000 physicians by 2000 and 18% by 2020. (Council 

on Graduate Medical Education, 1994). While using different approaches, each of these 

studies employed demand-based models rather the needs-based approach of 

GMENAC. Of note, however, all arrived at similar results. By the mid-1990’s, the 

projections began to trickle down without further federal interventions. This was 

evidenced by the decreased number of medical students seeking residencies in 

specialty areas such as anesthesiology and radiology while the number seeking family 

medicine increased (Grumbach, 2002). 

In 1995, Cooper’s seminal work “Perspectives on the Physician Workforce to the 

Year 2020”, reevaluated the various reports of physician surpluses of 15% to 30% 

predicted in the early 1990’s in light of his own projections of 10%. The assessments 

were conducted from three perspectives, that of physician utilization in group and staff-

model HMOs, physician distribution and the future supply of NPCs. Using trend 

analyses and a carefully outlined series of assumptions that included corrections for 

current population estimates, Cooper recalculated the reports of GMENAC, COGME, 

Weiner, and the BHPr. The results of these analyses found significantly less surplus in 

each of the previous reports. The GMENAC surplus projection of 145,000 physicians 

reduced to 4200, COGME from 80,000 to 60,000, Weiner from 165,000 to 6000, and 

BHPr from 73,000 to 5000. His own projections remained at 31,000. Accounting for the 

discrepancies among the various studies were variations in the estimates of physician 

work efforts, underreporting of physician utilization, the increased demand for beneficial 

services over time, population reports and the utilization of resident physicians. Cooper 

furthered the debate on supply and demand of physicians by including geographic 
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distribution analyses that demonstrated significant surpluses in the Boston-Washington 

corridor, normative values for much of the East-West states, and significantly lower per 

capita rates in the central zone of the US. He concluded that while differences existed, 

the solutions would be local rather than national in scope.  

Finally, the author turned attention to the growing number of NPCs and their 

potential impact on the debate. Noting the differences in the three broad categories of 

these types of providers, [ a) advanced practice nurses (APNs) and PAs, b) other 

traditional clinicians such as certified nurse anesthetists, midwives, psychologists and 

several others, and c) alternative clinicians such as chiropractors, naturopaths, and 

oriental medicine doctors)], projections of future supply of these providers were 

formulated. Cooper believed four general conclusions could be made from the exercise 

he had undertaken. First, HMO analyses allowed the derivation of national norms for 

physician demand, and suggested an 18% increase over the time frame examined. 

Second, the supply of physicians expressed in per capita terms would increase faster 

than national norms for the first 15 years creating a bulge effect around 2000 with the 

gap narrowing thereafter. Third, distributional shortages (in some areas of the country 

as much as two fold) continued to exist and could have significant impact on future 

supply and demand issues. And finally, the impact of the rapid rise in the number of 

NPCs needed intense examination. Ultimately, he supported the previous suggestions 

that any future policy needed to incorporate the universe of providers and not just 

physicians (Cooper, 1995; Mullan et al., 1993). To date no attempts have been 

conducted to intensely examine the impact of the rising numbers of NPCs. While 

focused on the PA profession, this dissertation begins this examination. 
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The Physician Workforce Policy Guidelines for the US, 2000 – 2020 published in 

January 2005 provides the basis for current thought on the subject at hand (Council on 

Graduate Medical Education, 2005). Given the current production and practice patterns, 

the Report noted an expected 24 percent increase in full-time equivalent (FTE) 

physicians from 781,200 in 2000 to 971,800 in 2020. Two factors, separation due to 

aging of the physician cohort and the relatively level number of new entrants, will 

contribute to a considerable slowing of growth after 2010. As population growth is 

expected to exceed physician growth by 2015, the per capita number of physicians will 

rise to 301 per 100,000 Americans by 2015, then drop to 298 by the year 2020. The 

total cohort of physicians in active practice was predicted to be around 1.02 million 

FTEs in 2020.  

The COGME Report noted three major factors as driving forces behind the 

demand for physicians: 1) the projected 18 percent growth in the US population 

between 2000 and 2020; b) the aging of the population; and c) the change age-specific 

per capita physician utilizations rates. In addition, the need for services is projected to 

grow between 1.09 and 1.17 million physicians by 2020. This need reflects use of 

service under universal insurance and increased utilization review process. It then 

examined the projected range of supply against demand and against need. Given the 

demand assumptions and using midpoints of projections, a shortage of approximately 

85,000 physicians would occur by 2020. When considering the projected need for the 

US, a projected shortage of 96,000 is evident. Additional scenarios were included, many 

of which will add to the projected shortages above. These included the changing 

lifestyles of younger physicians who will possibly work fewer hours than their 
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predecessors; the increased use of services by individuals over the age of 45, and 

economic expansion that contributes to increased utilization. Other factors may limit the 

shortages such as improved productivity due to advanced technologies and information 

systems, and decreased amounts of inappropriate or unnecessary services due to more 

effective utilization review and quality assurance efforts. Finally, a number of factors that 

could potentially reduce the shortages projected were not included within the Report’s 

scenarios. Specifically, the impact of increases in the supply and utilization of PAs, NPs, 

and other non-physician clinicians was not considered (Council on Graduate Medical 

Education, 2005).  

Based on the projection of a significant shortage of active physicians, COGME 

recommended a multi-pronged strategy to overcome its affects. These 

recommendations included the increase in total enrollment in US medical schools by 

15% from the 2002 levels over the next decade coupled with a phased increase in the 

number of residency/fellowship positions eligible for Medicare funding. The 

development of a system to track the supply, demand, need and distribution of 

physicians was called for with a comprehensive reassessment within the next four 

years. Specialty-specific studies were deemed important to better understand the needs 

and to inform the educational and policy makers (Council on Graduate Medical 

Education, 2005). As previously stated, COGME recognized that the growing number of 

NPCs could reduce the projected shortages. The lack of a coordinated effort focused on 

factors affecting the supply and demand of these potential contributors effectively 

stopped COGME from giving due consideration to their potential contribution. The 

current endeavor will provide much needed information to national organizations 
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charged with projecting the adequacy of healthcare delivery in the US, physician and 

nonphysician alike. 

Health Workforce Forecasting Approaches 

Since the early twentieth century, a variety of forecasting models for healthcare 

personnel have been utilized: simple extrapolation or supply forecasting; needs-based 

models; demand or utilization-based models; benchmarking models, and econometric 

(time series or trend) models (Canadian Policy Research Networks, 2002; Dall, 2006; 

Kolehmainen-Aitken, 1993; O'Brien-Pallas et al., 2001). Within each of these 

approaches, variations occur as researchers select particular variables of interest for 

inclusion. A review of these approaches provides justification for the selection of a trend 

(time-series) approach for the purposes of this dissertation.  

Supply forecasting considers the number of personnel at baseline and projects 

future supply on maintaining the same level of resources. The underlying assumption 

that the baseline ratio of personnel to population supplied an adequate amount of 

healthcare services limits the usefulness of this approach. Discouraging further 

analyses of productivity, the selected ratios are often inappropriate or unrealistic. The 

supply forecasting methodology, while simple to implement, fails to consider the 

complexity of relationships inherent to healthcare service demand either at the current 

or future time period under consideration. Historically, this method provided the basis for 

the initial projections of physician supply in the US in the early twentieth century but has 

fallen from favor due to these serious limitations.  

Needs-based models, a micro-analytic approach, utilize epidemiologic estimates 

of disease characteristics and rates as indicators of current and future healthcare needs 
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of the population under consideration. Through the examination of such data as 

mortality and morbidity rates, norms for the adequate delivery of services to address the 

disease characteristics, and expert opinion of staffing requirements, service is 

converted into time requirements. Based on the time requirements, the demand for 

healthcare providers are modeled based on the age, sex and anticipated need 

(Canadian Policy Research Networks, 2002; Kolehmainen-Aitken, 1993; O'Brien-Pallas 

et al., 2001). The requirement of needs-based modeling for substantial data systems, 

survey capabilities and a wide range of expert opinion to reach consensus effectively 

limits its utility for specialty focused inquiries. The Graduate Medical Education National 

Advisory Committee (GMENAC) utilized this type of analysis, projecting a surplus of 

generalist and specialist physicians by 2000 that failed to occur which has called this 

methodology into question. While the needs-based approach continues to be utilized, 

the successors of GMENAC have incorporated other types of methodology to overcome 

the perceived weaknesses of this approach. In regard to the present project, a recent 

study that examined the strengths and weakness of existing national healthcare surveys 

concluded PA practice was frequently under-represented and would required revision to 

allow accurate estimations (Morgan, Strand, & Ostbye, 2006). Given the previously 

stated limitations coupled with the lack of robust data sources required for this type of 

analysis, the needs-based approach to forecast future requirements of PAs was 

deemed inappropriate.  

The most common type of forecasting methodology, utilization or demand-based, 

considers patterns of service delivery and utilization of health services in determining 

requirements for future numbers of providers (Dall, 2006; Greenberg & Cultice, 1997; 
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Goodman & Committee on Pediatric Workforce, 2005). Minimum data requirements for 

a demand-based model include population projections, trends in healthcare utilization, 

and trends in delivery patterns. This model assumes that the current trends reflect 

desirable patterns of delivery and that future population will follow similar trends in 

utilization rates. Criticisms of this methodology include its neglect of the geographic 

maldistribution of providers, its normative approach to utilization patterns, and its micro-

analytic perspective. The Bureau of Health Professions Physician Requirements Model 

(Greenberg et al., 1997) incorporates additional data sources representing trends in 

medical insurance coverage, copays and other economic factors. While population 

projections and the additional data sources could be utilized for the present 

investigation, current national databases provide little information concerning trends in 

the utilization or delivery patterns of PAs. The inherent focus on physicians as providers 

of care has limited the utility of these databases in examining other types of providers 

such as PAs. These shortcomings led to the exclusion of this approach for the purposes 

of this study. 

Benchmarking methodologies involve the identification of “best practices” in 

which relatively low levels of healthcare provider utilization occurs without apparent 

compromise to the health status of the population. Adjustments for variation in patient 

characteristics, disease prevalence/severity, practice location, and other key health and 

socio-economic factors can be made and used in the development of requirement for 

providers. Rather than assuming stability in the healthcare system, this methodology 

targets specific geographic areas or health systems such as managed care to 

representing the future environment. As considerable disagreement can arise from such 
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selections, this methodology is currently utilized as one alternative in the COGME 

forecasting efforts for the US physician workforce. While “benchmarking” studies have 

included the utilization of PAs, they are dated and/or practice setting specific, making 

this choice of methodology less than optimal (Dial, Palsbo, Bergsten, Gabel, & Weiner, 

1995; Jacobson, Parker, & Coulter, 1998).  

 Forecasting with trend analyses seeks to estimate the relationship over time 

between health personnel demand and its determining factors through the use of 

various statistical techniques such as time-series regression. Proposed by Cooper for 

use in estimation of the US physician workforce, this methodology has been utilized by 

researchers considering workforce requirements by several physician specialty groups 

(Freed, Nahra, & Wheeler, 2003; Rizza et al., 2003; Shipman, Lurie, & Goodman, 

2004). In addition, COGME incorporated this methodology as one of the alternative 

scenarios in its most recent report on physician requirements (Council on Graduate 

Medical Education, 2005). This macro-analytic model of long-term trends underlying the 

supply and utilization of physician services differs from the previously described 

methods in a number of ways that make this approach suitable for the present 

endeavor. By assuming historical trends in provider supply reflects the historical 

demand for healthcare services; it conceptually links supply and demand. Future 

demand projections based on past trends are compared to separate supply projections 

for the determination of shortages or surpluses. Because of its macro level perspective, 

fewer data requirements exist and an aggregate (more parsimonious) model is 

generated. Such a model appears to be more effective and reproducible, key 

characteristics desired in any new model developed for the PA profession. Data sources 



31 

are available that have captured the PA practice characteristics that allow historical 

trend analysis utilized in this approach. This avoids the use of national surveys that are 

known to under-represent PA practice productivity, geographic distribution, and 

utilization patterns (Cooper et al., 2002; Cooper, 2004). Given these differences, a trend 

model approach was selected for the purposes of this dissertation. 

 The conceptual framework of the trend model proposed by Cooper (Figure 1) is 

constructed by the assessment of trends affecting the supply of and demand for 

physician services.  

 
Figure 1. Graphic representation of the Cooper trend model. 

Each of the model’s elements can be readily applied to the PA profession, with the 

exception of “substitution.” Currently, there are no other professions that are recognized 

as alternative providers of services considered to be the “sole” realm of PAs; thus, the 

term has little meaning in the assessment of the PA workforce being undertaken. The 

remaining sections of this chapter are organized in accordance with these conceptual 

elements and their application to the PA profession. Supply: The PA Workforce 

 Adapting the Cooper trend model to the PA profession requires an assessment 

of the PA workforce in terms of the number of active PAs. To provide context for the 

discussion of this study’s results and implications thereof, baseline characteristics of the 
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PA workforce were compiled using the most recent census data from the national 

professional organization, the AAPA. The resultant review provides insight into the 

profession’s demographic composition, geographic distribution, practice settings, 

specialty selections, and work effort.  

The AAPA has undertaken annual census surveys of its membership since 1990. 

Recognizing that not all practicing PAs were active members of the association, in 1996 

the AAPA expanded its reach to include non-members believed to be eligible to practice 

in the US The most recent results were compiled and released in October 2006. Paper 

forms or email invitations to participate were sent to 93% of the 70,612 individuals 

eligible to practice as PAs with a 35.7% response rate (33.2 percent of those eligible to 

practice). As the data were not weighted or adjusted for non-response, the number of 

useable response for each item varies. Data results from the previous years beginning 

with 1996 will be examined and presented in Chapter IV. 

PA Demographics and Geographic Distribution 

The 2006 AAPA Census Report indicates that the majority of PAs are female 

(62%). Eighty-eight percent of practicing PAs are white. The respondents were 41 years 

of age (median = 40), graduated from professional education at age 31 (median = 29), 

and had been in practice for 11 years (median = 7). Ninety-one percent of respondents 

reported practicing clinically, with 4% working as PA educators. 

The AAPA defines five geographic regions of the US: Northeast, Southeast, 

North Central, South Central and West. PAs are fairly evenly distributed across regions 

(19 -24%), the exception being the South Central region at 13%. The states with the 

largest number of clinically practicing respondents included New York (8%), California 
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(8%), Texas (6%), Pennsylvania (6%), Florida (5%), North Carolina (5%) and Michigan 

(5%). In addition, the substantial majority of PAs practice in metropolitan status areas 

(84%). Utilizing the number of currently certified PAs (as reported by NCCPA) and the 

2006 population estimates of the US Census Bureau, a geographic distribution of PAs 

per 100,000 population was developed to facilitate comparisons with physician 

workforce studies (Figure 1).  

PA Practice Characteristics 

The majority of PAs are found either in single/multi-specialty physician group 

practices (44%) with many employed by hospitals (22%) or in solo physician offices 

(13%). With over 60 different specialty fields reported, 38% of PAs practice in one of the 

primary care fields: family/general medicine (27%), general internal medicine (7%), 

general pediatrics (3%), and obstetrics gynecology (2%). General surgery and surgical 

subspecialty practices accounted for 25% of respondents. Other prevalent specialties 

for PAs include various subspecialties of internal medicine (11%), emergency medicine 

(10%), and dermatology (3%).  

Eighty-five percent of respondents work full-time defined as greater than or equal 

to 32 hours per week. The average number of hours worked per week reported an 

average of 44.3 hours worked per week. However when considering types of settings 

(exclusively outpatient versus inpatient), the average number of hours spent in direct 

patient care were 39.0 and 43.2 hours per week, respectively. Self-reported outpatient 

visit encounters per week averaged 94.6 in 2006 compared to 67.3 visit encounters 

reported by those exclusively providing inpatient care. 
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Sufficiency Influencing Workforce Projections 

Utilization Trends of Physician Assistants 

Both the NP and PA professions began in response to an uneven geographic 

distribution of physician and primary care services, particularly in rural and inner city 

areas. A comparison of the practice specialties conducted during the late 1970’s found 

67.3% of PAs (n=3416) and 83.4% of NPs (n=1101) in the primary care areas of family 

practice, general internal medicine and general pediatrics. Family practice was a 

dominate choice for PAs (52%) while general pediatrics was favored by NPs (31.9%). 

PAs were more likely than NPs to locate in smaller communities defined as county 

population under 50,000, while both groups appeared concentrated in central rather 

than suburban settings when based in urban areas. Private practice settings were more 

common for PAs than for NPs (34.7% vs. 18.2%), but equal percentages of these two 

groups selected  in hospital-based (23.7% vs. 27.4%) or community-based settings 

(22.8% and 23.2%)(Perry & Breitner, 1982).  

As NPs and PAs gained further acceptance within the healthcare delivery 

systems, more attention has been brought to further describe their utilization with 

various practice settings (American College of Emergency Physicians, 1997; Cawley & 

Hooker, 2006; Committee on Hospital Care, 1999; Hooker, Cipher, Melson, Cawley, & 

Herrman, 2006; Kelvin et al., 1999; Leshin & Hauser, 1999; Montague, 1994; Oliveria, 

Altman, Christos, & Halpern, 2002; Wolman & Madden, 1996; Anonymous, 1995; 

Anonymous, 1997b; Anonymous, 1997a). In general, this literature focused on 

definitions of NPs and PAs, their respective educational backgrounds, regulation and 

prescriptive authority, reimbursement, and considerations on how to implement these 
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clinicians into specific practice types. A natural outgrowth of these studies has occurred 

over the past decade to document defining characteristics in NPCs’ scope of practice, 

extent of substitution, patterns of practice style, and other issues. This has resulted in 

extensive literature which is encapsulated in the remainder of this section. 

Over the fifteen year period 1976 - 1992, utilization patterns for PAs revealed a 

steady trend toward practice in non-primary care specialties and urban settings. By 

1992, only 43% worked in primary care settings (compared to 57% in 1980) with just 

32% in family practice. Work in acute care settings, specialties, and subspecialties rose 

as did the percentage of PAs employed in hospital settings. The latter most likely 

reflects residency program cutbacks, the curtailment of international medical graduates, 

and cost considerations (Cawley et al., 2006). While 27% of PAs were in practice in 

communities of less than 10,000 population in 1981, only 16% maintained a rural focus 

by 1992. This downward trend was attributed to the feminization of the PA profession 

coupled with the retirement of older male PAs, who generally were more likely to enter 

practice in underserved areas, and to the strong demand with higher remuneration in 

specialty and hospital practice (Cawley, 1993). In comparison, NPs practice continued 

to be dominated by primary care settings and heavily skewed in favor of metropolitan 

counties of greater than 50,000 population (92%) (Fowkes, 1993).  

 With support from the Robert Wood Johnson Foundation, Riportella-Muller, Libby 

and Kindig (1995) documented various characteristics of clinical departments within 

teaching hospitals that utilized NPs and PAs to perform tasks routinely done by medical 

or surgical residents. Results of their national survey of all member institutions of the 

Council of Teaching Hospitals (COTH) revealed a majority (62%) of responders 



36 

reported “substitution” occurring in 463 clinical departments. The researchers contacted 

the individual departments to assess the specific characteristics of interest. Of the 325 

responses (70% return), only 255 were eligible for inclusion due to the extent of 

substitution reported. PAs only were used in 116 departments, NPs only in 77, and both 

by 62. Of the 178 departments (70% of total), PAs were most likely to be found in 

surgical departments (42%), followed by primary care (25%) and medical subspecialties 

(24%). Of the 139 departments employing NPs (54% of total), primary care departments 

represented 39%, specialty medicine 24% and surgery 23%. In addition, the study 

noted the increased likelihood of PAs to be found in emergency rooms while pediatric 

and neonatal care departments were more likely to utilize NPs. Trends in the utilization 

of PAs and NPs over the two year study period indicated increases of 8 and 11% 

respectively, with an estimated aggregate increase between 20 and 24%. The authors 

further assessed reasons for hiring NPCs and their productivity relative to that of 

resident physicians in a subsample of twenty participating departments. Changes in the 

number of residency slots and improved quality of care with full-time workers were 

commonly cited as reasons for hiring NPs and PAs. This further supported the mail 

survey data that suggested the utilization of these providers to cope with declines in 

residency program size. Barriers to utilization included administrative and legal 

problems including county, state, and other legislative requirements, third party 

reimbursement issues, and scope of practice rules and regulations. Despite these 

barriers, almost every respondent reported satisfaction with the experience of NP and 

PA substitution. While noting previous studies had suggested the cost effectiveness of 

utilizing NPCs in hospital setting, the authors expressed concern over the costs 
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associated with the employment of these providers yet suggested that national policies 

“consider the overall impact and find innovative ways to support hospitals in using non-

physician providers” (Riportella-Muller, Libby, & Kindig, 1995). 

 An exploratory study of how NPs and PAs are utilized as primary care providers 

in the managed care environment, specifically in health maintenance organizations 

(HMOs) and multispecialty clinics (MSCs) was conducted from late 1993 to early 1994. 

This qualitative endeavor relied on purposeful sampling technique to select institutions 

that had experience in utilizing PAs and NPs over a number of years, that were 

geographically diverse, and that were not private practices, community-based clinics or 

hospitals that were not part of an HMO or MSC. Interview guides served to enhance 

consistency of data collection and all recorded transcripts were read and coded 

independently for thematic analysis. For the nine institutions sampled, NPs and PAs 

were found to be “interchangeable” for primary care, meaning that each group was not 

only capable of but also expected to perform the range of primary care services 

provided by the organization. The self-reported range of services coincided with the 

usual tasks of history acquisition, physical examination, diagnostic test ordering and 

interpretation, and therapeutic management to include the use of prescriptions. Few 

distinctions were noted among institutions regarding actual NP or PA prescriptive 

behaviors and with the authority to order tests. Three limitations to the scope of practice 

consistently appeared at all institutions: 

(1) Elderly patients with complicated illness and multi-system disease were 

most often referred to the physicians 
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(2) NPs and PAs lacked the authority to directly admit patients for inpatient 

care 

(3) Accountability for patients was different among the providers with the 

physicians being ultimately responsible  

Admittedly, the sample size limited the generalizability of these findings; however, the 

authors suggested that  the “issue is the extent of the independent primary care role 

now being performed by NPs and PAs or ways in which they share primary care in 

teams with physicians . . .”. rather than whether or not these providers will become 

substitutes for their physician colleagues (Jacobson et al., 1998, page 444). 

Around the same time, a study designed to further describe HMO staffing ratios 

utilized a much larger sample than previous literature and also described the utilization 

of NPCs within this setting. Staffing surveys were received from 58 large group 

practices belonging to the Group Health Association of America (54.7 % response rate). 

Unweighted and enrollment-weighted means, standard deviations, medians, and cross-

tabulations were used to describe variations in staffing patterns by type of provider, 

model type and size, geographic location and patient (member) characteristics. The 

majority of responders indicated use of APNs (65.4%) or PAs (63.4%). Median 

enrollment weight ratios of FTE per 100,000 members revealed 19.7 APNs and 8.1 

PAs. When these ratios were then compared to primary care physician to member 

ratios, an inverse relationship was revealed. APNs were more likely to care for obstetric 

gynecology and pediatric patients than PAs (94.7% vs. 51.5%; 89.2% vs. 71.4%) with 

similar percentages for well adults, chronically ill adults, and urgent care. Target ratios 

for staffing were documented across the sample of organizations. The single most 
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common ratio used for targeted staffing was 2,000 members per primary care physician 

with ranges between 1500 and 2000, with a median of 1800. While only one HMO 

reported modification of target ratios for Medicare patients, the majority of responders 

indicated ratios from 250 to 1000 members per primary care physician for the Medicare 

patient population. Most HMOs did not report specific target ratios for NPCs based on 

member numbers basing staffing estimates on the non-physician to physician ratios 

instead. A ratio of one NPC per one to two physicians was most commonly utilized. The 

authors noted that trends of increasing Medicare enrollments could be important factors 

for future staffing requirements but may be partly offset by the increased use of NPCs. 

Limitations of generalizability were also noted due to the absence of data from network-

model HMOs and IPAs (Dial et al., 1995).  

 The extent of the independent or autonomous provision of care by nonphysician 

clinicians provided the focus for analyses undertaken by Cooper and his colleagues 

(Cooper, Henderson, & Dietrich, 1998). Analyses of 10 distinct provider groups, divided 

into two groups as either “traditional disciplines” or “alternative/complementary 

disciplines” were conducted and examined by practice prerogatives. The traditional 

disciplines encompassed three distinct provider groups, PAs, NPs, and certified nurse 

midwives (CNMs) while the alternative disciplines included chiropractors, naturopaths, 

acupuncturists, herbalists, optometrists, podiatrists, certified registered nurse 

anesthetists and clinical nurse specialists. The practice prerogatives that were 

examined included state licensure, autonomy and scope of practice, prescriptive 

authority, and reimbursement. Five trends emerged:  
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(1) The range of the prerogatives correlated with the numbers of nonphysician 

providers in each of the states and was noted to vary substantially from state 

to state 

(2) In states with the most extensive prerogatives, NPCs as a total group had 

broad authority and high degree of autonomy 

(3) Considered as an aggregate, NPCs practice prerogatives overlapped with a 

subset of service provided by physicians, that of “simple licensed general 

care” and “routine licensed specialty care 

(4) NPC provided care was noted to be increasing as task delineation became 

more distinct and market dynamics of the medical care system delivery 

changed 

(5) Growth in the supply of NPCs paralleled the growth in the range of 

prerogatives and the utilization of NPCs 

Several implications materialized from this examination beginning with 

redefinition of physicians’ and NPCs’ roles and responsibilities in light of the diversity of 

clinical practice seen. The overlapping skills and prerogatives noted by the authors 

necessitates an assessment of each disciplines’ future magnitude in relation to each 

other. Finally, the authors’ suggested the need for a regulatory environment within the 

healthcare system that would assure the delivery of quality healthcare by such a diverse 

workforce (Cooper et al., 1998).  

 Cooper (2001) identified three significant changes occurring during the 1990’s 

that allowed for increased utilization of NPCs: the increased number of NPCs trained, 

state laws and regulations enhancing NPC practice prerogatives, and increased access 
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to reimbursement. Following descriptions of seven disciplines considered in the NPC 

category (nurse practitioners (NPs), clinical nurse specialists (CNSs), PAs, certified 

nurse midwifes (CNMs), acupuncturist, chiropractic, and naturopathy), he outlined 

possible challenges and opportunities facing physicians as they “forge new relationships 

with NPCs and as their own spectrum of responsibilities evolve.” In addition, Cooper 

noted: 

 . . the practices of primary care NPCs do not fully overlap those of primary care 

physicians. Rather, they are largely limited to wellness care and the treatment of 

uncomplicated acute and chronic conditions, and they generally exclude complex 

or multisystem care. (page 59) 

Other research, delineated later, contradicts this suggestion however.  

Expounding upon the variation among the various disciplines regarding their 

ability to substitute or complement physician services Cooper concludes that it is 

extremely difficult to predict the full impact of such providers on the future demand for 

physician services. Finally, he suggested that the actual success of any of the non-

physician clinician disciplines would be judged by their ability to effectively participate in 

the continuum of care meeting patient needs and the healthcare system. Since the 

publication of this study, no additional examination of this type has been undertaken; 

however, analyses considering role delineations have occurred.  

An analysis of primary care physician office encounter data from the 1995 -1999 

National Ambulatory Medical Care Surveys (NAMCS) revealed utilization of either NPs 

or PAs by approximately 25% of primary care office-based physicians. Characteristics 

of the office encounters were considered by physician only visits, PA only, NP only, PA 
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or NP with a physician and PA or NP without a physician. Analysis by provider category 

showed that physicians saw a slightly older patient (37.9 years) when compared to PAs 

(31.8 years) and NPs (28 years). In addition a greater proportion of visits for those aged 

>65 were seen by a physician only (19.6%) than by a PA or NP without a physician 

(11.2%). When consider primary diagnoses as specified by the International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), no 

statistically significant differences were found by provider category including 

examination of specific leading diagnoses such as diabetes and hypertension. Further 

examination of the intensity of services delivered by provider category revealed no 

statistically significant differences in the mean number of diagnostic/screening services 

or number of medications ordered. While a higher proportion of therapeutic and 

preventive services that included counseling/education and other non-medication 

therapy were noted for the NP-only category, no statistically significant differences were 

found among the categories. Limited by survey instructions, the mean duration of visit 

could only be calculated for visits that included a physician. For a physician-only visit 

the duration averaged 17.3 minutes while the visit in which a physician and either a PA 

or NP were seen averaged 21.3 minutes. The authors noted that the results most likely 

underestimated the full degree of primary care services provided by PAs and NPs 

nationally due to the design of NAMCS to represent the amount of care delivered by 

non-federally employed physicians (Hooker & McCaig, 2001). 

 Noting that the focus of much of the previous literature had focused on the 

differences between NPs and PAs in terms of educational preparation, philosophy of 

care, scope of legal authority to practice and their working relationships with physicians, 
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Lin, Hooker, Lenz and Hopkins examined NP and PA practice styles employing 

encounter data from the National Hospital Ambulatory Medical Care Survey (NHAMCS). 

To ensure sufficient sample size, three years (1997-1999) of data collected annually by 

the National Center for Health Statistics were combined as a general pool. Results of 

the analysis revealed that an estimated 237 million visits were made to non-federal 

hospital outpatient departments with 13 million of these involving NPs and 9.8 million 

involving PAs over the three year period. Increased participation was documented for 

both groups, with NP visits increasing from 4.5% in 1997 to 5.9% in 1999 and an 

average of 5.6% of all visits across the period. In comparison, PA visits increased from 

2.1% in 1997 to 5.1% by period end for an average of 4.1% yearly. Patient visits were 

categorized as sole provider, key provider with assistance from a nurse, nurse assistant 

or medical assistant, or as a co-provider with physicians. For both NPs and PAs, the 

majority of care fell into the sole provider or key provider designation, 81.8% for NPs 

and 76.2% for PAs. When considering geographic distribution of practice as a sole 

provider of care, no statistically significant differences between the two groups were 

found in terms of urbanity (metropolitan area versus nonmetropolitan areas) or the four 

major geographic regions of the US Differences were evident, however, when 

considering the category of key provider. Here, more PA visits occurred in 

nonmetropolitan areas, in the Midwest and West while NPs were concentrated in the 

Northeast and South regions. Expected source of payment (private versus 

Medicare/Medicaid) was similar between the groups when consider as sole providers, 

yet a larger percentage of NPs as key providers received Medicaid/Medicare payment, 

possibly reflecting the greater percentage of pediatric clinic visits seen by NPs. 
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Statistically significant differences were found in type of practice setting with more PA 

vs. NP visits occurring in general medicine clinics (sole provider - 81.9% vs. 65.1%, 

p<0.0001; key provider – 92.2% vs.64.7%, p<0.001) and more NP vs. PA sole provider 

visits occurring in obstetric/gynecology clinics (19.8% vs. 8.3%, p<0.036) and key 

provider visits occurring in pediatric clinics (22.2% vs. 3%, p<0.001). Whether as a sole 

provider or a key provider, acute care visits dominated the PA practice while more 

routine exams and preventive/therapeutic visits prevailed for NPs. The authors 

expressed that a predictable rising trend in the volume of outpatient department visits 

for NPs and PAs can now be seen, up 8% over a previous study using earlier years 

from NHAMCS data. They speculated the reasons for such a trend may be a result of 

an increased supply of these providers, an increased demand by hospital outpatient 

departments and by the Balanced Budget Act of 1997 that standardized reimbursement 

rates for NPCs (Lin, Hooker, Lenz, & Hopkins, 2002).  

Victorino and Organ (2003) hypothesized that PAs decrease surgery resident 

work hours and improve resident work outlook. Spurred by the results of the 2001 

surgical residency match that initially left 68 unfilled categorical first-level positions and 

425 preliminary first-level positions unfilled and the realization of a 30% decrease in the 

number of medical students applying to general surgery over the previous nine year 

period, the authors sought to document the utilization of PAs to “make up the workload 

that would have been completed by the residents” (page 973). The results of the 

resident survey (n=61, response rate=91%) conducted monthly for six months following 

the introduction of PAs onto the service demonstrated significant reductions in the mean 

number of hours worked per week by residents (from 102.2/week to 87.3/week). The 15 
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hour per week reduction equated to a near 1:1 ratio of resident work hour decrease to 

PA work completed. Additional advantages were seen in the decrease of surgical 

residents’ perceptions of work-associated stress, improvement in morale and decreased 

time spent in the hospital. While recognizing the inherent problems and biases 

associated with survey research, the short study length, and the complexities involved 

with perceptions of stress and morale, the authors concluded that the introduction of 

PAs had been “a tremendously positive experience” (Victorino & Organ, 2003). 

Oswanski, Sharma and Raj (2004) examined the effects of using PAs in a Level I 

trauma center. Their retrospective analysis was prompted by the September 2002 

proposal by the Accreditation Council for Graduate Medical Education (ACGME) limiting 

resident duty hours to 80 per week over a 4-week period. Data were collected from the 

Toledo Hospital and Toledo Children’s Hospital trauma registry for two six-month 

periods; in 1998 (residents only) and again one year later following the replacement of 

residents by PAs supervised by trauma attending physicians. All patients evaluated 

and/or admitted by the trauma services were included. Study variables included injury 

severity score (ISS), transfer time, length of stay (LOS) and mortality rates. A series of 

hierarchical linear regressions were conducted to assess the effect of year controlling 

for age, gender, race and severity of illness on LOS and transfer times. A retrospective 

analysis of participation (involvement) rates was also conducted. Results revealed a 

single statistically significant outcome, a decrease by one day in the LOS for patients 

transferred directly to the floor from the emergency center. The introduction of PAs had 

had no negative impact on patient outcomes, were seen has a positive experience, and 



46 

contributed significantly to the trauma centers operations (Oswanski, Sharma, & Rai, 

2004).  

The Center for Health Workforce Studies at the University at Albany, State 

University of New York, reported the use of NPCs in the allergy/Immunology physician 

marketplace and provided an update on the allergist/immunologist marketplace. 

Conducted in late fall of 2003, the survey received 168 responses for a rate of 56%. All 

responses were weighted to account for gender, age, and geographic region in attempts 

to standardize characteristics of the allergist/immunologist population. Of the 27% of 

panel members who indicated working directly with NPCs, those in group practices 

were more likely to utilize these providers than those in solo practices. In addition, 

younger physicians (< 55 years) and female physicians were noted to be more likely to 

work directly with NPCs; however, statistical significance was not reached. On average, 

these physicians worked with 1.4 NPs and 0.6 PAs, figures that did not vary when 

gender, age or practice setting of the physician were considered. The most common 

use of NPCs was to see routine follow-up patients (94%) with half reporting the 

inclusion of new patient visits (52%), yet less than a third (29%) reported that NPCs had 

their own panel of patients, suggesting a complementary focused practice rather than 

substitution. In terms of satisfaction and practice efficiency, 71% of respondents were 

very satisfied with the NPCs in their practice, 89% reported that the utilization of these 

providers increased the number of patients seen in the practice with 66% reporting that 

practice efficiency was increased and 53% reported increased income to the practice as 

a result. While plans to hire additional NPs or PAs were considered, no specific results 
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were reported other than the suggestion that growth in the utilization of these providers 

is likely to be steady but slow (Forte & Salsberg, 2004).  

The most recent probe into utilization trends comparing physicians to NPCs as a 

group is the 1987 National Medical Expenditure Survey and the 1997 Medical 

Expenditure Panel Survey (Druss, Marcus, Olfson, Tanielian, & Pincus, 2003). This two-

stage analysis considered the trends of ten groups of NPCs and concluded that there 

was a “degree of differentiation” among various provider groups in regard to the 

services provided but not the type of patient treated. The inclusion of provider groups 

such as podiatrists, social workers, psychologists and alternative providers hampered 

the ability of this study to clearly compare provision of services against that of 

physicians given the often unique and focused services of their respective professions. 

While certain services may be within the realm of primary care and specialist 

physicians, their inclusion limits the ability to closely compare providers that provide a 

broad range of services that are typically (and previously) the sole realm of physicians. 

As an example of the confounding inherent to the inclusion of such a variety of 

providers was the finding of decreasing number of acute care visits between 1987 and 

1997 provided by the non-physician clinician group. This decrease could have been 

greatly affected as most services provided by the majority of the providers within the 

non-physician clinician grouping are non-urgent in nature.  

 Variable selection for analysis also precluded the ability to develop an accurate 

comparison of services provided among the various types of clinicians. This study 

chose broad categories of general checkup, acute care, psychotherapy, preventative 

care, maternity care or other. While this provided insight into the type of care provided, 
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generalizations are again difficult to make given the vast diversity of provider included in 

the non-physician clinician group. Furthermore, these more general categories do not 

provide the level of discrimination needed to more adequately assess similarities or 

differences among more like providers, such as PAs, to their physician counterparts.  

 The analysis of medical condition seen is also likely skewed by the diversity of 

providers examined. The top ten disorders investigated included back problems, acute 

respiratory infection, arthropathy, eye disorder, mood disorder, normal pregnancy, 

essential hypertension, and diabetes. It would be rather uncommon for a podiatrist, 

psychologist, social worker, or midwife to treat the majority of these conditions while 

rather common for either a PA or an NP to do so. Admittedly, the authors noted that the 

“amalgamation of providers” was problematic and that the study more likely “useful for 

understanding the care provided by physicians than care provided by NPCs” (Druss et 

al., 2003).  

Clearly, the literature to date suggests a number of roles have increased the 

utilization of NPCs within the American healthcare system. However, in terms of 

“utilization” rates required in demand-based workforce approaches, the data remains to 

be fully elucidated. This deficiency in existing data sources hampers a more complete 

examination of PA supply and demand by a variety of workforce approaches.  

Adequacy of PA Services 

 As noted by Cooper (2000), supply must be interpreted in the context of both the 

utilization of and the adequacy of services provided by clinicians. Analyses of the later 

focus on such variables as waiting times, unmet needs and excessive services with 

data gathered through surveys, consensus panels, or that are provided by group 
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practices and other institutions that employ the clinician. Anecdotally, the national PA 

organizations insist that a significant unmet need exists as “evidenced” by the number 

of jobs available for new graduates. To date only two published studies exist that focus 

on this aspect of PA practice, both conducted in the late 1990’s. The results indicated 

between 2 to 3 jobs per graduate (Cawley, Simon, Blessing, & Link, 1998; Cawley, 

Simon, Blessing, Pedersen, & Link, 2000). The literature search revealed no studies 

concerning the “waiting times” to see a PA. Despite the lack of empiric evidence, it can 

be reasoned that PA services in the US are currently insufficient as there is evidence of 

physician shortages in both primary care and specialty settings.  

 In the 2006-2007 edition of its Occupational Outlook Handbook, the US 

Department of Labor, Bureau of Labor Statistics ranked the PA profession among one 

of the fastest growing occupations in the US Citing anticipated expansion of the 

healthcare industry and an emphasis on cost containment, the Bureau expects “much 

faster than average” growth for PAs through 2014. Their findings suggested additional 

utilization of PAs will occur in a variety of practices from primary care to medical/surgical 

specialties, and a variety of settings from solo practices to institutions. The outlook 

further suggested that additional PAs may be needed to augment medical staffing in 

inpatient teaching hospital settings as the number of hours physician residents are 

permitted to work is reduced. 

 It should be anticipated that the future holds unmet needs for PA services. The 

examination of the trends influencing the PA workforce undertaken by this study is 

timely, relevant and will provide much needed information required to assist the nation 

in responding to these needs.  
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Trends Influencing Workforce Projections 
 

Productivity Trends of PAs and Other Nonphysician Clinicians 

 Influences of productivity in relation to workforce projections can be 

characterized through the examination of the differences in professional time or work 

output given factors such as gender, age, life-style, employment status and efficiency. 

For the PA profession much work remains to be done in many of these areas as the 

majority of the “productivity” studies to date have focused on the PAs  versus that of 

their physician colleagues rather than between subgroups of PAs. With this in mind, the 

following section provides an overview of the productivity of PAs.  

Productivity investigations conducted in the first decade following the emergence 

of the PA and NP professions revealed differences in the number of patients seen per 

day, median number of hours of direct patient care, and total median hours at work. PAs 

saw twice as many patients per day than NPs (25 vs. 12) and averaged 8 more hours 

per week in direct patient care (System Sciences Inc., 1976). The Congressional 

Budget Office Report of 1979 compared minutes per visit for physicians, PAs, and NPs 

and found a 1.13 PA/MD ratio (13.2 to 11.7 minutes) compared to a 1.65 NP/MD ratio 

(19.4 to 11.7 minutes). In considering reasons to explain these productivity differences, 

Perry et al. suggested the predominance of female NPs may have accounted for shorter 

work weeks while their practice orientation may have fostered a less hurried approach 

during patient visits. They further suggested that longer working hours for PAs may 

have reflected their greater concentration in fee-for-service practice settings where call 

and longer work weeks were required and their greater involvement in the management 

of acute, self-limited conditions (Perry et al., 1982).  
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The Office of Technology Assessment Case Study (OTA 1986), prepared in 

response to a request by the US Senate Committee on Appropriations, provided a 

comprehensive analysis of the potential contributions PAs, NPs and CNMs might make 

to the management of medical technology and healthcare cost and quality. In reviewing 

the productivity literature, the report noted that three approaches were taken: 

(1) Time per visit (comparing how much time physicians, PAs or NPs take to 

complete an office visit) 

(2) Average number of visits per unit of time (comparing how many visits different 

providers handled for a given time period) 

(3) Marginal product (assessing the effect of adding an NP or PA to a practice by 

total number of patient visits) 

The report concluded that most studies indicated that NPs and PAs spent more time per 

office visit than did physicians. One study showed an average of 19.4 minutes/visit for 

NPs, 13.3 minutes/visit for PAs and slightly over 11 minutes/visit for physicians. A 

similar study conducted in an HMO setting showed PAs used an average of 7.1 

minutes/visit while physicians used 8.9 minutes/visit; however, chart review indicated 

physicians were more likely to see older patients with higher levels of comorbidity. Other 

studies supported findings that, in general, NPs varied more from physicians in average 

time spent with patients than did PAs.  

The OTA study (U.S.Congress Office of Technology Assessment, 1986).made 

three summary points: 

(1) Physicians can substantially increase practice output by employing NPs or 

PAs who operate under their supervision 
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(2) Although PA and, especially, NPs see fewer patients per hour than physicians 

see, these practitioners are capable of carrying substantial proportions of the 

workloads of primary care physicians 

(3) Practice setting may be an important factor in the productivity of NPs and 

PAs, as evidenced by the differences in the use and productivity of NPs and 

PAs in HMOs and traditional settings.  

 The productivity of PAs is linked to the economic considerations given to their 

employment. Kaissi, Kralewski, and Dowd (2003) examined financial and organizational 

factors influencing the employment of NPs and PAs in medical group settings using 

survey data of 128 such practices in Minnesota (72% response rate). The model utilized 

was based on the expected influence of restrictive health insurance payment and 

proposed that practices that had more experience in financial risk sharing and those 

that had more revenue from such contracts were more likely to employ NPCs. 

Independent variables included the size (FTE physician numbers), type (single vs. 

multispecialty), location (urban vs. rural), profit status, and ownership (hospital, plan, or 

physician) of the practices surveyed as well as the cohesiveness, defined on a 1 to 10 

scale. Noting the philosophic differences between PAs and NPs in regard to dependent 

or independent practice, the authors choose to consider their respective employment 

rates separately. Results revealed PA/MD and NP/MD ratios the same at 0.25 or one 

for every four physicians. Larger group practices were more likely to employ PAs, NPs, 

or both and supported the authors’ hypothesis that organization capacity is an important 

factor influencing NP/PA utilization. Contrary to the authors’ beliefs, the presence of 

specialist physicians in the practice had no positive or negative effect on non-physician 
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clinician employment. Neither the number of years of experience in financial risk sharing 

nor the amount of revenue from capitation contracts related to employment of PAs or 

NPs. Noting the geographic limitations of this study, further research continues to be 

needed at the national level about organizational characteristics that direct group 

practices towards the hiring of NPCs (Kaissi, Kralewshi, & Dowd, 2003).  

To estimate the savings in labor costs associated with primary care visits in a 

managed care organization (MCO), a study examined primary care practices within 

Kaiser Permanente Georgia. Data on near two million visits were extracted from 

computerized visits, representing 206 practitioners with labor costs extracted from 

payroll ledgers. Overall, PAs/NPs attended 32.4% of adult medicine visits and 18.5% of 

pediatric visits. Visits for acute minor illness were significantly more likely and chronic 

conditions less likely to be in the PA/NP realm. In addition, the likelihood that a visit was 

attended by a PA/NP declined with patient age, controlling for present condition. 

Relative to the19 to 29 year old group, adjusted odds ratios for 2000 data for 55 to 64 

year olds, 65 to 74 year olds and those greater than 75 years were reported as 0.392, 

0.237, and 0.177 respectively. Average labor costs per visit were found to vary by the 

extent to which PAs/NPs were utilized. Those at the seventy-fifth percentile of PA/NP 

use realized 6.1% lowering of labor costs per visit and 3.1% decrease in total annual 

labor costs when compared to practices in the twenty-fifth percentile of use. The authors 

noted that the generalizability of these results may be limited as it focused on a single 

MCO and was observational in nature rather than suggesting what should or could be 

realized with varying PA/NP ratios, visit capacities and changes in the PA/NP to doctor 

salary differential. The authors concluded that since the pressure to manage cost 
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inflation,  to improve patient outcomes, and to address  physician workload/stress was 

unlikely to abate, the integration of NPCs represents one strategy which could 

contribute to the resolution of such issues (Roblin, Howeard, Becker, Adams, & 

Roberts, 2004). 

In addition to a labor benefit, Hooker demonstrated the use of PAs for some 

episodes of care decreased the use of resources. Examining four common acute 

medical conditions seen by physicians and by PAs in an HMO setting, the author found 

the total cost of the visit for each of the conditions managed by PAs was less than of a 

physician. No statistically differences were found when comparing the use of laboratory 

and imaging costs between the two types of providers nor were differences found in the 

rate of return visits for a diagnosis. Further, PAs on average saw ten to fifteen percent 

more patients per year than doctors in the same department (Hooker 2002). 

High levels of PA productivity is evidenced by the research to date; however, 

there is a lack of research available to ascertain the differences in productivity due to 

gender, age, or employment status. It remains unknown if female PAs are similar to 

female physicians who generally work 15% fewer hours and see 15% fewer patients 

than male physicians. Similarly, the effects of age and lifestyle on PA productivity have 

not been researched. As a result, the current analysis is unable to consider such factors 

within the structure of the model. Despite this shortcoming however, the development of 

baseline projections that can be refined as additional information becomes available is 

of paramount importance. 



55 

Attrition of PAs from the Workforce 

Future workforce projections must be cognizant of the loss in the labor force. 

Attrition comes in various forms and includes retirement, mortality, and change of 

occupation. In general, trends in attrition are assessed through examination of actuarial 

tables (mortality) and surveys conducted (retirement, change of occupation). 

Assumptions concerning the attrition trends of the PA profession are discussed next.  

Little is known about the actual retirement rates among PAs. The youth of the 

profession, 40 years as of 2007, suggests that this factor maybe increasingly important 

as the first PAs to graduate are at retirement age. As the number of graduates during 

those early years was considerably smaller than the numbers produced by PA 

programs today, the impact may not be felt for an additional decade. Recent surveys of 

their physician colleagues reveal they are leaving their profession at earlier ages and 

are likely to do so in the future. Whether PAs will follow this pattern is unknown and in 

need of investigation. The Social Security Administration reports that most American 

workers will retire between the ages of 65 to 67. For the purposes of this study, an 

assumption of retirement at age 68 was applied.  

PAs appear to be well satisfied with their career choice with little change in 

occupation evident (Freeborn & Hooker, 1995; Marvell & Kraditor, 1999). While some 

have pursued physician education, the majority continue to practice as PAs. Thus, this 

trend was not considered in the workforce projections herein.  

The Economy of the US: Gross Domestic Product 

 In keeping with the conceptual framework outlined by Cooper, it is assumed that 

the dominant factor in the growth of demand for PA services is the overall growth of the 
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economy as measured by GDP. This domination has been shown in physician 

workforce studies from the US at the state and national level. In addition, specialty 

physician studies have also documented the link between GDP and the demand for 

their services. As will be delineated in Chapter III, correlations between past levels of 

PA supply and GDP will be conducted to demonstrate this relationship.  

US Projections of Population and Demographic Changes 

The changing demographics of the US population exerts pressure on the 

demand for healthcare services including that provided by PAs. Recently clearing the 

“300 million” mark, its consideration must be included in any workforce projection 

endeavor. This section provides an overview of expected changes in and delineates 

how these are incorporated into the projections of the PA workforce.  

Commissioned by the National Institute on Aging (NIA), the “65+ in the US: 2005” 

provides insight into the implications for healthcare provision over the next twenty-five 

years particularly for the elderly. By the year 2030, the US population aged 65 and over 

is expected to double in size resulting in 1 out of every 5 Americans belonging to this 

group. Already in 2006, the fasting growing segment of the US population is the 85 and 

over group. The anticipated rapid growth is fueled by US Baby Boomers who will turn 65 

in the year 2011. Following the incorporation of this generation, the growth of the older 

population will slow after 2030. As of 2000, the older population accounted for 35 

million, with 72 million predicted by 2030, and an additional 15 million by 2050. When 

put in context with the total population, there is a projected 18% total growth between 

2010 and 2030 compared to a 78% growth rate for the elderly during this time frame. 
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 Growth in the diversity of this older population is anticipated shifting from 83% 

non-Hispanic white, 8% black, 6% Hispanic and 3% Asian in 2003 to 72% non-Hispanic 

white, 11% Hispanic, 10% black, and 5% Asian by 2030. While the health of older 

Americans continues to improve, a significant number (14 million in 2000) reported 

some level of disability mostly linked to high prevalence of chronic conditions such as 

heart disease and arthritis. The impact of increased prevalence of these chronic 

diseases, particularly in blacks and Hispanics, will most likely increase the number of 

people reporting disability. On a more positive side, the proportion of Americans with 

higher levels of education and its link to better health, higher income and a higher 

standard of living in retirement demonstrated a five fold increase between 1950 and 

2003. By 2030, more than one-fourth of the older population is expected to have an 

undergraduate degree. Ultimately, this aging of the population represents a clear 

increase in the demand for medical services. Yet how much demand is generated is 

linked to the resources available represented by the state of the economy. As such, 

aging was not considered separately in the PA Demand Model but rather is reflected in 

the use of GDP as a proxy for the state of the economy.  

Similarly, population trends are significantly affected by birth rate and 

immigrations trends. The ongoing debate over immigration in the U.S creates more 

uncertainty on what this portends for healthcare demand. In addition, birth rates vary 

appreciably between ethnic groups. The impact of these trends on demand for 

healthcare services is difficult to ascertain but like aging it can be reflected by 

considering the state of economy as its proxy.  
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While Cooper provides clear arguments to support the upward modification of US 

Census Bureau population projections, no modifications were made for the purposes of 

this initial effort in modeling the PA workforce. The most current population projections 

were utilized for application to the PA Trend Model. This application allows the 

quantification of demand in terms of PAs per 100,000 population.  

Constraints Influencing Workforce Projections 
 
Training Factors: PA Education and its Graduates 
 
 The first four PA programs were established between 1965 and 1968. Following 

the passage by Congress of the Comprehensive Health Manpower Act in 1971, forty-

four additional programs were established over the next eight years with only three 

programs added in the subsequent twelve year period. Significant growth in the number 

of programs occurred during the 1990’s with the development of an additional 69 

programs. This trend may reflect the additional support from Title VII grant support that 

targeted increased enrollment as well as new program development. Since that time, 

growth has once again diminished with few new programs being established annually 

(Hooker & Cawley, 2003). Figure 2 graphically depicts this trend, below. As of October 

2006, one hundred thirty-five PA programs actively enrolled students. 
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Figure 2. Number of new PA programs by year of first entering class. 

 

 Characteristics of PA programs, their students and subsequent graduates are 

documented within the annual report of the Physician Assistant Education Association 

(PAEA). The annual survey report covers general program characteristics, program 

personnel, and PA student characteristics. The trends in graduate information provide 

the most relevant information in considering workforce issues (Simon & Link, 2005).  

The mean number of graduates during the academic year 2004-2005 was 33.9 

per program, representing 90.9% of those originally enrolled for this class. Attrition 

accounted for 6.2% of the loss with 2.9% due to deceleration. While attrition was higher 

than the previous year, it was lower than the twenty year average of 7.5%.  

Attrition rates during the 2004-2005 academic period were notably higher for 

certain ethnicities, Black/African-American (16.7%) and Hispanic (8.3%), and for 

students older than 33 years of age (10.3%). The annual rate of attrition for non-white 

students was reported as 8.9% with fluctuations over the past twenty years ranging from 
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a high of 25% in 1990 to a low of 6% in 2002. When considering age at enrollment, a 

downward trend has been noted over the past ten years for those in the > 29 years 

group, although this group still accounted for 27.8% of students enrolled in the Class of 

2004-2005.The final estimation of number of graduates was 33.9 X132 or 4,475 as two 

programs were yet to confer degrees. The graduation rate correlates to NCCPA records 

of first time candidates for the national certification examination administered during 

2005.  

Fiscal Constraints: Medicare/Medicaid Coverage 

Additional constraints should be considered as workforce projections are 

interpreted. The utilization of PAs continues to be influenced by fiscal constraints such 

as reimbursement for services. The single largest payer for medical services in the US 

is the Center for Medicare and Medicaid Services (CMS). A brief overview of these 

systems and rates applied to PA services is provided to enhance the understanding of 

this particular fiscal constraint. 

While interest in the provision of health insurance coverage in the US dates back 

to the early twentieth century, few initiatives beyond the limited support of state activities 

related to public health and the care of mothers and children provided by the Social 

Security Act were realized by the 1930’s. Following WWII, private health insurance grew 

rapidly as a means to expand employee fringe benefits given the government-limited 

direct-wage increases. As a nation, Congress considered various proposals for national 

health coverage during the 1940’s, but instead acted in 1950 to improve the access to 

healthcare for those receiving public assistance. This represented the first federal 

government participation in the provision of reimbursement made directly to medical 
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providers. In a similar fashion, the need of the aged population for improved access to 

medical care resulted in the passage of “Medical Assistance to the Aged” in 1960. In 

1965, the Medicare and Medicaid programs (Title XVIII and XIX) of the Social Security 

Act were established and continue today (Folland, Goodman, & Stano, 2004; Hoffman, 

Jr., Klees, & Curtis, 2005). 

For the consideration of the impact on projections of the PA workforce the 

following baseline 2004 Medicare expenditures and provider participation rates are 

provided. 

(1) Part A payments totaled $167.6 billion covering 41 million people  

(2) Part B payments totaled $135.4 billion covering 33 million people 

(3) Total number of Part B practitioners as of February 2004 was 906,422 with 

23.3% non-physician providers (211,047) 

Medicare reimbursement for services provided by PAs dates back to 1977 and the 

passage of the Rural Health Clinic Services Act. Since that time, incremental yet 

significant expansions were realized by the profession to include coverage in hospitals, 

nursing facilities, rural Health Professional Shortage Areas, and first assisting at 

surgery. With the Balanced Budget Act of 1997, coverage was extended to all practice 

settings at one uniform rate. Currently, Medicare pays the employer for medical services 

provided by PAs at 85% of the physician’s fee schedule. Outpatient services provided in 

offices and clinics may be billed under “incident to” provisions that allow payment at 

100% of the physician fee schedule if the following conditions are met:  

(1) The physician is physically on site when the PA delivered the service 
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(2) The physician treats all new Medicare patients with subsequent care by PAs 

allowable 

(3) The physician treats all established Medicare patients with new medical 

problems with subsequent care by PAs allowable (American Academy of 

Physician Assistants, 2006b). 

Title XIX of the Social Security Act (Medicaid) is a cooperative venture between the 

federal and state governments to provide medical assistances to low income/resources 

individuals and families. Although the benefits of Medicaid are administered by each 

state, benefits received may vary considerably. Currently, all fifty states cover services 

provided by PAs under their respective Medicaid programs. As with Medicare, the 

reimbursement is made directly to the PAs’ employer at either the same or slightly lower 

than physician rates (Folland et al., 2004; Hoffman, Jr. et al., 2005). 

The changes to the reimbursement policies of the major payers in the US system 

may account for the increased utilization of PAs in a variety of practice settings. With 

uniform rates in Medicare for PA services, the ability to effectively employ PAs has been 

enhanced. Changes to the state-run Medicaid system could well impact the utilization 

and subsequent demand for PAs into the future. While important to the considerations, 

this type of fiscal constraint is not directly added to the PA workforce model per se; 

rather, these influences will be more fully discussed as the implications of the model are 

delineated in Chapter V. 

Summary 

 This chapter provided a literature review of the historical perspective of physician 

workforce investigations, the various approaches used, and a justification for the 
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application of Cooper’s trend model to PA workforce analyses. Using the framework of 

the trend model, relevant PA literature was reviewed in regard to trends affecting the 

supply and demand for PAs. These trends included PA utilization, productivity, and 

attrition from the profession. Both economic trends measured as GDP and US 

population changes were described and justified as variables within the proposed 

demand model for the PA profession. Finally, constraints due to training and fiscal 

considerations were presented. The following chapter addresses the methodologies that 

were utilized to answer the research question and objectives of this endeavor. 

 

Figure 3: Geographic distribution of PAs in the US per 100,000 population. 
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CHAPTER III 
 

METHODOLOGY 
 

Introduction 
 

Recognition of the physician assistant (PA) contribution in the delivery of 

healthcare has lead to calls for its inclusion in estimates of physician workforce supply 

and demand. To answer these calls, several research objectives were established 

(Chapter I). The approach and methodology for each of these objectives is described 

and range from simple descriptive statistics to that of time-series forecasting using an 

autoregressive integrated moving average (ARIMA) procedure. Various methodologies 

utilized in health workforce personnel estimates were previously reviewed in Chapter II 

and substantiated the selection of a trend or time series forecasting approach for the 

development of the proposed PA supply and demand model. Variable selection and 

data sources for their representation are also reviewed. 

Research Objective 1 Methods 

Describe the current status of PA practice in the US to include:  

a) demographic composition and distribution trends 

b) practice selection by specialty and practice setting trends 

c) scope of practice prerogatives effecting PA utilization 

 The first research objective focuses on the description of PA practice in the US. 

Variables of interest include its demographic composition and trends of its distribution, 

practice selection, and practice setting. PA data includes current age, self-reported 

practice specialty, and state of residence of all certified PAs as of October 2006. 

Frequency counts establish the current demographic composition of PAs in the US 
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Each variable is assessed annually by the PA national professional organization, the 

American Academy of Physician Assistants (AAPA). Data from the 1996-2005 AAPA 

Census Reports will be accumulated in a single database and examined for trends with 

descriptive statistics analyzed. 

 Practice prerogatives or regulations governing PA practice will be reviewed by 

accessing each state’s medical board website and retrieving relevant information. 

Specifically, the rules and regulations were examined for scope of practice limitations, 

prescriptive privileges, and the number of PAs a physician can supervise at one time. 

Each of these elements exerts significantly impact on the utilization of PAs, currently 

and into the future.  

Research Objective 2 Methods 

Delineate a demand model for the utilization of PA that utilizes: 

a) the past and future estimates of gross domestic product as chained in 

2000 dollar  

b) the past and future estimates of US population growth 

 The second objective requires the delineation of a demand model for the 

utilization of PAs. The notion that the US economy and population growth trends are 

“causally” linked to physician supply was extrapolated to that of PA supply as was the 

trend model framework (Cooper et al., 2002). GDP estimates as published by the US 

Bureau of Economic Analysis were utilized as the proxy for the economy status. 

Published estimates of the population of the US were used directly without modification. 

 The selection of a specific quantitative forecasting methodology was based on 

several factors. First, all conditions required of a quantitative forecast were met. 
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Information about the past was readily available that could be quantified in numerical 

data, and it is assumed that past patterns will continue into the future. The next decision 

was to consider whether an explanatory model or that of time series model was most 

appropriate. As the objective of the study was to use the pattern of the historical data 

and extrapolate the patterns into the future, a time series model suitable for the 

examination of trend data was selected. In addition, this was in keeping with Cooper’s 

trend model methodology. As a variety of time-series approaches are available, further 

consideration of the data relationships and approach assumptions was required.  

 Initial considerations of the dominant trends in workforce demand, GDP and 

population growth, and their relationship to each other suggested a number of factors 

that influence the specific type of forecasting methodology that would be most effective. 

Most importantly, because GDP and population are closely linked with correlation 

approaching 1, it could be anticipated that a significant amount of collinearity would 

exist. As collinearity increases, the regression coefficients computed become more 

unstable as measured by their standard errors and unreliable (Makridakis, Wheelwright, 

& Hyndman, 1998). As a result, the class of ARIMA models was next to be considered.  

Given the desire to include both GDP and population trends in a single model, an 

advanced autoregressive forecasting methodology that allowed the inclusion of other 

information in one model was required. With GDP and population growth as explanatory 

variables and PA demand as the forecast variable, a regression with ARIMA errors or a 

dynamic regression model was considered. Both of these methods are appropriate 

when no feedback between variables exist, meaning that while the explanatory 

variables exert affects on the forecast variable, they are not affected by the forecast 
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variable. In addition, these models are capable of handling the autocorrelation inherent 

in trends. 

Finally, it was anticipated that the effect of a change in either GDP or population 

would precede a change in PA demand by more than one time period. By definition, 

when explanatory variables exert their influence over several future time periods, a 

dynamic system exists (Makridakis et al., 1998). Thus, a dynamic regression model 

(aka, transfer function model) was selected as the approach to forecast PA demand.  

 The dynamic regression model can be written in the following form. 

  ttt NXBvaY ++= )(  

where Yt is the forecast variable or output series; Xt is the explanatory variable or input 

series; Nt is the “noise” or combined effects of all other factors influencing the forecast 

variable; and v(B) or transfer function equals (vo+ v1B + v2B2 + . . .+ vkBk) where k is the 

order of the function. Because k is the longest lag of X utilized, a less than desirable 

level of parsimony exists as k increases. As a result the model can be rewritten to 

reduce the number of parameters to be estimated, reducing the number of degrees of 

freedom, thereby increasing the accuracy of forecasts. The more parsimonious form 

extended to include multiple explanatory variables is: 
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where Yt is the forecast variable; Xt is the explanatory variable; ωi(B) equals (ωi,0 – ωi,1B 

– ωi,2B2 _- . . . ωi,siBsi); δi(B) equals (1 –  δi,1B – δi,2B2 – . . . δriBri); Nt is an ARIMA process; 

and  r, s, and b are constants (Makridakis et al., 1998).This form is based on 

mathematical theorems that demonstrate that the ratio of two lower order finite 
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polynomials (ωi(B), δi(B) can accurately approximate an infinite-order power series 

(v(B). 

The procedure used followed the suggested series of steps that began by fitting 

the appropriate dynamic regression model to the multiple regression model where k was 

sufficiently large to ensure capture of the longest time lagged response likely to be 

important (Chatfield, 2001; Makridakis et al., 1998). Given previous workforce studies a 

lag of 3 was anticipated thus for the initial delineation of the model a lag of 7 was 

employed. A low-order AR model was used for Nt as the noise level is unimportant at 

this initial stage. Errors were subsequently inspected to assess stationarity and the 

need for differencing was assessed. Given the trend nature of this data, differencing 

was likely to be required thus Dickey Fuller Unit Root testing was performed on the time 

series prior to the model delineation. Once the errors appear to be stationary, an 

appropriate transfer function of v(B) was identified. This required the selection of values 

of b, r, and s. The b value is the number of periods before the explanatory variable 

influences the forecast variable. The s value, or the order of ω(B), controls the number 

of transfer function coefficients before they begin to decay and is determined by the 

number of non-zero v weights (transfer function coefficients) before decay. The r value, 

or the order of δ(B), controls the decay pattern. Visual inspection of the transfer function 

coefficients against lag determines the decay pattern and subsequent assignment of 0 

in the case of no decay pattern, 1 if simple exponential decay is evident, and 2 if a more 

complex pattern is seen. This process is corresponds to the selection of the number of 

numerator and denominator factors during the model development stage utilizing the 

SAS analytic program. 
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Once the constant values were determined, errors from the regression model 

were calculated and an appropriate ARIMA model for the error series was identified. 

Next the entire model was refit using the identified ARIMA for the errors and the transfer 

function model for X. The newly fitted model was submitted to diagnostic tests to 

determine if the residuals are significantly different from white noise. This was 

accomplished through the visual inspection of autocorrelation/partial autocorrelation 

function plots (ACF/PACF) and portmanteau tests (Q- and S-statistics). Significant 

spikes in the ACF/PACF or a significant portmanteau tests require re-identification of 

the model. Once residual testing met these stated criteria, the model was then used to 

forecast future demand.  

The basic equation for the demand of PAs is: 

  ∫= ),( POPGDPPADt  

where PADt is the demand for PA services, GDP is the level of gross domestic product 

in 2000 dollars and POP is the population in the US. Data for these variables were 

obtained from the Bureau of Economic Analyses and the US Census Bureau. 

Research Objective 3 Methods 

 
Delineate a supply model for the PA profession that utilizes: 

a) the current pool of certified PAs  

b) educational institution capacity and assumed attrition rates 

c) assumptions for retirement rates 

 The third objective related to the supply of PAs as it existed in 2006 and to 

project it fifteen years into the future. Baseline estimates of currently certified PAs were 

obtained from the national certification organization (NCCPA) as were pass rates on the 
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certification examination over the last ten years. To provide a more accurate 

assessment of future supply, the pool of PAs was aged across the projection periods 

with PAs dropped as they reached “retirement.” As previously discussed, the retirement 

age was arbitrarily set at 67.  

The basic equation for the PA Supply Model is 
 

∑
=

−− +−=
67

25
1,1, )1(
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ttatat ErPAPA   

 
where tPA  is the number of PAs in period t; 

1, −taPA  is the number of PAs who were a years old in period t-1 

1, −tar  is the retirement rate for PAs who were age a in period t – 1.  

Et is the number of new certified PAs entering practice in period t estimated by 

the following equation, 

)1)(1(2 tttt prlSE −−= ∑ −  

 
where St-2 is the number of PA students accepted annually by programs; 

lt  is the annual attrition rate for period t; and  

prt  is the national certification examination annual pass rate.  

Data for these variables were obtained from the Physician Assistant Education 

Association (PAEA) and the National Commission on the Certification of Physician 

Assistants. Specific methodologies for the establishment of the required database that 

allowed the supply pool to be aged and assumptions applied are further described 

under Data Sources and Assumptions.  
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Research Objective 4 Methods 

Utilize the developed models to consider whether the demand for PA services 

would be met by supply based on status quo, a 10% increase and a 25% 

increase in institutional capacity as alternative scenarios. 

The fourth objective required the manipulation of the basic PA supply equation 

delineated above to simulate increases in the institutional capacity of PA programs. The 

methodology remained unchanged with the exception of these changes in institutional 

capacity.  

The status quo capacity or number of PAs available was derived from published 

information from each of the accredited PA programs as of October 2006. The 10% 

level represents a minimal and relatively attainable increase for the majority of programs 

while the 25% level may require significant alteration to programs. These alternative 

levels were instituted at year 2009 to represent increases beginning in 2007 and no 

further adjustment across the forecast periods. As it is unknown how well current 

institutional capacity leads to supply matching demand, this type of scenario building 

provides insight for strategic planning. Results of these manipulations were compared to 

the previously derived demand to assess the adequacy of the supply of PAs into the 

future.  

Data Sources and Assumptions 

The AAPA has conducted annual census surveys of its membership since 1990. 

Recognizing that not all practicing PAs were active members of the association, in 1996 

the AAPA expanded its reach to include non-members believed to be eligible to practice 

in the US The most recent results were compiled and released in October 2006. Forms 
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were mailed to 94.3% of the 66,483 individuals eligible to practice as PAs with a 35.9% 

response rate (33.8 percent of those considered eligible to practice). As the data were 

not weighted or adjusted for non-response, the number of useable response for each 

item varies. Data results from the previous years beginning with 1996 were examined in 

the elements of interest to this dissertation. Reported data points were extracted to 

generate the data set used to examine trends in the areas of demographic composition, 

geographic distribution, practice selection by specialty, and practice setting. Response 

rates for each year’s survey are provided in the Appendix. 

The Bureau of Economic Analysis (BEA) provides annual estimates of national 

income and product accounts (NIPAs) that include estimates of current-dollar gross 

domestic product (GDP) and real (inflation-adjusted) GDP. These estimates are made 

available for public use on the BEA website in Excel spreadsheets that can easily be 

transferred to other statistical software databases for the purposes of analyses. The real 

GDP estimates were utilized to examine the long term trends in relation to PA supply as 

derived above.  

The Integrated Public Use Microdata Series (IPUMS) is a coherent national 

database that combines census microdata files produced by the Census Bureau for the 

period since 1960 with new historical census files produced at the University of 

Minnesota and elsewhere. The IPUMS is designed to facilitate the use of the census 

samples as a time series. Funded by the National Science Foundation and the National 

Institutes of Health, both the database and the documentation are distributed through an 

on-line data access system at http://www.ipums.umn.edu. Population estimates 
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required to consider the ratio of PAs to population occurring over the last decade and 

for future projections were obtained from this source.  

The National Commission on the Certification of Physician Assistants (NCCPA) 

develops and administers initial and ongoing certification maintenance for the PA 

profession. Graduates of PA programs accredited by the Accreditation Review 

Commission on Education for the Physician Assistant (ARC-PA) are eligible to seek 

certification by taking the Physician Assistant National Certification Examination 

(PANCE). Upon successful passage of this initial exam, a certificate is issued and 

entitles the graduate to use the PA-C designation. Continued certification requires 

documentation of continuing education activities every two years with recertification by 

examination every six years. NCCPA certification is a requirement for initial medical 

practice licensure and/or registration by all fifty states and the District of Columbia. The 

database maintained by NCCPA represents the most accurate accounting of the 

number of PAs that are eligible to practice in the United States. This accounting must be 

considered conservative as certain practice settings such as federally employed PAs 

may not be required to maintain certification to continue to deliver healthcare services 

following initial licensure and/or registration. The age variable was obtained from this 

source and utilized for the baseline figures within the supply model.  

The Physician Assistant Education Association (PAEA) collects and 

disseminates data about its member programs. Through its annual report, the 

organization provides comprehensive information concerning various characteristics 

that depict the “typical” PA educational endeavor. The student information reports the 

number, gender, age, and ethnicity of enrolled students. In addition, attrition rates or 
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students failing to complete the educational program are reported by student age. The 

Annual Report on Physician Assistant Education Programs in the United States, 2004-

2005 provided twenty-year trend data that was employed to establish an appropriate 

attrition rate for utilization within the supply model. During this period of time, attrition 

rates ranged from a low of 3.9% in 1999 to a high of 14% in 1988 with an average rate 

reported as 7.5%. Notably in the previous five years, attrition rates were lower ranging 

from 4% to 6.2%. For purposes of this study, the attrition rate was set at 7.0% as a 

compromise between the long and short term trend figures.  

In addition, PAEA annual reports provide the percentage of students enrolled by 

age using intervals of 3 years, beginning with those under the age of 20 and ending with 

those over the age of 33. As raw data was unavailable for use in this study, the 2004-

2005 percentages were evenly divided across the interval to arrive at a percentage for 

each year of age between 20 and 50. The derived percentages were applied to the 

number of students accepted into programs as reflected by their published institutional 

capacity as of October 2006. This process was repeated to establish similar databases 

used to assess scenarios reflecting either a 10% or 25% increase in capacity over the 

base year (2006).  

Previous analyses of physician work effort suggest declines in the number of 

hours worked due to a variety of factors. These factors include the aging of the 

physician cohort, early retirement, the feminization of the profession, a greater 

emphasis on personal time, and the decreased number of hours residents are allowed 

to work. No studies to date have assessed whether similar differences are seen in PA 

work effort forcing the use of assumptions in this regard. To limit the error associated 
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with the application of several assumptions, a single assumption of retirement at the 

age of 67 was applied to the model projections. 

Summary 

This chapter has provided an overview of the methodologies that were utilized to 

meet the listed research objectives. Descriptive statistic analyses provided the tools to 

describe the PA profession. ARIMA procedures were utilized to develop the PA supply 

and demand models and forecasts. Variable selection and data sources were described 

and are summarized in the table below. The following chapter presents the results of 

these various analyses. 

Table 1 

Summary of Variables and Data Sources by Research Objective 

Research Objective Variable Data Source 
Objective 1: PA Practice Age AAPA Census Data 
 Gender AAPA Census Data 
 Practice Selection AAPA Census Data 
 Practice Setting AAPA Census Data 
Objective 2: Demand PAs in Practice AAPA Census Data 
 Gross Domestic Product Bureau of Economic Analysis 
 US Population Estimates US Census Bureau (IPUMS) 
Objective 3: Supply PAs Currently Certified NCCPA Certification Data 
 PA Matriculates PAEA DATA 
 Attrition Rate Assumed 7% 
 Retirement Rate Assumed Age 67 
 Certification Pass Rate NCCPA Certification Data 
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CHAPTER IV 
 

RESULTS 
 

 This chapter reviews the results from the analyses described in the Methods 

section (Chapter III). Arranged by research objective outlined in the Introduction section 

(Chapter I), the results cover a) the historical trends and current status of PA practice in 

the United States, b) the delineation of the PA Demand Model, c) the delineation of the 

PA Supply Model, and d) the comparisons of the PA demand versus supply in three 

scenarios. The scenarios assumed included no growth in PA supply or the status quo, a 

10% increase in PA supply and finally, a 25% increase in the PA supply.  

PA Practice in the United States: Historical Trends and Current Status 

Demographic and Distribution Characteristics 

 The historical demographic and distribution characteristics were derived through 

the analyses of the annual AAPA Physician Assistant Census Reports from 1996 to 

present. The number of PAs eligible to practice, gender, age, and geographic 

distribution for the year 2006 were compared with data obtained from NCCPA that 

reflects PAs currently certified by the organization. As of October 2006, there were 

70,612 PA graduates since the profession’s inception (American Academy of Physician 

Assistants, 2006a). In general, eighty-five percent of PAs remain in clinical practice 

resulting in 60,020 PAs eligible to practice according to AAPA data. Review of the 

NCCPA data in October 2006, identified 59,776 PAs maintaining current certification.  

 While the first Duke class included only men, the male predominance began to 

shift during the mid eighties with equal percentages realized by the mid nineties (Hooker 

et al., 2003). The continued feminization of the profession is graphically represented in 
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Figure 3. Currently the majority of PAs (62%) are female representing a 13% increase 

over 1996 levels. This increasing trend is likely to continue given that PAEA enrollment 

statistics indicate a female to male matriculate ratio of 70:30 (Simon et al., 2005). When 

compared to the available NCCPA data of 2006, a slight difference in gender 

distribution was noted (female = 59.9%, male = 40.1%).  
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Figure 4. PA gender distribution trend (AAPA Census Reports). 

 The 2006 AAPA PA Census Report states that the mean age of census 

respondents was 41 years (median: 40). This corresponds to the mean age of PAs that 

are NCCPA certified as of 2006 (mean age = 40.4). In 2002, it was noted that female 

PAs were an average of 10 years younger than males (Hooker et al., 2003). However, 

examination of the NCCPA certified PA database revealed that the average age of 

female PAs is 5 years younger than male PAs as of 2006.  

 Ethnicity of the PA profession has undergone little change over the last decade. 

In 2006, the profession remains predominantly white (88%), with minimal gains noted in 

the percentage of Hispanics and African Americans. The Asian/Pacific Islander group 
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gained the largest percentage over the past decade, yet this only represents a 1.5% 

increase (Figure 5). Ethnicity data was not provided by NCCPA for comparative 

purposes.  
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Figure 5. PA ethnicity distribution trend (AAPA Census Reports). 

The AAPA defines five geographic regions of the United States, Northeast, 

Southeast, North Central, South Central and West. PAs are fairly evenly distributed 

across regions (19 -24%), the exception being the South Central region at 13%. The 

states with the largest number of clinically practicing respondents included New York 

(9%), California (8%), Texas (6%), Pennsylvania (6%), Florida (6%) and North Carolina 

(5%). In addition, the substantial majority of PAs practice in metropolitan status areas 

(83%). Utilizing the estimates of the AAPA 2005 Census Report and population 

estimates of the US Census Bureau of 2000, a geographic distribution of PAs per 
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100,000 population was developed to facilitate comparisons with physician workforce 

studies and previously presented in Chapter II (Figure 3). 

Practice Selection by Specialty and Setting 

 With over 60 different specialty fields reported, 41% of PAs currently practice in 

one of the primary care fields: family/general medicine (28%), general internal medicine 

(8%), general pediatrics (3%), and obstetrics/gynecology (2%). General surgery and 

surgical subspecialty practices accounted for 25% of respondents with emergency 

medicine and subspecialties of internal medicine represented 10% each (Figure 5). In 

addition to the AAPA census reports, self-reported practice selection data was obtained 

from the NCCPA for certified PAs eligible to practice in the United States. Unfortunately, 

the latter had a high missing value rate (>50%) and could not be utilized for comparative 

purposes. 
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Figure 6. PA specialty selection trend (AAPA Census Reports). 

The majority of PAs are found either in single/multi-specialty physician group 

practices (43%) or in solo physician offices (14%) and many are employed by hospitals 
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(22%) (Figure 6). As the NCCPA databases do not include practice setting as a 

variable, no comparative analyses were possible.  
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Figure 7. PA practice type trend (AAPA Census Reports). 

Demand Model Delineation for PA Utilization 

The delineation of the demand model was conducted in several phases prior to 

forecast production. These included the identification of the underlying time series 

processes, the estimation of models for the explanatory variable, the estimation of the 

preliminary transfer function model, and the estimation of the final transfer function 

model. This section provides detailed explanations and results of each phase.  

Identification of Time Series Processes 

 The initial identification phase began with the submitting each of the variable 

series to Dickey Fuller Unit Root testing to assess stationarity. Results of the Dickey 

Fuller Unit Root testing suggested that all three time series would benefit from 

differencing (Table 2). The next step utilized the SAS: PROC ARIMA to produce the 

autocorrelation (ACF), inverse autocorrelation (IACF) and the partial autocorrelation 
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(PACF) plots for each of the differenced time series. In addition, the Minimum 

Information Criterion (MINIC) method and the Smallest Canonical (SCAN) correlation 

method were utilized to tentatively identify the autoregressive orders of each series. The 

ACF plot for the GDP time series tailed off exponentially indicating a stationary series. 

The ICF plot showed a large spike at lag 1 with a subsequent drop to zero. This finding 

suggested an autoregressive process of order 1. However, examination of the results 

from the MINIC and SCAN methods suggested the GDP series had a higher probability 

of exhibiting an autoregressive order of 2. Finally, the Q-statistics were examined to 

assess whether the series were “white noise” or a purely random process in no need of 

modeling. The highly significant value of <0.001 suggested a high degree of 

autocorrelation that could be modeled. The plots and statistical testing are provided in 

Appendix A. 

 The examination of the US Population and the PA series resulted in similar 

findings. Both ACF plots revealed a stationary series as demonstrated by their 

exponential tailing. Both ICF plots had large spikes at lag 1, further suggesting an 

autoregressive process of at least order 1. For the US Population series, both the 

MINIC and SCAN method results suggested an autoregressive order of 2 and a moving 

average (MA) order of 1. For the PA time series, these methods suggested an 

autoregressive order of 2. Finally both series exhibited Q-statistics were less than 0.001 

supporting the hypothesis that the series were not random processes. Having 

tentatively identified that an autoregressive model was a suitable candidate for each 

series, the estimation of the models was undertaken. 
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Table 2 

Results of Sequential Dickey-Fuller Unit Root Tests 

Variable Series Initial 1st Difference 2nd Difference 
GDP 0.99981 0.0999 0.0215 
POP 0.99972 0.0211  
PA 0.97702 0.62461 0.13680 
 

Estimation of the Explanatory Variables, GDP and US Population 

 The estimation of the explanatory variables was based on the identification 

process. The GDP model estimated as an AR order 2 having taken the second 

difference while the US Population model was estimated as an ARMA (2,1) with first 

differencing applied. These estimates were subsequently crosscorrelated with the PA 

series and the required plots generated (Appendix B). Interpretation of the plots was 

then utilized to preliminarily identify the transfer function component of the model. First, 

the plots were examined for the presence of significant spikes at negative lags. Neither, 

the GDP or Population series exhibited such findings indicating that no feedback was 

present in the preliminary model. This supported the utilization of dynamic regression as 

a methodology. This finding was further verified by the significant values of the S-

statistic for the crosscorrelation check between series (0.0085 and <0.0001 

respectively). The amount of delay present in the plot was assessed. The GDP series 

revealed a spike at lag 6. In keeping with the Cooper Trend Model, a lag of 3 was 

included in preliminary transfer function model rather than a lag of 5 as indicated by this 

plot. As no additional spikes were noted, the identification process moved to the plots of 

the US Population series to tentatively identify the number of numerator parameters 

required in the transfer function. Following the initial spike, five additional spikes were 
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identified. This suggests that five or fewer parameters were required in the numerator of 

the function. The tail of the plot exhibited immediate drop to the zero level. As a result 

there was no indication for the need of denominator parameters. The results of the plot 

analysis were formulated into a preliminary transfer function model for the PA series 

that included GDP and the US Population as the input series with a lag of 3 and five or 

fewer numerator factors. 

Estimation of the Preliminary Transfer Function Model 

 The approach to the estimation of the preliminary transfer function model 

required the evaluation of several models beginning with the one that incorporated the 

previously derived lags and factors. Each model was estimated and evaluated for 

appropriateness through the examination of residual autocorrelation plots and statistical 

testing. The estimation of the initial model utilizing a lag of 3 with 5 numerator factors 

failed to converge. Additional models that varied the numerator factors were also 

evaluated but failed to meet acceptable levels of appropriateness as delineated below. 

This lead to the testing of a model with a lag of 3 for the input series (GDP and 

Population) and 2 numerator factors that served as the preliminary transfer function for 

the PA series. Appendix C provides the results of this estimation process.  

 At this stage of the analyses, the parameter estimates cannot be used as 

evidence for or against the model as the error process is yet to be determined. This is 

further demonstrated by the statistically significant Q-statistic under the autocorrelation 

check of residuals. The ACF plot of the residuals was examined for the tailing pattern. 

The residuals exhibited quick tailing suggesting the autoregressive process inherent in 

this data and in need of delineation during the final estimation. Neither the IACF or the 
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PACF plots showed significant spikes at any lags. Finally, non-significant S-statistics of 

the crosscorrelation checks of the residuals with both the GDP and Population inputs 

supported the adequacy of fit to the data.  

Estimation of the Final Transfer Function Model 

 The estimation of the final transfer function model required fitting an error 

autoregressive process. Selection of the order of the AR process was derived from the 

evaluation of the ACF plot of the residuals from the preliminary transfer function model. 

The exponential drop pattern suggested an AR order 1 or higher process. Appendix D 

demonstrates the results of the selected model with AR 2 order.  

 Once again, the analysis of model fit was conducted through the examination of 

the ACF plot of the residuals and the statistical testing of the crosscorrelation check of 

the residuals. As no significant spikes were identified and no statistically significant Q-

statistics were present, the final model was deemed an appropriate fit from which 

forecasts could be generated.  

Alternative Transfer Function Models: GDP Only and US Population Only 

For comparative purposes, two additional transfer function models were 

delineated using the same methods as described above. One model considered GDP 

as the predictor variable while the other considered US Population as the single 

predictor. Appendices E and F provide the model specifications of each respectively.  

The final transfer function GDP Only Model included an AR 2 error process, with 

two denominator factors. No significant spikes were identified in the autocorrelation plot 

of the residuals and no significant Q-statistics were present in the crosscorrelation 

check of the residuals. The demonstrated appropriateness of fit allowed forecasts to be 
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generated using this model. For the final transfer function US Population Only Model, a 

lag of 4 was utilized with an AR 2 error process. The final assessment of this model 

revealed no significant spikes or significant Q-statistics.  

Forecasts of PA Supply 

 Following the delineation of the three transfer function models, forecasts for the 

next fifteen periods were generated. Table 3 exhibits these forecasts with the Akaike 

Information Criterion (AIC) and Schwarz Bayesian Information Criterion (SBC) to aid in 

further comparisons and selection of the model with the best data fit.  

Table 3 

Forecasts of PA Demand by Modell 

 
Forecast Period 

GDP & POP Model GDP Only 
Model 

US Population 
Only Model 

2007   74296  74552   74802 
2008   77799  78369   78516 
2009   80891  82091   82264 
2010   83817  85751   85557 
2011   86423  89364   88915 
2012   88956  92924   91834 
2013   91198  96426   94851 
2014   93420  99874   97466 
2015   95415 103272 100217 
2016   97450 106622 102605 
2017   99316 109925 105167 
2018 101276 113186 107401 
2019 103112 116407 109840 
2020 105079 119589 111981 
2021 106954 122734 114354 

Akaike’s Information Criterion 374.89 411.16 386.02 
Schwarz Bayesian 
Information Criterion 

382.21 417.82 391.05 

 

 As the combined GDP and US Population Model provided the lowest values for 

the AIC and SBC, it was selected as the model by which to compare the PA Supply 

Model.  

PA Supply Model Delineation 

 As discussed in Chapter III, the development of the supply model for the PA 

profession utilized the following basic equation:  
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where tPA  is the number of PAs in period t; 

1, −taPA  is the number of PAs who were a years old in period t-1 

1, −tar  is the retirement rate for PAs who were age a in period t – 1.  

The baseline figure of currently certified PAs in the United States as provided by the 

NCCPA (59,776). Of these, 147 reported ages of 68 or higher and thus were subtracted 

from the pool. The remaining 59,629 served as the initial set point for period 1. For each 

subsequent time period the pool of PAs was adjusted by  

(1) aging each member; 

(2) decreasing the pool by removal of those members who obtained the age of 

67(assumed retirement rate); and 

(3) increasing the pool by the number of new entrants into the PA profession. 

The initial set point for the number of new entrants was determined through a 

review of the published class size of each PA program in existence as of October 2006 

resulting in a total of 5707 available seats. For each database used in the various 

scenarios, the assumed attrition (non-graduation) rate of 7% was applied. This was 

followed by adjustments made for the passage of the national certification rate. The 

average first time taker pass rate over the last five years was 90%, while for all takers 

the average was 82%. This implies that those who initially fail the examination may pass 

on second or more attempts. For the purposes of this study, a 95% pass rate was 

applied.  

As the feminization of the PA profession may influence the number of clinically 

active PAs in the future, gender was also incorporated into the databases. The 
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assignment was determined in accordance with the published data of both the AAPA 

and PAEA that suggests a 70:30 female to male ratio and was applied across age 

groups. Table 4 displays the results of the database development for status quo, 10% 

increase, and a 25% increase in institutional capacity. In addition, it should be noted 

that the status quo figures were utilized for Years 2006-2008 as any increase in 

enrollment would not effect the number on new entrants until 2009 due to the length of 

PA programs.  

Table 4 

Supply Databases by Scenario 

Year Status Quo 10% Increase 25% Increase 
Total New Entrants  Total New Entrants Total New Entrants  

Female Male Female Male Female Male 
59,629 59,629 59,629 2006 

35,775 35,775 35,775 35,775 35,775 35,775 
64,621 64,621 64,621 2007 

39,280 39,280 39,280 39,280 39,280 39,280 
69,581 69,581 69,581 2008 

42,767 42,767 42,767 42,767 42,767 42,767 
74,517 75,021 75,777 2009 

46,249 28,268 46,602 28,419 47,031 28,746 
79,402 80,410 81,922 2010 

49,721 29,681 50,427 29,983 51,285 30,637 
84,223 85,735 88,003 2011 

53,170 31,053 54,229 31,506 55,516 32,487 
88,993 91,009 94,033 2012 

56,585 32,408 57,997 33,012 59,713 34,320 
93,696 96,216 99,996 2013 

60,006 33,690 61,771 34,445 63,916 36,080 
98,217 101,241 105,777 2014 

63,379 34,838 65,497 35,744 68,071 37,706 
102,454 105,982 111,274 2015 

66,654 35,800 69,125 36,857 72,128 39,146 
106,680 110,712 116,760 2016 

69,929 36,751 72,753 37,959 76,185 40,575 
110,789 115,325 122,129 2017 

73,129 37,660 76,306 39,019 80,167 41,962 
114,893 119,933 127,493 2018 

76,298 38,595 79,828 40,105 84,118 43,375 
118,861 124,405 132,721 2019 

79,386 39, 475 83,269 41,136 87,988 44,733 
122,715 128,763 137,835 2020 

82,388 40,327 86,624 42,139 91,772 46,063 
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The predicted gender distribution for each of the three scenarios resulted in 

similar results with less than 0.5% variation. The NCCPA data of currently certified PAs 

(October 2006) noted a 60:40 ratio of female to male PAs. When extrapolated across 

age groups, this feminization continues to slowly expand over the next fifteen years. By 

the year 2021, the predictions suggest that 67% of the PA population will be female 

(Figure 8). 
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Figure 8. Predicted gender distribution 

Supply and Demand for PAs 

 The final analyses focused on the comparison of the GDP and US Population 

Model demand forecasts to the supply predictions established within the three scenarios 

described above. Depicted graphically in Figures 8 through 10, each scenario 

demonstrates the existence of a shortage of PAs to meet predicted demand until 2010 

at the earliest. This shortage remains present even when considering the lower 95% 

confidence interval of the demand predictions. At this point, the consequences of the 

scenarios begin to diverge and are discussed separately below.  
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Figure 9. Status quo scenario. 

 The Status Quo Scenario assumed maintenance of the current enrollment rates 

at existing PA programs with no addition of programs over the forecast period. The 

apparent shortage of PAs remains for a period of 7 years (2013) at which time a slight 

excess would be noted. In absolute numbers, the excess would be approximately 2500 

PAs. If the upper 95% confidence interval of the demand prediction is considered, 

however, the maintenance of institutional capacity will fail to meet predicted demand for 

the entire forecast period.  

The 10% Increase Scenario reflects a minimal and logistically obtainable 

expansion of PA institutional capacity put into effect with the next admission cycle 

(2007). The supply of PAs would potentially meet predicted demand as early as 2010, 

but more likely an excess would be realized by 2012. The excess of PAs at this point 

would reach approximately 2000. If, however, the future demonstrates that the higher 

95% confidence interval values are accurate, this modest increase will also fail to meet 

the demand for PA services.  
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Figure 10. 10% increase scenario. 

The final scenario considered represents a substantial increase in institutional capacity 

at existing PA programs. The net effect however can readily be appreciated. By 2011, a 

short 5-year period, an excess of 1500 PAs is noted. More importantly, if the higher 

prediction rates prove accurate, this scenario was the only one to meet that level of 

demand within the next decade. 
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Figure 11. 25% increase scenario. 
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Summary 

 This chapter provided the results of the first four research objectives established 

for this dissertation. The historical and current trends with the PA profession were 

considered to include gender, specialty, and practice setting. The specification and 

estimation results of the PA Demand Models were presented with justification provided 

for the selection of the GDP and US Population Model for forecasting. The database 

development for the PA Supply Models under three scenarios was further delineated. 

Finally, the supply models were compared and contrasted with the demand model. 

Chapter V focuses on the implications of these findings.  
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CHAPTER V 
 

DISCUSSION 
 

Introduction 

 This chapter draws on the results that revealed under a current scenario of 5,300 

physician assistant (PA) graduates per year the supply and demand equilibrium will be 

reached in year 2013. This circumstance is adjusted to 2012 under a 10 percent 

increase in PA matriculation rates and 2011 with a twenty-five percent increase. Cooper 

has show that gross domestic product (GDP) is the prime predictor of medical demand 

for services and suggests that PAs are part of this demand curve (Cooper, Getzen, & 

Laud, 2003). As GDP rises, the need for healthcare services in the US increases 

proportionally.   

 The calls for estimating the supply and demand of PAs in the US healthcare 

workforce lead to the review of the current status of the profession and the development 

of models presented in Chapter IV (Results). Comparison of the supply and demand 

models is discussed from the standpoint of PA educational institutions and the effect on 

the future composition of the medical workforce within the US.  

 In this study the following research question was posed: Will the projected supply 

of PAs in the US meet the projected demand over the next fifteen years?  

This study approached the question through the evaluation of several objectives: 

1) the examination of the current status of PA practice in the US, 

2) the delineation of a demand model for PA utilization,  

3) the delineation of a supply model for the profession, and 

4) the comparison of these models under various scenarios.  
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The discussion of the implications posed by the results of the developed prediction 

model given the alternative scenarios provides the main focus of this chapter. In 

addition, limitations of the study and suggestions for future research are proposed.  

Implications to Workforce Composition 

What will the composition of the healthcare workforce be in the year 2020? The 

pressures to contain costs in light of increasing numbers of the underinsured population 

and the approach of the retirement of “baby boomers” have fostered more intense 

efforts to answer this question. This dissertation approached a single aspect of the 

workforce, that of the PA profession. Yet its results must be taken in perspective with 

the supply and demand of its physician colleagues. Unlike their predecessors, the 

projections of supply and demand from the early 2000s predict a shortage of physicians, 

of approximately 85,000  to 100,000 by 2020 (Cooper et al., 2003; Council on Graduate 

Medical Education, 2005; U.S.Department of Health & Human Services, 2006). The 

shortages are likely to be felt by specialists and those serving the elderly. Though the 

Council on Graduate Medical Education (COGME) report did not undertake scenario 

building that addressed the utilization of PAs, the more recent Department of Health and 

Human Services (DHHS) report included a situation that assumed the number of active 

nonphysician clinicians (NPC) will increase 60 percent between 2005 and 2020. It was 

also assumed that they will provide 40% of the work currently provided by a physician. 

Under this picture it was predicted that physician projections would be lessened by 

90,000. The authors suggested that a greater impact from NPC utilization would be 

realized in reducing the demand for generalist physicians (U.S.Department of Health & 

Human Services, 2006). The PA Supply Model created herein suggests a doubling of 
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the number of clinically active PAs by the year 2020 given current institutional capacity 

and with no expansion in enrollment: a 100% increase. If the same holds true for other 

NPC professions (primarily that of nurse practitioners (NP)), the percentage used by 

DHHS significantly underestimates this hidden workforce. Many state medical board 

rules and regulations allow a single physician to employ as many as three PAs. Fuller 

utilization of PAs could substantially exceed the DHHS assumptions of work provided 

previously by physicians as well.  

Historically PAs have practiced in primary care settings; the review of the current 

status of the profession suggests a trend towards specialization. Whether the impact of 

increased utilization of PAs and NPs will reduce generalist physician requirements are 

difficult to predict. More likely, the growing shortages of specialist physicians coupled 

with the reduction in resident work hours will continue to attract PAs into these areas 

(Cawley et al., 2006). A recent workforce study commissioned by the American College 

of Rheumatology (ACR) predicted shortages of adult rheumatologists of approximately 

1,000 by 2015. In addressing how practices intended to meet demand, the study 

included survey results of practice hiring patterns. Of the respondents, 30% were noted 

as currently hiring and 50% planning to hire a rheumatologist, PA or NP over the next 

five years. In addition, the ACR has developed a Web-based curriculum for NPs and 

PAs as part of its strategy to expand their roles in rheumatology practices (Deal et al., 

2007). Similar efforts are occurring for dermatology PAs (P. Eugene Jones, personal 

communication, October 1, 2006). It appears clear that the movement of PAs to 

specialty practice will continue and could greatly effect the composition of the 

healthcare workforce.  
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Implications to PA Educational Institutions 

While the status quo projections suggest that the current levels of PA enrollment 

will meet demand requirements by 2013, the confidence intervals of the demand 

projections are wide. If the true demand requirements are realized near the upper limits 

rather than the midpoint levels, the maintenance of 2006 matriculate levels will result in 

a continuation of PA supply deficits. In addition, the full impact of resident hour 

reductions, physician specialty shortages, and continued geographic maldistribution of 

healthcare providers has yet to be considered. Institutional expansion may be required 

should the projections prove to underestimate demand for PAs. Whether the institution 

capacity of PA programs can meet the demand requirements will be dependent upon its 

ability to successfully meet the challenges inherent in program maintenance and 

growth: adequate faculty and clinical facilities to serve current enrollees. In addition, the 

ethnic diversity of students (and ultimately the workforce) needs improvement (Institute 

of Medicine, 2004).  

Foremost among these challenges is maintaining a cadre of capable faculty. The 

“town versus gown” struggle for recruitment of experienced clinicians away from 

practice is challenging when job opportunities and attractive compensation packages 

abound. Efforts to retain talented faculty requires significant resources in administrative 

support and compensation. Unlike graduate medical education, PA programs do not 

benefit from funding sources such as Medicare. The primary source of internal funding 

is provided by the program sponsoring institution. On average 86% of total budget is 

from the parent institution and the remaining 14% is derived from federal training grants 

administered through the DHHS (Simon et al., 2005). In 2006 this federal source was 
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eliminated (American Academy of Physician Assistants, 2007). Faculty salaries 

continue to lag behind the national average of clinically employed PAs by approximately 

$12,000 per year when considering base figures (Simon et al., 2005; American 

Academy of Physician Assistants, 2006a). Often clinical PAs derive additional income 

from call sharing and incentive pay based on productivity that are generally not included 

in faculty compensation packages. Of greater concern is that faculty salaries are often 

the same or lower than those garnered by new entrants into the profession (American 

Academy of Physician Assistants, 2006a). Although, the Physician Assistant Education 

Association (PAEA) and the AAPA advocate for continued federal support, maintaining 

the current level as well as expansion of PA programs could be hampered without 

additional financial revenues to assist in faculty recruitment and retention.  

Maintaining sufficient numbers of training sites and preceptors utilized for the 

clinical phase of PA education poses an additional challenge. Whereas physician 

training is primarily conducted within hospital settings, a significant proportion of PA 

experiences are accomplished in outpatient venues. As the pressures to increase 

patient care visits and increasing enrollment in medical schools mount, site availability 

will be at a premium whether or not PA programs matriculation rates change from 2006 

rates. Calls for purchasing clinical sites may be warranted. Academic health centers 

sponsoring PA programs need to consider how to balance the clinical experience of 

these two professions as they continue to merge.   

If the PA profession is to meet the needs of a diverse nation then it must meet 

the challenge of increasing the racial and ethnic diversity of its matriculates. The US 

Census Bureau identifies that over twenty five percent of the population are composed 
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of under-represented minorities, yet less than 10% of all healthcare providers come 

from this group (Institute of Medicine, 2004). Racial and ethnic minority providers are 

more likely to serve the medically underserved communities and assist in the reduction 

of cultural and linguistic barriers. Patients from minorities groups report greater 

satisfaction with care given by same race or ethnic health professionals as well. Aside 

from the benefits to the healthcare system, diversity in the educational setting has been 

associated with better outcomes among all students (Institute of Medicine, 2004). The 

less than two percent gain in PA diversity growth since 1996 suggests additional 

strategies are needed.  

Limitations and Future Research Considerations 

All labor economists lack true clairvoyance and this student has been humbled 

by this revelation: 

[Workforce prediction is a} daunting enterprise . . . to estimate the physician 

surplus or shortage one or two decades into the future. Any of the variables in 

the equation can change over time, sometimes in unforeseen ways.   

Uwe Reinhardt (2002) 

 Limitations in predicting the future abound and this undertaking is no exception.  

While the past shows remarkable correlation of the growth of the PA profession with 

GDP, any prediction more than five years out is problematic. How other elements of this 

demand (technological advancement, longevity of citizens, sustainability of chronic 

diseases, and lifestyle changes) will evolve remains unknown (Ginzberg, 1989; Cooper, 

1994; Blumenthal, 2004; Council on Graduate Medical Education, 2005). Thus the 
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greatest limitation of this study is the fact that no economic prediction is without 

uncertainty. 

The accuracy of healthcare workforce analysis projections is dependent upon the 

resources and information available to discern the variety of factors influencing supply 

and demand. This is particularly true regarding the PA profession segment. Evidence 

from comparative empirical models to identify sound methods of predicting demand for 

services in various situations is imperative (Armstrong & Green, 2006). Structured 

research should draw upon focus group analysis, case studies, and triangulation of 

data. National studies such as MEPS, the NAMCS and the NHAMES are remiss in their 

lack of full inclusion of PAs and NPs in national studies (Morgan et al., 2006). This 

shortcoming precluded their inclusion within the model specifications conducted herein. 

Understanding the full nature of how healthcare is delivered requires knowledge of all 

the players and the contributions they make to the outcome of care. Several areas need 

further explication including the effect of lifestyle changes among women and newer 

entrants into the profession, the productivity levels of current PAs by specialty selection 

and delineation of other potential demand factors such as that required by the physician 

community for PA services. 

While studies have been conducted with the physician workforce regarding 

lifestyle changes (Schwartz et al., 1989; Schwartz et al., 1990; Jarecky, Schwartz, 

Haley, & Donnelly, 1991), relatively little is known if similar preferences exist among the 

PA profession. With the growing domination of women in this sector, studies should be 

conducted to elucidate practice patterns in terms of number of hours worked and the 

impact of lengthy departures from practice for child rearing or caring for elderly family 
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members. It remains unknown whether more recent PA graduates desire a more 

balanced professional career with personal activities, as do their physician counterparts. 

While scenarios could have been derived within this study to simulate the impact of 

lifestyle preferences, a deeper understanding of these phenomena would enhance the 

ability to more accurately construct models that include these effects. 

While several studies have addressed the productivity of PAs (Lin et al., 2002; 

Hooker, 1999; Hooker, 2000; Hooker et al., 2001; Hooker, 2002; Cawley et al., 2006), 

more research is required to understand the changing face of PA practice in light of the 

continuing trend towards specialization. The impact of PA productivity on physician 

efficiency could substantially influence predictions of supply. The current models 

neglected this importance aspect due to an insufficient ability to establish reasonable 

assumptions.  

Further study into the factors affecting the demand for PA services should be 

conducted. In particular, the influence of predicted shortages in several medical and 

surgical specialties may be driving the PA trend towards specialization. National 

surveys of physician specialty organization membership practices about intending hiring 

patterns of PAs may provide insight into factors more directly affecting the demand for 

PA services. The national agenda for healthcare workforce analysis should incorporate 

the utilization of PAs in its consideration rather than relegating it to the “factors not 

included” portion of its reports.  

Conclusion 

The choice of GDP and the U.S Population trends serve as substantial predictors 

for the demand of PA services. The use of available data resources to support the 
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investigation was maximized. The results demonstrate that the growth of American PAs 

is substantial and appears to be on a positive trajectory. By the second decade of this 

millennium the supply and demand equilibrium for PAs services will be reached that 

heretofore had not been predicted. How this will be incorporated into medical workforce 

planning remains to be determined. 

It is appropriate to forecast PA demand. Strategic planning calls for all institutions 

to estimate what the demand for their services will be and plan for resources 

accordingly. The PA profession faces numerous challenges if demand for its services 

exceeds supply. The viability of its educational institutions, from its faculty to its 

facilities, is paramount to the profession’s ability to meet anticipated expectations. 

Although the field of organizational forecasting is reaching maturity, its 

application to the PA profession is in its infancy and far more is needed just to reach 

adolescence. While much research remains to be done, the goal of this dissertation was 

to establish baseline projections of a segment of the medical workforce whose 

contributions have previously been under appreciated and to further inform the debate 

of how the US will meet the healthcare needs of its population in the future. Time will tell 

whether these predictions come to fruition and if PAs provide part of the solution to the 

healthcare problems facing our nation. Yet if their delineation spurs increased 

awareness of how PAs have and will continue to impact the health care system of the 

US, then the goal was obtained.  
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                                      The SAS System                                      
                                   The ARIMA Procedure 
 
                                  Name of Variable = GDP 
 
                            Mean of Working Series    7401.136 
                            Standard Deviation        2078.577 
                            Number of Observations          32 
 
                                     Autocorrelations 
 
Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 StdEr 
  0      4320483       1.00000   |                    |********************|  0 
  1      3887225       0.89972   |             .      |******************  |  0.176777 
  2      3479966       0.80546   |         .          |****************    |  0.286083 
  3      3077091       0.71221   |      .             |**************      |  0.349844 
  4      2708763       0.62696   |    .               |*************  .    |  0.392548 
  5      2347460       0.54333   |   .                |***********     .   |  0.422683 
  6      1963478       0.45446   |  .                 |*********        .  |  0.443973 
  7      1558987       0.36084   |  .                 |*******          .  |  0.458279 
 
                              "." marks two standard errors 
 
                                 Inverse Autocorrelations 
 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
              1       -0.48271    |          **********|      .             | 
              2       -0.03255    |             .     *|      .             | 
              3        0.03037    |             .      |*     .             | 
              4        0.00519    |             .      |      .             | 
              5       -0.02134    |             .      |      .             | 
              6       -0.04111    |             .     *|      .             | 
              7        0.04695    |             .      |*     .             | 
 
                                 Partial Autocorrelations 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
              1        0.89972    |             .      |******************  | 
              2       -0.02120    |             .      |      .             | 
              3       -0.04603    |             .     *|      .             | 
              4       -0.01208    |             .      |      .             | 
              5       -0.04180    |             .     *|      .             | 
              6       -0.08124    |             .    **|      .             | 
              7       -0.08604    |             .    **|      .             | 
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                          Autocorrelation Check for White Noise 
 
    To       Chi-           Pr > 
   Lag     Square    DF    ChiSq   ------------------Autocorrelations----------------- 
 
     6     106.78     6   <.0001    0.900    0.805    0.712    0.627    0.543    0.454 
 
                         Squared Canonical Correlation Estimates 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    0.9839    0.9394    0.8662    0.7725    0.6594    0.5240 
             AR 1    0.7258    0.6583    0.5986    0.6434    0.6323    0.4989 
             AR 2    0.0715    0.0022    0.0144    0.0005    0.0029    <.0001 
             AR 3    0.0130    0.0042    0.0040    0.0030    0.0023    0.0378 
             AR 4    0.0402    0.0037    0.0054    0.0009    0.0236    0.0215 
             AR 5    0.0449    0.0025    0.0017    0.0043    0.0009    0.0008 
 
                          SCAN Chi-Square[1] Probability Values 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    <.0001    0.0002    0.0060    0.0249    0.0572    0.1059 
             AR 1    <.0001    <.0001    <.0001    0.0006    0.0677    0.1188 
             AR 2    0.1356    0.8159    0.5565    0.9147    0.8057    0.9675 
             AR 3    0.5379    0.7824    0.7985    0.8157    0.8342    0.3902 
             AR 4    0.2838    0.7904    0.7918    0.9144    0.5507    0.6031 
             AR 5    0.2656    0.8346    0.8866    0.8112    0.9154    0.9388 
 
                              Minimum Information Criterion 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0  14.98299  13.52745  13.29962  13.07548  12.84571  12.58119 
             AR 1  10.97622   10.0531  10.00499   10.0207  9.770493   9.62616 
             AR 2  9.888447  9.863605  9.969782  9.859557  9.839474  9.688822 
             AR 3  9.849911    9.8108  9.831657  9.919819   9.91691  9.768189 
             AR 4  9.667218  9.738683  9.810244  9.908061   10.0163  9.620122 
             AR 5  9.498014  9.606258  9.714561   9.82222  9.775513  9.724108 
 
                         Error series model:  AR(5) 
                         Minimum Table Value: BIC(5,0) = 9.498014 
 
                                  ARMA(p+d,q) Tentative 
                                  Order Selection Tests 
                                  ---------SCAN-------- 
                                  p+d     q         BIC 
                                    2     0    9.888447 
                                    0     4    12.84571 
 
                                 (5% Significance Level) 
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                                      The SAS System                                      
                                   The ARIMA Procedure 
 
                                  Name of Variable = POP 
 
                            Mean of Working Series    2.7318E8 
                            Standard Deviation        36467981 
                            Number of Observations          46 
 
 
                                     Autocorrelations 
 
Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1  Std Error 
 
  0   1.32991E15       1.00000   |                    |********************|     0 
  1   1.24549E15       0.93652   |              .     |******************* |  0.147442 
  2   1.16259E15       0.87419   |          .         |*****************   |  0.244689 
  3   1.07934E15       0.81159   |        .           |****************    |  0.305121 
  4   9.95838E14       0.74880   |      .             |***************     |  0.348908 
  5   9.13076E14       0.68657   |     .              |**************.     |  0.382250 
  6   8.30322E14       0.62434   |    .               |************   .    |  0.408179 
  7   7.62035E14       0.57300   |   .                |***********     .   |  0.428437 
 
                              "." marks two standard errors 
 
                                 Inverse Autocorrelations 
 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
              1       -0.49418    |          **********|     .              | 
              2       -0.00510    |              .     |     .              | 
              3       -0.00292    |              .     |     .              | 
              4        0.00412    |              .     |     .              | 
              5       -0.04369    |              .    *|     .              | 
              6        0.06940    |              .     |*    .              | 
              7       -0.02633    |              .    *|     .              | 
 
                                 Partial Autocorrelations 
 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
              1        0.93652    |              .     |******************* | 
              2       -0.02349    |              .     |     .              | 
              3       -0.03533    |              .    *|     .              | 
              4       -0.03614    |              .    *|     .              | 
              5       -0.03137    |              .    *|     .              | 
              6       -0.03677    |              .    *|     .              | 
              7        0.05065    |              .     |*    .              | 
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                          Autocorrelation Check for White Noise 
 
    To       Chi-           Pr > 
   Lag     Square    DF    ChiSq   ------------------Autocorrelations----------------- 
 
     6     191.59     6   <.0001    0.937    0.874    0.812    0.749    0.687    0.624 
 
                         Squared Canonical Correlation Estimates 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    0.9901    0.9715    0.9399    0.8943    0.8362    0.7653 
             AR 1    0.1454    0.3120    0.3366    0.2784    0.3367    0.3929 
             AR 2    0.2318    0.0200    0.0036    0.0060    0.0013    <.0001 
             AR 3    0.1847    0.0130    0.0061    0.0063    0.0005    <.0001 
             AR 4    0.0690    0.0016    0.0004    <.0001    0.0002    0.0005 
             AR 5    0.0528    <.0001    <.0001    0.0002    0.0001    0.0002 
 
                          SCAN Chi-Square[1] Probability Values 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    <.0001    <.0001    0.0009    0.0058    0.0166    0.0336 
             AR 1    0.0078    0.0005    0.0003    0.0011    0.0003    0.0002 
             AR 2    0.0007    0.4902    0.7744    0.7159    0.8647    0.9748 
             AR 3    0.0030    0.5546    0.7170    0.7174    0.9101    0.9943 
             AR 4    0.0832    0.8348    0.9062    0.9830    0.9437    0.9147 
             AR 5    0.1358    0.9995    0.9906    0.9431    0.9496    0.9396 
 
                              Minimum Information Criterion 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0  34.56417   33.9303  33.57735  33.37951   33.2409   33.1009 
             AR 1  30.17257   30.1711  30.02098  29.89982  29.90571  29.92876 
             AR 2  30.12396  29.64277  29.72288  29.80459  29.88673  29.83215 
             AR 3  29.96025  29.72361  29.74499   29.8195   29.9003  29.89226 
             AR 4  29.84464  29.80323  29.81857  29.86112  29.94129  29.96516 
             AR 5  29.85731  29.88613  29.90032  29.94018  29.99408  30.02485 
 
                         Error series model:  AR(5) 
                         Minimum Table Value: BIC(2,1) = 29.64277 
 
                                  ARMA(p+d,q) Tentative 
                                  Order Selection Tests 
                                  ---------SCAN-------- 
                                  p+d     q         BIC 
 
                                    2     1    29.64277 
                                    4     0    29.84464 
                                 (5% Significance Level) 
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                                      The SAS System                                      
                                   The ARIMA Procedure 
 
                                  Name of Variable = PA 
 
                            Mean of Working Series    27765.28 
                            Standard Deviation        18197.03 
                            Number of Observations          32 
 
                                     Autocorrelations 
 
Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1  Std Error 
 
  0    331131974       1.00000   |                    |********************|      0 
  1    291095254       0.87909   |             .      |******************  |  0.176777 
  2    251796994       0.76041   |         .          |***************     |  0.282046 
  3    214073053       0.64649   |      .             |*************.      |  0.340131 
  4    178409803       0.53879   |     .              |***********   .     |  0.376578 
  5    145272728       0.43872   |    .               |*********      .    |  0.399943 
  6    114955129       0.34716   |   .                |*******         .   |  0.414709 
  7     87628585       0.26463   |   .                |*****           .   |  0.423693 
 
                              "." marks two standard errors 
 
                                 Inverse Autocorrelations 
 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
              1       -0.50402    |          **********|      .             | 
              2        0.00267    |             .      |      .             | 
              3        0.00056    |             .      |      .             | 
              4        0.00143    |             .      |      .             | 
              5        0.00114    |             .      |      .             | 
              6       -0.01017    |             .      |      .             | 
              7        0.01468    |             .      |      .             | 
 
                                 Partial Autocorrelations 
 
            Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
              1        0.87909    |             .      |******************  | 
              2       -0.05453    |             .     *|      .             | 
              3       -0.04635    |             .     *|      .             | 
              4       -0.04138    |             .     *|      .             | 
              5       -0.03565    |             .     *|      .             | 
              6       -0.03105    |             .     *|      .             | 
              7       -0.02709    |             .     *|      .             | 
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                          Autocorrelation Check for White Noise 
 
    To       Chi-           Pr > 
   Lag     Square    DF    ChiSq   ------------------Autocorrelations----------------- 
 
     6      87.85     6   <.0001    0.879    0.760    0.646    0.539    0.439    0.347 
 
                         Squared Canonical Correlation Estimates 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    0.9839    0.9311    0.8378    0.7074    0.5526    0.3938 
             AR 1    0.9744    0.9061    0.7959    0.6562    0.5034    0.3578 
             AR 2    0.0107    0.0827    0.0654    0.0046    0.0268    0.0012 
             AR 3    0.1122    0.0176    0.0160    0.0307    0.0014    0.0003 
             AR 4    0.1139    0.0309    0.0552    0.0017    0.0003    0.0001 
             AR 5    0.0051    0.0336    <.0001    <.0001    0.0002    0.0003 
 
                          SCAN Chi-Square[1] Probability Values 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0    <.0001    0.0002    0.0052    0.0247    0.0675    0.1431 
             AR 1    <.0001    0.0002    0.0061    0.0288    0.0783    0.1618 
             AR 2    0.5693    0.1180    0.2082    0.7674    0.5107    0.9118 
             AR 3    0.0632    0.5835    0.6006    0.5375    0.9054    0.9622 
             AR 4    0.0657    0.4379    0.2864    0.8822    0.9479    0.9769 
             AR 5    0.7096    0.3502    0.9696    0.9797    0.9639    0.9609 
 
                              Minimum Information Criterion 
 
             Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 
             AR 0  19.39893   16.7902  15.88911   15.2213  14.77164  14.36187 
             AR 1  15.22343  11.32106  11.35294  11.43565   11.4567  11.55374 
             AR 2  11.40664  11.40516  11.41254  11.48454  11.55662  11.61883 
             AR 3  11.49129   11.4012   11.4802  11.58204  11.62698  11.72037 
             AR 4  11.47931    11.463  11.54516  11.64859  11.73378  11.81601 
             AR 5  11.44605  11.54953  11.61308  11.71965  11.82367  11.90646 
 
                         Error series model:  AR(5) 
                         Minimum Table Value: BIC(1,1) = 11.32106 
 
                                  ARMA(p+d,q) Tentative 
                                  Order Selection Tests 
                                  ---------SCAN-------- 
                                  p+d     q         BIC 
 
                                    2     0    11.40664 
                                    0     4    14.77164 
                                 (5% Significance Level) 
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APPENDIX B 
 

ESTIMATION OF EXPLANATORY VARIABLES: 
 

GDP AND US POPULATION 
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                                      The SAS System                                      
                                        The ARIMA Procedure 
 
                            Name of Variable = PA 
 
            Period(s) of Differencing                           2 
            Mean of Working Series                       4203.933 
            Standard Deviation                           2700.538 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
 
                               Autocorrelations 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0     7292903      1.00000  |                    |********************| 
   1     6809135      0.93367  |             .      |******************* | 
   2     6094652      0.83570  |        .           |*****************   | 
   3     5266835      0.72219  |     .              |**************.     | 
   4     4355842      0.59727  |   .                |************    .   | 
   5     3403079      0.46663  |  .                 |*********        .  | 
   6     2414372      0.33106  |  .                 |*******          .  | 
   7     1505623      0.20645  | .                  |****              . | 
 
                        "." marks two standard errors 
 
                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.56260    |         ***********|      .             | 
        2        0.06871    |             .      |*     .             | 
        3       -0.01950    |             .      |      .             | 
        4        0.04012    |             .      |*     .             | 
        5       -0.07833    |             .    **|      .             | 
        6        0.05978    |             .      |*     .             | 
        7       -0.00452    |             .      |      .             | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1        0.93367    |             .      |******************* | 
        2       -0.28094    |             .******|      .             | 
        3       -0.12677    |             .   ***|      .             | 
        4       -0.12286    |             .    **|      .             | 
        5       -0.09371    |             .    **|      .             | 
        6       -0.11427    |             .    **|      .             | 
        7        0.01041    |             .      |      .             | 
 
                     Autocorrelation Check for White Noise 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6     97.26    6  <.0001   0.934   0.836   0.722   0.597   0.467   0.331 
                      Variable GDP has been differenced. 
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                          Correlation of PA and GDP 
 
            Period(s) of Differencing                           2 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
            Variance of transformed series PA             1719716 
            Variance of transformed series GDP           17130.55 
 
                      Both series have been prewhitened. 
 
                               Crosscorrelations 
 
 Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
  -7   -15039.201       -.08762   |             .    **|      .             | 
  -6    15949.717       0.09293   |             .      |**    .             | 
  -5    36317.652       0.21159   |             .      |****  .             | 
  -4    22446.157       0.13078   |             .      |***   .             | 
  -3    40620.067       0.23666   |             .      |***** .             | 
  -2    43594.416       0.25399   |             .      |***** .             | 
  -1    47363.185       0.27595   |             .      |******.             | 
   0    60290.756       0.35127   |             .      |*******             | 
   1    55170.928       0.32144   |             .      |******.             | 
   2    47299.138       0.27557   |             .      |******.             | 
   3    55384.920       0.32268   |             .      |******.             | 
   4    51015.765       0.29723   |             .      |******.             | 
   5    48351.617       0.28171   |             .      |******.             | 
   6    66300.700       0.38628   |             .      |********            | 
   7    44086.937       0.25686   |             .      |***** .             | 
 
                        "." marks two standard errors 
 
                     Crosscorrelation Check Between Series 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5     17.23    6  0.0085   0.351   0.321   0.276   0.323   0.297   0.282 
 
        Both variables have been prewhitened by the following filter: 
 
                             Prewhitening Filter 
                            Autoregressive Factors 
 
                Factor 1:  1 - 0.99068 B**(1) + 0.48106 B**(2) 
 
                      Variable POP has been differenced. 
                          Correlation of PA and POP 
 
            Period(s) of Differencing                           2 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
            Variance of transformed series PA             4768053 
            Variance of transformed series POP           2.641E12 
 
                      Both series have been prewhitened. 
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                               Crosscorrelations 
 
 Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
  -7   -189626471       -.05344   |             .     *|      .             | 
  -6     13123814       0.00370   |             .      |      .             | 
  -5     97325108       0.02743   |             .      |*     .             | 
  -4    346136909       0.09754   |             .      |**    .             | 
  -3    615738685       0.17352   |             .      |***   .             | 
  -2   1031582998       0.29071   |             .      |******.             | 
  -1   1223207225       0.34471   |             .      |*******             | 
   0   1614882260       0.45509   |             .      |*********           | 
   1   1741515889       0.49078   |             .      |**********          | 
   2   1958262049       0.55186   |             .      |***********         | 
   3   1887185712       0.53183   |             .      |***********         | 
   4   1924788479       0.54242   |             .      |***********         | 
   5   1767917331       0.49822   |             .      |**********          | 
   6   1176783403       0.33163   |             .      |*******             | 
   7    269323427       0.07590   |             .      |**    .             | 
 
                        "." marks two standard errors 
 
                     Crosscorrelation Check Between Series 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5     47.33    6  <.0001   0.455   0.491   0.552   0.532   0.542   0.498 
 
        Both variables have been prewhitened by the following filter: 
 
                             Prewhitening Filter 
                            Autoregressive Factors 
 
                 Factor 1:  1 + 0.6755 B**(1) - 0.08251 B**(2) 
 
                            Moving Average Factors 
 
                         Factor 1:  1 + 0.99998 B**(1) 
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APPENDIX C 
 

ESTIMATION OF PRELIMINARY TRANSFER FUNCTION MODEL: 
 

GDP AND US POPULATION 
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                             The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 MU            -3582.1      1490.7    -2.40    0.0163     0  PA            0 
 NUM1        0.0007374   0.0001931     3.82    0.0001     0  POP           3 
 NUM1,1     -0.0006336   0.0002069    -3.06    0.0022     2  POP           3 
 NUM2          1.49635     2.12523     0.70    0.4814     0  GDP           0 
 
                       Constant Estimate      -3582.07 
                       Variance Estimate       3790065 
                       Std Error Estimate     1946.809 
                       AIC                    453.2854 
                       SBC                    458.1609 
                       Number of Residuals          25 
 
                     Correlations of Parameter Estimates 
 
          Variable                 PA       POP       POP       GDP 
          Parameter                MU      NUM1    NUM1,1      NUM2 
 
          PA             MU     1.000    -0.582     0.442    -0.287 
          POP          NUM1    -0.582     1.000     0.039    -0.139 
          POP        NUM1,1     0.442     0.039     1.000     0.399 
          GDP          NUM2    -0.287    -0.139     0.399     1.000 
 
                      Autocorrelation Check of Residuals 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6     26.05    6  0.0002   0.769   0.479   0.250   0.013  -0.100  -0.109 
   12     28.26   12  0.0051  -0.081  -0.048  -0.017  -0.024  -0.083  -0.169 
   18     54.08   18  <.0001  -0.239  -0.287  -0.321  -0.288  -0.198  -0.105 
   24     54.36   24  0.0004  -0.014   0.021   0.025   0.018   0.006   0.002 
 
                      Autocorrelation Plot of Residuals 
Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0     3790065      1.00000  |                    |********************| 
   1     2914013      0.76886  |            .       |***************     | 
   2     1815872      0.47911  |        .           |********** .        | 
   3      948435      0.25024  |       .            |*****       .       | 
   4   49173.355      0.01297  |       .            |            .       | 
   5     -379900      -.10024  |       .          **|            .       | 
   6     -414921      -.10948  |       .          **|            .       | 
   7     -308774      -.08147  |       .          **|            .       | 
 
                        "." marks two standard errors 
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                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
        1       -0.67863    |      **************|       .            | 
        2        0.34145    |            .       |*******.            | 
        3       -0.31033    |            . ******|       .            | 
        4        0.23365    |            .       |*****  .            | 
        5       -0.07824    |            .     **|       .            | 
        6        0.02844    |            .       |*      .            | 
        7       -0.01673    |            .       |       .            | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
        1        0.76886    |            .       |***************     | 
        2       -0.27399    |            .  *****|       .            | 
        3       -0.02220    |            .       |       .            | 
        4       -0.24524    |            .  *****|       .            | 
        5        0.14250    |            .       |***    .            | 
        6        0.01198    |            .       |       .            | 
        7        0.03966    |            .       |*      .            | 
 
              Crosscorrelation Check of Residuals with Input POP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      0.29    5  0.9978  -0.019  -0.028  -0.047  -0.049   0.052   0.068 
   11      1.56   11  0.9995   0.063   0.025  -0.031  -0.087  -0.139  -0.160 
   17      3.90   17  0.9996  -0.169  -0.172  -0.160  -0.125  -0.080  -0.028 
 
              Crosscorrelation Check of Residuals with Input GDP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5     11.54    6  0.0732  -0.075   0.086   0.356   0.366   0.344   0.263 
   11     13.91   12  0.3063   0.021  -0.032  -0.058  -0.093  -0.160  -0.236 
   17     14.50   18  0.6957  -0.045   0.066   0.077   0.035  -0.095  -0.031 
   23     17.19   24  0.8404   0.075  -0.233  -0.216   0.025  -0.019   0.013 
 
 
                            Model for variable PA 
                    Estimated Intercept          -3582.07 
                    Period(s) of Differencing           2 
 
                                Input Number 1 
                       Input Variable               POP 
                       Shift                          3 
                       Period(s) of Differencing      2 
 
                               Numerator Factors 
                      Factor 1:  0.00074 + 0.00063 B**(2) 
 
                               Input Number 2 
                    Input Variable                    GDP 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    1.496355 
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APPENDIX D 
 

ESTIMATION OF FINAL TRANSFER FUNCTION MODEL: 
 

GDP AND US POPULATION 
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The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 MU             4063.5      1584.1     2.57    0.0103     0  PA            0 
 AR1,1         1.76535     0.13382    13.19    <.0001     1  PA            0 
 AR1,2        -0.80612     0.14226    -5.67    <.0001     2  PA            0 
 NUM1       0.00001293  0.00003770     0.34    0.7316     0  POP           3 
 NUM1,1     -0.0000472  0.00005185    -0.91    0.3630     2  POP           3 
 NUM2          0.40612     0.37391     1.09    0.2774     0  GDP           0 
 
                       Constant Estimate      165.6846 
                       Variance Estimate      125994.6 
                       Std Error Estimate     354.9572 
                       AIC                    374.8937 
                       SBC                    382.2069 
                       Number of Residuals          25 
 
                     Correlations of Parameter Estimates 
 
Variable                 PA        PA        PA       POP       POP       GDP 
Parameter                MU     AR1,1     AR1,2      NUM1    NUM1,1      NUM2 
 
PA             MU     1.000    -0.296     0.337    -0.255     0.304    -0.085 
PA          AR1,1    -0.296     1.000    -0.983    -0.031     0.048     0.016 
PA          AR1,2     0.337    -0.983     1.000     0.014    -0.021    -0.027 
POP          NUM1    -0.255    -0.031     0.014     1.000    -0.684    -0.224 
POP        NUM1,1     0.304     0.048    -0.021    -0.684     1.000     0.009 
GDP          NUM2    -0.085     0.016    -0.027    -0.224     0.009     1.000 
 
                      Autocorrelation Check of Residuals 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6      5.09    4  0.2784  -0.047  -0.136   0.364  -0.084  -0.075   0.016 
   12     12.67   10  0.2429   0.036  -0.032  -0.198   0.160   0.097  -0.286 
   18     20.12   16  0.2148   0.127  -0.078  -0.283  -0.014   0.006  -0.088 
   24     20.96   22  0.5235  -0.051   0.047   0.009   0.010   0.019   0.012 
 
                      Autocorrelation Plot of Residuals 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0      125995      1.00000  |                    |********************| 
   1   -5918.094      -.04697  |            .      *|       .            | 
   2  -17137.602      -.13602  |            .    ***|       .            | 
   3   45824.841      0.36370  |            .       |*******.            | 
   4  -10553.691      -.08376  |           .      **|        .           | 
   5   -9434.177      -.07488  |           .       *|        .           | 
   6    2062.452      0.01637  |           .        |        .           | 
   7    4580.926      0.03636  |           .        |*       .           | 
 
                        "." marks two standard errors 
                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
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        1       -0.18713    |            .   ****|       .            | 
        2        0.20368    |            .       |****   .            | 
        3       -0.42003    |            ********|       .            | 
        4        0.19378    |            .       |****   .            | 
        5       -0.05803    |            .      *|       .            | 
        6        0.13343    |            .       |***    .            | 
        7       -0.09313    |            .     **|       .            | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
        1       -0.04697    |            .      *|       .            | 
        2       -0.13853    |            .    ***|       .            | 
        3        0.35756    |            .       |*******.            | 
        4       -0.09581    |            .     **|       .            | 
        5        0.02286    |            .       |       .            | 
        6       -0.16077    |            .    ***|       .            | 
        7        0.11988    |            .       |**     .            | 
 
              Crosscorrelation Check of Residuals with Input POP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      0.50    5  0.9922   0.076   0.016  -0.120  -0.034   0.030  -0.014 
   11      1.41   11  0.9997  -0.045  -0.064  -0.078  -0.097  -0.107  -0.092 
   17      1.73   17  1.0000  -0.091  -0.072  -0.018  -0.018   0.000   0.020 
 
              Crosscorrelation Check of Residuals with Input GDP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
    5     10.29    6  0.1131   0.178   0.286  -0.191   0.300   0.247  -0.333 
   11     11.44   12  0.4914  -0.017  -0.075  -0.057  -0.078  -0.110   0.138 
   17     14.75   18  0.6789  -0.081  -0.100   0.214  -0.179  -0.100   0.168 
   23     16.83   24  0.8557  -0.228  -0.071   0.141  -0.041  -0.057   0.035 
 
                            Model for variable PA 
                    Estimated Intercept          4063.537 
                    Period(s) of Differencing           2 
 
                            Autoregressive Factors 
                Factor 1:  1 - 1.76535 B**(1) + 0.80612 B**(2) 
 
                                Input Number 1 
                       Input Variable               POP 
                       Shift                          3 
                       Period(s) of Differencing      2 
 
                               Numerator Factors 
                      Factor 1:  0.00001 + 0.00005 B**(2) 
 
                               Input Number 2 
                    Input Variable                    GDP 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    0.406123 
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APPENDIX E 
 

GDP ONLY MODEL SPECIFICATION 
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Estimation of Explanatory Variable: GDP Only 

 
                             The ARIMA Procedure 
 
                            Name of Variable = PA 
 
            Period(s) of Differencing                           1 
            Mean of Working Series                       2124.097 
            Standard Deviation                           1363.468 
            Number of Observations                             31 
            Observation(s) eliminated by differencing           1 
 
                               Autocorrelations 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0     1859046      1.00000  |                    |********************| 
   1     1742953      0.93755  |             .      |******************* | 
   2     1573365      0.84633  |        .           |*****************   | 
   3     1373321      0.73872  |     .              |***************     | 
   4     1143543      0.61512  |   .                |************    .   | 
   5      912288      0.49073  |  .                 |**********       .  | 
   6      665984      0.35824  |  .                 |*******          .  | 
   7      424264      0.22822  | .                  |*****             . | 
 
                        "." marks two standard errors 
 
                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.56109    |         ***********|      .             | 
        2        0.08832    |             .      |**    .             | 
        3       -0.09059    |             .    **|      .             | 
        4        0.12776    |             .      |***   .             | 
        5       -0.10036    |             .    **|      .             | 
        6        0.01904    |             .      |      .             | 
        7        0.02063    |             .      |      .             | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1        0.93755    |             .      |******************* | 
        2       -0.27005    |             . *****|      .             | 
        3       -0.14127    |             .   ***|      .             | 
        4       -0.16089    |             .   ***|      .             | 
        5       -0.03252    |             .     *|      .             | 
        6       -0.14997    |             .   ***|      .             | 
        7       -0.04752    |             .     *|      .             | 
 
                     Autocorrelation Check for White Noise 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
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    6    104.24    6  <.0001   0.938   0.846   0.739   0.615   0.491   0.358 
 
                      Variable GDP has been differenced. 
 
                          Correlation of PA and GDP 
 
            Period(s) of Differencing                           2 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
            Variance of transformed series PA            461628.2 
            Variance of transformed series GDP           17130.55 
 
                      Both series have been prewhitened. 
 
                               Crosscorrelations 
 
 Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
  -7    -3511.956       -.03949   |             .     *|      .             | 
  -6    12713.833       0.14297   |             .      |***   .             | 
  -5    12745.093       0.14332   |             .      |***   .             | 
  -4     9512.502       0.10697   |             .      |**    .             | 
  -3    19587.146       0.22026   |             .      |****  .             | 
  -2    24180.650       0.27192   |             .      |***** .             | 
  -1    25248.091       0.28392   |             .      |******.             | 
   0    34151.683       0.38404   |             .      |********            | 
   1    25049.816       0.28169   |             .      |******.             | 
   2    22133.627       0.24890   |             .      |***** .             | 
   3    37157.289       0.41784   |             .      |********            | 
   4    18648.831       0.20971   |             .      |****  .             | 
   5    29339.861       0.32993   |             .      |*******             | 
   6    33067.999       0.37186   |             .      |*******             | 
   7    14699.399       0.16530   |             .      |***   .             | 
 
                        "." marks two standard errors 
 
                     Crosscorrelation Check Between Series 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5     18.49    6  0.0051   0.384   0.282   0.249   0.418   0.210   0.330 
 
        Both variables have been prewhitened by the following filter: 
 
                             Prewhitening Filter 
 
 
                            Autoregressive Factors 
 
                Factor 1:  1 - 0.99068 B**(1) + 0.48106 B**(2) 
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Estimation of Preliminary Transfer Function: GDP Only 
 
                             The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 
 MU            -7585.7      3467.2    -2.19    0.0287     0  PA            0 
 NUM1          2.14740     0.26219     8.19    <.0001     0  GDP           0 
 DEN1,1        0.90700     0.03573    25.38    <.0001     1  GDP           0 
 
                       Constant Estimate      -7585.72 
                       Variance Estimate      538501.4 
                       Std Error Estimate     733.8265 
                       AIC                    467.8315 
                       SBC                    471.9334 
                       Number of Residuals          29 
 
                     Correlations of Parameter Estimates 
 
               Variable                 PA       GDP       GDP 
               Parameter                MU      NUM1    DEN1,1 
 
               PA             MU     1.000     0.067    -0.947 
               GDP          NUM1     0.067     1.000    -0.381 
               GDP        DEN1,1    -0.947    -0.381     1.000 
 
 
 
                      Autocorrelation Check of Residuals 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6     23.49    6  0.0006   0.698   0.239  -0.125  -0.274  -0.239  -0.119 
   12     35.37   12  0.0004   0.039   0.142   0.239   0.319   0.260   0.063 
   18     57.90   18  <.0001  -0.134  -0.253  -0.272  -0.291  -0.268  -0.145 
   24     80.79   24  <.0001   0.013   0.170   0.176   0.015  -0.164  -0.263 
 
 
                      Autocorrelation Plot of Residuals 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0      538501      1.00000  |                    |********************| 
   1      376009      0.69825  |             .      |**************      | 
   2      128484      0.23860  |          .         |*****    .          | 
   3  -67480.328      -.12531  |         .       ***|          .         | 
   4     -147744      -.27436  |         .     *****|          .         | 
   5     -128667      -.23894  |         .     *****|          .         | 
   6  -64233.451      -.11928  |         .        **|          .         | 
   7   21178.231      0.03933  |        .           |*          .        | 
 
                        "." marks two standard errors 
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                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
        1       -0.62592    |       *************|      .             | 
        2        0.12886    |             .      |***   .             | 
        3        0.05205    |             .      |*     .             | 
        4        0.03201    |             .      |*     .             | 
        5       -0.09971    |             .    **|      .             | 
        6        0.10596    |             .      |**    .             | 
        7       -0.05075    |             .     *|      .             | 
 
 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
        1        0.69825    |             .      |**************      | 
        2       -0.48582    |          **********|      .             | 
        3       -0.08588    |             .    **|      .             | 
        4        0.01297    |             .      |      .             | 
        5        0.00003    |             .      |      .             | 
        6       -0.01034    |             .      |      .             | 
        7        0.11117    |             .      |**    .             | 
 
 
 
              Crosscorrelation Check of Residuals with Input GDP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      7.71    5  0.1727   0.194  -0.141  -0.311  -0.069   0.155   0.288 
   11     12.53   11  0.3251   0.259   0.170   0.214   0.120   0.055  -0.083 
   17     15.70   17  0.5449  -0.223  -0.209  -0.095  -0.054  -0.047  -0.047 
   23     19.00   23  0.7014  -0.021   0.046  -0.024  -0.097  -0.249  -0.198 
 
 
                            Model for variable PA 
                    Estimated Intercept          -7585.72 
                    Period(s) of Differencing           1 
 
                               Input Number 1 
                    Input Variable                    GDP 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    2.147401 
                              Denominator Factors 
 
                          Factor 1:  1 - 0.907 B**(1) 
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Estimation of Final Transfer Function Model: GDP Only 
 
                             The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 
 MU             2342.6      1378.7     1.70    0.0893     0  PA            0 
 AR1,1         1.26583     0.21010     6.02    <.0001     1  PA            0 
 AR1,2        -0.29928     0.22578    -1.33    0.1850     2  PA            0 
 NUM1          0.27121     0.32937     0.82    0.4103     0  GDP           0 
 DEN1,1       -0.48072     0.89708    -0.54    0.5921     2  GDP           0 
 
                       Constant Estimate      78.36286 
                       Variance Estimate      106172.4 
                       Std Error Estimate     325.8411 
                       AIC                    411.1586 
                       SBC                    417.8196 
                       Number of Residuals          28 
 
                     Correlations of Parameter Estimates 
 
     Variable                 PA        PA        PA       GDP       GDP 
     Parameter                MU     AR1,1     AR1,2      NUM1    DEN1,1 
 
     PA             MU     1.000    -0.282     0.379    -0.181    -0.251 
     PA          AR1,1    -0.282     1.000    -0.978     0.097     0.262 
     PA          AR1,2     0.379    -0.978     1.000    -0.110    -0.286 
     GDP          NUM1    -0.181     0.097    -0.110     1.000     0.534 
     GDP        DEN1,1    -0.251     0.262    -0.286     0.534     1.000 
 
 
                      Autocorrelation Check of Residuals 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6      8.52    4  0.0744  -0.109   0.324   0.268   0.042   0.214  -0.126 
   12     15.48   10  0.1156   0.151  -0.043  -0.092  -0.004   0.127  -0.302 
   18     22.17   16  0.1379   0.123  -0.179  -0.119  -0.106  -0.160   0.057 
   24     29.52   22  0.1306  -0.262   0.063  -0.058   0.023   0.007  -0.015 
 
 
                      Autocorrelation Plot of Residuals 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0      106172      1.00000  |                    |********************| 
   1  -11620.341      -.10945  |            .     **|       .            | 
   2   34427.091      0.32426  |            .       |****** .            | 
   3   28404.936      0.26754  |            .       |*****  .            | 
   4    4453.935      0.04195  |           .        |*       .           | 
   5   22710.930      0.21391  |           .        |****    .           | 
   6  -13413.574      -.12634  |           .     ***|        .           | 
   7   16071.248      0.15137  |           .        |***     .           | 
                        "." marks two standard errors 
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                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1        0.24571    |            .       |*****  .            | 
        2       -0.29594    |            . ******|       .            | 
        3       -0.42981    |           *********|       .            | 
        4       -0.15183    |            .    ***|       .            | 
        5        0.05077    |            .       |*      .            | 
        6        0.18666    |            .       |****   .            | 
        7        0.01374    |            .       |       .            | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.10945    |            .     **|       .            | 
        2        0.31606    |            .       |****** .            | 
        3        0.36702    |            .       |*******.            | 
        4        0.02831    |            .       |*      .            | 
        5        0.02000    |            .       |       .            | 
        6       -0.26412    |            .  *****|       .            | 
        7       -0.02002    |            .       |       .            | 
 
 
              Crosscorrelation Check of Residuals with Input GDP 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      7.29    5  0.1998   0.168   0.117   0.035   0.448  -0.066   0.111 
   11     12.00   11  0.3635   0.053  -0.298   0.050  -0.270  -0.036   0.008 
   17     15.23   17  0.5792  -0.161   0.022  -0.003  -0.227   0.083  -0.174 
   23     19.98   23  0.6432  -0.299  -0.047  -0.234   0.020  -0.145  -0.044 
 
 
                            Model for variable PA 
 
                    Estimated Intercept          2342.644 
                    Period(s) of Differencing           1 
 
 
                            Autoregressive Factors 
 
                Factor 1:  1 - 1.26583 B**(1) + 0.29928 B**(2) 
 
 
                               Input Number 1 
 
                    Input Variable                    GDP 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    0.271214 
 
                              Denominator Factors 
 
                         Factor 1:  1 + 0.48072 B**(2) 
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Estimation of Explanatory Variable: US Population Only 
 
                             The ARIMA Procedure 
 
                            Name of Variable = PA 
 
            Period(s) of Differencing                           2 
            Mean of Working Series                       4203.933 
            Standard Deviation                           2700.538 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
 
                               Autocorrelations 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0     7292903      1.00000  |                    |********************| 
   1     6809135      0.93367  |             .      |******************* | 
   2     6094652      0.83570  |        .           |*****************   | 
   3     5266835      0.72219  |     .              |**************.     | 
   4     4355842      0.59727  |   .                |************    .   | 
   5     3403079      0.46663  |  .                 |*********        .  | 
   6     2414372      0.33106  |  .                 |*******          .  | 
   7     1505623      0.20645  | .                  |****              . | 
 
                        "." marks two standard errors 
 
                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.56260    |         ***********|      .             | 
        2        0.06871    |             .      |*     .             | 
        3       -0.01950    |             .      |      .             | 
        4        0.04012    |             .      |*     .             | 
        5       -0.07833    |             .    **|      .             | 
        6        0.05978    |             .      |*     .             | 
        7       -0.00452    |             .      |      .             | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1        0.93367    |             .      |******************* | 
        2       -0.28094    |             .******|      .             | 
        3       -0.12677    |             .   ***|      .             | 
        4       -0.12286    |             .    **|      .             | 
        5       -0.09371    |             .    **|      .             | 
        6       -0.11427    |             .    **|      .             | 
        7        0.01041    |             .      |      .             | 
 
                     Autocorrelation Check for White Noise 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6     97.26    6  <.0001   0.934   0.836   0.722   0.597   0.467   0.331 
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                      Variable POP has been differenced. 
 
                          Correlation of PA and POP 
 
            Period(s) of Differencing                           2 
            Number of Observations                             30 
            Observation(s) eliminated by differencing           2 
            Variance of transformed series PA             4768053 
            Variance of transformed series POP           2.641E12 
 
                      Both series have been prewhitened. 
 
 
                               Crosscorrelations 
 
 Lag   Covariance   Correlation   -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
  -7   -189626471       -.05344   |             .     *|      .             | 
  -6     13123814       0.00370   |             .      |      .             | 
  -5     97325108       0.02743   |             .      |*     .             | 
  -4    346136909       0.09754   |             .      |**    .             | 
  -3    615738685       0.17352   |             .      |***   .             | 
  -2   1031582998       0.29071   |             .      |******.             | 
  -1   1223207225       0.34471   |             .      |*******             | 
   0   1614882260       0.45509   |             .      |*********           | 
   1   1741515889       0.49078   |             .      |**********          | 
   2   1958262049       0.55186   |             .      |***********         | 
   3   1887185712       0.53183   |             .      |***********         | 
   4   1924788479       0.54242   |             .      |***********         | 
   5   1767917331       0.49822   |             .      |**********          | 
   6   1176783403       0.33163   |             .      |*******             | 
   7    269323427       0.07590   |             .      |**    .             | 
 
                        "." marks two standard errors 
 
                     Crosscorrelation Check Between Series 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5     47.33    6  <.0001   0.455   0.491   0.552   0.532   0.542   0.498 
 
 
        Both variables have been prewhitened by the following filter: 
 
                             Prewhitening Filter 
 
                            Autoregressive Factors 
 
                 Factor 1:  1 + 0.6755 B**(1) - 0.08251 B**(2) 
 
                            Moving Average Factors 
 
                         Factor 1:  1 + 0.99998 B**(1) 
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Estimation of Preliminary Transfer Function: US Population Only 
 
                             The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 MU           27.85295      1310.1     0.02    0.9830     0  PA            0 
 NUM1        0.0008264   0.0002290     3.61    0.0003     0  POP           4 
 
                       Constant Estimate      27.85295 
                       Variance Estimate       5593536 
                       Std Error Estimate     2365.066 
                       AIC                    479.6689 
                       SBC                    482.1851 
                       Number of Residuals          26 
 
                     Correlations of Parameter Estimates 
 
                    Variable                 PA       POP 
                    Parameter                MU      NUM1 
                    PA             MU     1.000    -0.935 
                    POP          NUM1    -0.935     1.000 
 
                      Autocorrelation Check of Residuals 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
    6     38.36    6  <.0001   0.700   0.523   0.529   0.368   0.238   0.117 
   12     43.86   12  <.0001   0.048  -0.004  -0.079  -0.129  -0.180  -0.232 
   18     80.44   18  <.0001  -0.262  -0.294  -0.324  -0.336  -0.302  -0.234 
   24     91.96   24  <.0001  -0.211  -0.182  -0.107  -0.059  -0.032  -0.030 
 
                      Autocorrelation Plot of Residuals 
Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0     5593536      1.00000  |                    |********************| 
   1     3916034      0.70010  |            .       |**************      | 
   2     2922951      0.52256  |         .          |**********.         | 
   3     2958956      0.52900  |        .           |***********.        | 
   4     2059417      0.36818  |      .             |*******      .      | 
   5     1332355      0.23820  |      .             |*****        .      | 
   6      652350      0.11663  |     .              |**            .     | 
   7      268300      0.04797  |     .              |*             .     | 
 
                        "." marks two standard errors 
 
                           Inverse Autocorrelations 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.59960    |        ************|       .            | 
        2        0.39401    |            .       |********            | 
        3       -0.45900    |           *********|       .            | 
        4        0.23835    |            .       |*****  .            | 
        5       -0.17949    |            .   ****|       .            | 
        6        0.16441    |            .       |***    .            | 
        7       -0.03867    |            .      *|       .            | 
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                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1        0.70010    |            .       |**************      | 
        2        0.06358    |            .       |*      .            | 
        3        0.27944    |            .       |****** .            | 
        4       -0.21864    |            .   ****|       .            | 
        5       -0.01760    |            .       |       .            | 
        6       -0.22007    |            .   ****|       .            | 
        7        0.07716    |            .       |**     .            | 
 
              Crosscorrelation Check of Residuals with Input POP 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      3.58    6  0.7333  -0.063   0.190   0.334   0.056   0.067   0.060 
   11      5.02   12  0.9574   0.028  -0.023  -0.072  -0.108  -0.143  -0.163 
   17      8.33   18  0.9733  -0.176  -0.193  -0.187  -0.158  -0.120  -0.092 
 
                            Model for variable PA 
 
                    Estimated Intercept          27.85295 
                    Period(s) of Differencing           2 
 
                               Input Number 1 
 
                    Input Variable                    POP 
                    Shift                               4 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    0.000826 
 

Estimation of Final Transfer Function Model: US Population Only 
 
                             The ARIMA Procedure 
                        Maximum Likelihood Estimation 
 
                          Standard             Approx 
 Parameter    Estimate       Error  t Value  Pr > |t|   Lag  Variable  Shift 
 
 MU             4639.2      1754.3     2.64    0.0082     0  PA            0 
 AR1,1         1.74314     0.13401    13.01    <.0001     1  PA            0 
 AR1,2        -0.77584     0.14420    -5.38    <.0001     2  PA            0 
 NUM1       0.00001656  0.00002925     0.57    0.5712     0  POP           4 
 
 
                       Constant Estimate      151.7143 
                       Variance Estimate      117035.3 
                       Std Error Estimate     342.1042 
                       AIC                    386.0203 
                       SBC                    391.0527 
                       Number of Residuals          26 
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                     Correlations of Parameter Estimates 
 
          Variable                 PA        PA        PA       POP 
          Parameter                MU     AR1,1     AR1,2      NUM1 
 
          PA             MU     1.000    -0.363     0.411     0.098 
          PA          AR1,1    -0.363     1.000    -0.985    -0.161 
          PA          AR1,2     0.411    -0.985     1.000     0.188 
          POP          NUM1     0.098    -0.161     0.188     1.000 
 
                      Autocorrelation Check of Residuals 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Autocorrelations--------------- 
 
    6      3.79    4  0.4356  -0.044  -0.150   0.258   0.010   0.143  -0.082 
   12     11.27   10  0.3371  -0.012   0.043  -0.201   0.167   0.084  -0.279 
   18     15.32   16  0.5010   0.086  -0.128  -0.182   0.000  -0.070  -0.023 
   24     16.92   22  0.7676  -0.110   0.005   0.043  -0.019   0.008  -0.000 
 
                      Autocorrelation Plot of Residuals 
 
 Lag  Covariance  Correlation  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
   0      117035      1.00000  |                    |********************| 
   1   -5178.984      -.04425  |            .      *|       .            | 
   2  -17517.528      -.14968  |            .    ***|       .            | 
   3   30139.267      0.25752  |            .       |*****  .            | 
   4    1176.176      0.01005  |           .        |        .           | 
   5   16698.900      0.14268  |           .        |***     .           | 
   6   -9547.056      -.08157  |           .      **|        .           | 
   7   -1420.533      -.01214  |           .        |        .           | 
 
                        "." marks two standard errors 
 
                           Inverse Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.14622    |            .    ***|       .            | 
        2        0.26634    |            .       |*****  .            | 
        3       -0.35150    |            .*******|       .            | 
        4        0.08379    |            .       |**     .            | 
        5       -0.21095    |            .   ****|       .            | 
        6        0.13151    |            .       |***    .            | 
        7       -0.04648    |            .      *|       .            | 
 
                           Partial Autocorrelations 
 
      Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 
        1       -0.04425    |            .      *|       .            | 
        2       -0.15193    |            .    ***|       .            | 
        3        0.24940    |            .       |*****  .            | 
        4        0.00396    |            .       |       .            | 
        5        0.23629    |            .       |*****  .            | 
        6       -0.16053    |            .    ***|       .            | 
        7        0.05787    |            .       |*      .            | 
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              Crosscorrelation Check of Residuals with Input POP 
 
   To      Chi-         Pr > 
  Lag    Square   DF   ChiSq  ---------------Crosscorrelations-------------- 
 
    5      0.43    6  0.9986   0.017  -0.012  -0.124  -0.003  -0.000  -0.062 
   11      1.50   12  0.9999  -0.069  -0.083  -0.091  -0.100  -0.105  -0.087 
   17      1.78   18  1.0000  -0.087  -0.063  -0.017  -0.020  -0.011   0.016 
 
 
                            Model for variable PA 
 
                    Estimated Intercept          4639.226 
                    Period(s) of Differencing           2 
 
                            Autoregressive Factors 
 
                Factor 1:  1 - 1.74314 B**(1) + 0.77584 B**(2) 
 
                               Input Number 1 
 
                    Input Variable                    POP 
                    Shift                               4 
                    Period(s) of Differencing           2 
                    Overall Regression Factor    0.000017 
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