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The three schools, mentioned in the title, all tried to give a firm foundation to mathematics. 
The three crises are the failures of these schools to complete their tasks. This article looks at 
these crises "through modem eyes," using whatever mathematics is available today and not just 
the mathematics which was available to the pioneers who created these schools. Hence, this 
article does not approach the three crises in a strictly historical way. This article also does not 
discuss the large volume of current, technical mathematics which has arisen out of the 
techniques introduced by the three schools in question. One reason is that such a discussion 
would take a book and not a short article. Another one is that all this technical mathematics has 
very little to do with the philosophy of mathematics, and in this article I want to stress those 
aspects of logicism, intuitionism, and formalism which show clearly that these schools are 
founded in philosophy. 

Logicism 

This school was started in about 1884 by the German philosopher, logician and mathemati­
cian, Gottlob Frege (1848-1925). The school was rediscovered about eighteen years later by 
Bertrand Russell. Other early logicists were Peano and Russell's coauthor of Principia Mathe­
matica, A. N. Whitehead. The purpose of logicism was to show that classical mathematics is part 
of logic. If the logicists had been able to carry out their program successfully, such questions as 
"Why is classical mathematics free of contradictions?" would have become "Why is logic free of 
contradictions?". This latter question is one on which philosophers have at least a thorough 
handle and one may say in general that the successful completion of the logicists' program 
would have given classical mathematics a firm foundation in terms of logic. 

Clearly, in order to carry out this program of the logicists, one must first, somehow, define 
what "classical mathematics" is and what "logic" is. Otherwise, what are we supposed to show is 
part of what? It is precisely at these two definitions that we want to look through modem eyes, 
imagining that the pioneers of logicism had all of present-day mathematics available to them. 
We begin with classical mathematics. 

In order to carry out their program, Russell and Whitehead created Principia Mathematica 
[10] which was published in 1910. (The first volume of this classic can be bought for $3.45! 
Thank heaven, only modem books and not the classics have become too expensive for the 
average reader.) Principia, as we will refer to Principia Mathematica, may be considered as a 
formal set theory. Although the formalization was not entirely complete, Russell and Whitehead 
thought that it was and planned to use it to show that mathematics can be reduced to logic. 
They showed that all classical mathematics, known in their time, can be derived from set theory 
and hence from the axioms of Principia. Consequently, what remained to be done, was to show 
that all the axioms of Principia belong to logic. 
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Of course, instead of Principia, one can use any other formal set theory just as well. Since 
today the formal set theory developed by Zermelo and Fraenkel (ZF) is so much better known 
than Principia, we shall from now on refer to ZF instead of Principia. ZF has only nine axioms 
and, although several of them are actually axiom schemas, we shall refer to all of them as 
"axioms." The formulation of the logicists' program now becomes: Show that all nine axioms of 
ZF belong to logic. 

This formulation of logicism is based on the thesis that classical mathematics can be defined 
as the set of theorems which can be proved within ZF. This definition of classical mathematics is 
far from perfect, as is discussed in [12]. However, the above formulation of logicism is 
satisfactory for the purpose of showing that this school was not able to carry out its program. 
We now turn to the definition of logic. 

In order to understand logicism, it is very important to see clearly what the logicists meant by 
"logic." The reason is that, whatever they meant, they certainly meant more than classical logic. 
Nowadays, one can define classical logic as consistingof all those theorems which can be proven 
in first order languages (discussed below in the section on formalism) without the use of 
nonlogical axioms. We are hence restricting ourselves to first order logic and use the deduction 
rules and logical axioms of that logic. An example of such a theorem is the law of the excluded 
middle which says that, if p is a proposition, then either p or its negation •P is true; in other 
words, the propositionpV •P is always true where Vis the usual symbol for the inclusive "or." 

If this definition of classical logic had also been the logicists' definition of logic, it would be a 
folly to think for even one second that all of ZF can be reduced to logic. However, the logicists' 
definition was more extensive. They had a general concept as to when a proposition belongs to 
logic, that is, when a proposition should be called a "logical proposition." They said: A logical 
proposition is a proposition which has complete generality and is true in virtue of its form rather 
than its content. Here, the word "proposition" is used as synonymous with "theorem." 

For example, the above law of the excluded middle "pV •P" is a logical proposition. 
Namely, this law does not hold because of any special content of the propositionp; it does not 
matter whether p is a proposition of mathematics or physics or what have you. On the contrary, 
this law holds with "complete generality," that is, for any proposition p whatsoever. Why then 
does it hold? The logicists answer: "Because of its form." Here they mean by form "syntactical 
form," the form of pV •P being given by the two connectives of everyday speech, the inclusive 
"or" and the negation "not" (denoted by V and ...,, respectively). 

On the one hand, it is not difficult to argue that all theorems of classical logic, as defined 
above, are logical propositions in the sense of logicism. On the other hand, there is no a priori 
reason to believe that there could not be logical propositions which lie outside of classical logic. 
This is why we said that the logicists' definition of logic is more extensive than the definition of 
classical logic. And now the logicists' task becomes clearer: It consists in showing that all nine 
axioms of ZF are logical propositions in the sense of logicism. 

The only way to assess the success or failure of logicism in carrying out this task is by going 
through all nine axioms of ZF and determining for each of them whether it falls under the 
logicists' concept of a logical proposition. This would take a separate article and would be of 
interest only to readers who are thoroughly familiar with ZF. Hence, instead, we simply state 
that at least two of these axioms, namely, the axiom of infinity and the axiom of choice, cannot 
possibly be considered as logical propositions. For example, the axiom of infinity says that there 
exist infinite sets. Why do we accept this axiom as being true? The reason is that everyone is 
familiar with so many infinite sets, say, the set of the natural numbers or the set of points in 
Euclidean 3-space. Hence, we accept this axiom on grounds of our everyday experience with 
sets, and this clearly shows that we accept it in virtue of its content and not in virtue of its 
syntactical form. In general, when an axiom claims the existence of objects with which we are 
familiar on grounds of our common everyday experience, it is pretty certain that this axiom is 
not a logical proposition in the sense of logicism. 
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And here then is the first crisis in mathematics: Since at least two out of the nine axioms of 
ZF are not logical propositions in the sense of logicism, it is fair to say that this school failed by 
about 20% in its effort to give mathematics a firm foundation. However, logicism has been of the 
greatest importance for the development of modem mathematical logic. In fact, it was logicism 
which started mathematical logic in a serious way. The two quantifiers, the "for all" quantifier V 
and the "there exists" quantifier 3 were introduced into logic by Frege [5], and the influence of 
Principia on the development of mathematical logic is history. 

It is important to realize that logicism is founded in philosophy. For example, when the 
logicists tell us what they mean by a logical proposition (above), they use philosophical and not 
mathematical language. They have to use philosophical language for that purpose since mathe­
matics simply cannot handle definitions of so wide a scope. 

The philosophy of logicism is sometimes said to be based on the philosophical school called 
"realism." In medieval philosophy "realism" stood for the Platonic doctrine that abstract entities 
have an existence independent of the human mind. Mathematics is, of course, full of abstract 
entities such as numbers, functions, sets, etc., and according to Plato all such entities exist 
outside our mind. The mind can discover them but does not create them. This doctrine has the 
advantage that one can accept such a concept as "set" without worrying about how the mind 
can construct a set. According to realism, sets are there for us to discover, not to be constructed, 
and the same holds for all other abstract entities. In short, realism allows us to accept many 
more abstract entities in mathematics than a philosophy which had limited us to accepting only 
those entities the human mind can construct. Russell was a realist and accepted the abstract 
entities which occur in classical mathematics without questioning whether our own minds can 
construct them. This is the fundamental difference between logicism and intuitionism, since in 
intuitionism abstract entities are admitted only if they are man made. 

Excellent expositions of logicism can be found in Russell's writing, for example [9], [10] and 
[11]. 
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Intuitionism 

This school was begun about I908 by the Dutch mathematician, L. E. J. Brouwer (I88I-
1966). The intuitionists went about the foundations of mathematics in a radically different way 
from the logicists. The logicists never thought that there was anything wrong with classical 
mathematics; they simply wanted to show that classical mathematics is part of logic. The 
intuitionists, on the contrary, felt that there was plenty wrong with classical mathematics. 

By 1908, several paradoxes had arisen in Cantor's set theory. Here, the word "paradox" is 
used as synonymous with "contradiction." Georg Cantor created set theory, starting around 
1870, and he did his work "naively," meaning nonaxiomatically. Consequently, he formed sets 
with such abandon that he himself, Russell and others found several paradoxes within his 
theory. The logicists considered these paradoxes as common errors, caused by erring mathemati­
cians and not by a faulty mathematics. The intuitionists, on the other hand, considered these 
paradoxes as clear indications that classical mathematics itself is far from perfect. They felt that 
mathematics had to be rebuilt from the bottom on up. 

The "bottom," that is, the beginning of mathematics for the intuitionists, is their explanation 
of what the natural numbers 1, 2, 3,... are. (Observe that we do not include the number zero 
among the natural numbers.) According to intuitionistic philosophy, all human beings have a 
primordial intuition for the natural numbers within them. This means in the first place that we 
have an immediate certainty as to what is meant by the number I and, secondly, that the mental 
process which goes into the formation of the number I can be repeated. When we do repeat it, 
we obtain the concept of the number 2; when we repeat it again, the concept of the number 3; in 
this way, human beings can construct any finite initial segment I, 2, ... , n for any natural number 
n. This mental con~truction of one natural number after the other would never have been 
possible if we did not have an awareness of time within us. "After" refers to time and Brouwer 
agrees with the philosopher Immanuel Kant (1724--1804) that human beings have an immediate 
awareness of time. Kant used the word "intuition" for "immediate awareness" and this is where 
the name "intuitionism" comes from. (See Chapter IV of [4] for more information about this 
intuitionistic concept of natural numbers.) 

It is important to observe that the intuitionistic construction of natural numbers allows one to 
construct only arbitrarily long finite initial segments I, 2, ... , n. It does not allow us to construct 
that whole closed set of all the natural numbers which is so familiar from classical mathematics. 
It is equally important to observe that this construction is both "inductive" and "effective." It is 
inductive in the sense that, if one wants to construct, say, the number 3, one has to go through 
all the mental steps of first constructing the I, then the 2, and finally the 3; one cannot just grab 
the number 3 out of the sky. It is effective in the sense that, once the construction of a natural 
number has been finished, that natural number has been constructed in its entirety. It stands 
before us as a completely finished mental construct, ready for our study of it. When someone 
says, "I have finished the mental construction of the number 3," it is like a bricklayer saying, "I 
have finished that wall," which he can say only after he has laid every stone in place. 

We now turn to the intuitionistic definition of mathematics. According to intuitionistic 
philosophy, mathematics should be defined as a mental activity and not as a set of theorems (as 
was done above in the section on logicism). It is the activity which consists in carrying out, one 
after the other, those mental constructions which are inductive and effective in the sense in 
which the intuitionistic construction of the natural numbers is inductive and effective. In­
tuitionism maintains that human beings are able to recognize whether a given mental construc­
tion has these two properties. We shall refer to a mental construction which has these two 
properties as a construct and hence the intuitionistic definition of mathematics says: Mathemat­
ics is the mental activity which consists in carrying out constructs one after the other. 

A major consequence of this definition is that all of intuitionistic mathematics is effective or 
"constructive" as one usually says. We shall use the adjective "constructive" as synonymous 
with "effective" from now on. Namely, every construct is constructive, and intuitionistic 
mathematics is nothing but carrying out constructs over and over. For instance, if a real number 
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r occurs in an intuitionistic proof or theorem, it never occurs there merely on grounds of an 
existence proof. It occurs there because it has been constructed from top to bottom. This implies 
for example that each decimal place in the decimal expansion of r can in principle be computed. 
In short, all intuitionistic proofs, theorems, definitions, etc., are entirely constructive. 

Another major consequence of the intuitionistic definition of mathematics is that mathemat­
ics cannot be reduced to any other science such as, for instance, logic. This definition comprises 
too many mental processes for such a reduction. And here, then, we see a radical difference 
between logicism and intuitionism. In fact, the intuitionistic attitude toward logic is precisely the 
opposite from the logicists' attitude: According to the intuitionists, whatever valid logical 
processes there are, they are all constructs; hence, the valid part of classical logic is part of 
mathematics! Any law of classical logic which is not composed of constructs is for the 
intuitionist a meaningless combination of words. It was, of course, shocking that the classical 
law of the excluded middle turned out to be such a meaningless combination of words. This 
implies that this law cannot be used indiscriminately in intuitionistic mathematics; it can often 
be used, but not always. 

Once the intuitionistic definition of mathematics has been understood and accepted, all there 
remains to be done is to do mathematics the intuitionistic way. Indeed, the intuitionists have 
developed intuitionistic arithmetic, algebra, analysis, set theory, etc. However, in each of these 
branches of mathematics, there occur classical theorems which are not composed of constructs 
and, hence, are meaningless combinations of words for the intuitionists. Consequently, one 
cannot say that the intuitionists have reconstructed all of classical mathematics. This does not 
bother the intuitionists since whatever parts of classical mathematics they cannot obtain are 
meaningless for them anyway. Intuitionism does not have as its purpose the justification of 
classical mathematics. Its purpose is to give a valid definition of mathematics and then to "wait 
and see" what mathematics comes out of it. Whatever classical mathematics cannot be done 
intuitionistically simply is not mathematics for the intuitionist. We observe here another 
fundamental difference between logicism and intuitionism: The logicists wanted to justify all of 
classical mathematics. (An excellent introduction to the actual techniques of intuitionism is [8].) 

Let us now ask how successful the intuitionistic school has been in giving us a good 
foundation for mathematics, acceptable to the majority of mathematicians. Again, there is a 
sharp difference between the way this question has to be answered in the present case and in the 
case of logicism. Even hard-nosed logicists have to admit that their school so far has failed to 
give mathematics a firm foundation by about 20%. However, a hard-nosed intuitionist has every 
right in the world to claim that intuitionism has given mathematics an entirely satisfactory 
foundation. There is the meaningful definition of intuitionistic mathematics, discussed above; 
there is the intuitionistic philosophy which tells us why constructs can never give rise to 
contradictions and, hence, that intuitionistic mathematics is free of contradictions. In fact, not 
only this problem (of freedom from contradiction) but all other problems of a foundational 
nature as well receive perfectly satisfactory solutions in intuitionism. 

Yet if one looks at intuitionism from the outside, namely, from the viewpoint of the classical 
mathematician, one has to say that intuitionism has failed to give mathematics an adequate 
foundation. In fact, the mathematical community has almost universally rejected intuitionism. 
Why has the mathematical community done this, in spite of the many very attractive features of 
intuitionism, some of which have just been mentioned? 

One reason is that classical mathematicians flatly refuse to do away with the many beautiful 
theorems that are meaningless combinations of words for the intuitionists. An example is the 
Brouwer fixed point theorem of topology which the intuitionists reject because the fixed point 
cannot be constructed, but can only be shown to exist on grounds of an existence proof. This, by 
the way, is the same Brouwer who created intuitionism; he is equally famous for his work in 
(nonintuitionistic) topology. 

A second reason comes from theorems which can be proven both classically and intuitionisti­
cally. It often happens that the classical proof of such a theorem is short, elegant, and devilishly 
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clever, but not constructive. The intuitionists will of course reject such a proof and replace it by 
their own constructive proof of the same theorem. However, this constructive proof frequently 
turns out to be about ten times as long as the classical proof and often seems, at least to the 
classical mathematician, to have lost all of its elegance. An example is the fundamental theorem 
of algebra which in classical mathematics is proved in about half a page, but takes about ten 
pages of proof in intuitionistic mathematics. Again, classical mathematicians refuse to believe 
that their clever proofs are meaningless whenever such proofs are not constructive. 

Finally, there are the theorems which hold in intuitionism but are false in classical mathemat­
ics. An example is the intuitionistic theorem which says that every real-valued function which is 
defined for all real numbers is continuous. This theorem is not as strange as it sounds since it 
depends on the intuitionistic concept of a function: A real-valued function f is defined in 
intuitionism for all real numbers only if, for every real number r whose intuitionistic construc­
tion has been completed, the real number f(r) can be constructed. Any obviously discontinuous 
function a classical mathematician may mention does not satisfy this constructive criterion. 
Even so, theorems such as this one seem so far out to classical mathematicians that they reject 
any mathematics which accepts them. 

These three reasons for the rejection of intuitionism by classical mathematicians are neither 
rational nor scientific. Nor are they pragmatic reasons, based on a conviction that classical 
mathematics is better for applications to physics or other sciences than is intuitionism. They are 
all emotional reasons, grounded in a deep sense as to what mathematics is all about. (If one of 
the readers knows of a truly scientific rejection of intuitionism, the author would be grateful to 
hear about it.) We now have the second crisis in mathematics in front of us: It consists in the 
failure of the intuitionistic school to make intuitionism acceptable to at least the majority of 
mathematicians. 

It is important to realize that, like logicism, intuitionism is rooted in philosophy. When, for 
instance, the intuitionists state their definition of mathematics, given earlier, they use strictly 
philosophical and not mathematical language. It would, in fact, be quite impossible for them to 
use mathematics for such a definition. The mental activity which is mathematics can be defined 
in philosophical terms but this definition must, by necessity, use some terms which do not 
belong to the activity it is trying to define. 

Just as logicism is related to realism, intuitionism is related to the philosophy called 
"conceptualism." This is the philosophy which maintains that abstract entities exist only insofar 
as they are constructed by the human mind. This is very much the attitude of intuitionism which 
holds that the abstract entities which occur in mathematics, whether sequences or order-relations 
or what have you, are all mental constructions. This is precisely why one does not find in 
intuitionism the staggering collection of abstract entities which occur in classical mathematics 
and hence in logicism. The contrast between logicism and intuitionism is very similar to the 
contrast between realism and conceptualism. 

A very good way to get into intuitionism is by studying [8], Chapter IV of [4], [2] and [13], in 
this order. 

Formalism 

This school was created in about 1910 by the German mathematician David Hilbert 
(1862-1943). True, one might say that there were already formalists in the nineteenth century 
since Frege argued against them in the second volume of his Grundgesetze der Arithmetik (see 
the book by Geach and Black under [5], pages 182-233); the first volume of the Grundgesetze 
appeared in 1893 and the second one in 1903. Nevertheless, the modern concept of formalism, 
which includes finitary reasoning, must be credited to Hilbert. Since modern books and courses 
in mathematical logic usually deal with formalism, this school is much better known today than 
either logicism or intuitionism. We will hence discuss only the highlights of formalism and begin 
by asking, "What is it that we formalize when we formalize something?" 
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LIS 

The answer is that we formalize some given axiomatized theory. One should guard against 
confusing axiomatization and formalization. Euclid axiomatized geometry in about 300 B.C., but 
formalization started only about 2200 years later with the logicists and formalists. Examples of 
axiomatized theories are Euclidean plane geometry with the usual Euclidean axioms, arithmetic 
with the Peano axioms, ZF with its nine axioms, etc. The next question is: "How do we 
formalize a given axiomatized theory?" 

Suppose then that some axiomatized theory T is given. Restricting ourselves to first order 
logic, "to formalize T" means to choose an appropriate first order language for T. The 
vocabulary of a first order language consists of five items, four of which are always the same 
and are not dependent on the given theory T. These four items are the following: (I) A list of 
denumerably many variables-who can talk about mathematics without using variables? (2) 
Symbols for the connectives of everyday speech, say -, for "not," A for "and," V for the 
inclusive "or," ~ for "if then," and~ for "if and only if"-who can talk about anything at all 
without using connectives? (3). The equality sign =; again, no one can talk about mathematics 
without using this sign. (4) The two quantifiers, the "for all" quantifier V and the "there exist" 
quantifier 3; the first one is used to say such things as "all complex numbers have a square 
root," the second one to say things like "there exist irrational numbers." One can do without 
some of the above symbols, but there is no reason to go into that. Instead, we turn to the fifth 
item. 

Since T is an axiomatized theory, it has so called "undefined terms." One has to choose an 
appropriate symbol for every undefined term of T and these symbols make up the fifth item. For 
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instance, among the undefined terms of plane Euclidean geometry, occur "point," "line," and 
"incidence," and for each one of them an appropriate symbol must be entered into the 
vocabulary of the first order language. Among the undefined terms of arithmetic occur "zero," 
"addition," and "multiplication," and the symbols one chooses for them are of course 0, +,and 
X, respectively. The easiest theory of all to formalize is ZF since this theory has only one 
undefined term, namely, the membership relation. One chooses, of course, the usual symbol E 

for that relation. These symbols, one for each undefined term of the axiomatized theory T, are 
often called the "parameters" of the first order language and hence the parameters make up the 
fifth item. 

Since the parameters are the only symbols in the vocabulary of a first order language which 
depend on the given axiomatized theory T, one formalizes T simply by choosing these 
parameters. Once this choice has been made, the whole theory T has been completely for­
malized. One can now express in the resulting first order language L not only all axioms, 
definitions, and theorems of T, but more! One can also express in L all axioms of classical logic 
and, consequently, also all proofs one uses to prove theorems of T. In short, one can now 
proceed entirely within L, that is, entirely "formally." 

But now a third question presents itself: "Why in the world would anyone want to formalize 
a given axiomatized theory?" After all, Euclid never saw a need to formalize his axiomatized 
geometry. It is important to ask this question, since even the great Peano had mistaken ideas 
about the real purpose of formalization. He published one of his most important discoveries in 
differential equations in a formalized language (very similar to a first order language) with the 
result that nobody read it until some charitable soul translated the article into common German. 

Let us now try to answer the third question. If mathematicians do technical research in a 
certain branch of mathematics, say, plane Euclidean geometry, they are interested in discovering 
and proving the important theorems of the branch of mathematics. For that kind of technical 
work, formalization is usually not only no help but a definite hindrance. If, however, one asks 
such foundational questions as, for instance, "Why is this branch of mathematics free of 
contradictions?", then formalization is not just a help but an absolute necessity. 

It was really Hilbert's stroke of genius to understand that formalization is the proper 
technique to tackle such foundational questions. What he taught us can be put roughly as 
follows. Suppose that Tis an axiomatized theory which has been formalized in terms of the first 
order language L. This language has such a precise syntax that it itself can be studied as a 
mathematical object. One can ask for instance: "Can one possibly run into contradictions if one 
proceeds entirely formally within L, using only the axioms of T and those of classical logic, all 
of which have been expressed in L ?" If one can prove mathematically that the answer to this 
question is "no," one has there a mathematical proof that the theory Tis free of contradictions! 

This is basically what the famous "Hilbert program" was all about. The idea was to formalize 
the various branches of mathematics and then to prove mathematically that each one of them is 
free of contradictions. In fact if, by means of this technique, the formalists could have just 
shown that ZF is free of contradictions, they would thereby already have shown that all of 
classical mathematics is free of contradictions, since classical mathematics can be done 
axiomatically in terms of the nine axioms of ZF. In short, the formalists tried to create a 
mathematical technique by means of which one could prove that mathematics is free of 
contradictions. This was the original purpose of formalism. 

It is interesting to observe that both logicists and formalists formalized the various branches 
of mathematics, but for entirely different reasons. The logicists wanted to use such a formaliza­
tion to show that the branch of mathematics in question belongs to logic; the formalists wanted 
to use it to prove mathematically that that branch is free of contradictions. Since both schools 
"formalized," they are sometimes confused. 

Did the formalists complete their program successfully? No! In 1931, Kurt Godel showed in 
[6] that formalization cannot be considered as a mathematical technique by means of which one 
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can prove that mathematics is free of contradictions. The theorem in that paper which rang the 
death bell for the Hilbert program .concerns axiomatized theories which are free of contradic­
tions and whose axioms are strong enough so that arithmetic can be done in terms of them. 
Examples of theories whose axioms are that strong are, of course, Peano arithmetic and ZF. 
Suppose now that T is such a theory and that T has been formalized by means of the first order 
language L. Then Godel's theorem says, in nontechnical language, "No sentence of L which can 
be interpreted as asserting that T is free of contradictions can be provei}. formally within the 
language L." Although the interpretation of this theorem is somewhat controversial, most 
mathematicians have concluded from it that the Hilbert program cannot be carried out: 
Mathematics is not able to prove its own freedom of contradictions. Here, then, is the third crisis 
in mathematics. 

Of course, the tremendous importance of the formalist school for present-day mathematics is 
well known. It was in this school that modem mathematical logic and its various offshoots, such 
as model theory, recursive function theory, etc., really came into bloom. 

Formalism, as logicism and intuitionism, is founded in philosophy, but the philosophical 
roots of formalism are somewhat more hidden than those of the other two schools. One can find 
them, though, by reflecting a little on the Hilbert program. 

Let again T be an axiomatized theory which has been formalized in terms of the first order 
language L. In carrying out Hilbert's program, one has to talk about the language L as one 
object, and while doing this, one is not talking within that safe language L itself. On the 
contrary, one is talking about Lin ordinary, everyday language, be it English or French or what 
have you. While using our natural language and not the formal language L, there is of course 
every danger that contradictions, in fact, any kind of error, may slip in. Hilbert said that the way 
to avoid this danger is by making absolutely certain that, while one is talking in one's natural 
language about L, one uses only reasonings which are absolutely safe and beyond any kind of 
suspicion. He called such reasonings "finitary reasonings," but had, of course, to give a 
definition of them. The most explicit definition of finitary reasoning known to the author was 
given by the French formalist Herbrand ([7], the footnote on page 622). It says, if we replace 
"intuitionistic" by "finitary": 

By a finitary argument we understand an argument satisfying the following conditions: In 
it we never consider anything but a given finite number of objects and of functions; these 
functions are well defined, their definition allowing the computation of their values in a 
univocal way; we never state that an object exists without giving the means of constructing it; 
we never consider the totality of all the objects x of an infinite collection; and when we say 
that an argument (or a theorem) is ·true for all these x, we mean that, for each x taken by 
itself, it is possible to repeat the general argument in question, which should be considered to 
be merely the prototype of these particular arguments. 

Observe that this definition uses philosophical and not mathematical language. Even so, no 
one can claim to understand the Hilbert program without an understanding of what finitary 
reasoning amounts to. The philosophical roots of formalism come out into the open when the 
formalists define what they mean by finitary reasoning. 

We have already compared logicism with realism, and intuitionism with conceptualism. The 
philosophy which is closest to formalism is "nominalism." This is the philosophy which claims 
that abstract entities have no existence of any kind, neither outside the human mind as 
maintained by realism, nor as mental constructions within the human mind as maintained by 
conceptualism. For nominalism, abstract entities are mere vocal utterances or written lines, mere 
names. This is where the word "nominalism" comes from, since in Latin nomina/is means 
"belonging to a name." Similarly, when formalists try to prove that a certain axiomatized theory 
T is free of contradictions, they do not study the abstract entities which occur in T but, instead, 
study that first order language L which was used to formalize T. That is, they study how one can 
form sentences in L by the proper use of the vocabulary of L; how certain of these sentences 
can be proven by the proper use of those special sentences of L which were singled out as 
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axioms; and, in particular, they try to show that no sentence of L can be proven and disproven 
at the same time, since they would thereby have established that the original theory T is free of 
contradictions. The important point is that this whole study of L is a strictly syntactical study, 
since no meanings or abstract entities are associated with the sentences of L. This language is 
investigated by considering the sentences of L as meaningless expressions which are manipu­
lated according to explicit, syntactical rules, just as the pieces of a chess game are meaningless 
figures which are pushed around according to the rules of the game. For the strict formalist "to 
do mathematics" is "to manipulate the meaningless symbols of a first order language according 
to explicit, syntactical rules." Hence, the strict formalist does not work with abstract entities, 
such as infinite series or cardinals, but only with their meaningless names which are the 
appropriate expressions in a· first order language. Both formalists and nominalists avoid the 
direct use of abstract entities, and this is why formalism should be compared with nominalism. 

The fact that logicism, intuitionism, and formalism correspond to realism, conceptualism, and 
nominalism, respectively, was brought to light in Quine's article, "On What There Is" ([1], pages 
183-196). Formalism can be learned from any modem book in mathematical logic, for instance 
[3]. 

Epilogue 

Where do the three crises in mathematics leave us? They leave us without a firm foundation 
for mathematics. After Godel's paper [6] appeared in 1931, mathematicians on the whole threw 
up their hands in frustration and turned away from the philosophy of mathematics. Neverthe­
less, the influence of the three schools discussed in this article has remained strong, since they 
have given us much new and beautiful mathematics. This mathematics concerns mainly set 
theory, intuitionism and its various constructivist modifications, and mathematical logic with its 
many offshoots. However, although this kind of mathematics is often referred to as "foundations 
of mathematics," one cannot claim to be advancing the philosophy of mathematics just because 
one is working in one of these areas. Modem mathematical logic, set theory, and intuitionism 
with its modifications are nowadays technical branches of mathematics, just as algebra or 
analysis, and unless we return directly to the philosophy of mathematics, we cannot expect to 
find a firm foundation for our science. It is evident that such a foundation is not necessary for 
technical mathematical research, but there are still those among us who yearn for it. The author 
believes that the key to the foundations of mathematics lies hidden somewhere among the 
philosophical roots of logicism, intuitionism, and formalism and this is why he has uncovered 
these roots, three times over. 

Excellent literature on the foundations of mathematics is contained in [1] and [7]. 
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