The Truth about

 Bowline Balls and why they react the way they do
Mo Pinel

Understanding Ball Motion

 Three Phases of Ball Motion
ROLL

-Least ball speed -Most hitting power -Maximum rev rate -Axis rotation \& tilt -Least axis rotation are minimal and equal

HOOK

-Less ball speed -Force created by the -More rev rate rev rate exceeds the -Less axis rotation force created by the ball speed
SKID
-Highest Ball Speed
-Lowest Rev Rate
-Maximum Axis Rotation
-Force created by the ball speed exceeds the force created by the rev rate

Force from speed = force from reus

GRAPHICAL ANALYSIS

Explaining the Phases of Ball Motion

Sample Equations

The Effects of Cores and Coverstocks on Ball Motion

This transition is dominated by the mass properties of the drilled ball.

The length of the hook zone is determined by the spin time of the drilled ball.

This transition is dominated by the surface roughness of the coverstock.

SYMMETRICAL

Or

ASTMMETRICAL

Definition of an Asymmetrical Ball

An asymmetrical ball must display two characteristics. They are:

1. It must have a PSA.
2. It must have an intermediate differential.

All bowling balls that have a P\$A and an intermediate differential must be asymmetrical by definition.

Definition of a symmetrical Ball

A symmetrical ball does not
have a PSA and has no
intermediate differential.

All bowling balls that have no PSA and no intermediate differential must be symmetrical by definition.

$$
\begin{gathered}
\text { All drilled } \\
\text { bowling balls } \\
\text { have a PSA and } \\
\text { an } \\
\text { intermediate } \\
\text { differential. }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Therefore, there is no } \\
& \text { such thing as a drilled } \\
& \text { symmetrical ball by } \\
& \text { definition. } \\
& \text { All drilled balls } \\
& \text { are } \\
& \text { asymmetrical! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Drilled bowling } \\
& \text { balls have } \\
& \text { different degrees of } \\
& \text { asymmetry, } \\
& \text { but they are ALL } \\
& \text { asymmetrical. }
\end{aligned}
$$

Drilled Brunswick Mineralite

Serial \# VL290
 Manufactured in 1948

Low RG axis = 2.710" Int. diff. = .010"
Total diff. = .015"

The drilled ball is

 asymmetrical by definition!

Mass Properties of a Bowling Ball

The mass properties measure the dynamic motion potential of a bowling ball.

The mass properties we are concerned with are the values of the Iow RG axis, the high RG axis, and the intermediate RG axis.

Using these values will allow us to calculate the total differential and the intermediate differential of the ball.

Necessary Mass Properties Specs.

It is necessary to specify three of the mass properties to define the dynamic potential of a bowling ball. The three mass properties necessary are:

1. The RG of the low RG axis
2. The intermediate differential
3. The total differential

The RG of the high RG axis = the RG of the low RG axis + the total differential
The RG of the int. RG axis = the RG of the high RG axis - the into differential

Which RG really matters?

- Is it the LOW RG axis?
- Is it the HIGH RG axis?
- Is it the INTERMEDIATE RG axis?
- Is that of the drilled or undrilled ball?
- Is it the RG of the PAP? Obviously of the drilled ball!

The

-The RG of the PAP

- The RG value of the PAP remains the same throughout the entire axis migration of the drilled ball.

Essentiol Elements to scoring

1. Proper execution during the delivery.
2. Determine the shape of the ball motion that will score.
3. Let the lane tell you where to put your feet.

Factors affecting the reaction of drilled Bowling Balls

1. Coverstock (chemical composition and surface texture)

a Better

Understanding of Coverstocks and

 Surface Preparation
Most Significant Variables - 18 Point Scale

Vnderstandine ia

of the micro-spilzes of the coverstock when it is measured scientifically.

Surface Roughness Ra-18 Samples
 (Range of Balls on Market)

Data courtesy of USBC

How Surface Changes affect \mathbf{R}_{a}

\mathbf{R}_{a} - Average Surface Test

Surface Texture

Wet sanded with 320 to $\mathbf{4 0 0}$ grit paper
Scuffed with a good burgundy pad Sanded with 600 grit paper
Scuffed with a grey pad
Wet sanded with 1000 grit paper
Wet sanded with $\mathbf{2 0 0 0}$ grit paper
Wet sanded with 4000 grit paper
Polished with compound
Polished with ball polish
Polished with ball polish containing a slip agent
earliest
brealkpoint
Crealkpoint

Factors affecting the reaction of drilled Bowling Balls

1. Coverstock (chemical composition and surface texture)
2. Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball

Differential Ratio

The differential ratio is defined as intermediate differential divided by the total differential

(Int. Diff. / Total Diff.)

the Effect of Diff. Ratio

An indicator of the sharpness of the breale point. The Iarger the diffo ratio, the sharper the brealk point.
Diff. Ratios < 25 yield a smoother, more continuous, break point.
Diff. Ratios of $\mathbf{. 2 5}$ to $\mathbf{0} 45$ yield a medium break point.
Diff. Ratios > 045 yield sharper, more angular break points.

$$
\begin{aligned}
& \text { RG contours } \\
& \text { are all the points } \\
& \text { on the surface of } \\
& \text { the ball that } \\
& \text { have the same } \\
& \text { RG value. }
\end{aligned}
$$

RG contours are important because the migrating PAP will follow the RG contour as the ball flares. That means that the RG of the PAP will remain the same during the ball's entire path down the lane. The bowler will dictate the initial PAP, but the RG contour of the ball dictates the path of the migrating axis.

Diff Ratio 0.00

©2009 USBC

Diff Ratio 0.30

Diff Ratio 0.50

Diff Ratio 0.65

RG Contour Comparison

the RG of the Migrating PAP

Remember, the RG of the Migrating PAP

 remains the same during the entire migration of the PAP.> The shape of the axis migration path results from the differential ratio of the drilled ball.
> The length of the axis migration path results from the total differential of the drilled ball.

Factors affecting the reaction of drilled Bowling Balls

1. Coverstocla (chemical composition and surface texture)
2. Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball
3. Total Differential of the drilled ball

Symmetrical 10x4.25x20 BAL P4

Un-Drilled Mass Properties

$\mathrm{M}=15.25 \mathrm{lbs}$
Low RG 2.501
Int Diff . 000
Total Diff .050
Diff Ratio 0.00
TW 2.61 oz.
Pin Out 4.51 in.

Drilled Mass
of PAP 2.544

FRENZY 10x4.25x20 BAL P4

Un-Drilled Mass Properties

$\mathrm{M}=15.25 \mathrm{lbs}$
Low RG 2.527
Int Diff . 010
Total Diff .045
Diff Ratio 0.22
TW 2.19 oz.
Pin Out 3.47 in.

Drilled Mass Properties

M=14.85 lbs
Low RG 2.528
Int Diff . 020
Total Diff . 061
Diff Ratio . 33
RG of PAP 2.567

Mojave 10x4.25x20 BAL P4

Un-Drilled Mass Properties

M=15.19 lbs
Low RG 2.619
Int Diff . 008
Total Diff 032
Diff Ratio 0.25
TW 2.58 oz.
Pin Out 3.10 in.

Drilled Mass Properties

M=14.81 lbs
Low RG 2.619
Int Diff . 017
Total Diff . 046
Diff Ratio . 38
RG of PAP 2.647

PAP at
Release

N'sane Lev RG 10x4.25x20 BAL P4

Un-Drilled Mass Properties

$\mathrm{M}=15.25 \mathrm{lbs}$
Low RG 2.489
Int Diff . 034
Total Diff .052
Diff Ratio 0.66
TW 3.25 oz.
Pin Out 3.18 in.

Combe Ball 10x4.25x20 BAL P4

Mass Properties of Drilled Balls Summary

Ball	Mass (lbs)	Low RG	Int Diff	Total Diff	Diff Ratio	RG of PAP
'Nsane LevRG	14.87	2.491	.044	.066	.66	2.529
Mojave	14.81	2.619	.017	.046	.38	2.648
Frenzy	14.85	2.528	.020	.061	.33	2.567
Symmetrical	14.83	2.502	.012	.066	.18	2.544

Drillings $10^{\circ} \times 4.25^{\prime \prime} \times 20^{\circ}$ with a P4 hole

By choosing a drilling

technique, the location and the size of the balance hole, a ball driller can now reduce the strength of the drilled ball's reaction by as much as 29\% or increase it by as much as 55% using current USBC specifications.

To learn about more about effective drilling techniques, read "Dual Angle Layouts with Gradient Lime Balance Hole Placements" at www.morichbowling.com, or visit forumobowlingehatonet where all the issues of bowling technology are discussed on a daily basis, especially the "Mo and Friends" forum.

Summary of Drillings for Freshour, RipR and Nsane

Symmetrical Ball with Freshour Core								
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.
16.06	Undrilled	2.496	0.047	0.000	0.00		3.2 in	2.6 oz
15.59	$10 \times 4.25 \times 20 \mathrm{P} 4$	2.500	0.063	0.013	0.20	2.540		
15.59	$30 \times 4.25 \times 20 \mathrm{BAL} \mathrm{P4}$	2.501	0.066	0.020	0.30	2.536		
15.60	$65 \times 4 \times 30 \mathrm{BAL}$ P4	2.502	0.061	0.020	0.32	2.535		
15.56	$70 \times 5 \times 45 \mathrm{BALP} 2$	2.508	0.054	0.016	0.29	2.551		
15.82	$80 \times 2.25 \times 50$ NO BAL Hole	2.501	0.049	0.006	0.12	2.507		
15.52	$80 \times 2.25 \times 50 \mathrm{BAL}$ P1	2.519	0.035	0.003	0.09	2.530		

MoRich RipR								
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.
16.08	Undrilled	2.533	0.042	0.013	0.32		3.2 in	2.9 oz
15.58	$10 \times 4.25 \times 20 \mathrm{P4}$	2.537	0.061	0.027	0.44	2.576		
15.58	$30 \times 4.25 \times 20$ BAL P4	2.537	0.065	0.036	0.55	2.569		
15.54	$65 \times 4 \times 30 \mathrm{BAL} \mathrm{Db-Thm}$	2.540	0.063	0.039	0.62	2.564		
15.51	$70 \times 5 \times 45 \mathrm{BAL}$ P2	2.547	0.050	0.029	0.59	2.575		
15.84	$80 \times 2.25 \times 50$ NO BAL Hole	2.536	0.046	0.018	0.40	2.539		
15.56	$80 \times 2.25 \times 50 \mathrm{BAL}$ P1	2.554	0.031	0.014	0.46	2.561		

MoRich 'Nsane LevRG								
Mass	Drilling	Low RG	Diff	Int Diff	Ratio	RG of PAP	Pin Out	Top Wt.
16.06	Undrilled	2.471	0.052	0.036	0.70		3.5 in	2.6 oz
15.65	$10 \times 4.25 \times 20 \mathrm{P} 4$	2.472	0.067	0.045	0.68	2.512		
15.66	$30 \times 4.25 \times 20$ BAL P4	2.472	0.070	0.053	0.76	2.502		
15.56	$65 \times 4 \times 30$ BAL Db-Thm	2.480	0.067	0.057	0.85	2.496		
15.52	$70 \times 5 \times 45 \mathrm{BAL}$ P2	2.485	0.057	0.047	0.82	2.505		
15.82	$80 \times 2.25 \times 50$ NO BAL Hole	2.475	0.055	0.040	0.72	2.475		
15.53	$80 \times 2.25 \times 50 \mathrm{BAL}$ P1	2.492	0.041	0.035	0.86	2.497		

Drilled MoRich LeuRCs

			Undrilled		
Name	Serial	Drilling Technique	Low RG Axis	T-Diff	
LevRG	183	$10^{\circ} \times 33 / 8^{\prime \prime} \times 20^{\circ}$	2.485	0.035	0.049
LevRG	138	$90^{\circ} \times 33 / 8^{\prime \prime} \times 20^{\circ}$	2.484	0.034	0.049
LevRG	216	$90^{\circ} \times 41 / 2^{\prime \prime} \times 70^{\circ}$	2.483	0.034	0.050
LevRG	198	$50^{\circ} \times 5^{\prime \prime} \times 45^{\circ}$	2.481	0.034	0.053

Name	Serial	Drilling Technique After Drilling	RG of the PAP	Top	Side	Finger
LevRG	183	$12^{\circ} \times 35 / 8^{\prime \prime} \times 17^{\circ}$	2.514	-0.75	0.75	0.675
LevRG	138	$78^{\circ} \times 21 / 4^{\prime \prime} \times 3^{\circ}$	2.496	-0.75	-0.25	0.75
LevRG	216	$90^{\circ} \times 23 / 8^{\prime \prime} \times 70^{\circ}$	2.488	-0.50	0.50	-0.375
LevRG	198	$50^{\circ} \times 5^{\prime \prime} \times 45^{\circ}$	2.509	0.375	0.625	0.50

Drilled MoRich LeuRGs

Name	Serial	Drilling Technique After Drilling	Sum of the Angles	RG of the PAP	1st trans	$\begin{aligned} & \text { 2nd } \\ & \text { trans } \end{aligned}$		A Score	Break point	Frictional Efficiency
LevRG	183	$12^{\circ} \times 35 / 8^{\prime \prime} \times 17^{\circ}$	29	2.514	25	41	16	0.0177	32.12	0.1309
LevRG	138	$78^{\circ} \times 21 / 4^{\prime \prime} \times 3^{\circ}$	81	2.496	29	43	14	0.0162	34.10	0.1175
LevRG	216	$90^{\circ} \times 23 / 8^{\prime \prime} \times 70^{\circ}$	160	2.488	29	49	20	0.0165	34.56	0.1194
LevRG	198	$50^{\circ} \times 5^{\prime \prime} \times 45^{\circ}$	95	2.509	27	47	20	0.0153	31.95	0.1133

Factors affecting the reaction of drilled Bowling Balls

1. Coverstocla (chemical composition and surface texture)
2. Ratio of Intermediate Differential to Total Differential (int. diff./total diff.) of the drilled ball
3. Total Differential of the drilled ball
4. RG of the PAP

Ball surface, RGs, and the total differential, have similar effects on ball motion. They will all affect the rate at which the ball transitions. Differential ratio has the greatest effect on the shape of the ball motion. Pin to PAP distance affects the rate that the ball transitions by affecting flare, as well as the shape of the ball motion.

The SPIN TIME of the Drilled Ball

The spin time of the drilled ball measures the complex relationship between the ratio of intermediate diff. to the total diff., the total diff., and the RG of the PAP.

60 Degree Spin Time

Click $®$ to replay video

$$
\begin{aligned}
& \text { Learn how to } \\
& \text { accurately analyze } \\
& \text { bowling balls for } \\
& \text { yourself by using } \\
& \text { the "VsBe Ball } \\
& \text { Anclysis Ferm" } \\
& \text { at bewlocem. }
\end{aligned}
$$

