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Abstract 

The transmission of vibration through a seat depends on the impedance of the seat and the 

apparent mass of the seat occupant. This study was designed to determine how factors 

affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, 

and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration 

through a car seat was measured with 80 adults (41 males and 39 females aged 18 to 65) at 

frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), 

and with three magnitudes of random vibration (0.5, 1.0, and 1.5 ms-2 r.m.s.). Linear regression 

models were used to study the effects of subject physical characteristics (age, gender, and 

anthropometry) and features of their apparent mass (resonance frequency, apparent mass at 

resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both 

the frequency of the principal resonance in seat transmissibility and the seat transmissibility at 

resonance was subject age, with other factors having only marginal effects. The transmissibility 

of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject 

weight was strongly associated with apparent mass, weight was not strongly associated with 

seat transmissibility. The resonance frequency of the seat decreased with increases in the 

magnitude of the vibration excitation and increased when subjects made contact with the 

backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance 

was less with greater vibration excitation, but was largely unaffected by backrest contact. A 

lumped parameter seat-person model showed that changes in seat transmissibility with age can 

be predicted from changes in apparent mass with age, and that the dynamic stiffness of the 

seat appeared to increase with increased loading so as to compensate for increases in subject 

apparent mass associated with increased sitting weight. 

Author Keywords: seat transmissibility; biodynamics; seats; whole-body vibration; inter-subject 

variability; posture; age; weight; gender  

Published as: The transmission of vertical vibration through seats: influence of the characteristics of the human body. 
Toward, M. G. R. & Griffin, M. J. 19 Dec 2011 In : Journal of Sound and Vibration. 330, 26, p. 6526-6543.



3 

Highlights 

> Transmissibility of a car seat measured with 80 subjects (of both genders, aged 18 to 65 

years), with and without backrest. > Subject age was the strongest predictor of seat 

transmissibility - increased age was associated with increased resonance frequency and 

increased seat transmissibility at resonance. > Subject weight was not strongly associated with 

seat transmissibility. > Seat resonance frequency decreased with increased vibration magnitude 

and increased when using the backrest. 
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1. Introduction 

In a wide variety of transport environments the vibration transmitted through seats is associated 

with discomfort (e.g. [1]). Seats can either reduce vibration discomfort or increase vibration 

discomfort. The efficiency of a seat in terms of vibration discomfort depends on three factors 

that can vary independently: (i) the seat transmissibility (ratio of the magnitude of vibration on 

the seat surface to the magnitude at the seat base), (ii) the sensitivity of the body to the 

spectrum of vibration on the seat surface, and (iii) the spectrum of vibration at the seat base [2]. 

It is obvious that the construction of a seat can influence the manner in which it amplifies or 

attenuates the vibration (e.g. [3,4]). Additionally, because a seat and a body supported on the 

seat form a coupled dynamic system, the vibration transmitted through seats is also influenced 

by the dynamic response of the human body.  

When sitting upright with no backrest support, most people exhibit a resonance in their vertical 

apparent mass (i.e. the ratio of the force to the acceleration as a function of vibration frequency) 

around 4 Hz [5]. When the back is partially supported by an upright backrest, there is an 

increase in the resonance frequency of the apparent mass [6] and an increase in the apparent 

mass at frequencies greater than the resonance frequency [6,7]. The resonance frequency in 

the apparent mass of the body increases when a rigid backrest is reclined [6,8] but decreases 

when a foam backrest is reclined [6]. The vibration transmitted through a seat cushion can also 

be affected by backrest contact: the resonance frequency and the transmissibility at resonance 

increased when contact was made with the backrest of a reclined train seat [3].  

The resonance frequency in the vertical apparent mass of the seated human body reduces as 

the magnitude of the vibration excitation increases. This non-linearity has been observed with 

no backrest (e.g. [5,9]), with an upright backrest [10], and when sitting with a reclined backrest 

[8]. The dynamic properties of seat foam have also been shown to be non-linear, with the 

stiffness and damping decreasing with increases in the vibration magnitude [11,12]. The 

resonance frequency in the transmissibility of a sprung cushion train seat has been reported to 

decrease from 3.9 to 3.3 Hz, and the transmissibility at resonance decrease from 3.1 to 2.9, as 

the magnitude of vibration increased from 0.3 to 0.6 ms-2 r.m.s. [3]. The relative contributions of 
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the non-linearities in seat dynamic stiffness and the non-linearities in the apparent mass of the 

human body to the non-linearity in seat transmissibility are not well documented.  

The physical characteristics of the human body determine the apparent mass of the body. For 

example, variations in the mass of the body cause large inter-subject variability in vertical 

apparent mass at low frequencies, but after normalisation (dividing the modulus of the apparent 

mass by the static mass supported on the seat) the variability is much reduced [5]. The effect of 

subject characteristics on the vertical apparent mass of the body has been reported for the 80 

subjects (41 men and 39) used in the present study [10]. With four backrest conditions (no 

backrest, upright rigid, reclined rigid, reclined foam) and three vibration magnitudes (0.5, 1.0 

and 1.5 ms-2 r.m.s.), subject weight was the strongest predictor of the apparent mass at 0.6 Hz, 

at resonance, and at 12 Hz. Age, body mass index (BMI) and gender had the strongest 

associations with the resonance frequency in the apparent mass of the body. On average, with 

age increasing from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz. 

Likewise, with body mass index increasing from 18 to 34 kgm-2, the resonance frequency 

decreased by up to 1.7 Hz. With the body dynamically coupled to a seat it may be expected that 

characteristics of the body that influence the apparent mass of the body will also affect the 

transmissibility of the seat supporting the body. 

Although the transmissibilities of seats are often measured with human subjects, there have 

been few studies of the effect of subject characteristics on the transmission of vibration through 

seats. The resonance frequency of a car seat and the transmissibility at resonance have been 

reported to be unaffected by the weight or gender of subjects, despite the sitting mass varying 

between 31 kg and 72 kg [13]. The dynamic stiffness of foam tends to increase as the loading 

on the seat increases [11,14], so the absence of an effect of subject weight on seat 

transmissibility might be due to a proportional increase in seat dynamic stiffness with increased 

load on the seat surface.  In a study with 15 males and 15 females, significant positive 

correlations were found between age and seat transmissibility at resonance and significant 

negative correlations were found between age the transmissibility resonance frequency within 

the group of females, but these correlations were not statistically significant within the group of 

males [3]). 
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Any effects of body mass index on seat transmissibility have not previously been reported. Body 

mass index is correlated with body weight and, probably, the contact area with the seat, with 

both of these factors likely to influence the seat impedance. Age is unlikely to have a direct 

influence on the impedance of a seat, but changes in apparent mass associated with age may 

influence seat transmissibility.  

Simple lumped parameter models have been found to provide close representations of the 

apparent mass of the human body sitting upright with no backrest contact (e.g. [12]). 

Furthermore, the influence of factors that modify the apparent mass of the body (e.g. backrest 

contact, backrest inclination, hand position, foot position, vibration magnitude) can be 

represented by changes in the parameters of such models [15]. By extending apparent mass 

models to include terms representing the dynamic stiffness and damping of the seat, lumped 

parameter models can also be used to represent the transmission of vibration through seats 

[14]. The various influences on the seat dynamic properties of the backrest, the physical 

characteristics of the body in the seat, and the vibration magnitude, might be derived from 

lumped parameter models fitted to both the apparent mass of the body and seat transmissibility.     

The objective of this study was to determine the manner in which the principal factors affecting 

the vertical apparent mass of the human body (i.e., age, weight, body mass index, gender, 

backrest contact, and magnitude of vibration [10]) affect the transmissibility of a seat and its 

dynamic stiffness. It was hypothesized that the transmissibility of a seat would be influenced by 

factors that influence the apparent mass of the human body and that factors that increase the 

compression of the seat or the area of contact with the seat (e.g. increased subject weight and 

increased body mass index) would increase the dynamic stiffness of the seat.  

2. Methods and procedures 

 2.1 Apparatus 
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Vertical vibration was produced by a 1-metre stroke electro-hydraulic vibrator in the laboratory 

of the Human Factors Research Unit at the Institute of Sound and Vibration Research. 

Horizontal acceleration was measured at less than 5% of the vertical acceleration over the 

frequency range 0.125 to 25 Hz. Subjects sat on a seat from a mid-sized family car. The 

backrest of the seat was inclined by 15 degrees from the vertical and the seat cushion was at 

12 to the horizontal, as measured using an H-point manikin [16]. The leading edge of the seat 

surface was 0.44 m above the vibrator platform on which subjects rested their feet. 

Vertical vibration of the platform and the seat was measured using piezo-resistive 

accelerometers (Entran EGCSY-240D-10; Entran, Potterspury, UK). The accelerometer on the 

seat surface was contained within an HVLab SIT-pad [17]. The SIT-pad was located so that the 

ischial tuberosities were either side of the centre of the pad. The accelerometer on the platform 

was located directly below the SIT-pad accelerometer.    

2.2 Vibration 

Gaussian random vibration (band-limited using 8-pole Butterworth filters between 0.125 and 25 

Hz) with approximately flat constant bandwidth acceleration spectra was generated and 

analysed using an HVLab data acquisition and analysis system (version 3.81; University of 

Southampton, UK). Broadband random vibration was used so as to achieve high coherency at 

all frequencies. Different random signals were generated for each subject. The measured 

accelerations were acquired at 400 samples per second via 133 Hz anti-aliasing filters.  

2.3 Conditions 

The transmissibility of the seat was measured with each subject sitting supported by the 

backrest and also when sitting in a relaxed upright posture with no backrest support.  

With both backrest conditions, non-linearity was investigated by measuring seat transmissibility 

with three magnitudes of vibration (0.5, 1.0, and 1.5 ms-2 r.m.s.), chosen to be broadly 

representative of vibration magnitudes experienced in transport. Subjects were instructed to 

position their feet in front of them so that the underside of their thighs just made contact with the 

leading edge of the seat. Subjects wore a loose fitting lap belt and had access to an emergency 
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stop button. The order of presentation of conditions was randomized independently for each 

subject. 

2.4 Subjects 

A group of 80 adult subjects was formed to be representative of the UK car driving population 

(Table 1; [18,19]). The subjects were exposed to all conditions in a single session lasting 

approximately 60 minutes. Subjects gave informed consent to participate in the experiment that 

was approved by the Human Experimentation, Safety and Ethics Committee of the Institute of 

Sound and Vibration Research at the University of Southampton. 

TABLE 1 ABOUT HERE 

2.5 Analysis 

Transfer functions between the platform accelerometer and the SIT-pad accelerometer were 

calculated using the cross-spectral density method with a frequency resolution of 0.195 Hz. The 

transfer functions were determined from the ratio of the cross-spectral density of the input and 

output acceleration to the power spectral density of the input acceleration. Prior to the 

calculation of the seat transmissibility, the acceleration data were normalised to remove any DC 

offsets. 

The seat transmissibility at the primary resonance frequency was assumed to be the greatest 

transmissibility over the measurement range (0.6 to 20 Hz). The primary resonance frequency 

was defined as the frequency at which the transmissibility was greatest. 

2.6 Previously reported apparent mass measurements 

The vertical apparent masses of the 80 subjects sitting with an upright posture with no backrest 

were used to form a seat-person model (Section 2.8) and investigate the relation between 

apparent mass and seat transmissibility. The apparent masses of these subjects have been 

presented elsewhere and are summarised below [10]. 

When measuring their apparent mass, the subjects sat on the flat upper surface of a force plate 

secured to a rigid seat. Their feet were moved forward on the vibrator platform until their thighs 

were just touching the leading edge of the seat. Subject sat upright with no backrest support 
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while the seat was excited with broadband random vertical vibration at three magnitudes of 

vibration (0.5, 1.0, and 1.5 ms-2 r.m.s.). Each exposure to vibration was 60 s in duration. 

Prior to the calculation of the apparent mass, mass cancellation was performed in the time 

domain to remove the influence of the mass of the top plate from the measured force. The 

apparent mass was calculated from the ratio of the cross-spectral density between the force 

and acceleration at the seat, to the power spectral density of the acceleration at the seat.    

2.7 Statistical analysis 

Parametric statistics were used throughout the analysis. One-way analysis of variance (ANOVA) 

was used to determine overall significance of differences in features of seat transmissibility 

when subjects were grouped by their characteristics (i.e. size, age, gender); corrected 

independent samples t-tests were then used to compare features of the seat transmissibility 

between pairs of groups. Repeated measures ANOVA followed by the paired samples t-test 

was used to compare features of the seat transmissibility between conditions (i.e. between 

backrests and vibration magnitudes). The standard deviation was used to quantify variability in 

features of the seat transmissibility. Variability in seat transmissibility between conditions was 

tested using Levene’s test of equality of variance.  

Linear regression was used to identify predictors of the seat transmissibility. Initially, the 

associations between each physical characteristic of the subjects and the features of the seat 

transmissibility were separately analysed by ordinary least squares regression. Then, for each 

test condition (i.e. for each combination of backrest and vibration magnitude) significant 

predictors drawn from the physical characteristics were selected for the final regression model 

using the PASW stepwise procedure (PASW statistics, version 17.0). A significance level of 

0.05 was used to enter and retain a variable in the model. Variables significantly associated with 

each dynamic characteristic for any test condition, together with age and gender, were then 

entered simultaneously into regression models. Quadratic terms of each of the significant 

variables were added in turn to the final regression models; in all instances F-tests showed that 

assuming a linear effect did not compromise goodness of fit (p>0.1). Differences in the 

regression coefficients, B, between pairs of conditions (e.g. c1, c2) were tested using the null 
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hypothesis Ho: Bc1=Bc2. For each independent variable in the model, x,  first a dummy variable, 

z, was created coded 1 for c1 and 0 for c2, as well as a variable zx that was the product of z 

and the independent variable. Variables x, z, and zx were then used as predictors in the 

regression equation. The interaction term, zx, tested the null hypothesis Ho: Bc1=Bc2, 

significance (p<0.05), indicating that the regression coefficient Bc1 was significantly different 

from Bc2. Beta coefficients were calculated by multiplying each of the regression coefficients (B) 

in the multiple regression models by its standard deviation and dividing by the standard 

deviation of the dependent variable. Thus, a change of 1.0 standard deviations in the predictor 

variable resulted in a change of 1.0 standard deviations in the criterion variable. 

The association of features of the seat transmissibility with features of the apparent mass and 

other features of the seat transmissibility were separately analysed using bivariate regression 

analysis. 

2.8 Lumped parameter models 

A seat-person model was used to investigate whether the effects of subject characteristics and 

vibration magnitude on seat transmissibility could be explained by changes in the apparent 

mass with these same factors. 

A simple single degree-of-freedom lumped parameter model was used to fit the apparent mass 

(Figure 1a). The model consisted of a base frame with mass m0 and a suspended structure 

represented by a single mass, m1, connected to the base by spring stiffness, k1, in parallel with 

damping, c1. The seat transmissibility was represented by adding additional stiffness (k) and 

damping (c) to represent the dynamic properties of the seat cushion (Figure 1b). The form and 

relevant mathematical derivations of these models can be found elsewhere [12]. 

Initially, the moduli and phases of the apparent mass model were fitted to the measured 

individual apparent masses for each magnitude of vibration. Then, by fixing the fitted body 

parameters, the seat transmissibility model was fitted to each of the individual seat 

transmissibilities measured at a comparable magnitude to determine the seat stiffness and 

damping parameters. For each condition, the lumped parameter models were also fitted to the 
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mean measured apparent mass and the mean measured seat transmissibility over the 80 

subjects. 

FIGURE 1 ABOUT HERE 

The curve-fitting method used the fmincon function within the optimisation toolbox (version 

3.1.1) of MATLAB (version 7.5.0.342, R2007b). The function attempts to find a constrained 

minimum of a function of several variables starting at an initial estimate. The target error, found 

by summing the squares of the errors in the modulus and the phase, was minimised. To reduce 

the influence of the secondary resonances, the upper boundary of the fit was restrained to 1.5 

times the measured primary resonance frequency for both apparent mass and seat 

transmissibility. The lower boundary was set to 1.0 Hz. Before the summation of errors, an 

empirically determined weighting of 10 was applied to the phase errors in the apparent mass so 

as to obtain good fits to both the modulus (in kg) and the phase (in rad); similarly a weighting of 

10 was applied to modulus errors in the seat transmissibility. The values of the target 

parameters were allowed to be any positive value. 

Depending on the starting values of the model parameters, fmincon() can identify different local 

minima. In an attempt to ensure that global minima were found, the error function was 

minimized for 100 randomly selected sets of starting values; the set that led to the minimum 

total error was used. The fitted responses were compared to the measured data to check 

goodness of fit.   

3.0 Results 

3.1 Inter-subject variability in seat transmissibility 

When sitting supported by the backrest and exposed to 1.0 ms-2 r.m.s. vibration, the principal 

resonance frequency in the seat transmissibility varied over the 80 subjects between 3.5 and 

4.7 Hz, with a mean of 4.4 Hz (Figure 2 and Table 2). The transmissibility of the seat at 

resonance varied between 1.6 and 2.6 with a mean of 2.0.  

FIGURE 2 AND TABLE 2 ABOUT HERE 

3.2 Effects of backrest contact 
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The mean resonance frequency increased from 3.9 Hz to 4.4 Hz when subjects made contact 

with the backrest while exposed to 1.0 ms-2 r.m.s. (p<0.001), with an increase in the seat 

transmissibility at resonance (p<0.001), and a decrease in the transmissibility at 12 Hz 

(p<0.001) (Table 2, Figure 3). The means and standard deviations of the seat transmissibility 

with both backrest conditions are shown in Figure 4. There were no significant differences in 

inter-subject variability between the two backrest conditions in the resonance frequency, the 

seat transmissibility at resonance, or transmissibility at 12 Hz (in all cases p≥0.15; Table 2).  

TABLE 3 AND FIGURES 3 AND 4 ABOUT HERE 

3.3. Effects of vibration magnitude 

When there was no backrest, the mean resonance frequency decreased by 0.4 Hz (from 4.2 to 

3.8 Hz) as the vibration magnitude increased from 0.5 to 1.5 ms-2 r.m.s. (p<0.001; Table 2). 

With the backrest, the mean resonance frequency decreased by 0.6 Hz (4.7 to 4.1 Hz) as the 

vibration magnitude increased from 0.5 to 1.5 ms-2 r.m.s. (p<0.001; Figure 3). The decrease in 

the resonance frequency with increasing vibration magnitude was not significantly different 

between the two backrest conditions (p=0.075). With and without the backrest, as the vibration 

magnitude increased from 0.5 to 1.5 ms-2 r.m.s., there was a decrease in the transmissibility at 

resonance (in both cases, p<0.001), but no change in the transmissibility at 12 Hz (p=0.10).  

Inter-subject variability in seat transmissibility at resonance was less with 1.5 ms-2 r.m.s. than 

with 0.5 ms-2 r.m.s., both when subjects were supported by a backrest and when there was no 

backrest (p<0.001 and p=0.048, respectively) (Figure 4, Table 3). Inter-subject variability in the 

resonance frequency was also less with 1.5 ms-2
 r.m.s. than with 0.5 ms-2 r.m.s. (in both 

postures, p<0.001). Inter-subject variability in seat transmissibility at 12 Hz was not significantly 

affected by the vibration magnitude (in both postures, p≥0.76).  

3.4 Effects of subject physical characteristics 

The 80 subjects were divided into four equal groups according to their age, stature, and BMI, 

and into two groups according to their gender; these groups are defined in Table 4. The means 

and standard deviations of the resonance frequency, the seat transmissibility at resonance, and 
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the seat transmissibility at 12 Hz were calculated for each group for the backrest condition 

(Table 4). The mean transmissibilities of the groups are compared in Figures 5 and 6. 

TABLE 4 AND FIGURES 5 AND 6 ABOUT HERE 

The resonance frequency of the seat transmissibility varied between age groups (p<0.001), with 

differences found between all pairings of age groups (p≤0.038), other than between Groups 2 

and 3 (p=0.492). Seat transmissibility at resonance also varied between age groups (p<0.001), 

with significant differences between all pairings of age groups (p≤0.044) other than between 

Groups 2 and 3 (p=0.735).  

Relative to the large effects of subject age, the gender, weight, stature, and BMI had smaller 

effects on the principal resonance in seat transmissibility (compare Figures 5 with Figure 6). 

There were no significant variations in either the resonance frequency or the transmissibility at 

resonance between subjects categorized by gender, weight, stature, or BMI (in all cases, 

p≥0.12). At 12 Hz there were significant variations between males and females (p=0.003) and 

between stature groups (p=0.017); however only the differences between stature groups 1 and 

2 (p=0.021) and groups 1 and 4 (p=0.028) were found to be significant.  

3.5 Bivariate regression analysis 

For subjects sitting with the backrest, bivariate regression analysis showed that age was the 

only subject characteristic associated with the seat resonance frequency, with an increase of 

0.14 Hz in the resonance frequency for each 10-year increase in age (Table 5; regression 

coefficient, B=0.014 Hz.year-1; p=0.003). The effect of age on resonance frequency was similar 

without the backrest (B=0.012 Hz.year-1, p<0.001; Figure 7). The only physical characteristics 

associated with the seat transmissibility at resonance were age (B=0.01 year-1, p<0.001; Figure 

8) and sitting height (B= -0.011 cm-1, p=0.044). Subject weight, BMI, and knee height were 

associated with the seat transmissibility at 12 Hz (p≤0.011). The transmissibility of the seat at 

resonance was positively associated with the resonance frequency (p<0.001) and negatively 

associated with the transmissibility at 12 Hz (p=0.001, Table 5).   

TABLE 5, FIGURE 7, AND FIGURE 8 ABOUT HERE 
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Features of the seat transmissibility (measured with backrest with 1.0 ms-2 r.m.s. vibration) were 

regressed against features of the subject apparent mass (measured without backrest at 1.0 ms-2 

r.m.s.) (Table 5). For 1.0 Hz increase in the resonance frequency of the apparent mass there 

was a 0.3 Hz  increase in the resonance frequency of the seat transmissibility (p<0.001). The 

seat transmissibility at resonance was greater (p<0.001) and the transmissibility at 12 Hz was 

less (p<0.002) with subjects having greater resonance frequencies in their apparent mass. The 

apparent mass at resonance was not a significant predictor of any of the seat transmissibility 

features (p≥0.682). 

3.6 Multiple regression analysis 

For both backrest conditions and with all three vibration magnitudes, multiple regression models 

investigated how features in the seat transmissibility (resonance frequency, transmissibility at 

resonance, and transmissibility at 12 Hz) depended on subject characteristics (Table 6). After 

controlling for the effects of other predictors, age was associated with the resonance frequency 

with both backrest conditions and all three vibration magnitudes (p<0.001). The association was 

greatest when there was no backrest with a vibration magnitude of 1.0 ms-2 r.m.s (B=0.016 

Hz.year-1), but the slope did not differ between conditions (p>0.293). With the backrest, the 

mean resonance frequency was significantly greater for the group of males than the group of 

females with the two lowest magnitudes of vibration (p=0.047, p=0.048, respectively). 

Interaction variables added to the regression models showed that the effect of gender on 

resonance frequency was not significantly affected by backrest contact or vibration magnitude 

(p≥0.23). Subject age was the only significant predictor of the seat transmissibility at resonance 

(in all conditions, p<0.001), with interaction variables suggesting this association was 

independent of backrest condition and vibration magnitude (p≥0.33).  

In addition to visual inspection of histograms and Q-Q plots of each variable, the Kolmogorov-

Smirnov test in SPSS was used to check for the degree of skew (i.e. ‘non-symmetry’) and 

kurtosis (i.e. ‘peakiness’) in each dependent and independent variable. These checks revealed 

mild negative skew in the ages of the subjects; a logarithmic transformation of ‘age’ was used to 

explore (and correct for) any effects of this skew. Regression analyses using, initially, age and 
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gender, and subsequently log(age) and gender as predictors of seat transmissibility resonance 

frequency and seat transmissibility at resonance were found to produce almost identical results 

in terms of the statistical strength of associations. By retaining age in its original units the 

interpretation of the results is made easier. 

TABLE 6 ABOUT HERE 

Standardized regression coefficients (beta coefficients) were calculated to show the relative 

contribution of the significant predictors of seat transmissibility with both backrest conditions and 

all three magnitudes of vibration (Table 6). Age was the strongest predictor of the resonance 

frequency in all conditions, with gender of secondary importance. The beta coefficients suggest 

that age, gender and body mass index contributed in approximately equal proportions in all 

conditions to the variability in seat transmissibility at 12 Hz (Table 6). In all conditions, the R2 

values indicate the models accounted for only between 20 and 30% of the variability in the 

resonance frequency, the transmissibility at resonance, and the transmissibility at 12 Hz. 

3.7 Modelled seat properties 

The two degree-of-freedom seat transmissibility model in Figure 1 provided reasonable fits to 

the measured seat transmissibility for each of the 80 subjects around the primary resonance for 

both the modulus (Figure 9) and phase (Figure 10). The fits of the apparent mass with the 

single degree-of-freedom model were similarly good (not shown). Between 8 and 15 Hz in the 

apparent mass, and between 6 and 12 Hz in the seat transmissibility, another resonance was 

apparent with some subjects, with the frequency and magnitude of this resonance varying 

between subjects. The maximum frequency for fitting the model was therefore fixed at 1.5 times 

the measured seat resonance frequency, as increasing the frequency range compromised the 

fit around the primary resonance. The use of a two degree-of-freedom apparent mass model 

was investigated so as to represent the second resonance but although fits to the apparent 

mass were improved there was no improvement in the fits to the seat transmissibility at 

frequencies greater than the primary resonance.   

FIGURE 9 AND FIGURE 10 ABOUT HERE 

3.7.1 Fitted individual seat transmissibilities 
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The derived seat stiffness was strongly associated with all subject characteristics except age 

(Table 7). Subject weight was the strongest individual predictor, with the R2
 value indicating that 

weight accounted for 59% of the variability in the derived seat stiffness (Figure 11; B=26.80 

kN/m.kg-1; p<0.001). The apparent mass at 0.6 Hz, at the resonance frequency, and at 12 Hz 

were also strong predictors of seat stiffness, with these apparent mass features also strongly 

associated with subject weight (p=0.001). No statistically significant associations were found 

between the derived seat stiffness and the resonance frequency of the seat, the seat 

transmissibility at resonance, or the seat transmissibility at 12 Hz.  

TABLE 7 AND FIGURE 11 ABOUT HERE 

The derived seat damping had negative associations with gender, stature, and knee height 

(p≤0.05), but individually they only accounted for a small proportion of the variability in damping 

(in all cases R27%). The strongest predictor of seat damping was the resonance frequency in 

the seat transmissibility (p<0.01; R2=18%), with the apparent mass at 0.6 Hz, the apparent 

mass at resonance, and the apparent mass at 12 Hz also predictors (p≤0.05). There was no 

significant association between the derived seat stiffness and the derived damping. 

3.7.2 Effect of vibration magnitude on seat dynamics 

At each of the three vibration magnitudes, the model parameters were similar when the model 

was fitted to the mean response of the 80 subjects and the mean of the individually fitted 

parameters (Table 8). 

TABLE 8 ABOUT HERE 

The mean of the individually fitted seat stiffnesses decreased from 92.1 to 83.2 kN/m (14%) as 

the vibration magnitude increased from 0.5 to 1.5 ms-2 r.m.s. (p<0.001; Table 8); significant 

differences in stiffness were found between all excitation magnitudes (p≤0.012; paired samples 

t-test). There was no effect of vibration magnitude on the derived seat damping (p=0.584).  

After controlling for the effects of other physical characteristics, subject weight was significantly 

related to seat stiffness at all three vibration magnitudes (p<0.001; Table 9, Figure 11), with the 

association not significantly dependent on vibration magnitude (p≥0.2). Gender was a significant 
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predictor of seat stiffness at 1.0 ms-2 r.m.s. (p=0.046), but the beta values suggest gender was 

of much less importance than weight. Gender was associated with the seat damping at all three 

vibration magnitudes (p≤0.017), but the models only accounted for a small amount of the 

variability in seat damping (R2≤11%).  

TABLE 9 ABOUT HERE 

3. Discussion 

3.1 Predictors of seat transmissibility 

Subject age was the strongest predictor of the seat transmissibility resonance frequency: from 

18 to 65 years, there was a mean increase in the resonance frequency of the seat with no 

backrest of 0.56 Hz with 0.5 ms-2 r.m.s. vibration and 0.75 Hz with 1.5 ms-2 r.m.s. vibration. The 

resonance frequency in the apparent masses of the same subjects increased by 1.7 Hz over the 

range 18 to 65 years [10]. Subject age was the only subject characteristic to be significantly 

associated with seat transmissibility at resonance, with the mean transmissibility at resonance 

of the seat with backrest increasing by 0.52 with 0.5 ms-2 r.m.s. vibration and by 0.37 with 1.5 

ms-2 r.m.s. vibration over the 18 to 65 year age range. Age was not a significant predictor of the 

apparent masses of the subjects at resonance [10]. Because the seat dynamic properties did 

not vary with subject age (Table 9), it seems that the effects of subject age on the seat 

resonance frequency were largely due to increased resonance frequency in the apparent mass 

with increased age. 

The apparent mass resonance frequency decreases with increasing body mass index (BMI) 

[10], but there was no evidence of BMI affecting the resonance frequency in the seat 

transmissibility (Table 6). The association between the BMI and the apparent mass resonance 

frequency was strong when sitting with an upright rigid backrest or a reclined rigid backrest, but 

not so strong when sitting supported by a foam backrest or sitting with no backrest as in this 

study [10]. The dependence of the apparent mass on the backrest could explain the lack of 

association between BMI and seat transmissibility resonance frequency. There was no 

significant effect of BMI on the derived seat stiffness after controlling for age, gender, and 

weight (Table 9). It might be expected that subjects with higher BMI (after controlling for subject 
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weight) would have greater contact area with the seat but also that the pressure, and hence the 

compression of the seat foam, would be less; these two factors can have opposing effects on 

seat stiffness [12], and their effects may have cancelled.  

The R2
 values indicate that subject characteristics accounted for only 20 to 30% of the variability 

in seat transmissibility, less than subject characteristics accounted for variability in apparent 

mass [10]. Subject weight accounts for much of the variability in apparent mass at resonance, 

but after normalising with respect to sitting weight the variability in apparent mass at resonance 

is significantly reduced [12]. In the absence of weight as a predictor of seat transmissibility at 

resonance (or normalized apparent mass at resonance) the low R2 values suggest that other 

unmeasured factors account for most of the variability. These factors might include variations in 

posture between subjects, variations in subject build (e.g. body shape and size distribution and 

proportion of muscle and fat) not fully reflected in the BMI, as well as changes in muscle 

tension.  

The  resonance frequency in the seat transmissibility increased by 0.3 Hz for every 1.0 Hz 

increase in the apparent mass resonance frequency (Table 5); this could partially explain the 

lower associations of age, BMI, and gender with the resonance frequency in the seat 

transmissibility than the resonance frequency in the apparent mass. 

3.2 Effect of subject weight 

Subject weight is a strong predictor of apparent mass at resonance and at 12 Hz [10], but it did 

not significantly affect seat transmissibility at these frequencies.  

The influence of variations in apparent mass with subject weight on seat transmissibility was 

investigated by fixing the seat parameters in the model (to the mean of the individual fits with 

1.0 ms-2 r.m.s. vibration). The seat transmissibility model was then used with the apparent mass 

parameters derived for each of the 80 subjects. The frequency and magnitude of the resonance 

in the predicted seat transmissibilities were then regressed against subject weight, after 

correcting for age and gender (Table 10). With increasing subject weight (i.e. 46 to 103 kg), the 

resonance frequency in the transmissibility would be expected to decrease by about 1.0 Hz and 

the transmissibility at resonance would be expected to increase by 0.46. However, weight was 
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not associated with the predicted seat transmissibility, suggesting the seat dynamic properties 

changed to compensate for changes in subject weight [11,12].   

TABLE 10 ABOUT HERE 

The dynamic stiffness of a car seat and a foam squab has been measured [14] by applying 

preloads to the seats through an indenter head shaped like a SIT-BAR [17]. Increasing the 

preload from 300 to 800 N increased the stiffness by 30.7 kN/m with the car seat and by 33.2 

kN/m with the foam squab. In the present study, an increase in sitting weight (increasing the 

force on the seat from 300 to 800 N) was associated with an increase in the derived stiffness of 

81.3 kN/m (Table 7). The greater increase in stiffness in this study might be explained by 

heavier subjects having larger contact areas with the seat surface. Wei and Griffin [14] found 

that the damping of the car seat was little changed by the pre-load, consistent with the absence 

of an effect of increased loading in the present study (Table 9). 

3.3 Effects of vibration magnitude and backrest 

The decrease in the resonance frequency in the seat transmissibility with increased magnitude 

of vibration is consistent with previous studies (e.g. [3]). As vibration magnitude increased from 

0.5 to 1.5 ms-2 r.m.s., the apparent mass resonance frequency of the present subjects 

decreased from 5.3 to 4.7 Hz (no backrest, 1.0 ms-2 r.m.s.; [10]). The present and previous 

studies (e.g. [11,12]) show that seat dynamic stiffness also decreases with increasing vibration 

magnitude. Wei [12] measured the dynamic seat stiffness and damping of a foam squab at 

different vibration magnitudes using an indenter and found that with various shapes and sizes of 

indenter, the dynamic stiffness of the foam consistently decreased with increasing vibration 

magnitude. With a preload of 500 N, and vibration increasing from 0.5 ms-2 r.m.s. to 1.5 r.m.s. 

the stiffness decreased between 1.3% (a buttocks-shaped indenter) to 9.1% (15-cm diameter 

disk indenter), compared to a decrease of 10.7% in stiffness over the same range of vibration 

magnitude in the present study. Consistent with this study, Wei also found no systematic 

change in seat damping with changes in vibration magnitude.  

The contribution of the non-linearity of the human body to changes in the seat transmissibility 

was quantified using the seat-body model to predict seat transmissibility from subject apparent 
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masses at different magnitudes while the seat parameters were fixed to the mean values for all 

individuals at 1.0 ms-2 r.m.s. This analysis suggested the body was the dominant cause of the 

nonlinearity in seat transmissibility: as the vibration magnitude increased from 0.5 to 1.5 ms-2 

r.m.s., the model predicted that 0.33 Hz of the 0.41 Hz decrease in the seat transmissibility 

resonance frequency was caused by the non-linearity of the body.  

The increase in the seat resonance frequency and the increase in the seat transmissibility at 

resonance when subjects made contact with a reclined backrest are consistent with other 

studies (e.g. [3]). There was no evidence to suggest the associations of seat transmissibility 

with vibration magnitude or subject physical characteristics were significantly affected by 

backrest contact. Changes in backrest contact and backrest inclination change the posture of 

the seat occupant and the dynamic response to the body (e.g. [6]) but they also alter the 

mechanical properties of the seat by changing the area of the body in contact with the seat and 

the compression of the cushion.  

3.4 Limitations of modelling 

A seat transmissibility model incorporating a two degree-of-freedom apparent mass model of 

the body did not reflect the seat transmissibility measured around the second resonance without 

compromising the fit to the primary resonance, implying deficiencies in either the simple 

apparent mass model or the simple seat model. Fairley and Griffin [20] reported that the 

apparent mass of the body measured in a rigid seat and in a car seat were similar at low 

frequencies but differed between 12 and 18 Hz. Differences in seat pan inclination (e.g. [12]) or 

pressure distribution (e.g. [21]) might have contributed to differences between the apparent 

mass of the body on the rigid and compliant seats and hence the poorer fit to the second 

resonance of the seat transmissibility in this study. The simple seat model may also be deficient 

in that it assumed the stiffness and damping of the seat were independent of frequency. 

Although a previous study found small variations over the frequency range studied here (e.g. 

[14]), this may not have been the case for the seat used in this study. 

3.5 Implications of the results 
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The strong association between subject age and seat transmissibility implies that when testing 

seats or defining idealized body responses (e.g. in ISO 5982 [22]) the influence of age should 

be considered. The weak association between subject weight and seat transmissibility suggests 

that weight is of less importance than age, and that the apparent mass of the body normalised 

with respect to sitting weight may be sufficient to define the response of models for predicting 

the transmissibility of conventional foam cushion seats. Anthropodynamic dummies have been 

developed for testing seats in place of human subjects (e.g. [23]; [24]) and standardized dummy 

responses have been proposed to represent different weights of subjects (e.g. 5th and 95th 

percentiles). While seat loading can affect the dynamic performance of suspension seats (e.g. 

[25]) there appears to be less justification for using variable weight dummies to test 

conventional seats. There is considerable variation in the dynamic properties of seats and seat 

foams (e.g. [12]) – so while other studies have also reported no correlation between subject 

weight and either the resonance frequency or the transmissibility at resonance for either a 

sprung cushion train seat [3] or a car seat [13], further investigation seems appropriate. 

4. Conclusions 

Subject age was the strongest predictor of the resonance frequency evident in vertical seat 

transmissibility and the only statistically significant predictor of seat transmissibility at 

resonance. Increased age was associated with increased resonance frequency and increased 

seat transmissibility at resonance, suggesting the need to use subjects of appropriate age when 

measuring the transmissibility of seats. Notwithstanding the significant associations with age, 

regression models show that the physical characteristics of subjects only accounted for 20 to 

30% of the variability in the resonance frequency and the seat transmissibility at resonance. 

Age, gender and body mass index were significantly associated with seat transmissibility at 12 

Hz.   

Subject weight was not significantly associated with seat transmissibility, even though weight 

has a strong association with the apparent mass of the body at resonance and at 12 Hz. There 

is evidence that seat stiffness may have increased with increased load on the seat so as to 

compensate for increased subject weight.  
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The principal resonance frequency in the seat transmissibility reduced with increasing 

magnitude of vibration due to non-linearity in the apparent mass of the body and, possibly, non-

linearity in the seat. The non-linearity of the body accounted for about 80% of the 0.41 Hz 

decrease in resonance frequency as the magnitude of vibration was increased from 0.5 to 1.5 

ms-2 r.m.s. The resonance frequency in the vertical seat transmissibility, and the transmissibility 

of the seat at resonance, increased when subjects made contact with the seat backrest.  

References 

[1] M. J. Griffin, Handbook of Human Vibration, Academic Press Limited, New York (1990). 

[2] M.J. Griffin, The evaluation of vehicle vibration and seats, Applied Ergonomics 9 (1978) 15-

21. 

[3] C. Corbridge, M.J. Griffin, P.R. Harborough, Seat dynamics and passenger comfort, 

Proceeding of the Institution of Mechanical Engineers 203 (1989) 57–64.  

[4] M. Kolich, S.D. Essenmacher, J.T. McEvoy, Automotive seating: The effect of foam physical 

properties on occupied vertical vibration transmissibility, Journal of Sound and Vibration 281 

(2005) 409-416. 

[5] T.E. Fairley, M.J. Griffin, The apparent mass of the seated human body: vertical vibration. 

Journal of Biomechanics 22 (1989) 81-94. 

[6] M.G.R. Toward, M.J. Griffin, Apparent mass of the human body in the vertical direction: 

Effect of seat backrest. Journal of Sound and Vibration 327 (2009) 657-669. 

[7] W. Wang, S. Rakheja, P.É. Boileau, Effects of sitting postures on biodynamic response of 

seated occupant under vertical vibration. International Journal of Industrial Ergonomics 34 

(2004) 289-306. 

[8] S. Rakheja, I. Stiharu, P.É. Boileau, Seated occupant apparent mass characteristics under 

automotive posture and vertical vibration. Journal of Sound and Vibration 253 (2002) 57-75. 

[9] P. Holmlund, R. Lundström, L. Lindberg, Mechanical impedance of the human body in 

vertical direction. Applied Ergonomics 31 (2000) 415-422. 

Published as: The transmission of vertical vibration through seats: influence of the characteristics of the human body. 
Toward, M. G. R. & Griffin, M. J. 19 Dec 2011 In : Journal of Sound and Vibration. 330, 26, p. 6526-6543.



23 

[10] M.G.R. Toward, M.J. Griffin, Apparent mass of the human body in the vertical direction: 

inter-subject variability. Journal of Sound and vibration 330 (2011) 827-841. 

[11] S.W. White, S.K. Kim, A.K. Bajaj, P. Davies, D.K. Showers, P.E. Liedtke, Experimental 

techniques and identification of nonlinear and viscoelastic properties of flexible polyurethane 

foam. Nonlinear Dynamics 22 (2000) 281–313. 

[12] L. Wei, Predicting transmissibility of car seats from seat impedance and the apparent mass 

of the human body, PhD Thesis, University of Southampton, 2000. 

[13] J.H. Varterasian, R.R. Thompson, The dynamic characteristics of automobile seats with 

human occupants, Society of Automotive Engineers, SAE Paper No. 770249 (1977). 

 [14] L. Wei, M.J. Griffin, The prediction of seat transmissibility from measures of seat 

impedance. Journal of Sound and Vibration 214 (1998) 121-137. 

[15] M.G.R. Toward, M.J. Griffin, A variable parameter single degree-of-freedom model for 

predicting the effects of sitting posture and vibration magnitude on the vertical apparent mass of 

the human body. Industrial Health 48 (2010) 654–662. 

[16] International Organization for Standardization ISO 20176, Road vehicles. H-Point machine 

(HPM II). Specifications and Procedure for H-point determination, International Standard, 2006. 

[17] E.M. Whitham, M.J. Griffin, Measuring vibration on soft seats. Society of Automotive 

Engineers, SAE Paper No. 770253 (1977). 

[18] S. Pheasant, C. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of 

work, Taylor & Francis Group, USA (2006). 

[19] Department of Health. Health Survey for England 2007: Adult trend tables (2008). The NHS 

Information Centre for health and social care. 

[20] T. E. Fairley, M. J. Griffin, A test method for the prediction of seat transmissibility. Society of 

Automotive Engineers, SAE Paper 860046 (1986). 

Published as: The transmission of vertical vibration through seats: influence of the characteristics of the human body. 
Toward, M. G. R. & Griffin, M. J. 19 Dec 2011 In : Journal of Sound and Vibration. 330, 26, p. 6526-6543.



24 

[21] B. Hinz, S. Rutzel, R. Bluthner, G. Menzel, H.P. Wolfel, H. Seidel, Apparent mass of seated 

man - First determination with a soft seat and dynamic seat pressure distributions. Journal of 

Sound and Vibration 298 (2006) 704-724. 

[22] International Organization for Standardization ISO 5982, Mechanical vibration and shock–

Range of idealized values to characterize seated-body biodynamic response under vertical 

vibration, International Standard, 2001. 

[23] A. Cullmann, H.P. Wölfel, Design of an active vibration dummy of sitting man. Clinical 

Biomechanics, 16 (2001) 64-72. 

[24] C.H. Lewis, M.J. Griffin, Evaluating vibration isolation of soft seat cushions using an active 

anthropodynamic dummy. Journal of Sound and Vibration 253 (2002) 295-311. 

[25] R.M. Stayner, Aspects of the development of a test code for tractor suspension seats. 

British Acoustical Society BAS Paper No. 71SAG (1972). 

 

Published as: The transmission of vertical vibration through seats: influence of the characteristics of the human body. 
Toward, M. G. R. & Griffin, M. J. 19 Dec 2011 In : Journal of Sound and Vibration. 330, 26, p. 6526-6543.



Table 1 Means and standard deviations (SD) of subject characteristics (British population in brackets).  
 

 All subjects  Women (39 subjects)  Men (41 subjects) 

 Mean SD Range  Mean SD Range  Mean SD Range 

Age, years 33.7 13.1 18-65  33.1 11.2 19-56  33.8 14.8 18-65 
Weight, kg 70.5 13.4 46-103  62.8 (69.7a) 11.5 46-98  77.1 (83.5a) 11.3 58-103 
Stature, cm 171.0 11.3 149-192  162.6 (162.0b) 8.9 149-185  178.5 (176.0b) 7.1 164-192 
Body mass index c, kgm-2 24.1 3.8 18-34  23.8 (26.8a) 4.2 18-34  24.2 (27.1a) 3.4 18-31 
Knee height, cm 52.7 4.2 45-61  50.1 (50.0b) 3.4 45-61  55.2 (55.0b 3.1 50-61 
Buttock knee length, cm 59.6 4.2 48-69  57.9 (56.5b) 3.8 48-66  61.0 (59.5b) 4.0 56-69 
Sitting height, cm 85.8 5.1 76-101  82.7 (85.5b) 3.4 76-92  88.7 (91.5b) 4.7 80-101 

a Adults aged 16+ [19] 
b Anthropometric estimates for British adults aged 19-65 [18] 
c (Body mass index, kgm-2)  = (mass, kg) / (height, m)2  
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Table 2 Effect of backrest contact and vibration magnitude on primary resonance frequencies and 
transmissibilities of the seats at resonance and at 12.0 Hz. Means (and standard deviations) of 80 
subjects. 

 

 
Resonance  

frequency, Hz 
Transmissibility  
at resonance 

Transmissibility  
at 12.0 Hz 

Input magnitude (no backrest)    
0.5 ms-2 r.m.s. 4.18  ( 0.41 ) 1.83  ( 0.24 ) 0.81  ( 0.15 ) 
1.0 ms-2 r.m.s. 3.93  ( 0.34 ) 1.77  ( 0.23 ) 0.81  ( 0.15 ) 
1.5 ms-2 r.m.s. 3.76  ( 0.32 ) 1.76  ( 0.21 ) 0.81  ( 0.17 ) 

Input magnitude (backrest)    
0.5 ms-2 r.m.s. 4.67  ( 0.38 ) 2.14  ( 0.30 ) 0.72  ( 0.16 ) 
1.0 ms-2 r.m.s. 4.37  ( 0.35 ) 2.04  ( 0.25 ) 0.72  ( 0.16 ) 
1.5 ms-2 r.m.s. 4.11  ( 0.31 ) 1.96  ( 0.23 ) 0.71  ( 0.16 ) 
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Table 3 Correlation coefficients, r, between subject physical characteristics (Pearson’s correlation).  
 

 Gender, 
f=0, m=1 

Weight, 
kg 

Stature, 
cm 

BMI, 
kgm-2 

Knee height, 
cm 

Buttock-knee, 
cm 

Sitting height, 
cm  

Age, years 0.04 0.14 -0.04  0.20* 0.05 -0.04 -0.13 
Gender, ( f=0; m=1 )   0.54**  0.71**  0.06 0.63**  0.37**  0.58** 
Weight, kg      0.61**  0.71** 0.68**  0.54**  0.50** 
Stature, cm       -0.11 0.89**  0.71**  0.79** 
BMI, kgm-2         0.06  0.05 -0.07 
Knee height, cm            0.69**  0.66** 
Buttock-knee length, cm              0.42** 

*p < 0.05, **p < 0.01, ***p < 0.001.
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Table 4 Effect of subject physical characteristics on the primary seat transmissibility resonance 
frequency and the transmissibility at resonance and at 12.0 Hz (backrest support; magnitude 1.0 ms-2 
r.m.s.). Means (and standard deviations) of 20 subjects, except for gender (41 males, 39 females). 

 

 
Group  Resonance 

frequency, Hz 
Transmissibility at 
resonance 

Transmissibility at 
12.0 Hz 

Age, years: Median (min, max)      
21  ( 18,23 ) 1  4.12  ( 0.26 ) 1.85  ( 0.14 ) 0.79  ( 0.12 ) 
25  ( 24,27 ) 2  4.41  ( 0.23 ) 2.05  ( 0.25 ) 0.68  ( 0.18 ) 
34  ( 28,45 ) 3  4.34  ( 0.36 ) 2.02  ( 0.16 ) 0.70  ( 0.15 ) 
52  ( 45,65 ) 4  4.61  ( 0.35 ) 2.22  ( 0.28 ) 0.70  ( 0.15 ) 

Gender: Median (min, max)      
Female 1  4.30  ( 0.34 ) 2.05  ( 0.25 ) 0.77  ( 0.18 ) 
Male 2  4.44  ( 0.36 ) 2.03  ( 0.26 ) 0.67  ( 0.11 ) 

Weight, kg: Median (min, max)      
54  ( 46,60 ) 1  4.39  ( 0.41 ) 2.11  ( 0.31 ) 0.65  ( 0.15 ) 
64  ( 60,69 ) 2  4.35  ( 0.35 ) 1.97  ( 0.22 ) 0.73  ( 0.11 ) 
74  ( 69,80 ) 3  4.36  ( 0.34 ) 2.02  ( 0.25 ) 0.81  ( 0.20 ) 
88  ( 80,103 ) 4  4.39  ( 0.33 ) 2.07  ( 0.23 ) 0.68  ( 0.12 ) 

Stature, cm: Median (min, max)      
156  ( 149,163 ) 1  4.29  ( 0.34 ) 2.07  ( 0.24 ) 0.80  ( 0.20 ) 
167  ( 163,171 ) 2  4.48  ( 0.38 ) 2.11  ( 0.30 ) 0.66  ( 0.16 ) 
176  ( 171,181 ) 3  4.38  ( 0.35 ) 2.01  ( 0.22 ) 0.74  ( 0.11 ) 
185  ( 181,192 ) 4  4.34  ( 0.34 ) 1.98  ( 0.24 ) 0.68  ( 0.13 ) 

BMI, kgm-2: Median (min, max)      
20  ( 18,21 ) 1  4.50  ( 0.32 ) 2.08  ( 0.28 ) 0.66  ( 0.13 ) 
22  ( 21,23 ) 2  4.29  ( 0.41 ) 1.99  ( 0.22 ) 0.70  ( 0.12 ) 
25  ( 24,26 ) 3  4.36  ( 0.32 ) 2.01  ( 0.26 ) 0.73  ( 0.15 ) 
31  ( 26,34 ) 4  4.35  ( 0.35 ) 2.08  ( 0.25 ) 0.77  ( 0.20 ) 
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Table 5 Bivariate regression coefficients showing the influence of subject physical characterises on 
predictors of seat transmissibility (with backrest; magnitude 1.0 ms-2 r.m.s.).  

 

Variables Resonance 
frequency, Hz 

 Transmissibility 
at resonance 

 Transmissibility 
at 12 Hz 

 B p SEB  B p SEB  B p SEB 

Physical characteristics           
Age (years) 0.014 *** 0.003  0.010 *** 0.002  -0.002  0.001
Gender (female=0; male =1) 0.000  0.003  -0.001  0.002  0.001  0.001
Weight, kg 0.144  0.078  -0.023  0.057  -0.102 ** 0.033
Stature, cm 0.001  0.004  -0.004  0.003  -0.003  0.002
BMI, kgm-2 -0.004  0.011  0.006  0.008  0.012 ** 0.005
Knee height, cm 0.005  0.010  -0.001  0.007  -0.011 * 0.004
Buttock-knee length, cm 0.002  0.010  -0.008  0.007  -0.002  0.004
Sitting height, cm -0.002  0.008  -0.011 * 0.006  -0.004  0.004

Seat transmissibility (ST) features           
ST resonance frequency, Hz     0.527 *** 0.055  -0.161 ** 0.047
ST at resonance 1.027 *** 0.107      -0.272 *** 0.063
ST at 12 Hz -0.809 ** 0.237  -0.700 *** 0.164    

Apparent mass (APM) features           
APM resonance frequency, Hz 0.300 *** 0.059  0.199 *** 0.043  -0.094 ** 0.028
APM at resonance, kg -0.001  0.002  0.000  0.001  0.000  0.001
APM at 12 Hz, kg 0.016 ** 0.006  0.008  0.004  -0.001  0.003

Abbreviations: B, regression coefficient; SEB, standard error of the regression coefficient. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 6 Multiple regression analysis showing the influence of vibration magnitude and backrest 
condition on predictors of seat transmissibility.  

 

 0.5 ms-2 r.m.s.  1.0 ms-2 r.m.s.  1.5 ms-2 r.m.s. 

 B p SEB   B p SEB   B p SEB  

Backrest               

Resonance frequency, Hz               
Age (years) 0.012 *** 0.003 0.40  0.013*** 0.003 0.50  0.012*** 0.002 0.51 
Gender (female=0; male =1) 0.154 * 0.076 0.20  0.136* 0.067 0.19  0.035 0.061 0.06 
Constant 4.195     3.849    3.676   
R2, % 20.7     28.9    26.6   

Resonance magnitude             
Age (years) 0.011 *** 0.002 0.47  0.010*** 0.002 0.53  0.008*** 0.002 0.46 
Gender (female=0; male =1) -0.031  0.059 -0.05  -0.029 0.048 -0.06  -0.023 0.046 -0.05 
Constant 1.791     1.709    1.701 0.067  
R2, % 22.6     28.3    21.4   

Transmissibility at 12 Hz             
Age (years) -0.003 * 0.001 -0.24  -0.003** 0.001 -0.27  -0.004** 0.001 -0.30 
Gender (female=0; male =1) -0.110 ** 0.032 -0.34  -0.107** 0.031 -0.34  -0.105** 0.030 -0.33 
BMI, kgm-2 0.014 ** 0.004 0.32  0.016*** 0.004 0.37  0.016*** 0.004 0.37 
Constant 0.544     0.508    0.513   
R2, % 24.1     27.5    28.8   

No backrest contact               
Resonance frequency, Hz               

Age (years) 0.016 *** 0.003 0.51  0.012*** 0.003 0.46  0.012*** 0.002 0.50 
Gender (female=0; male =1) 0.109  0.078 0.13  0.040 0.067 0.06  0.042 0.062 0.07 
Constant 3.587     3.504    3.333   
R2, % 28.4     21.8    25.6   

Resonance magnitude             
Age (years) 0.010 *** 0.002 0.52  0.009*** 0.002 0.52  0.008*** 0.002 0.49 
Gender (female=0; male =1) 0.029  0.046 0.06  -0.022 0.044 -0.05  -0.045 0.041 -0.11 
Constant 1.488     1.472    1.515   
R2, % 27.7     26.8    25.1   

Transmissibility at 12 Hz             
Age (years) -0.004 ** 0.001 -0.33  -0.004** 0.001 -0.36  -0.005*** 0.001 -0.41 
Gender (female=0; male =1) -0.111 *** 0.030 -0.36  -0.082** 0.031 -0.27  -0.103** 0.032 -0.31 
BMI, kgm-2 0.009 * 0.004 0.22  0.010* 0.004 0.23  0.014** 0.004 0.30 
Constant 0.780     0.758    0.712   
R2, % 26.2     22.0    30.1   

Abbreviations: B, regression coefficient; SEB, standard error of the regression coefficient; , standardized regression 
coefficient; R2: percentage of experimental variation accounted for by the model. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 7 Bivariate regression coefficients showing factors influencing the derived seat stiffness and 
damping (seat transmissibilities and apparent masses measured with no backrest at 1.0 ms-2 r.m.s.). 

 

Variables K, kN/m   C, Ns/m 

 B p SEB R2, %  B p SEB R2, % 

Physical characteristics         

Age (years) 0.20  223 1.1  -1 6 0.1
Gender (female=0; male =1) 1.47 *** 4954 27.8  366 * 150 7.3
Weight, kg 26.80 *** 139 59.4  9  6 2.8
Stature, cm 1.25 *** 216 30.6  16 * 7 7.4
BMI, kgm-2 3.19 *** 690 22.0  -10  21 0.3
Knee height, cm 3.58 *** 578 33.6  45 * 18 7.3
Buttock-knee length, cm 2.31 ** 646 14.4  16  19 0.9
Sitting height, cm 2.45 *** 505 23.7  28  15 4.4

Seat transmissibility (ST) features           
ST resonance frequency, Hz 11.93  9370 2.1  -678 ** 241 9.5
ST at resonance -0.36  14187 0.0  -1375 *** 345 17.5
ST at 12 Hz 8.25  17331 0.3  34  464 0.0

Apparent mass (APM) features           
APM resonance frequency, Hz 0.46  4893 0.0  215  129 3.6
APM at 0.6 Hz, kg 1.60 *** 144 61.7  17 ** 6 10.0
APM at resonance, kg 0.82 *** 70 64.5  9 ** 3 10.1
APM at 12 Hz, kg 1.59 *** 402 17.0  24 * 11 5.5

Seat dynamic properties           
K, kN/m        2  4 0.4
C, Ns/m 0.00  4 0.4     

Abbreviations: B, regression coefficient; SEB, standard error of the regression coefficient; R2: percentage of experimental 
variation accounted for by the model. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 8 Effect of vibration magnitude on the parameters of the seat transmissibility model.  
 

 K, kN/m C, Ns/m m0, kg m1, kg k1, kN/m c1, Ns/m 

Fitted to mean       

0.5 ms-2 r.m.s. 97.4 831 9.4 50.8 67083 1495 
1.0 ms-2 r.m.s. 89.7 777 9.5 50.4 56927 1386 
1.5 ms-2 r.m.s. 83.6 774 9.2 50.8 53491 1338 

Mean of fits to individuals       
0.5 ms-2 r.m.s. 92.1 829 13.1 44.8 59799 1318 
1.0 ms-2 r.m.s. 88.7 783 11.5 48.5 55583 1301 
1.5 ms-2 r.m.s. 83.2 791 11.1 49.2 52700 1256 
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Table 9 Multiple regression analysis showing the influence of vibration magnitude on predictors of 
derived seat dynamic properties (apparent masses and seat transmissibility measured with no 
backrest contact at 1.0 ms-2 r.m.s.).  

 

 0.5 ms-2 r.m.s.  1.0 ms-2 r.m.s.  1.5 ms-2 r.m.s. 

 B p SEB   B p SEB   B p SEB  

Seat stiffness K, kN/m               

Age (years) 0.15  157 0.08  -0.04  143 -0.02  0.21  132 0.12 
Gender (female=0; male =1) 4.56  4829 0.09  8.73 * 4294 0.17  6.56  4022 0.15 
Weight (kg) 1.35 *** 185 0.68  1.32 *** 166 0.68  1.10 *** 153 0.65 
Constant -11.18        -7.49        -4.86      
R2, % 55.8        61.6        57.2      

Seat damping C, N/m               
Age (years) -1  5 -0.01  -2  6 -0.04  0  4 -0.01 
Gender (female=0; male =1) 368 ** 134 0.30  369 * 151 0.27  350 ** 115 0.33 
Constant 615        663        618      
R2, % 9.1        7.4        10.9      

Abbreviations: B, regression coefficient; SEB, standard error of the regression coefficient; , standardized regression 
coefficient; R2: percentage of experimental variation accounted for by the model. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Table 10 Multiple regression analysis of predictors of seat transmissibility features where seat 
parameters are assumed to be independent of physical characteristic (apparent masses and seat 
transmissibility measured with no backrest contact at 1.0 ms-2 r.m.s.).  

 

 Resonance 
frequency, Hz 

 Transmissibility 
at resonance 

 B p SEB   B p SEB  

Age (years) 0.015 *** 0.002 0.558  0.007 *** 0.002 0.311 
Gender (female=0; male =1) 0.221 ** 0.070 0.304  0.222 ** 0.061 0.351 
Weight (kg) -0.018 *** 0.003 -0.642  0.008 ** 0.002 0.343 
Constant 4.182        0.825       
R2, % 51.0      50.4     

Abbreviations: B, regression coefficient; SEB, standard error of the regression coefficient; , standardized regression 
coefficient; R2: percentage of experimental variation accounted for by the model. 
**p < 0.01, ***p < 0.001. 
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Figure 1 Apparent mass model (1a) and seat transmissibility model (1b). 
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Figure 2 Seat transmissibilities for 80 people (backrest; vibration magnitude 1.0 ms-2 r.m.s.). 
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Figure 3 Effect of backrest (No backrest , ; Backrest,      ) and input magnitude (0.5 ms-2

 

r.m.s., ; 1.0 ms-2
 r.m.s.,     ; 1.5 ms-2

 r.m.s.,  –  – ) on seat transmissibility. 
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Figure 4 Effect of the seat backrest and vibration magnitude on mean apparent mass and inter-
subject variability: mean () and mean SD (    ). 
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Figure 5 Effect of subject age on seat transmissibility (backrest; 1.0 ms-2 r.m.s excitation); 
subjects grouped by age (20 per group) with mean age: 21 years (), 25 years (    ), 34 
years ( –  – ) and 52 years (——). 
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Figure 6 Effect of physical characteristics on seat transmissibility (with backrest; 1.0 ms-2 r.m.s 
excitation); subjects grouped (see Table 4 for details) by physical characteristic: Group 1 (), 
Group 2 (    ), Group 3 ( –  – ) and Group 4 (——). 
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Figure 7 Effect of subject age on the seat transmissibility resonance frequency measured with 80 
people at three magnitudes of excitation (no backrest and backrest): 0.5 ms-2 r.m.s. ( ○ ), 1.0 ms-

2 r.m.s. (  ) and 1.5 ms-2 r.m.s. (  ). Bivariate regression trend lines are also shown: 0.5 ms-2 
r.m.s. (), 1.0 ms-2 r.m.s. (    ) and 1.5 ms-2 r.m.s. ( –  – ). 
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Figure 8 Effect of age and body mass index on seat transmissibility features measured with 80 
people with two different backrest conditions (1.0 ms-2 r.m.s. excitation): no backrest ( ○ ), 
backrest (  ). Bivariate regression trend lines are also shown: no backrest (), backrest (    
).
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Figure 9 Seat transmissibility (modulus) of 80 people (no backrest; excitation magnitude 1.0 ms-2 
r.m.s.). Comparison of measured ( ) and modelled (- - - -) data. 
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Figure 10 Seat transmissibility (phase) of 80 people (no backrest; excitation magnitude 1.0 ms-2 
r.m.s.). Comparison of measured ( ) and modelled (- - - -) data. 
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Figure 11 Effect of subject weight on the derived seat stiffness at three magnitudes of vertical 
vibration excitation (no backrest): 0.5 ms-2 r.m.s. ( ○ ), 1.0 ms-2 r.m.s. (  ) and 1.5 ms-2 r.m.s. (  ). 
Bivariate regression trend lines are also shown: 0.5 ms-2 r.m.s. (), 1.0 ms-2 r.m.s. (    ) and 1.5 
ms-2 r.m.s. ( –  – ). 
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