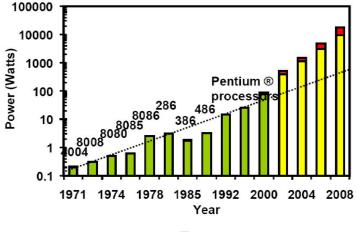

The Technology Roadmap ECE 260B / CSE 241A Guest Lecture

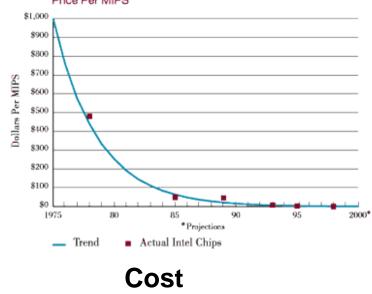
Andrew B. Kahng Professor of CSE and ECE, UC San Diego

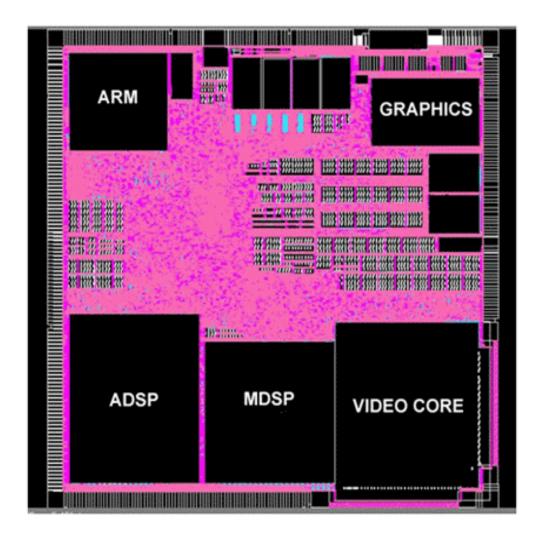
abk@ucsd.edu

http://vlsicad.ucsd.edu/

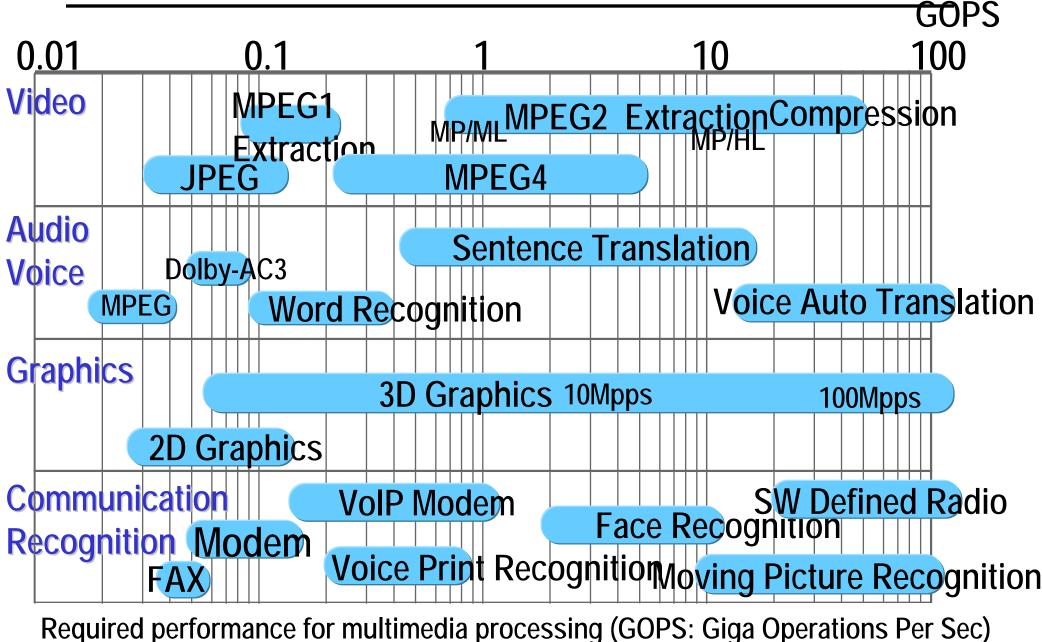

Semiconductor Technology Trends

Performance

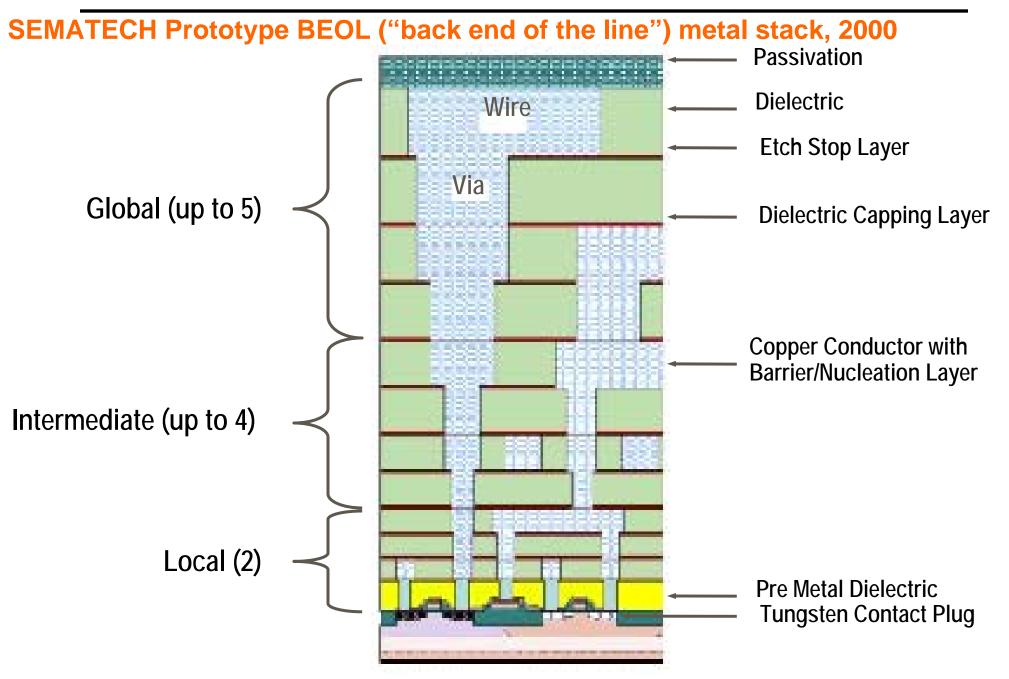

Microprocessor	Year of Introduction	Transistors
4004	1971	2,300
8008	1972	2,500
8080	1974	4,500
8086	1978	29,000
Intel286	1982	134,000
Intel386 [™] processor	1985	275,000
Intel486 [™] processor	1989	1,200,000
Intel® Pentium [®] processor	1993	3,100,000
Intel [®] Pentium [®] II processor	1997	7,500,000
Intel® Pentium® III processor	1999	9,500,000
Intel® Pentium® 4 processor	2000	42,000,000
Intel® Itanium® processor	2001	25,000,000
Intel [®] Itanium [®] 2 processor	2003	220,000,000
Intel® Itanium® 2 processor (9MB cache)	2004	592,000,000


Power

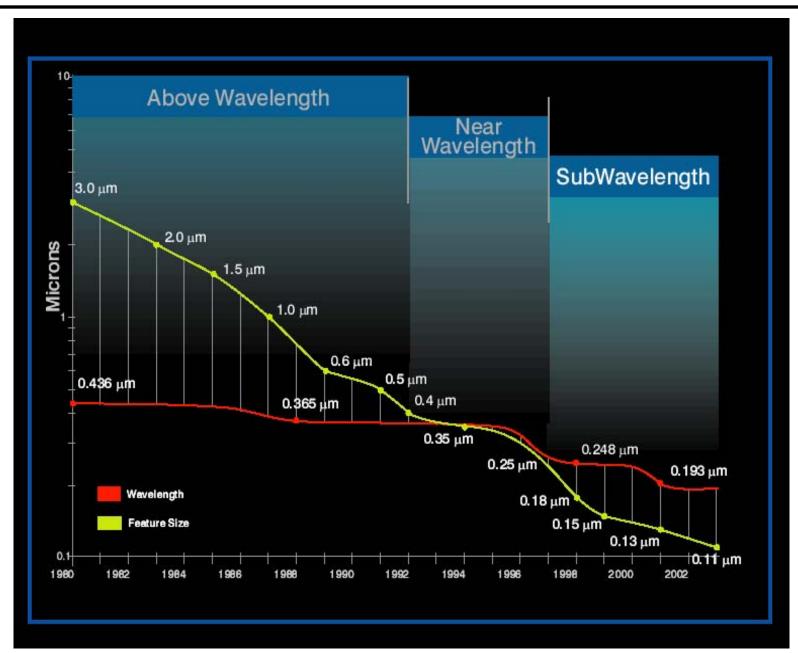
Microprocessor Price Trends Price Per MIPS


Figures courtesy Intel

What Drives Semiconductor Technology?


Modern cellphone chip: 2+ processors, modem, graphics and video engines, DSPs in 8mm x 8mm

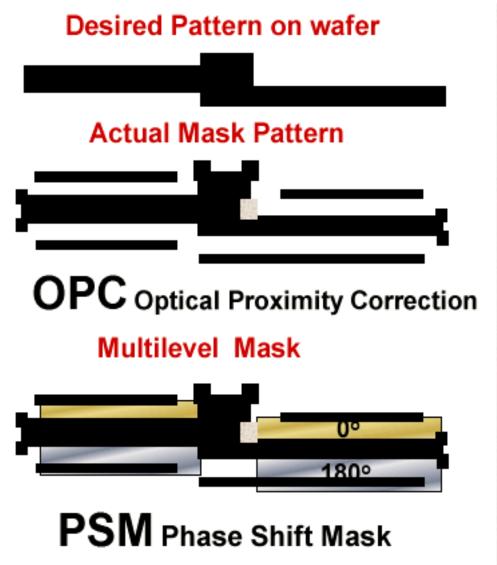
What Does the IC Do?

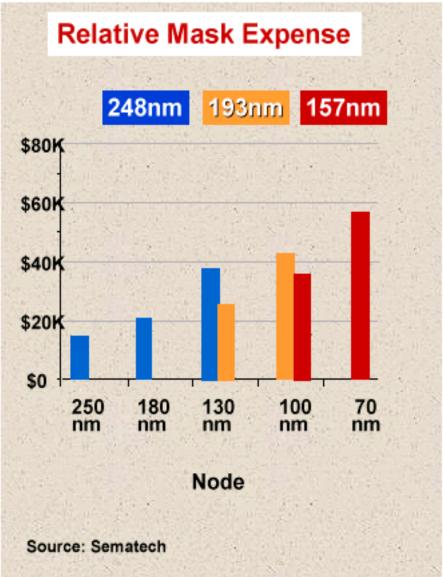


2007 ITRS SOC Consumer-Stationary Driver: 220 TFlops <u>on a single chip</u> by 2022

How Is It Connected?

How Is It Manufactured?




Sub-wavelength optical lithography

Slide courtesy of Numerical Technologies, Inc.

Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

(Mask Shapes Used in Lithography)

Many Interesting Technology Trends

Lithography

- Minimum feature size scales by 0.7x every three (two?) years
- Add another pair of layers: last generation's chip = this generation's module

Interconnect delay doesn't scale well

- Dominates system performance
- Coupling gets worse → timing uncertainty and design guardband

Multiple clock cycles needed to cross chip

• whether 3 or 15 not as important as "multiple" being > 1

How does manufacturing process enter into picture?

- Lower-permittivity dielectrics \rightarrow organics to aerogels to air gaps
- Copper interconnects \rightarrow resistivity, reliability
- Planarization \rightarrow more layers are stackable

Many Interesting Design Challenges Result

Manufacturability (chip can't be built)

- antenna rules
- minimum area rules for stacked vias
- CMP (chemical mechanical polishing) area fill rules
- layout corrections for optical proximity effects in subwavelength lithography

Signal integrity (chip fails timing constraints)

- crosstalk induced errors
- timing dependence on crosstalk
- IR drop on power supplies

Reliability (chip fails in the field)

- electromigration on power supplies
- hot carrier effects on devices
- wire self-heating effects on clocks and signals

SRC* Grand Challenges (~2005)

- **1. Extend CMOS to its ultimate limit**
- 2. Support continuation of Moore's Law by providing a knowledge base for CMOS replacement devices
- 3. Enable Wireless/Telecomm systems by addressing technical barriers in design, test, process, device and packaging technologies
- 4. Create mixed-domain transistor and device interconnection technologies, architectures, and tools for future microsystems that mitigate the limitations projected by ITRS
- 5. Search for radical, cost effective post NGL patterning options
- 6. Provide low-cost environmentally benign IC processes
- 7. Increase factory capital utilization efficiency through operational modeling
- 8. Provide design tools and techniques which enhance design productivity and reduce cost for correct, manufacturable and testable SOC's and SOP's
- 9. Enable low power and low voltage solutions for mobile/battery conserving applications through system and circuit design, test and packaging approaches.
- **10. Enable very low cost components**
- **11. Provide tools enabling rapid implementation of new system architectures**
- * = Semiconductor Research Corporation, which funds a large portion of semiconductor-related U.S. academic research. My point: See the big picture!

- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore

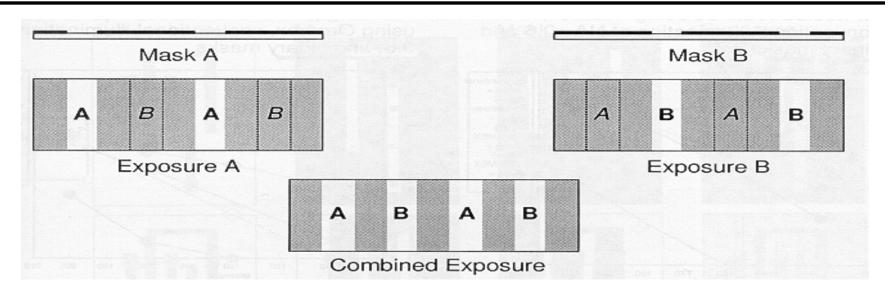
- Have written the IC physical design roadmap since 1996
- Chair / co-chair of U.S. and International Design Technology Working Groups since 2000
- Responsible for two chapters in the International Technology Roadmap for Semiconductors (ITRS), <u>http://public.itrs.net/</u>
 - **Design chapter:** roadmaps for the EDA industry
 - System Drivers chapter: roadmaps for product classes that consume high-value silicon and drive semiconductor technology

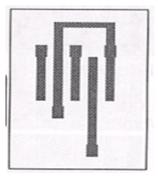
What is the Semiconductor Roadmap?

- Something you need to read !
- Enabling mechanism for Moore's Law
 - Synchronizes <u>many</u> industries to "clock" of technology nodes = A Very Big Picture !
 - Lithography, Interconnect, Assembly and Packaging, Test, Design, ...

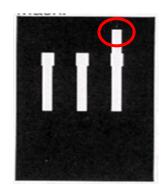
Technology roadmap (not business roadmap)

- Structured as <u>requirements</u> + <u>potential</u> <u>solutions</u>
- Highly complex and interconnected
 - 1000+ people worldwide produce new edition each oddnumbered year, and update in even
 - Many contradictions (predict vs. require, etc.)

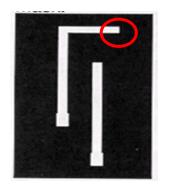

Today's Agenda


- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore

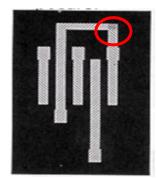
Lithography Roadmap (January 2009)


						-	
	2000	2010	2011	2012	2012	2014	2015
Year of Production	2009	2010	2011	2012	2013	2014	2015
$DRAM \frac{1}{2}$ pitch (nm)	52	45	40	36	32	28	25
CD control (3 sigma) (nm) [B]	5.4	4.7	4.2	3.7	3.3	2.9	2.6
Contact in resist (nm)	57	50	44	39	35	31	28
Contact after etch (nm)	52	45	40	36	32	28	25
Overlay [A] (3 sigma) (nm)	10.3	9.0	8.0	7.1	6.4	5.7	5.1
Flash	-	-		-	-	-	
Flash ½ pitch (nm) (un-contacted poly)	<mark>40</mark>	36	32	28	25	23	20
CD control (3 sigma) (nm) [B]	4.2	3.7	3.3	2.9	2.6	2.3	2.1
Contact in resist (nm)	44	39	35	31	28	25	22
Contact after etch (nm)	40	36	32	28	25	23	20
Overlay [A] (3 sigma) (nm)	13.2	11.8	10.5	9.4	8.3	7.4	6.6
MPU		-			-		
MPU/ASIC Metal 1 (M1) ½ pitch (nm)	<mark>52</mark>	45	40	36	32	28	25
MPU gate in resist (nm)	41	35	31	28	25	22	20
MPU physical gate length (nm) *	29	27	24	22	18	17	15
Gate CD control (3 sigma) (nm) [B] **	3.0	2.8	2.5	2.3	1.9	1.7	1.6
Contact in resist (nm)	64	56	50	44	39	35	31
Contact after etch (nm)	58	51	45	40	36	32	28
Overlay [A] (3 sigma) (nm)	13	11	10.0	8.9	8.0	7.1	6.3
Chip size (mm^2)				-	-	-	
Maximum exposure field height (mm)	26	26	26	26	26	26	26
Maximum exposure field length (mm)	33	33	33	33	33	33	33
Maximum field area printed by exposure tool (mm ²)	858	858	858	858	858	858	858
Wafer site flatness at exposure step (nm) [C]	48	42	37	33	29	26	23
Number of mask levels MPU	35	35	35	35	37	37	37
Wafer size (diameter, mm)	300	300	300	450	450	450	450

Double Patterning Lithography (DPL)

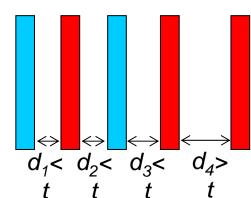


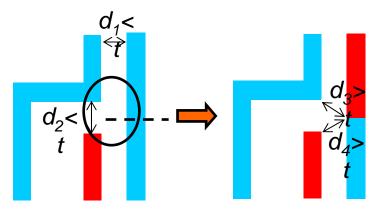
Desired pattern



First Mask

+




Second Mask

Combined exposure

DPL Layout Decomposition

Two features are assigned opposite colors if their spacing is less than the minimum coloring spacing t

IF two features within minimum coloring spacing t cannot be assigned different colors

• THEN at least one feature is split into two or more parts

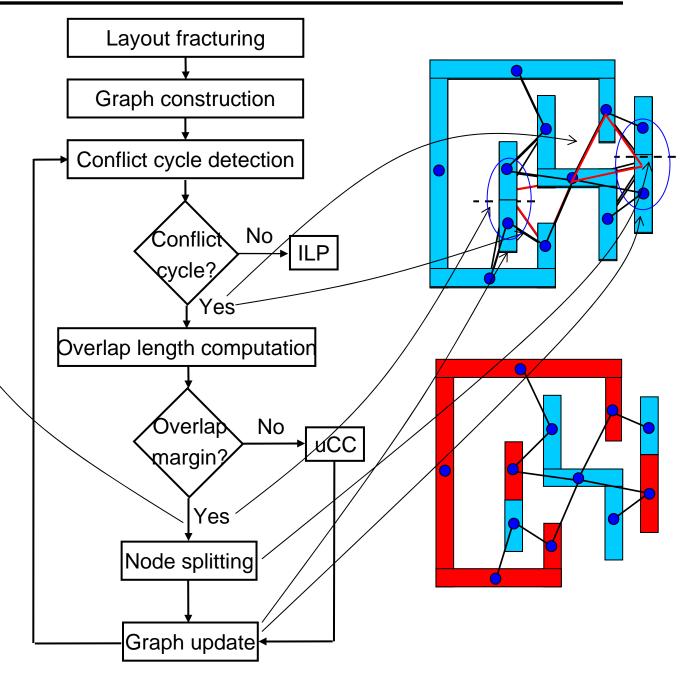
Pattern split increases manufacturing cost, complexity

- Line ends \rightarrow corner rounding
- Overlay error and interference mismatch → line edge errors → tight overlay control
- Optimization: minimize cost of layout decomposition
- Various "Graph Bipartization" engines from my group since 1998

Example DPL Layout Decomposition Flow

Layout fracturing

- Polygons \rightarrow rectangles
- Graph construction


Conflict cycle (CC) detection

Overlap length computation

- If there is a feasible dividing point → node splitting
- Otherwise, report an unresolvable conflict cycle (uCC)

Graph updating

ILP based DPL color assignment

(December 2009) – HIGH PERFORMANCE

Year of Production	2009	2010	2011	2012	2013	2014	2015
MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted)	54	45	38	32	27	24	21
L _z : Physical Lgate for High Performance logic (nm) [1]	29	27	24	22	20	18	17
EOT: Equivalent Oxide Thickness (nm) [2]							
Extended planar bulk	1	0.95	0.88	0.75	0.65	0.55	0.53
UTB FD					0.7	0.68	0.6
MG							0.77
Channel doping (E18 /cm3) [3]							
Extended Planar Bulk	3.7	4	4.5	5	5.7	6.6	7.5
Junction depth or body Thickness (nm) [4]							
Extended Planar Bulk (junction)	13	12	10.5	9.5	8.7	8	7.3
UTB FD (body)					7	6	5.5
MG (body)							8
EOT elec : Electrical Equivalent Oxide Thickness (nm) [5]							
Extended Planar Bulk	1.32	1.26	1.2	1.06	0.95	0.85	0.82
UTB FD					1.1	1.08	1
MG							1.17
C_g ideal (fF/ μ m) [6]							
Extended Planar Bulk	0.76	0.73	0.67	0.72	0.73	0.75	0.71
UTB FD					0.63	0.58	0.59
MG							0.5
J _{g.lonu} : Maximum gate leakage current density (kA/cm ²) [7]							
Extended Planar Bulk	0.65	0.83	0.9	1	1.1	1.2	1.3
							4.2
UTB FD					1.1	1.2	1.3

(December 2009) – HIGH PERFORMANCE

	-	_	_		-		
I _{sd,leak} (nA/μm) [10]							
Bulk/UTB FD/MG	100	100	100	100	100	100	100
Mobility enhancement factor due to strain [11]							
Bulk/UTB FD/MG	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Effective Ballistic Enhancement Factor, Kbal [12]							
Bulk/UTB FD/MG	1	1	1	1	1.06	1.12	1.19
R_{sd} : Effective Parasitic series source/drain resistance (Ω -µm) [13]	-						
Extended Planar Bulk	170	170	160	140	130	110	110
UTB FD					140	140	130
MG							140
I _{d,set} : NMOS Drive Current (μΑ/μm) [14]							
Extended Planar Bulk	1,210	1,200	1,190	1,300	1,450	1,580	1,680
UTB FD					1,470	1,520	1,670
MG							1,490
Equivalent injection velocity, v_{inj} (10 7 cm/s) [15]							
Extended Planar Bulk	0.76	0.77	0.77	0.78	0.84	0.9	0.98
UTB FD					0.86	0.93	1
MG							1.01
C_z fringing capacitance (fF/ μ m) [16]							
Extended Planar Bulk	0.24	0.25	0.26	0.24	0.23	0.23	0.25
UTB FD					0.17	0.17	0.17
MG							0.19
C _{s.inisi} : Total gate capacitance for calculation of CV/I (fF/µm) [17]							
Extended Planar Bulk	1	0.97	0.93	0.95	0.96	0.96	0.94
UTB FD					0.8	0.75	0.76
MG							0.68
τ =CV/I: NMOSFET intrinsic delay (ps) [18]		_					
Extended Planar Bulk	0.82	0.78	0.73	0.66	0.57	0.51	0.45
UTB FD					0.47	0.41	0.37
01212							

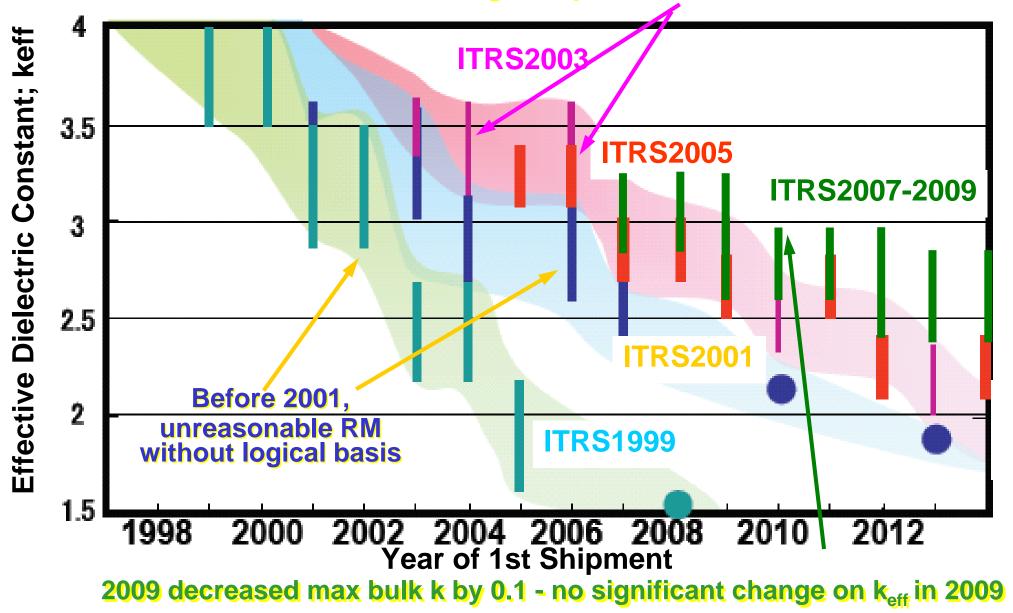
(December 2009) – LOW STANDBY POWER

	-	_	_		_		
V ₄₄ : Power Supply Voltage (V) [9]							
P bulk/UTB FD/MG	1.05	1.05	1.05	1	0.95	0.95	0.95
V _{1,201} : Saturation Threshold Voltage (mV) [10]							
Extended Planar Bulk	585	606	620	578	661		
UTB FD					466	465	469
MG							416
I _{sd,leak} (pA/μm) [11]							
Bulk/UTB FD/MG	50	50	50	50	50	50	50
Mobility enhancement factor due to strain [12]							
Bulk/UTB FD/MG	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Effective Ballistic Enhancement Factor, Kbal [13]							
Buik/UTB FD/MG	1	1	1	1	1.03	1.12	1.19
R_{sd} : Effective Parasitic series source/drain resistance (Ω -µm) [14]							
Extended Planar Bulk	250	220	210	180	170		
UTB FD					180	180	180
MG							200
$I_{d,sel}$: NMOS Drive Current with series resistance ($\mu A/\mu m$) [15]							
Extended Planar Bulk	536	559	577	664	506		
UTB FD					810	932	1,020
MG							1,000
C_s fringing capacitance (fF/ μ m) [16]							
Extended Planar Bulk	0.24	0.24	0.237	0.255	0.237		
UTB FD					0.167	0.159	0.175
MG							0.18
C _{g,total} : Total gate capacitance for calculation of CV/I (fF/µm) [17]							
Extended Planar Bulk	0.957	0.911	0.888	0.943	0.837		
UTB FD					0.71	0.63	0.62
MG							0.571
τ =CVI: NMOSFET intrinsic delay (ps) [18]							
Extended Planar Bulk	1.88	1.71	1.62	1.42	1.57		
UTB FD					0.83	0.64	0.58

(December 2009) – LOW OPERATING POWER

		-	_		-		
V _{dd} : Power Supply Voltage (V) [9]							
Buik/UTB FD/MG	0.95	0.95	0.85	0.85	0.8	0.8	0.75
V _{i,set} : Saturation Threshold Voltage (mV) [10]							
Extended Planar Bulk	428	436	407	419	421		
UTB FD					311	317	320
MG							288
$I_{sd,leak}$ (nA/ μ m) [11]		_		_	_		
Buik/UTB FD/MG	5	5	5	5	5	5	5
Mobility enhancement factor due to strain [12]				_			
Buik/UTB FD/MG	1.8	1.8	1.8	1.8	1.8	1.8	1.8
Effective Ballistic Enhancement Factor, Kbal [13]							
Buik/UTB FD/MG	1	1	1	1	1.06	1.12	1.19
R_{sd} : Effective Parasitic series source/drain resistance (Ω -µm) [14]							
Extended Planar Bulk	220	200	170	160	150		
UTB FD					170	165	160
MG							160
$I_{d,sat}$: NMOS Drive Current with series resistance ($\mu A/\mu m$) [15]		_					
Extended Planar Bulk	700	746	769	798	729		
UTB FD					904	999	984
MG							1,070
C_{g} fringing capacitance (fF/ μ m) [16]							
Extended Planar Bulk	0.243	0.238	0.252	0.232	0.239		
UTB FD					0.167	0.159	0.176
MG							0.186
C _{g,total} : Total gate capacitance for calculation of CV/I (fF/µm) [17]				_			
Extended Planar Bulk	0.913	0.893	0.996	0.94	0.908		
UTB FD					0.75	0.67	0.66
MG							0.669
τ =CVI: NMOSFET intrinsic delay (ps) [18]							
Extended Planar Bulk	1.24	1.14	1.1	1	1		
UTB FD					0.67	0.53	0.5
			- U				

Comments


- LSTP subthreshold leakage requirement of 50 pA/µm used to be 1 pA/µm in early 2000's !
- HP scaling of CV/I is now 13%/year, instead of historical 17%/year, based on Design input that the extra speed wasn't usable because of power limits
- HP, LSTP correspond to G and LP process flavors from major foundries
- 2009 LOP roadmap increased VDD especially in longterm years; this is wrong from design and product viewpoint, and is likely to be corrected in 2010
 - LOP roadmap might also go away in light of previous comment

Interconnect Roadmap (January 2009)

Year of Production	2009	2010	2011	2012	2013	2014
MPU/ASIC Metal 1 ¹ / ₂ Pitch (nm)(contacted)	52	45	40	36	32	28
Number of metal levels (includes ground planes & passive devices)	12	12	12	12	13	13
Total interconnect length (m/cm^2) – Metal 1 and five intermediate levels, active wiring only [1]	2000	2222	2500	2857	3125	3571
FITs/m length/cm ² × 10 ⁻³ excluding global levels [2]	2.5	2.3	2	1.8	1.6	1.4
Interlevel metal insulator – effective dielectric constant (κ)	2.6-2.9	2.6-2.9	2.6-2.9	2.4-2.8	2.4-2.8	2.4-2.8
Interlevel metal insulator – bulk dielectric constant (κ)	2.3-2.6	2.3-2.6	2.3-2.6	2.1-2.4	2.1-2.4	2.1-2.4
Copper diffusion barrier and etch stop – bulk dielectric constant (κ)	3.5-4.0	3.5-4.0	3.5-4.0	3.0-3.5	3.0-3.5	3.0-3.5
Metal 1 wiring pitch (nm)	104	90	80	72	64	56
Metal 1 A/R (for Cu)	1.8	1.8	1.8	1.8	1.9	1.9
Barrier/cladding thickness (for Cu Metal 1 wiring) (nm) [3]	3.7	3.3	2.9	2.6	2.4	2.1
Cu thinning at minimum pitch due to erosion (nm), $10\% \times \text{height}$, 50% areal density, 500 µm square array	9	8	7	6	6	5
Conductor effective resistivity ($\mu\Omega$ cm) Cu Metal 1 wiring including effect of width-dependent scattering and a conformal barrier of thickness specified below	3.80	4.08	4.30	4.53	4.83	5.20
Interconnect RC delay (ps) for 1 mm Cu Metal 1 wire, assumes width- dependent scattering and a conformal barrier of thickness specified below	1465	2100	2801	3491	4555	6405
Line length (µm) where 25% of switching voltage is induced on victim Metal 1 wire by crosstalk [4]	89	82	78	64	57	49
Total Metal 1 resistance variability due to CD erosion and scattering (%)	30	30	31	32	32	31
Intermediate wiring pitch (nm)	104	90	80	72	64	56

History: Low-k Roadmap Evolution

Since 2003, based on wiring capacitance calculation of three kinds of dielectric structures and validated against publications

AR is important

- Thickness control (planarization by CMP) spec implies large interconnect RC variation
- Current processes often have thick-metal on top two layers (above "global")
- Leading-edge designs (clock, analog) will often "staple" (superpose) traces on multiple layers to reduce resistance
- M1 pitches show that "foundry X nm process" is often not a true X nm process in the ITRS sense – rather, more in a marketing sense

Packaging Roadmap (January 2009)

		. 		. 	
Year of Production	2009	2010	2011	2012	2013
Cost per Pin Minimum for Contract Assembly (Cents/Pin)	-	•	·		
Low-cost, hand-held and memory	.2446	.2344	.2242	.2140	.2038
Cost-performance	.63-1.70	.60-1.20	.5797	.5492	.5187
High-performance	1.64	1.56	1.48	1.41	1.34
Harsh	0.24–1.90	0.23–1.54	.22-1.81	.21 - 1.71	.20 - 1.63
Maximum Power (Watts/mm ²)					
Hand held and memory (Watts)	3	3	3	3	3
Cost-performance (MPU)	0.9	0.96	1.13	1.11	1.1
High-performance (MPU)	0.46	0.47	0.52	0.51	0.48
Harsh	0.2	0.22	0.22	0.24	0.25
Package Pin count Maximum	-				
Low-cost	160–850	170–900	180–950	188–1000	198–1050
Cost performance	660–2801	660–2783	720- 3061	720–3367	800–3704
High performance (FPGA)	4620	4851	5094	5348	5616
Harsh	425	447	469	492	517
Minimum Overall Package Profile (mm)	<u> </u>	·	·		<u> </u>
Low-cost, hand held and memory	0.3	0.3	0.3	0.3	0.3
Cost-performance	0.65	0.65	0.65	0.5	0.5
High-performance	1.4	1.2	1.2	1	1
Harsh	0.8	0.8	0.7	0.7	0.7

Test (Burn-In) Roadmap (January 2009)

	T				r	r	_
V (D L .:	2000	2010	2011	2012	2012	2014	2015
Year of Production	2009 400	2010 400	2011 400	2012 400	2013 400	2014 400	2015 400
Clock input frequency (MHz)	400	400 75	400 75	400 75	400 75	400 75	400 75
Off-chip data frequency (MHz)	-	-	-		-	-	-
Power dissipation (W per DUT)	600	600	600	600	600	600	600
Power Supply Voltage Range (V)							
High-performance ASIC / microprocessor / graphics	05 25	05 25	0 5 2 5	05 25	05 25	0 5 2 5	0 5 2 5
processor	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5	0.5-2.5
Low-end microcontroller	0.7–10.0	0.5–10	0.5–10	0.5-10	0.5–10	0.5–10	0.5-10
Mixed-signal	0.5–500	0.5–500	0.5–500	0.5–500	0.5–500	0.5–500	0.5–1000
Maximum Number of Signal I/O							
High-performance ASIC	384	384	384	384	384	384	384
High-performance microprocessor / graphics							
processor / mixed-signal	128	128	128	128	128	128	128
Commodity memory	72	72	72	72	72	72	72
Maximum Current (A)							
High-performance microprocessor	450	450	450	450	450	450	450
High-performance graphics processor	200	200	200	200	200	200	200
Burn-in Socket							
Pin count	3000	3000	3000	3000	3000	3000	3000
Pitch (mm)	0.3	0.2	0.2	0.2	0.2	0.2	0.1
Power consumption (A/Pin)	4	5	5	5	5	5	5
Wafer Level Burn-In							
Maximum burn-in temperature (°C)	175±3	175±3	175±3	175±3	175±3	175±3	175±3
Pad Layout – Linear							
Minimum pad pitch (µm)	65	65	65	65	65	65	50
Minimum pad size (µm)	50	50	50	50	50	50	40
Maximum number of probes	70k	70k	70k	70k	70k	70k	140k
Pad Layout – Periphery, Area Array				-	-		-
Minimum pad pitch (µm) *1	80	80	80	80	80	80	60
Minimum pad size (µm)	35	35	35	30	30	30	25
Maximum number of probes	150k	150k	150k	150k	150k	150k	20 300k
Power consumption (KW/wafer – Low-end							
microcontroller, DFT/BIST SOC *2)	5	5 A	10	10	10	10	15
	<u> </u>	5 _{Andr}					

Today's Agenda

- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore

Silicon Complexity Challenges

- Silicon Complexity = impact of process scaling, new materials, new device/interconnect architectures
- Non-ideal scaling (leakage, power management, circuit/device innovation, current delivery)
- Coupled high-frequency devices and interconnects (signal integrity analysis and management)
- Manufacturing variability (library characterization, analog and digital circuit performance, error-tolerant design, layout reusability, static performance verification methodology/tools)
- Scaling of global interconnect performance (communication, synchronization)
- Decreased reliability (SEU, gate insulator tunneling and breakdown, joule heating and electromigration)
- Complexity of manufacturing handoff (reticle enhancement and mask writing/inspection flow, manufacturing NRE cost)

System Complexity Challenges

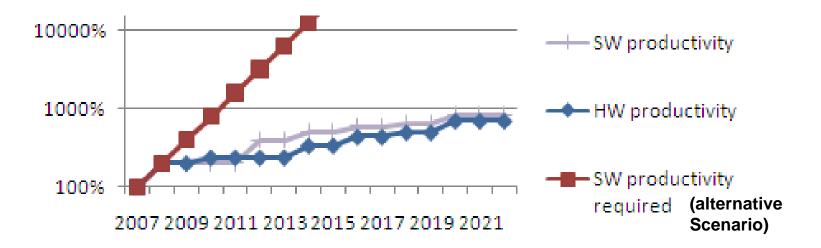
- System Complexity = exponentially increasing transistor counts, with increased diversity (mixed-signal SOC, ...)
- Reuse (hierarchical design support, heterogeneous SOC integration, reuse of verification/test/IP)
- Verification and test (specification capture, design for verifiability, verification reuse, system-level and software verification, AMS self-test, noise-delay fault tests, test reuse)
- Cost-driven design optimization (manufacturing cost modeling and analysis, quality metrics, die-package cooptimization, ...)
- Embedded software design (platform-based system design methodologies, software verification/analysis, codesign w/HW)
- Reliable implementation platforms (predictable chip implementation onto multiple fabrics, higher-level handoff)
- Design process management (team size / geog distribution, data mgmt, collaborative design, process improvement) Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

ITRS Design Cost Chart 2009 (\$M)

			IC Implementation Tool Set		RTL Functional Verif. Tool Set		Transaction Level Modeling		arge Block Reuse		Parallel Processing		Intelligent Testbench		Many Core Devel. Tools		Parallel Processing		Transactional Memory		n Design Automation		Executable Specification	
Г			IC Impl		RTL FL		Transa		Very Large		AMP F		Intelliç		Many		SMP P		Trans		System		Execu	
	\$150																							
	\$100	+																						
	\$50	_				\$9		\$20		\$39	_	\$41	\$56	\$79	\$34	\$47	\$31	\$42	\$27	\$35	\$34	\$47		\$29
	\$0	\$2 \$21	\$8 \$16	\$12 \$21	\$18 \$21	\$31	\$13 \$24	\$33	\$24 \$15	\$22	730	\$ 20		\$26	\$33	\$45	\$29	\$40	\$25	\$33	\$27	\$37	\$21 \$17	\$22
	·	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
		Tota	al HV	V En	ginee	ering	Cost	:s + E	DA T	ool (Costs		Tota	al SW	/ Eng	inee	ring	Cost	s + E\$	SDA 1	Tool (Costs	5	

System-Level Design and Software

Hardware design productivity is growing appropriately


- Requirements correspond roughly with solutions
- Innovations pacing properly (transistors / designer / year)

Large gap in software productivity possibly opening up

- If hardware accelerators are heavily leveraged, problem mitigated
- Otherwise, possibly 100X gap can affect memory size, other

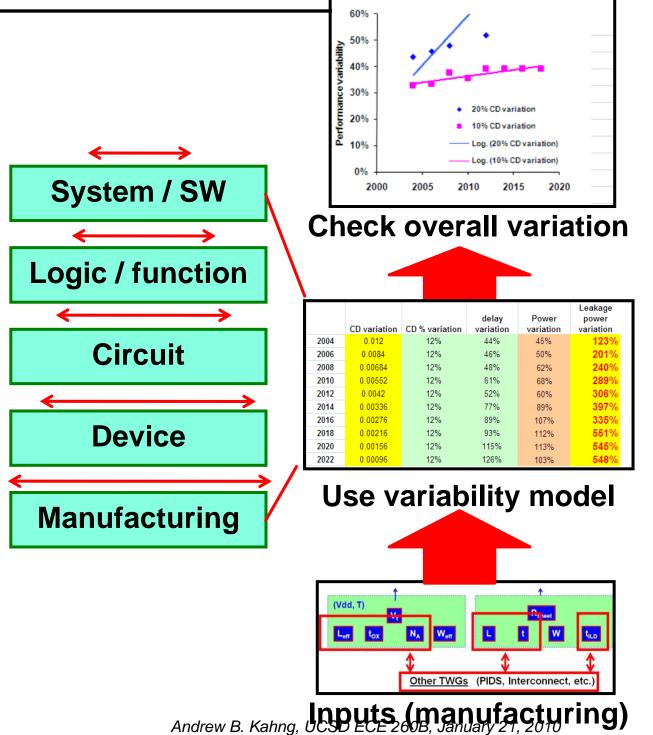
2009 ITRS adds new parameters accordingly

- Hardware design productivity requirement
- Software design productivity requirement

Future Impact of (System-Level, SW/HW)

Design on Power

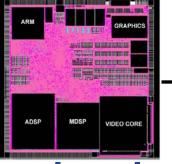
	Power Minimization	Power Minimization	Power Minimization	Power Minimization
	2009	2011	2013	2015
5%	ESL Behavioral Level	ESL Behavioral Level	ESL Behavioral Level	ESL Behavioral Level
10%	20%	30%	40%	50%
15%				
20%				
25%	ESL Architectural Level			
30%	0.2			
35%		ESL Architectural Level		
40%		0.2		
45%	RT Level		ESL Architectural Level	
50%	0.1		0.3	
55%	Physical Level	RT Level		ESL Architectural Level
60%	0.5	0.1		0.3
65%		Physical Level		
70%		0.4		
75%			RT Level	
80%			0.1	
85%			Physical Level	RT Level
90%			0.2	0.1
95%				Physical Level
100%				0.1

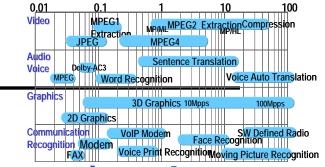

Impact of Design on "Sigma" (Variability)

Goal

- Quantify "how many sigmas" design can "reduce"
- ITRS 2005: CD 3σ tolerance changed from 10% → 12% per Design guidance

Approach

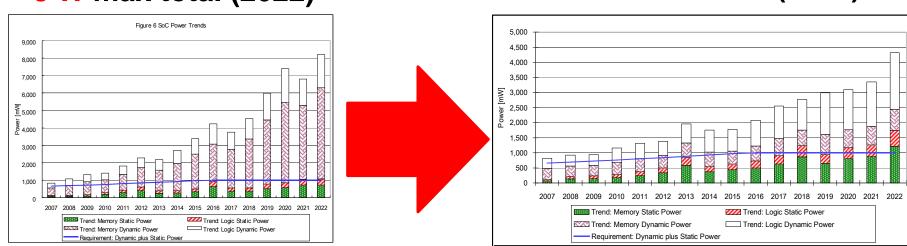

- Inventory of design techniques / tools
- Match inventory to parameters or correlations in model
- Use variability model to capture "delta" in sigmas
- See work of S. Nassif et al., IBM ARL



Today's Agenda

- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore

Consumer Driver

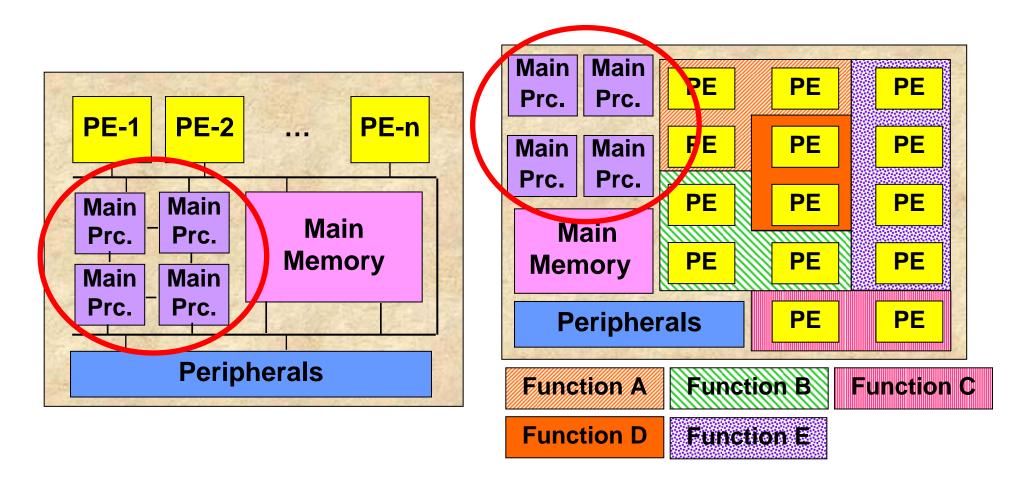


Two flavors: Portable (baseband processor) and Stationary (GPU)

2008: Updated with realistic dynamic power

Memory dynamic power 10X less than modeled previously

■2009: Total power budget reduced 1W → 0.5W
 ■Future: "wireless" driver with RF/A/MS requirements
 ■Future: more specific parameters for Test roadmap

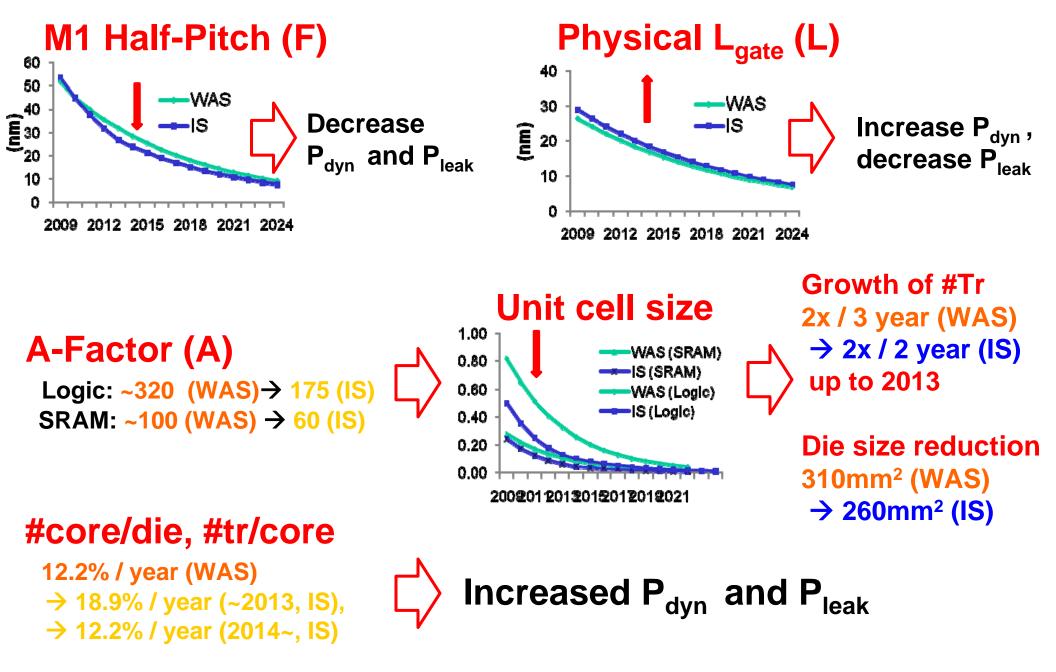

• #clocks, #power domains, #unique cores, # Q Scs to E 260B, January 21, 2010

8 W max total (2022)

4.3 W max total (2022)

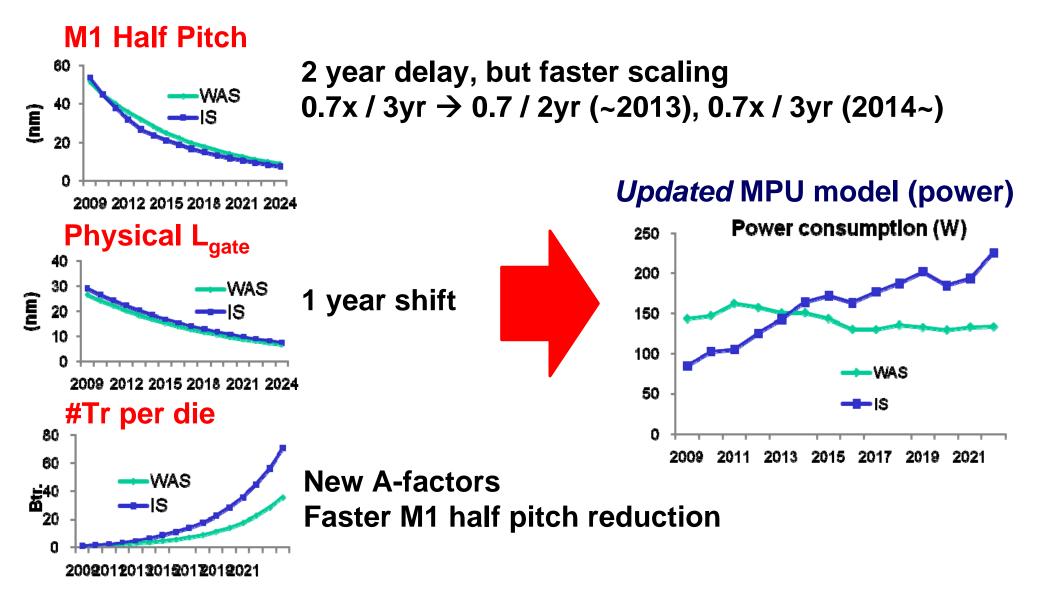
SOC Consumer Portable Architecture Model

- #Main Processors grows to 2, 4 and beyond
- Power budget reduced to 0.5W
- Die size reduces slowly to 44mm²



ORTCs: A-Factor Models (= Heart of ITRS)

(Area = A-factor $\times F^2$)


Logic: A-factor = 175 SRAM: A-factor = 60 $_{\rm L}$ M2 pitch $(\mathsf{P}_{\mathsf{M2}} \approx 1.25\mathsf{P}_{\mathsf{M1}})$ **NWell** Active Polv Contact **M1** Contacted-poly pitch M1 pitch (P_{M1}) $(\mathsf{P}_{\mathsf{Polv}} \approx 1.5\mathsf{P}_{\mathsf{M1}})$ Contacted-poly pitch $(\mathsf{P}_{\mathsf{Polv}} \approx 1.5\mathsf{P}_{\mathsf{M1}})$ NAND2 Area SRAM Bitcell Area $= 3 P_{Polv} \times 8 P_{M2}$ $= 2 P_{Polv} \times 5 P_{M1}$ \approx (3 × 1.5 P_{M1}) × (8 × 1.25 P_{M1}) $= 3 P_{M1} \times 5 P_{M1} = 15 (P_{M1})^2$ $= 45 (P_{M1})^2$ $= 15 (2 F)^2 = 60 F^2$ = 180 F² → 175 F²

New MPU Density/Power/Frequency Roadmap

Design Pacing, Challenges Unabated

2009: Lgate and M1 HP scaling updates change Drivers

Frequency-Power

Envelope Remains Critical System Issue

Current priorities

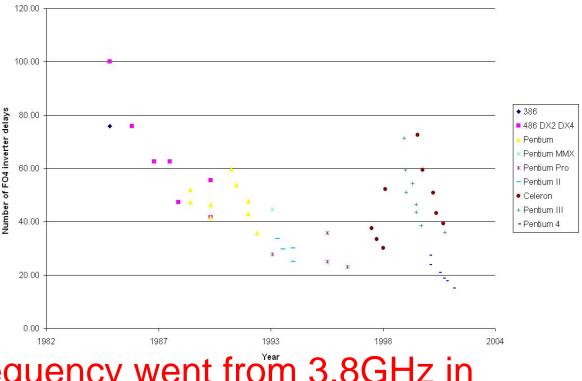
- Power #1 goal
- Frequency slowdown
- Multicore enables tradeoff
- Point of this slide: ITRS gives a "best-guess" tradeoff

Need to track tradeoff

- Market vigilance
- Yearly adjustment

Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

History: µArchitecture Wakeup Call in 2001


Historical "Moore's Law" of 2X/node frequency increase came from two sources

- 1.4X from device: (PIDS 17%/year** improvement of CV/I)
- 1.4X from "microarchitecture" (pipelining, etc.)

$\begin{array}{|c|c|c|c|} \hline 2001 \ ITRS: \ Clock \ period \geq ~12 \ FO4 \ INV \ delays \cong 200 \times \\ \hline CV/I \end{array}$

- "Microarchitecture runs out of steam"
- Frequency roadmap:
 2X → 1.4X/node

**ITRS 2008: PIDS ITWG shifted to 13%/year CV/I per Design guidance

MPU max on-chip clock frequency went from 3.8GHz in Pentium4 to 3.3GHz in Penryn – WHY?

History: Power Wakeup Call in 2007

Power is a hard limit

- E.g., 120W for the **desktop** platform
- Previous ITRS allowed max chip power and max W/cm² power density to grow
- Previous ITRS roadmapped the "power management gap" – but there can be no "gap" in actual products

"New Marketing" (2007): Utility = GOPS, not GHz

• ...when we can't scale frequency due to power limit

Frequency scaling for MPUs is function of: (1) multicore roadmap, (2) hard limit on power, and (3) MPU architecture choices

2007 ITRS: ~1X Frequency Scaling for MPU

Crude Assumptions

- Die Area:
- Number of Cores: \bullet
- Total P_{dynamic} :
- α (switch factor):
- Vdd:
- Total P_{static} :

Implications

- $\alpha \times C \times V_{dd}^2$:
- **Frequency:**
- GOPS:

- 1X / node (current MPU model)
- 2X / node (current MPU model)
- 1X / node (NEW, CONSTRAINT)
- 1X / node
- Switched cap / mm²: 1.15X / node (Borkar/Intel, 2001 \rightarrow reverify) 0.95X / node (historical ITRS)
 - 1X / node (high-k, #FO4s ↑, ...)

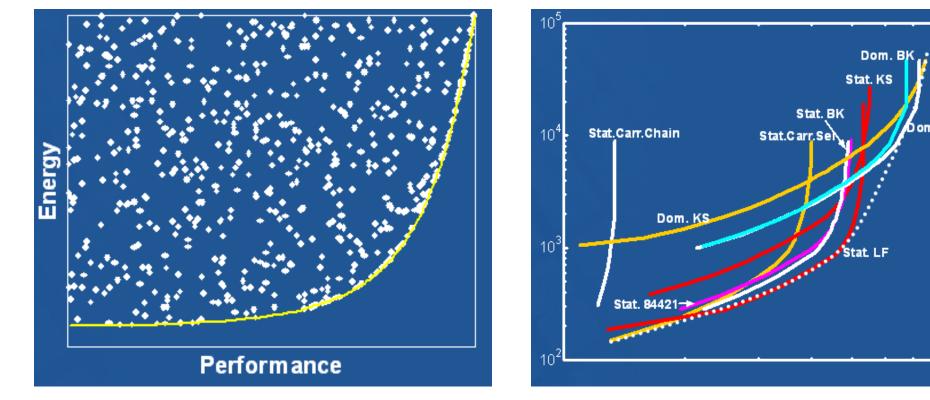
1.04X / node (from above)

- **0.98 X / node (** α CV²f = 1X, P \propto f³, 0.96 = 0.98³)
- 2X / node (2X #cores, 1X frequency)

Your Thoughts on Frequency Scaling?

Why frequency might scale at < 0.98X / node

- Static power increases rapidly vs. dynamic power
- Inter-die wires/logic not accounted for


Why frequency might scale at > 0.98X / node

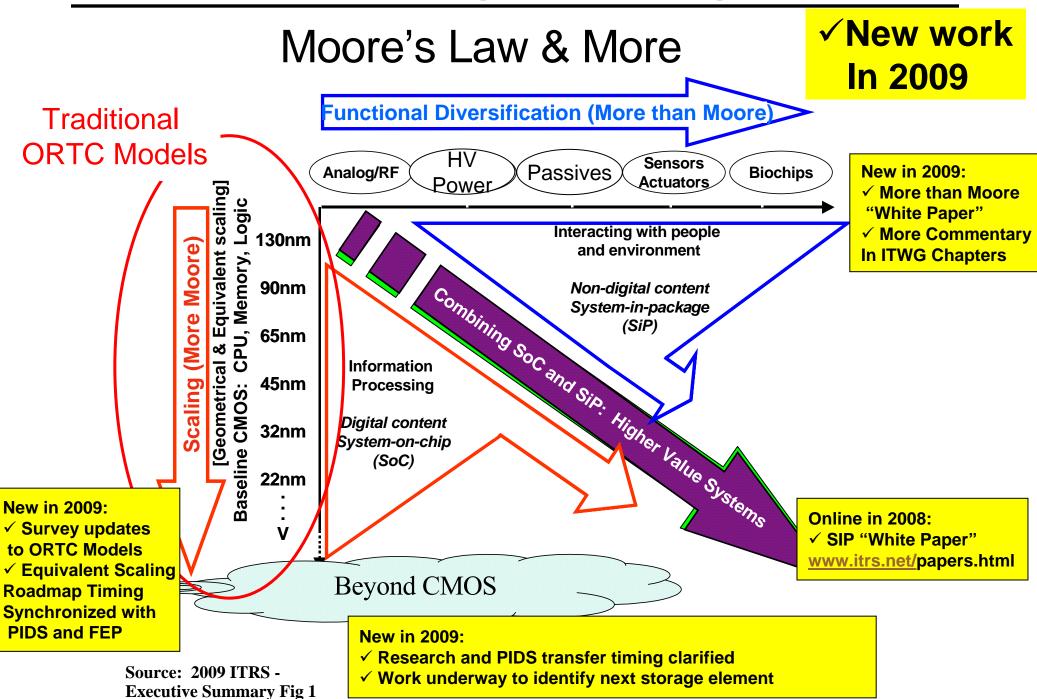
- Number of FO4s in the clock period is increasing
 - Save power faster than we give up frequency, due to logic optimization
 - Static power can be better managed → can use more HVT, less LVT
- High-k dramatically reduces I_{gate} (and improves subthreshold swing)
- Better opportunity for DVFS with multi-core (and heterogeneity)
- Application, OS-driven power management
- Power budget may actually increase very gradually
- Cores are smaller
- Need to market new products
 - 2X cores, \geq 1X frequency is value proposition for consumers Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

Energy-Delay Tradeoff Curve

Very little bang for the buck at extremes
 Shape of tradeoff curve, and location on curve, are relevant as MPU frequency backs away from limits of process

- E.g., more power reduction (logic, Vt) available when freq \downarrow
- E.g., cubic relationship between power and frequency

Andrew B. Kahng, UCSD ECE 260B, January 21, 2010


Other Considerations

- Consider reliability as a constraint
- Consider stacking / 3D integration
- Consider DVFS impact on peak power, utility
- Consider parallel SW impact on utility
- Consider frequency-power tradeoff calibrated to standard ASIC/SOC implementation flows
- Adjust for 3-year technology node timing
- Consider server platform vs. desktop platform

Today's Agenda

- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore

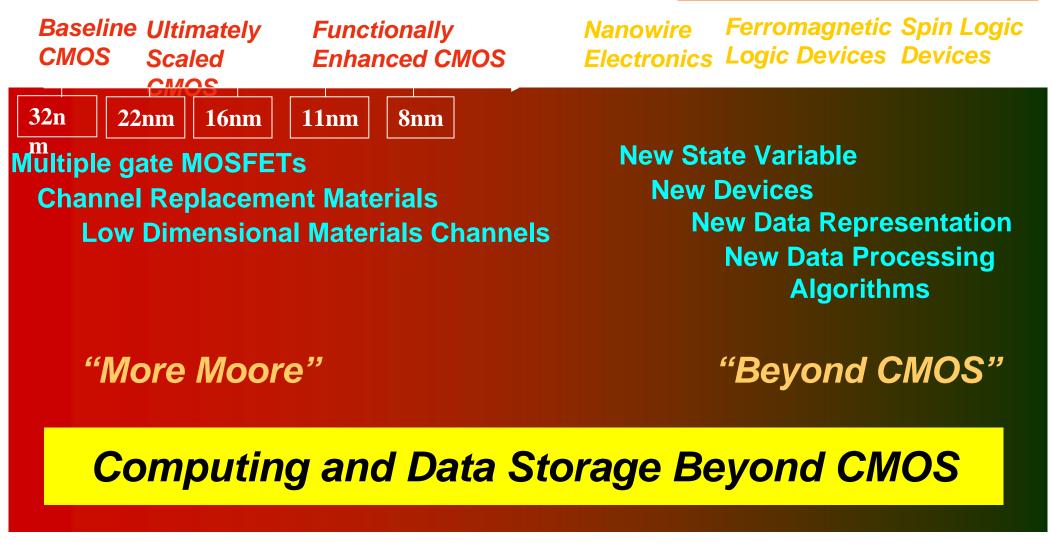
"More Than Moore" (2007 ITRS)

2007/08 ITRS "Moore's Law and More"

Alternative Definition Graphic

Heterogeneous Integration

System on Chip (SOC) and System In Package (SIP)


Source: ITRS, European Nanoelectronics Initiative Advisory Council (ENIAC)

Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

[2009 – Unchanged]

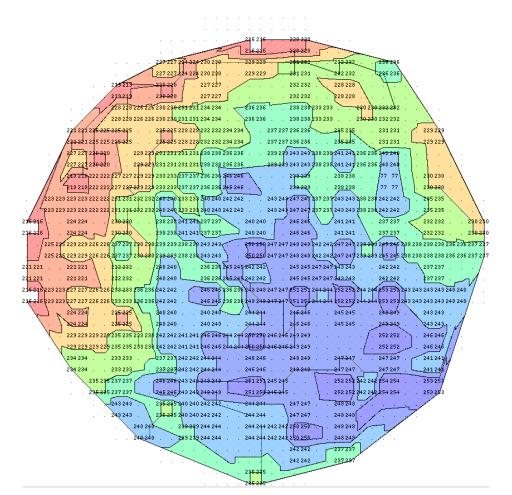
2008 ITRS "Beyond CMOS" Definition Graphic

[2009 – Unchanged]

Source: Emerging Research Device Working Group

Recap

- What is the semiconductor roadmap?
- Connections game: Why do we care?
- Aspects of the Design roadmap
- Aspects of the System Drivers roadmap and the Overall Roadmap Technology Characteristics (ORTCs)
- More Than Moore


BACKUP

Problem: Uncontrollable Variation

Chips don't work as designed

■ Loss of predictability →

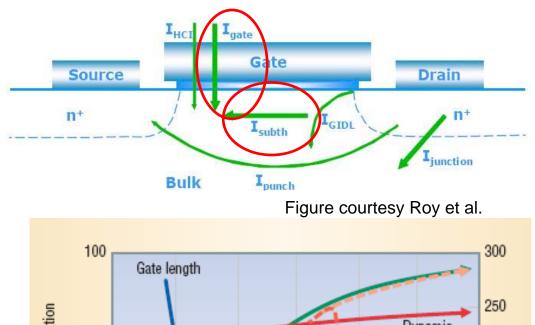
- Guardbands
- Overdesign
- Worse time to market, cost, power
- Loss of product value

Across-wafer frequency variation → What performance spec for this chip?

Problem: Yield and Cost and Risk

Chips are thrown away

Consider a cellphone chip selling 100M copies


- Design house pays \$5K/300mm wafer in 90nm technology
- 10mm x 10mm die size at 90nm \rightarrow ~700 die/wafer
- 90% vs. 95% yield
 - 630 vs. 665 good die per wafer
 - 158730 vs. 150370 wafers needed to meet the demand
 - \$42M difference

What matters is good die/wafer

• Not too slow, not too power-hungry....

Leakage Power

- Leakage power = unwanted current in transistors
- "Wasted power"
- Thought of as biggest potential roadblock to Moore's Law
- Subthreshold leakage = biggest leakage component at operating temperatures (exponential dep)
- Back of envelope:
 - 30% of 100W power per uP is leakage
 - 200M uP chips sold
 - 100W-yr = 714 pounds of coal burned
 - 10% leakage savings = 3W per uP
 - 1W to cool per 1W dissipated
 - Saves (3 x 200M) x (714 / 100) x 2 = 8,568,000,000 pounds of coal per year (x2.86) = 24,504,000,000 pounds of CO2 per year
 - About 0.2% of total of USA or China

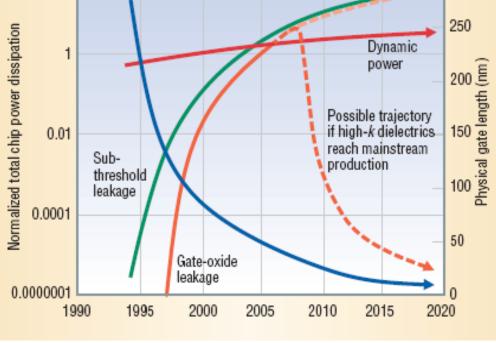
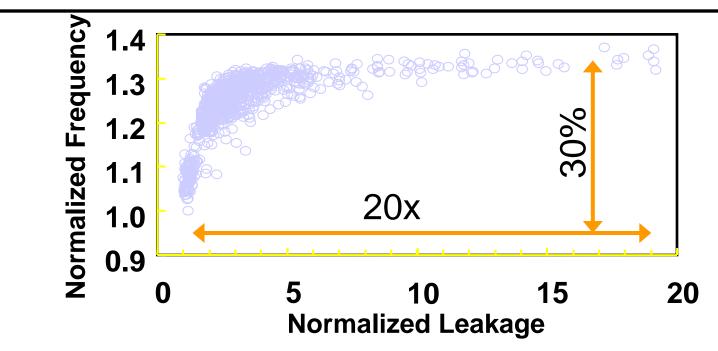
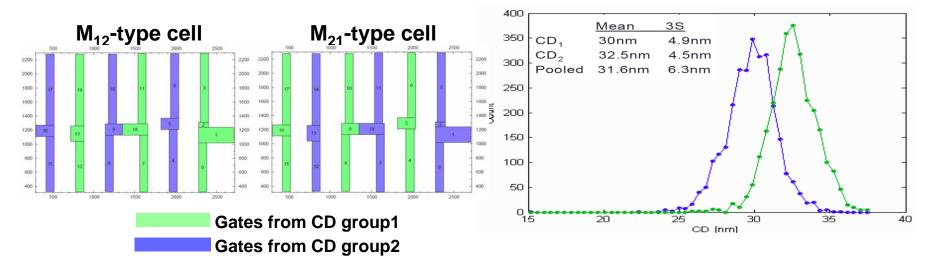



Figure courtesy Blaauw et al.

Andrew B. Kahng, UCSD ECE 260B, January 21, 2010

Leakage Power Variability


Leakage power variability

- Subthreshold leakage is exponential in almost everything (L, Vt, Tox, Temperature, Voltage..) → 5-20X variation is common
 - Gate length (= "Lgate", or "CD" "critical dimension") manufacturing variation is biggest source
- Power-limited yield loss
- Problematic leakage power and 'burn-in' testing

Design must deal with this manufacturing-induced variation

DPL Also Causes A "Bimodal" Problem...

■ TWO CD distributions and TWO different colorings → TWO different timings

Is this really a problem?

- Yes, I think so. (e.g., my 2008 SPIE Microlithography keynote)
- In 2009 ITRS, CD mean difference in DPL is now roadmapped