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Ge-Gen decoction (GGD) is widely used for the treatment of primary dysmenorrhea (PD) in China. However, the mechanisms that
underlie this effect are unclear. We investigated the protective mechanism of GGD in a rat model of PD using label-free quantitative
proteomics. The model was established by the administration of estradiol benzoate and oxytocin. Thirty rats were divided into three
groups (ten rats/group): a control group (normal rats), a model group (PD rats), and a treatment group (PD rats treated with GGD).
The serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were measured by ELISA. Nanohigh-performance
liquid chromatography-tandem mass spectrometry (nano-HPLC-MS/MS) was used to identify differentially expressed proteins
(DEPs), and bioinformatics was used to investigate the protein function. Proteomic data were validated by western blot analysis.
Oxytocin-induced writhing responses and abnormal serum levels of PGE2 and PGF2α were reversed following the
administration of GGD. A total of 379 DEPs were identified; 276 were identified between the control group and the model
group, 144 were identified between the model group and the treatment group, and 41 were identified as DEPs that were
common to all groups. Bioinformatics revealed that the DEPs between the control group and the model group were mainly
associated with cellular component biogenesis and binding processes. The DEPs between the model group and the treatment
group were mainly involved in the protein binding and metabolic process. The expression levels of HSP90AB1 and the
phosphorylation levels of ERK, JNK, and P-p38 in the uteri of rats in the three groups were consistent with the proteomic
findings; MAP kinases (ERK, JNK, and p38) are known to be involved in the production of inflammatory cytokines and
oxytocin signaling while HSP90AB1 is known to be associated with estrogen signaling. Collectively, these data indicate that
GGD may exert its protective function on PD by regulating the inflammatory response and signaling pathways associated with
oxytocin and estrogen.

1. Introduction

Primary dysmenorrhea (PD) refers to recurrent menstrual
cramps caused by uterine contractions [1, 2]. This condition
affects 40%–50% of adolescent women and can have a dis-
ruptive effect on a patient’s quality of life [1–3]. The most
commonmedications for treating PD are oral contraceptives,
analgesics, and nonsteroidal anti-inflammatory drugs
(NSAIDs) [4, 5]. However, these drugs may induce a range
of side effects and are associated with a failure rate of up to

25% [4, 5]. Thus, there is an urgent need to develop new, safe,
and effective, therapeutic options for the treatment of PD.

Herbal medicine has been used in China for many years
to treat PD [6–10]. Ge-Gen decoction (GGD, Kakkon-to in
Japanese) is a traditional Chinese prescription that is widely
applied in the clinical treatment of PD [11, 12]. GGD is
developed from Shang Han Za Bing Lun and is composed
of Pueraria lobata (Ge Gen), Ephedrae (Ma Huang), cinna-
mon twig (Gui Zhi), Paeonia lactiflora (Shao Yao), ginger
(Sheng Jiang), Glycyrrhizae radix et rhizome (Zhi Gan Cao),
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and red dates (Hong Zao) in a specific ratio
(4 : 1 : 3 : 3 : 2 : 2 : 4) [13, 14]. Previous studies revealed that
Paeonia lactiflora, Glycyrrhizae Radix et Rhizoma, and ginger
could exert antidysmenorrhea effects [12]. Cinnamic acid
and cinnamaldehyde, the two major constituents of cinna-
mon twig, have also been reported to inhibit uterine contrac-
tions induced by oxytocin [10, 15]. Furthermore, ephedrine,
a major constituent of Ephedrae, has been shown to relax
smooth muscle and activate β-adrenoceptors [12, 14]. How-
ever, the molecular mechanisms that underlie the protective
effect of GGD in patients with PD have yet to be elucidated.

In this study, we used label-free quantitative proteomics
to investigate the effects of the GGD administration in a rat
model of PD.

2. Materials and Methods

2.1. GGD Preparation. GGD was obtained by the Jiangsu
Province Hospital of Chinese Medicine (Jiangsu, China)
and consisted of seven components (Table 1). The principal
components of GGD were prepared and systematically
identified using methodology described previously [14].

2.2. Animal Model Establishment. Thirty clean, healthy,
mature, and unmated Wistar female rats (weighing 200 ±
20 g; 8–10 weeks-of-age) were obtained from Cavens Labora-
tory Animal Co., Ltd. (Changzhou, China). Next, we used
established methods to create painful models of menstrua-
tion (cold-damp congealing and stagnation types) [16]. Rats
were maintained at a room temperature of 23 ± 2°C. Once a
day, the posterior limbs and hypogastrium of each rat were
immersed into ice-water mixture (0 ± 1°C) for 20 mins at a
time; this created a cold stimulus. In addition, the head of
each rat was injected once a day (subcutaneously) with estra-
diol benzoate for 10 consecutive days; on days 1 and 10, the
dose was 0.5mg/rat, while on days 2–9, the dose was reduced
to 0.2mg/rat. The rats experiencing these treatments experi-
enced a range of symptoms, including shivering, hollowed
back and piloerection, sneezing, cowering and hypokinesia,
low spirits, loose stools, reduced food intake, and reduced
drinking; these animals also had pale mouths, lips, ears,
noses, claws, nails, and tails. These manifestations relate
directly to the symptoms of cold-damp congealing and stag-
nation, thus indicating that the models had been established
successfully. On the 11th day of modeling, each rat was given
an intraperitoneal injection of oxytocin (2U/rat). Rats in the
blank group received subcutaneous injections of normal
saline (at an equivalent dose) in their heads. The models of
painful menstruation were established successfully, as evi-
denced by contractions and indentations on the abdomen,
trunk, and posterior of each of the experimental rats.
Seventy-five min after modeling on the 8th day, each rat
was given GGD by the intragastric administration at a dose
of 2mL/rat (the dose was converted based on the superficial
area ratio between rats and humans: 0:018 × 20 g/0:2 kg =
1:8 g/kg; this was prepared with distilled water at a concen-
tration of 18 g/100mL). The treatment was conducted once
a day for three consecutive days. All experiments were

approved by the Ethics Committee of Taicang Hospital of
traditional Chinese Medicine.

2.3. Writhing Test.Writhing scores were used to evaluate the
writhing reaction of rats in response to pain, as described
previously [16–18]. The writhing times of each rat were
observed within 30 mins of the injection of oxytocin. Writh-
ing scores were divided into four grades: 0–3 0, normal pos-
ture (foot pawns box or normal probing behavior); 1, body
oblique side; 2, hind limb extension, hind paw dorsiflexion,
body extension with frequent pelvic lateral rotation; and 3,
abdominal muscle contraction and hind limb extension.
Writhing scores were calculated according to the following
formula: grade 0 × 0 + grade 1 × 1 + grade 2 × 2 + grade 3 × 3.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA). Blood
samples were collected from the retroorbital plexus of each
rat following the administration of GGD. Serum levels of
PGE2, PGF2α, TNF-α, and IL-8 were then measured with
specific ELISA kits, as described in the manufacturer’s
guidelines.

2.5. Proteomics

2.5.1. Sample Preparation and Protein Digestion. The uteri of
three rats per group were collected. The uterine tissue was
first cut into smaller pieces and mixed with radioimmuno-
precipitation assay (RIPA) buffer prior to three rounds of
mechanical homogenization on ice (3 s per round). Samples
were then centrifuged, and the supernatants were separately
transferred into new microcentrifuge tubes for analysis. The
bicinchoninic acid (BCA) assay was then used to determine
the protein concentration in each supernatant. Proteins were
then diluted with urea solution (8M) followed by further
incubation for 1 h at 37°C. Thereafter, the mixture was trans-
ferred into 10K Microcon centrifugal filter units (Millipore,
Billerica, MA, USA) and centrifuged to remove urea. Finally,
the proteins were alkylated by iodoacetamide (55mM) for
20min at room temperature (in the dark), digested with
sequence-grade modified trypsin (Promega, Madison, WI,
USA), and lyophilized.

2.5.2. Liquid Chromatographymass Spectrometry/Mass
Spectrometry (LC-MS/MS) Analysis. Peptides were treated
with formic acid (0.1%, 30μL), loaded into a trap column
(C18, 75μm× 2 cm, flow rate: 300 nL/min), and subse-
quently separated and loaded onto an analytical column
(C18, 75μm× 50 cm) using a linear gradient of 5–38% for-
mic acid (0.1%) for 120min. Throughout the study, we used
an electrospray voltage of 2 kV between the sprayer and the
ion inlet of the mass spectrometer.

2.5.3. Identification of Differentially Expressed Proteins
(DEPs). MaxQuant software (https://www.maxquant.org/
)was used to analyze the tandem mass spectra in relation to
the UniProtKB database for Rattus norvegicus. The search
parameters for the mass tolerances of the fragment and par-
ent ions were 0.05 and 7ppm, respectively. The fixed modifi-
cation was carbamidomethylation, while the variable
modifications were deamidation (NQ), oxidation (M), and
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acetylation (Protein N-term). Peptides were filtered with a
1% false discovery rate (FDR) and one unique. The relative
abundance of peptides and proteins were compared using
analysis of variance (ANOVA). The mean abundance of all
peptides was normalized by the application of medians. A
protein with a fold change > 1:5, and the presence of least 2
unique peptides with a P value <0.05, was considered to be
differentially expressed protein (DEP).

2.5.4. Bioinformatic Analysis of DEPs. Once identified, DEPs
were then analyzed by reference to three key databases:
Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
kobas.cbi.pku.edu.cn), Gene Ontology (GO, http://www
.geneontology.org/), and the Clusters of Orthologous Groups
(KOGs, http://www.ncbi.nlm.nih.gov/COG/). We also used
STRING (http://string-db.org/) to create an interaction
network for the DEPs.

2.6. Western Blotting. Proteins from the uteri of rats in each
treatment group were extracted using RIPA lysis buffer
(Beyotime, Haimen, China). We then used the BCA assay
to estimate the concentration of each protein extract. Pro-
teins were then separated by 8–10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinylidene difluoride (PVDF) membranes.
After blocking with nonfat milk (5%), and the PVDF mem-
branes were incubated overnight at 4°C with the following
antibodies: rabbit anti-P-JNK (Cell Signaling Technology,
4668, dilution:1/1000), rabbit anti-JNK (Cell Signaling Tech-
nology, 9252, dilution:1/1000), rabbit anti-P-ERK (Cell Sig-
naling Technology, 4370, dilution:1/2000), rabbit anti-ERK
(Cell Signaling Technology, 5013, dilution:1/1000), rabbit
anti-P-P38 (Cell Signaling Technology, 4511, dilu-
tion:1/1000), rabbit anti-P38 (Cell Signaling Technology,
8690, dilution:1/2000), rabbit anti-HSP90AA (Cell Signaling
Technology, 8165, dilution:1/1000), rabbit anti-HSP90AB
(Cell Signaling Technology, 5087, dilution:1/1000), and
anti-β-actin (Cell Signaling Technology, 5174, dilu-
tion:1/1000). β-Actin was used as a loading control. After
washing three times with Tris Buffered saline Tween (TBST)
buffer, the membranes were incubated for 1 h at room tem-
perature with goat anti-rabbit antibody (Santa Cruz, sc-
2004, dilution:1/5000). Enhanced chemiluminescence
(ECL) reagent (Thermo Fisher Scientific Inc.) was then used
to detect protein bands showing positive immunoreactivity.
ImageJ software (version 1.48, National Institutes of Health,

USA) was used to compare the relative optical densities of
each band of interest.

2.7. Statistical Analysis. SPSS version 19.0 software (IBM
Corp., NY) was used for all statistical analyses. Differences
between the two groups were analyzed by Student’s t-test.
One-way ANOVA was used to make comparisons between
multiple groups. Results are expressed as the mean ±
standard deviation. Statistical significance was assumed at P
< 0:05.

3. Results

3.1. GGD Attenuated the Oxytocin-Induced Writhing
Response and Reduced the Serum Levels of PGE2 and
PGF2α in a Rat Model of PD. The writhing scores of rats in
the model group were significantly higher than those in the
control group (P < 0:05; Figure 1(a)), thus suggesting that
the model had been established successfully. Treatment with
GGD led to a remarkable reduction in writhing scores
(P < 0:05, Figure 1(a)).

We then measured the serum levels of PGE2 and PGF2α
in each group of rats. As shown in Figure 1(b), the model
group showed remarkable increases (P < 0:05) in the serum
levels of PGE2 and PGF2α. However, the administration of
GGD resulted in a remarkable reduction in the serum levels
of PGE2 and PGF2α (P < 0:05). These findings suggested that
GGD treatment could attenuate the oxytocin-induced writh-
ing response.

3.2. Identification of DEPs in the Uterine Tissue. Label-free
quantitative proteomics was used to investigate the protective
mechanisms of GGD. A total of 1968 protein groups, 4273
proteins, 10352 peptides, and 9311 unique peptides were suc-
cessfully identified by LC-MS/MS among the three groups.
The details of 379 DEPs are shown as Venn diagrams in
Figure 2(a). A total of 276 DEPs were identified between
the model group and the control group; of these, 157 were
downregulated, while 119 were upregulated (Figure 2(b)).
Moreover, a total of 144 DEPs were identified between the
model group and the treatment group; 81 of these were
upregulated, and 63 were downregulated (Figure 2(c)).

3.3. Bioinformatic Analysis of DEPs. OmicsBean (http://www
.omicsbean.cn/, Gene for health, Shanghai, China) was used
to analyze the DEPs with regards to pathways and biological
processes (BP). GO annotation of the DEPs between the

Table 1: Composition of Ge-Gen decoction.

Component Part Weight (g)

Pueraria lobata (Ge Gen) Root 20

Ephedra (Ma Huang) Twigs 5

Cinnamon twig (Gui Zhi) Twigs 15

Paeonia lactiflora (Shao Yao) Root 15

Glycyrrhizae radix et rhizome (ZhiGanCao) Rhizome and root 10

Ginger (Sheng Jiang) Root 10

Red dates (Hong Zao) Fruit 20
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model group and the control group identified a total of 276
cell component (CC) terms, 337 molecular function (MF)
terms, and 1579 BP terms (Figure 3(a), left). Analysis of the
DEPs between the model group and the treatment group
identified 133 CC terms, 196 MF terms, and 977 BP terms
(Figure 3(a), right). The top ten GO terms that showed
remarkable enrichment (P < 0:05) are shown in
Figures 3(b) and 3(c). BP analysis showed that the majority
of the DEPs identified between the model group and the con-
trol group were classified as either ‘response to organic sub-
stance’ and ‘cellular component biogenesis’ (Figure 3(b)).
With regards to CC terms, most of the DEPs identified
between the model group and the control group were associ-
ated with the cytoplasm and membrane-bound organelles.

With regards to the MF classification, the identified DEPs
were predominantly involved in binding processes, and in
particular, protein binding and small molecule binding. GO
analysis of the DEPs identified between the model group
and the treatment group showed that the greatest changes
with regards to BP were associated with single-organism
metabolic process and response to stress (Figure 3(c)). Most
of the DEPs identified between the model group and the
treatment group were cytoplasmic in origin, followed by the
extracellular region. MF analysis further showed that these
DEPs were most commonly associated with protein binding.

Next, the DEPs identified between the model group and
the treatment group were analyzed with regards to the bio-
logical pathways that were involved in the protective effect
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Figure 1: Effects of Ge-Gen decoction on writhing scores and the serum levels of PGF2α and PGE2 in a rat model of PD. Data represent
mean ± SD (n = 10); **P < 0:01 versus normal control group; ##P < 0:01 versus PD group.
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Figure 3: Continued.
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of GGD. KEGG pathway annotation subsequently showed
that the main signaling pathways undergoing modulation
were those related to metabolism (Figure 4).

To better understand the protective mechanisms of
GGD, we used STRING to construct interaction networks
for the DEPs among the three groups. These interactions
revealed several BPs or signaling pathways that were related
to the uterus, including oocyte meiosis, progesterone-
mediated oocyte maturation, the oxytocin signaling pathway,
ovarian steroidogenesis, and the estrogen signaling pathway.
As shown in Figure 5, most of the DEPs featuring in the
interaction map exhibited direct or indirect links. In particu-
lar, Mapk3 and Hsp90ab1 were involved in several different
BPs or signaling pathways.

3.4. Validation of DEPs by Western Blotting. As shown in
Figure 6(a), the expression levels of HSP90AB1, and levels
of phosphorylated ERK, JNK, and p38, were significantly
increased in the model group (P < 0:05). However, the levels
of these proteins were significantly reduced following the
GGD administration. These findings were consistent with

those derived from proteomic analysis. In addition, the
serum levels of TNF-α and IL-8 were increased in the model
group (P < 0:05, Figure 6(b)). Compared with the model
group, the serum levels of TNF-α and IL-8 were significantly
decreased in the treatment group (P < 0:05, Figure 6(b)).

4. Discussion

Previous clinical trials have demonstrated that GGD is an
effective treatment for PD [12-14]. However, the mecha-
nisms underlying these effects have yet to be elucidated. Mass
spectrometry-based proteomics has been widely applied to
investigate the mechanisms underlying the effects of tradi-
tional Chinese medicine (TCM) [19]. To the best of our
knowledge, the present study is the first to use label-free
quantitative proteomics to investigate the mechanisms of
action responsible for the effect of GGD in a rat model of PD.

The main bioactive compounds of GGD were standard-
ized previously via the application of high-performance liq-
uid chromatography-quadrupole time-of-flight tandem
mass spectrometry (HPLC-Q-TOF-MS/MS) [14]. A previous
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Figure 3: Functional annotation and categories of DEPs. (a) Bioinformatic analysis of the DEPs identified between the model group and the
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study showed that GGD inhibited uterine contractions
in vitro and reduced writhing responses in a mouse model
of PD [12]. Prostaglandins (PGs) are produced and released
during menstruation, cause abnormal uterine contractions,
and can also sensitize spinal neurons to pain [20–22]. PGE2
and PGF2α, two naturally occurring PGs, are regarded as
the most crucial pain factors in PD [20–22]; these factors
increase uterine contractility by binding to their respective
receptors on the spiral arterioles [20–22]. Our analyses
revealed that rats exposed to oxytocin experienced an eleva-
tion in writhing responses and increased levels of PGE2
and PGF2α; these effects were suppressed by GGD, thus sug-
gesting that GGD may inhibit oxytocin-induced uterine con-
traction by regulating the levels of PGE2 and PGF2α. It is well
known that PD is associated with increased levels of PGF2α
[22]. However, the level of PGE2 in PD is controversial.
PGE2 was reported to inhibit uterine contractions and relax
the uterus [20–22]. However, PGE2 has also been shown to

bind to receptors on the spiral arterioles, thus was shown to
increase uterine contractility and lead to ischemic pain [23].
Increased levels of PGE2 in PD have also been reported in
several models of PD [24, 25]. Therefore, we speculate that
the level of PGE2 may be related to the type of the PD model
used.

Our proteomic experiments identified a total of 379
DEPs. GO and KEGG analyses further revealed that the
DEPs identified between the model group and the treatment
group participated in various BPs and pathways, including
cellular component biogenesis, protein binding, and meta-
bolic pathways. These GO terms and pathways may play crit-
ical roles in the occurrence and development of PD. Several
proteins were observed to recover after the administration
of GGD. Protein-protein interaction (PPI) analysis further
showed that these proteins were involved in signaling path-
ways related to oxytocin and estrogen and performed their
functional roles collectively in specific networks.
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Figure 4: Distribution of the enriched KEGG pathways for the DEPs identified between the model group and the treatment group. The right
side of the column shows the number of proteins involved in a specific pathway along with corresponding P values.
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Previous work has shown that inflammation is involved
in PD, and that inflammatory cytokines are produced when
inflammation occurs [26–29]. MAP kinases, including
p38MAP kinase, c-Jun N-terminal kinase (JNK/SAPK), and
extracellular signal-related kinase (ERK), play a critical role
in the production of inflammatory cytokines [30–33]. Fur-
thermore, these three kinases have also been shown to medi-
ate oxytocin signaling [34, 35], which plays a critical role in
the occurrence of PD. In the present study, the levels of P-
ERK, P-JNK, and P-p38 were all significantly increased in
rats with PD; however, the levels of these key factors all
decreased following GGD treatment. Furthermore, it was evi-
dent that GGD treatment also significantly reduced the levels
of inflammatory cytokines (TNF-α and IL-8). These results
indicated that GGD may ameliorate oxytocin signaling and
the inflammatory response in PD by reducing the activities
of MAP kinases.

HSP90, a highly abundant molecular chaperone, has been
shown to participate in the maintenance of proteostasis [36,
37]. HSP90 has also been shown to be involved in cellular
adaptation to stress, the maintenance of homeostasis, and
the functional maturation of steroid receptors [38]. The
upregulation of HSP90 family members is closely associated
with the progression of certain diseases, such as cancer, cystic
fibrosis, and bronchopulmonary dysplasia [39–41]. There are

two cytosolic isoforms of HSP90: HSP90AA1 and
HSP90AB1 [38]. HSP90AA1 is known to localize in extracel-
lular regions and plays an important role in tissue repair [42].
Other research has shown that HSP90AB1 plays a multitude
of roles in a variety of human diseases by interacting with dif-
ferent proteins [43]. In the present study, we found that levels
of HSP90AB1 increased significantly in PD rats but
decreased following GGD treatment. This is important
because estrogen has been shown to be essential for the pro-
gression of PD. In the present study, PPI analysis indicated
that HSP90AB1 is involved in estrogen signaling. Therefore,
it is reasonable to speculate that GGD could alleviate
estrogen signaling in PD by reducing the expression of
HSP90AB1.

The main active ingredients of GGD that show therapeu-
tic effects against PD are considered to be Pueraria lobata,
Ephedra, Radix Paeoniae Alba, and Ramulus Cinnamomi.
Previous studies have reported that puerarin exerts an inhib-
itory effect on the production of NO, PGE2, and proinflam-
matory cytokines [44, 45]. Ephedra is also known to exert
analgesic effects; the ephedrine and pseudoephedrine con-
tained in Ephedra can activate the p38 MAPK pathway and
inhibit the release of proinflammatory factors [46–48]. In a
previous study, Kobayashi et al. [49] found that Radix Paeo-
niae Alba exerted an analgesic effect in an animal model via
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anticholinergic receptors. In another study, Zhu et al. [50]
reported that paeoniflorin extracts from Radix Paeoniae Alba
inhibited cyclooxygenase, and that total glucosides from the
paeony can play an anti-inflammatory role via the arachi-
donic acid metabolism. Pharmacological experiments have
also demonstrated that Ramulus Cinnamomi exhibits anti-
bacterial, anti-inflammatory, antiviral, antitumor, antipy-
retic, analgesic, antidiabetic, and antiplatelet aggregation
effects. A previous study revealed that essential oil prepared

from Ramulus Cinnamomi can exert anti-inflammatory
effects by reducing the production of NO and PGE2 [51, 52].

5. Conclusions

This study provides evidence to support the protective mech-
anisms of GGD against PD. GGD exhibited significant analge-
sic effects in the treatment of PD by regulating oxytocin and
estrogen signaling pathways in a rat model of PD. Our data
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suggest that the mechanisms underlying the protective effects
of GGD on PD include the downregulation of HSP90AB1 and
the reduced phosphorylation of three MAPKs (ERK1/2, p38,
and JNK). Our data provide guidance and a useful foundation
for investigating new treatments for PD.
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