
WHITE PAPER

The Ultimate Guide to
Deploy Kubernetes

WHITE PAPER:
The Ultimate Guide to

Deploy Kubernetes

2

Kubernetes Overview 3

Kubernetes Deployment Considerations 3

Kubernetes Deployment Models

Deploy All-in-one Kubernetes 4

Deploy Kubernetes with an Installer 7

Kubernetes as a Service 9

Kubernetes on Hosted Cloud Infrastructure 11

Synopsis: Kubernetes Deployment Models Compared 12

Conclusion 13

Appendix A: Deploy Kubernetes with Minikube 14

Appendix B: Deploy Kubernetes with Containers 15

Appendix C: kubeadm Installer 16

Appendix D: kops Installer 17

Appendix E: kargo Installer 18

 3

Kubernetes Overview

Kubernetes has become the leading platform for powering modern cloud-native micro-services in recent years. Its popularity is driven
by the many benefits it provides, including:

1. Cloud-native design: Kubernetes encourages a modular, distributed architecture which increases the agility, availability,
and scalability of the application.

2. Portability: Kubernetes works exactly the same way, using the same images and configuration, no matter which cloud
provider or data-center environment is being used.

3. Open-source: Kubernetes is an open-source platform that developers can use without concerns of lock-in and is the most
widely validated in the market today.

Once you select this open-source container orchestration platform, the next step is to select how best to deploy Kubernetes.
Shown below is an overview of the role Kubernetes plays in placing, scaling, replicating, and monitoring containers on nodes.

The remainder of this document will focus on ways to deploy Kubernetes; for more fundamental information about why
the technology matters, please see the Platform9 ‘Why Kubernetes Matters’ white paper.

Kubernetes Deployment Considerations

It’s easy enough to deploy Kubernetes in a small test bed. You can download Kubernetes from upstream repositories on one or more
virtual machines or physical servers. However, running Kubernetes at scale with production workloads requires more thought and

Placement Scaling Replicatio nMonitoring

Node Node Node Node

Containers

Apache RedisNGINXLibraries

App

MySQL

nM

https://get.platform9.com/wlp-why-kubernetes-matters/

 4

effort. Here are criteria to consider while evaluating a Kubernetes solution for your enterprise workloads:

• High Availability - Does your Kubernetes solution deploy clusters that are highly available, with replication of the underlying
metadata for recovery against failures?

• Upgrades - Kubernetes community delivers a major upgrade every 3-4 months. What is your Kubernetes upgrade strategy?
What downtimes will upgrades require and is that acceptable for business?

• Support for Hybrid - Does your Kubernetes solution equally support the private data center and public cloud endpoints that
your business needs to deliver Kubernetes on? Does it offer same or similar level of SLA and functionality across them?

• Federation Support - Does your Kubernetes solution support deployment of federated clusters that can grow across private
and public clouds for robustness of infrastructure and dynamic burstability?

• Enterprise-Ready Features - What additional enterprise-readiness features does your Ops team need to run Kubernetes at
scale and support large scale of users? Are they supported by your Kubernetes solution of choice? Some examples include,
SSO support, RBAC, isolated networking, persistent storage.

Kubernetes Deployment Models
Let us now review the pros and cons of some of the best known approaches to deploy Kubernetes including typical use cases.
A table comparing these different models is also provided at the end of this document.

Deploy All-in-one Kubernetes

The two all-in-one deployment options described below install Kubernetes as a single host or on your laptop.

Deploy Kubernetes using Minikube

• Use case: Developer sandbox
• Pros: Convenience, localized sandbox, testing, exploration
• Cons: Unsuitable for production, cannot scale, cannot be shared

A developer’s first interaction with Kubernetes is usually on a laptop, often with Minikube. Using Minikube, a single-node Kubernetes
“cluster” can be deployed on locally as a virtual machine. Minikube supports a variety of different operating systems (OSX, Linux, and
Windows) and Hypervisors (Virtualbox, VMware Fusion, KVM, xhyve, and Hyper-V).

The following figure provides some details on setup with Minikube on a single host.

 5

In order to deploy Kubernetes with Minikube, please refer to Appendix A.

Deploy Kubernetes using Containers

Docker has made it very easy to try software frameworks quickly in contained environments, since the installation of a package and its
dependencies in a container does not install them on the host. Kuberentes can be easily deployed as a set of Docker containers on a
single host. The host can be a physical server, a virtual machine or your laptop.

The following figure shows the architecture of Kubernetes running as a set of containers on your host.

• Use case: Developer sandbox
• Pros: Convenience, localized sandbox, testing, exploration
• Cons: Unsuitable for production, cannot scale, cannot be shared

Laptop

Kubectl

CONFIG

Minikube

>_

VirtualBox Hypervisor
>_

Minikube VM

D

C

B

A

 6

As you can see from the figure above, Kubernetes components run in the form of multiple containers in this deployment model:

• etcd - This component stores configuration data which can be accessed by the Kubernetes Master’s API Server
by simple HTTP or JSON API.

• API Server - This component is the management hub for the Kubernetes Master node. It facilitates communication
between the various components, thereby maintaining cluster health..

• Controller Manager - This component ensures that the clusters’ desired state matches the current state by scaling
workloads up and down.

• Scheduler - This component places the workload on the appropriate node - in this case all workloads will be placed
locally on your host.

For step-by-step instructions on deploying Kubernetes using containers, please refer to Appendix B.

Host

Kubelet API Server

Scheduler

Controller
Manager

Kubernetes workloads

etcd

A: Kubelet manages pods running in the host
B: API Server updates state on etcd

C: API Server works with scheduler to decide where to place pods
D: Controller Manager works with API Server to determine if pods need to be replicated
E: Kubelet receives pod specifications from the API Server

Kubernetes Master

User Pod User Pod

A

E

D

C

B

 7

Deploy Kubernetes with an Installer

• Use case: Customized Kubernetes deployment
• Pros: Customizability, Scalability
• Cons: Time and resource intensive, YMMV (your mileage may vary), Requires ongoing maintenance

This method usually deploys Kubernetes on one or more nodes which are either servers in your datacenter, virtual machines in
your datacenter or a public cloud. Installers work best for users who are technically skilled to understand the underlying design of
Kubernetes, and who are capable of addressing and resolving issues with the setup at any time. Users will also need to invest their
own efforts or use external solutions to enable enterprise requirements such as scalability, high availability and monitoring. The
diagram below shows an example of a Kubernetes cluster with one master node and multiple worker nodes.

Kubelet
API Server

Scheduler

Controller
Manager

Kubernetes workloads

etcd

Master Node

Worker Nodes

Kubelet

Kubernetes Master

User Pod

User Pod User Pod

User Pod
Kubernetes workloads

 8

Deploy Kubernetes with kubeadm

kubeadm’s CLI capabilities can setup Kubernetes clusters in virtual or physical infrastructure. While, in our experience, kubeadm
provided a simpler way to deploy Kubernetes when compared to kops and kargo, it does not support highly-available Kubernetes
clusters. At the time of this publication, the CLI is in beta, and other parts of the installer are in alpha. Refer to Appendix C for detailed
instructions on deploying Kubernetes with kubeadm.

Deploy Kubernetes with kops

kops is another CLI tool that orchestrates Kubernetes cluster deployment using a cluster specification document provided by the
user. Currently the only supported deployment platform is Amazon Web Services, but kops offers other advantages, including high
availability for your clusters, and addons for networking and monitoring, which include Flannel, Calico, and Dashboard. The user
doesn’t have to initially setup infrastructure because kops deploys the required AWS resources, such as EC2 instances, EBS storage,
and VPC networking. Appendix D has more details on Kubernetes installation with kops.

Deploy Kubernetes with kargo

kargo is also a CLI driven tool used to deploy Kubernetes clusters, but across multiple platforms such as Amazon Web Services, Google
Compute Engine, Microsoft Azure, OpenStack and bare metal servers. It uses Ansible and requires users to customize Ansible state
files (inventory and variable files). Familiarity with Ansible 2.x is expected. Appendix E has further details on deploying Kubernetes
with kargo.

CoreOS Tectonic

CoreOS Tectonic, a commercial Kubernetes distribution, is best known for its on-premises deployment product. Tectonic comes with
support, the Tectonic installer, and a GUI console. At this time, it enables GUI deployment on Amazon Web Services and bare metal.
Products in development include Terraform-based deployment on Microsoft Azure (alpha) and OpenStack (pre-alpha).

Everything from scratch

You can also build your Kubernetes cluster from scratch without using any of these tools. The Kubernetes documentation page calls
out instructions to on how one can achieve that. If your goal is to gain a deep understanding of Kubernetes, setting up Kubernetes
without the help of the above tools can be useful. We recommend looking at Kelsey Hightower’s “Kubernetes the Hard Way” tutorial.

- continued on next page -

https://kubernetes.io/docs/getting-started-guides/kops/
https://kubernetes.io/docs/concepts/cluster-administration/networking/#flannel
https://kubernetes.io/docs/concepts/cluster-administration/networking/#project-calico
https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes-incubator/kargo
https://kubernetes.io/docs/getting-started-guides/scratch/
https://github.com/kelseyhightower/kubernetes-the-hard-way

 9

Kubernetes as a Service

Infrastructure
Architect

Application
Architect

Applications

Operations

Native Bare Metal Integration

 • 24/7 monitoring
 • Proactive troubleshooting
 • Zero touch upgrades
 • Deploys instantly

Managed

VPC

Network SDNCompute

Array

Storage

SDS

 • Any hardware, any cloud
 • SSO, multi-tenancy & quotas
 • Native integration with

physical storage and network

Kubernetes can be consumed as a service by users looking for a faster, easier solution which would allow them to focus on building
software rather than managing containers. Well known examples of managed Kubernetes services include Kube2Go.io, StackPoint.io,
and Platform9 Managed Kubernetes solutions.

Platform9 Managed Kubernetes (PMK)

PMK offers a truly enterprise-grade managed Kubernetes service that works across any underlying infrastructure: including physical
server infrastructure, virtualized environments or public clouds such as AWS, Azure and GCP.

Platform9 Managed Kubernetes is provided as a SaaS-managed solution, with deployment, monitoring, troubleshooting and upgrades
being taken care of by Platform9. Therefore, the operational SLA for Kubernetes management is provided by Platform9.

Apart from the service being fully managed and working across any server or cloud infrastructure, Platform9 Managed Kubernetes
features several common enterprise integrations:

1. Single pane view of multiple clusters

2. Highly available, multi-master Kubernetes clusters that are automatically scaled-up and scaled-down based on workloads

3. Common enterprise integrations such as SSO / isolated namespaces; and
the ability to deploy applications via Helm charts

4. Cluster federation that provides a truly seamless hybrid
environment across multiple clouds or data-centers

The graphic outlines PMK’s SaaS
architecture, and its flexibility to
work across clouds and hardware.

• Use case: Hybrid and multi-cloud deployments
• Pros: Speed, scale, management, no cloud/infrastructure lock-in
• Cons: Paid services

 10

In order to get started with Platform9, you can deploy a free sandbox with Kubernetes installed. The sandbox includes a guided
walkthrough for SaaS-managed Kubernetes. To create an on-premises cluster, install a supported Linux operating system on hosts
with Internet access, download the installer for the Platform9 host agent, and apply it on the hosts. Alternatively, you can deploy your
Kubernetes cluster on a public cloud such as Amazon Web Services by supplying user credentials for your public cloud environment.

Shown below is a screenshot of the Platform9 Kubernetes UI with a cluster on Amazon Web Services. New clusters can be added by
using the “Add Cluster” button on the top right of the dashboard. New nodes can be deployed using the “Nodes” tab, and cloud
credentials can be specified using the “Cloud Providers” tab.

StackPoint.io

StackPoint.io offers integrations with a comprehensive set of public cloud providers on top of which to build your container clusters,
including AWS, Google Compute Engine/Container Engine, Digital Ocean, Azure and Packet.

Persistent data support is available via persistent volumes, and it even includes support for TPM with selected providers. CoreOS is
the widely used operating system with StackPoint, but they announced additional support for Ubuntu on Amazon Web Services in
April 2017. Users can leverage a number of Kubernetes native solutions that come pre-installed, including Sysdig, Prometheus, and
Deis, among others.

Like PMK, StackPoint includes the Kubernetes dashboard, cluster federation, and multi-master clusters to enable highly available
applications. However, it isn’t easy to use server infrastructure running on-premises or in datacenters, with support for a broader
range of OSs.

Kube2Go.io

While PMK is enterprise-grade managed Kubernetes solution from Platform9, they also offer Kube2Go.io, as a free community-fo-
cused incarnation that allows users many of the same benefits as PMK for up to 5 nodes. Though Kube2Go’s free version does not
come backed with the enterprise support that PMK provides, users still get the benefit of having their Kubernetes clusters managed
for them, along with version upgrades.

https://platform9.com/sandbox/
http://stackpoint.io
https://kube2go.io/

 11

Kubernetes on Hosted Cloud Infrastructure

Azure Container Service

Kubernetes Clusters

Google Container Engine (GKE)

Kubernetes Clusters

Microsoft Azure

Google Cloud Platform

If placing all of your data and workloads in a public cloud is acceptable, the easiest way to deploy and consume Kubernetes is through
a hosted service provided by a major public cloud vendor. The two prominent options today are Google Container Engine (abbreviat-
ed GKE to distinguish it from Google Compute Engine) and Azure Container Service (ACS).

Not surprisingly, GKE has been around much longer and is more mature, a result of Kubernetes being created at Google. GKE is just another
service in the large and sprawling set offered as part of the Google Cloud Platform. If you are already using GCP or GCE (the IaaS portion of
the platform), GKE is just a click away in the Google cloud web console and integrates with the existing Identity and Access Management.
When deploying a new cluster, you specify an OS (a traditional Linux or a an OS highly optimized for containers), an instance size, and the
cluster size (number of worker nodes). GKE automatically creates and manages a master node for the cluster. That node is opaque and
you cannot access it. You can however access (via SSH) - and are billed for - the worker nodes, which are ordinary GCE instances.

A GKE cluster can easily be expanded by adding worker nodes to its default node pool, or adding additional node pools. GKE stands out
in its ability to gracefully handle upgrades: master node (API) upgrades happen automatically and transparently a few weeks after every
new Kubernetes release, so your cluster’s API version is kept up-to-date with new features and bug fixes. While worker node upgrades
have historically required a manual user action, GKE has recently added an experimental flag allowing worker nodes to be upgraded
automatically as well. Another notable recent addition is support for Federation, allowing multiple clusters to co-operate across the
globe, enabling highly available and low-latency web applications.

ACS is a much younger offering from Microsoft. Unlike GKE, ACS supports multiple container orchestration engines, including Docker
Swarm and Mesos DCOS. Interestingly, Kubernetes support did not land until recently, in February 2017. Compared to GKE, the
quality of ACS’ Kubernetes offering will probably take time to match the feature depth and maturity of Google’s offering. The need
to support other container engines could also be viewed as a potential downside, possibly limiting the ACS team’s ability to optimize
and build out the Kubernetes product. On the other hand, ACS may prove
to be an interesting option for users interested in running .NET
applications on Windows Server OS. Docker and Kubernetes
support for Windows is young and evolving, but if there’s one
company that’s going to champion and pour resources into it,
it’s Microsoft. It would therefore not be surprising for ACS
to evolve into an excellent (if not the only) choice for
running Windows workloads on Kubernetes.

The figure to the right provides a summarizes
this deployment model on these two public clouds.

• Use case: Public cloud deployments
• Pros: Speed, scale, management
• Cons: Cloud vendor lock-in, security

https://cloud.google.com/container-engine/
https://azure.microsoft.com/en-us/services/container-service/

 12

Synopsis: Kubernetes Deployment Models Compared
This document has reviewed the major deployment models to run Kubernetes. Since the ideal deployment model depends on your
specific use case and goals, here is a quick comparison of the major alternatives and their associated pros and cons, as of May 2017.

Developer
Installs

Laptops

Built-in Monitoring

Public clouds

Kubernetes Upgrades

Hybrid
Deployments

Data-Center/
Colocated Hardware

Commercial
Support/SLA

Cluster High
Availability

SSO
Integration

Isolated Networking/
Network Policies

Dynamic Persistent
Volumes

Federation

RHEL, CentOS & Ubuntu
Node OS Support

Minik
ube Docker

Supported Infrastructure

Lifecycle Management

Enterprise-Readiness

kubeadm CoreOS
Tectonickops kargo PMK StackPoint

.io
Kube2
Go.io GKE ACS

Kubernetes Installer
Kubernetes as
a service

Kubernetes
hosted
infrastructure

#

+

#

*
+

Coming soon Table is based on data available as of May 2017

for Amazon Web Services only

hybrid implies the ability to deploy clusters to both on-premises and cloud, and support some integration between them - high availability, disaster
recovery, or bursting

+

*

* *

 13

Conclusion
This guide has walked you through a number of different ways to deploy Kubernetes. Developer installers, such as Minikube, provide
a way to get started with Kubernetes on your laptop. However, if you’re looking to scale Kubernetes infrastructure, it is necessary to
consider installers such as kubeadm, kops, and kargo. While this approach allows the most customized Kubernetes deployments, it
requires time and effort in managing Kubernetes itself.

Developers looking for a solution to get their applications running as quickly as possible using Kubernetes, with features such as high
availability, single sign-on, and federation, should consider Kubernetes-as-a-Service offerings, including Platform9. These solutions
allow you to focus on deploying containerized applications with lower overhead costs to upgrade or maintain the cluster.

Finally, Kubernetes can be deployed on Google or Azure clouds using GKE and ACS. These solutions work well if your cluster
infrastructure lives on Google Cloud or Azure. However, the benefit of managed Kubernetes offerings like Platform9 is the ability to
deploy outside these major clouds, including in your own private infrastructure within your network perimeter.

You are now well equipped to pick your Kubernetes deployment. Should you have any questions or feedback on this document,
tweet us @Platform9Sys or email us at connect@platform9.com.

 14

Appendix A: Deploy Kubernetes with Minikube
In order to install Minikube, follow the following steps:

1. Download the package:

curl -Lo minikube \
https://storage.googleapis.com/minikube/releases/v0.18.0/minikube
-darwin-amd64 && chmod +x minikube && mv minikube /usr/local/bin/

2. Download and install the Kubernetes command line too kubectl by running the following command:

curl -Lo kubectl \
https://storage.googleapis.com/kubernetes-release/release/v1.6.0/
bin/darwin/amd64/kubectl && chmod +x kubectl && mv kubectl
/usr/local/bin/

3. Start Minikube by running the following command:

minikube start
Starting local Kubernetes cluster...
Starting VM...
SSH-ing files into VM...
Setting up certs...
Starting cluster components...
Connecting to cluster...
Setting up kubeconfig...
Kubectl is now configured to use the cluster.

You now have a local, single-node Kubernetes “cluster” on your laptop. In order to confirm that Kubernetes is installed,
you can run the following commands:

cat > example.yaml<<EOF
apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80
EOF
kubectl create -f example.yaml

 15

After a few seconds, you should see output similar to the following:

kubectl get pods
NAME READY STATUS ...
nginx-deployment-2122188915-3s69g 1/1 Running ...

Appendix B: Deploy Kubernetes with Containers
To get started with Kubernetes using Docker containers on a local host, run the Kubernetes components as Docker containers
as outlined below:

1. The version of Kubernetes can be changed as desired. Let’s use 1.5.6 for this exercise. Set K8S_VERSION environment
variable to 1.5.6 using the following command:

export K8S_VERSION=v1.5.6

2. Run kubelet using the hypercube image from the gcr.io container registry. Kubelet will bootstrap the Kubernetes master
components (api-server, scheduler, controller-manager) and other services such as etcd as individual Docker containers. Note
that we run kublet also as a docker container (--containerized).

docker run \
 --volume=/:/rootfs:ro \
 --volume=/sys:/sys:ro \
 --volume=/dev:/dev \
 --volume=/var/lib/docker/:/var/lib/docker:rw \
 --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \
 --volume=/var/run:/var/run:rw \
 --net=host \
 --pid=host \
 --privileged=true \
 -d \
 gcr.io/google_containers/hyperkube:${K8S_VERSION} \
 /hyperkube kubelet --containerized \
 --hostname-override=”127.0.0.1” --address=”0.0.0.0” \
 --api-servers=http://localhost:8080 \
 --config=/etc/kubernetes/manifests

3. Run service proxy, which is used to load balance ingress requests to service endpoints:

docker run -d --net=host --privileged \
gcr.io/google_containers/hyperkube:${K8S_VERSION} \
/hyperkube proxy --master=http://127.0.0.1:8080 --v=2

You should now be able to run kubectl directly on the same node.

./kubectl get nodes
NAME STATUS AGE
127.0.0.1 Ready 2m

If you are running docker on OS/X then you will need to forward port 8080. This can be done as described in this link.

https://github.com/brendandburns/kubernetes/blob/hyperkube/docs/getting-started-guides/docker.md

 16

Appendix C: kubeadm Installer
In order to deploy, follow these steps on nodes which will be part of the cluster:

1. Ensure that all nodes have full network connectivity. Disable any firewalls.

2. On all nodes, setup upstream Kubernetes repositories for your Linux hosts. Shown below is an example of how to set it up on
Ubuntu 16.04, but the process would be similar for CentOS operating systems.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |
apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update

3. On all nodes, install kubelet, kubeadm, Docker, kubectl and kubernetes-cni from the Kubernetes upstream repositories. On
Ubuntu 16.04 you would run:

apt-get install -y kubelet kubeadm kubectl kubernetes-cni
docker-engine

4. You can now build your Kubernetes cluster. Start by setting up the master. On the master node, run the following commands:

kubeadm init *
cp /etc/kubernetes/admin.conf $HOME/
chown $(id -u):$(id -g) $HOME/admin.conf
export KUBECONFIG=$HOME/admin.conf

* Note: in the case of Flannel, you need to provide a pod network CIDR parameter to the kubeadm init command:

kubeadm init --pod-network-cidr=10.244.0.0/16

The kubeadm init command will do some initial setup of the cluster master. It will also give you a token for this cluster. This
token should be kept safely because this is used to add other nodes to the cluster. This step also gives you an admin.conf
file, which you will use as the kubeconfig file when you need to perform operations on the cluster.

You can now setup networking for the cluster. Kubeadm cluster comes with container networking (CNI) support. You can
setup any CNI compatible networking backend pod on the Kuberenetes cluster using kubectl:

kubectl apply -f <networking.yaml>

Starting with Kubernetes 1.6, you may need to run RBAC policies for networking plugins, such as Flannel and Canal.

5. Add worker nodes to the cluster. On each node that you want to act like a worker, run:

kubeadm join --token <token> <master-ip>:<master-port>

The token you provide in this command should be the token you obtained from step 3. You are now ready to use a
Kubernetes cluster. Use the kubeconfig from step 3 with kubectl to operate the cluster.

https://kubernetes.io/docs/concepts/cluster-administration/addons/

 17

Appendix D: kops Installer
To build the Kubernetes cluster, kops then sets up Kubernetes services on each node.

1. First, download kops from Github:

wget \
https://github.com/kubernetes/kops/releases/download/1.6.0/kops-linux-amd64
chmod +x kops-linux-amd64
mv kops-linux-amd64 /usr/local/bin/kops

2. Prepare your AWS account.
a. You need setup EC2, Route53, IAM, S3, and VPC IAM permissions for the kops user using the AWS Management Console.
The kops user requires the following IAM permissions:

AmazonEC2FullAccess
AmazonRoute53FullAccess
AmazonS3FullAccess
IAMFullAccess
AmazonVPCFullAccess

Once you create your user, note the access key id and secret key.

b. Download and install the AWS CLI using instructions provided in AWS Documentation. Enter the following commands:

aws configure
<Enter access key id and secret key>
export AWS_ACCESS_KEY_ID=<access key id>
export AWS_SECRET_ACCESS_KEY=<secret key>

c. You need configure your DNS based on whether your domain/subdomain is hosted in AWS, domain is hosted on another
registrar, or subdomain is hosted on AWS and domain is hosted by an external registrar. Detailed instructions on configuring
your DNS can be found in the kops Github repository.

3. Create a S3 bucket in AWS to store state information about your cluster. Enter the following commands:

aws s3api create-bucket \
--bucket my-kops-cluster-store \
--region us-west-1

aws s3api put-bucket-versioning \
--bucket my-kops-cluster-store \
--versioning-configuration Status=Enabled

4. Create a cluster configuration that will be used to setup the Kubernetes cluster. Note that the cluster name must be a
fully-qualified DNS name within a public Route53 hosted zone whose records can be edited by the AWS account.

export KOPS_STATE_STORE=s3://my-kops-cluster-store

kops create cluster \
 --zones us-west-1a \
 --name=<cluster.example.com>

https://github.com/kubernetes/kops/releases/download/1.6.0/kops-linux-amd64
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://github.com/kubernetes/kops/blob/master/docs/aws.md

© 2017 Platform9 <> 18

Note:
• The above command will only create a cluster configuration file. The cluster will be created in a subsequent step

using the kops update command.

• If you do not want to use the SSH key in ~/.ssh/id_rsa.pub, specify your SSH key with the flag
--ssh-public-key=<path/to/key>

5. Review and change the cluster configuration:

kops edit cluster <cluster.example.com>

6. Setup the Kubernetes cluster using kops:

kops update cluster <cluster.example.com> --yes

Appendix E: kargo Installer
1. Kargo requires the following packages:

Ansible v2.3 (at the time of this publication)
Jinja 2.9

In addition, ensure that the nodes have Internet access, firewalls disabled, and SSH key-based logins enabled.

2. Setup the kargo CLI

pip install kargo

3. Edit the kargo yaml file (in /etc/kargo/kargo.yml) according to your deployment needs. For example, if you are going to use
AWS to setup your cluster, you will need to provide access keys, AMIs, instance types, regions, and other parameters.

4. Setup the nodes to build the cluster.

a. Pre-existing hosts: Ensure these hosts are up and running. SSH is a prerequisite for Ansible. Therefore all hosts should
also be reachable over SSH prior to Kubernetes cluster setup. You should build an Ansible inventory file to represent these
pre-existing hosts. A sample inventory file is available on Github.

kargo prepare --nodes node1 …

b. Create hosts with cloud providers: Instead of using pre-existing hosts, you can also create new instances on clouds like
AWS, Google Cloud Platform, and OpenStack to be used as Kubernetes nodes. For example, you can create 3 nodes
(including master) and 3 etcd nodes on AWS with the command below:

kargo aws --nodes 3 --etcds 3

5. You are now ready to deploy the Kubernetes cluster. Doing so will setup all of the software needed by Kubernetes depending
on the entries in the kargo.yaml and the inventory file that was generated above.

kargo deploy [-i <path to inventory file>]

https://raw.githubusercontent.com/kubernetes-incubator/kargo/master/inventory/inventory.example

