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Abstract— Root and Varaiya proved the existence of a
code that can communicate reliably over any linear Gaus-
sian channel for which the channel mutual information
level exceeds the transmitted rate. This paper provides sev-
eral examples of scalar (single-input single-output) fading
channels and shows that on these channels the performance
of Low-Density Parity-Check (LDPC) codes lies in close
proximity to the performance limits identified by Root
and Varaiya. Specifically, we consider periodic fading
channels and partial-band jamming channels. A special
case of periodic fading is the variation of signal-to-noise
ratio across orthogonal frequency division modulation
subchannels. The robustness of LDPC codes to periodic
fading and partial-band jamming across parameterizations
of these different channels is demonstrated through the
consistency of the required mutual information to provide
a specified bit error rate. For the periodic fading case,
the Gaussian approximation to density evolution has been
adapted such that asymptotic threshold measures can
be compared to simulated code performance in various
periodic fading scenarios.

Index Terms – low-density parity-check code
design, orthogonal frequency division modulation,
partial-band jamming, robust channel coding, uni-
versal codes.

I. I NTRODUCTION

Channel coding techniques that approach capacity
for a large set of channel realizations, without
specializing the transmission to the channel, are de-
sirable from complexity and system-usability points
of view. In the discussion that follows, a single code
that can communicate reliably near the capacity of
many different channels will be called “universal,”
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a term introduced in [1][2]. A proof of the existence
of codes that exhibit this property was provided by
Root and Varaiya in [3]. Root and Varaiya’s proof
considered the compound channel that occurs when
the actual channel is unknown to both transmitter
and receiver but belongs to a set of possible chan-
nels known to both. Specifically, they proved that
a single code exists that can communicate reliably
over all channelsa in the set of channelsA at rates
arbitrarily close to the compound channel capacity
given by,

C(A) = inf
a∈A

(I(a)), (1)

whereI(a) is the mutual information (MI) induced
by the transmitted power spectrum on the channel
a. For a given desired rateR, reliable transmission
is theoretically possible on the set of channelsA =
{a : I(a) > R}, such that the MI of every channel
in the set is above the transmitted rate. In this way,
Root and Varaiya’s theorem says that a “universal”
code exists that supports rateR over every channel
where at least one code (with the specified transmit
power spectrum) exists that supports rate-R. That
is, if some code works at rateR on a channel, then
the rate-R universal code will also work on that
channel.

This paper examines the degree to which Low-
Density Parity-Check (LDPC) codes designed for
the AWGN channel or designed for the AWGN
channel with 50% erasures realize the promise of
universal operation over channels with periodic fad-
ing and partial-band jamming. Gallager proposed
LDPC codes in the early 1960s [4]. The structure of
Gallager’s codes (uniform column and row weight)
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led them to be called regular LDPC codes. Gallager
provided simulation results for codes with block
lengths on the order of hundreds of bits. These codes
were too short for the sphere-packing bound to
approach Shannon capacity, and the computational
resources for longer codes were decades away from
being broadly accessible. While Gallager included
proofs of asymptotic capacity-approaching perfor-
mance, the infeasability of long-block-length sim-
ulations and system design delayed their practical
adoption.

A revival of interest in LDPC codes followed the
groundbreaking demonstration by Berrouet al. [5]
of the capacity-approaching capability of random
linear (turbo) codes. Specifically, MacKay [6] re-
established interest in LDPC codes during the mid-
to-late 1990s. Lubyet al. [7] formally showed
that properly constructed irregular LDPC codes can
approach capacity more closely than regular ones.
Richardson, Shokrollahi, and Urbanke [8] created
a systematic method called density evolution to
analyze and synthesize the degree distribution in
asymptotically large random bipartite graphs under
a wide range of channel statistics. This paper char-
acterizes the performance of LDPC codes under two
distinct types of channels, periodic fading channels
and partial-band jamming channels. Each of these
two channel types displays the distinct robustness
properties of LDPC codes.

Period-p fading channels have at timei complex
input xi and outputyi = a(i mod p)xi + ni, where
ni is additive white Gaussian noise (AWGN) with
varianceNo/2 per dimension. Thep-element vector
a = [a0 a1 . . . ap−1] consists of complex scalars,
which could be the subchannel gains of an Orthogo-
nal Frequency Division Modulation (OFDM) system
with p subcarriers. Nearly complete characterization
of the performance of LDPC codes on channels
with small p can be carried out experimentally and
analytically through exhaustive parameterization of
the fading vectora. Analytic characterization is pro-
vided via the periodic channel extension of Chung’s
Gaussian approximation [9] to density evolution.
Robust operation in channels with longer periods
is more difficult to completely characterize, though
we do provide several specific examples. To further
demonstrate the robustness with greater generality,
we turn to the partial-band jamming channel.

Partial-band jamming (PBJ) [10][11] occurs when
a fraction of transmitted code symbols has a rela-
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Fig. 1. MI thresholds ofa = [1, 1], a = [1, 0], and a = [1, a]
optimized codes acrossa = [1, a] fading (solid lines). All codes are
rate-1/3. Simulation results are for BPSK at BER =10−5 for length
15,000 codes realized from the corresponding degree distributions.

tively poor signal-to-noise ratio (SNR) at the re-
ceiver (the jammed fraction) and the remaining code
symbols experience a relatively good received SNR.
It is usually the case that the selection of received
signals that incur jamming versus those that do not
is random (in adherence to the pre-determined pro-
portions). Simulations performed such that jamming
locations are varied from one codeword to the next
provide a means for testing a large set of long-
period fading channels and of measuring the average
fading performance of a code on this set. Good
average performance over the set of channels is a
necessary, but not sufficient, condition for the code
to perform well on every channel individually as
the Root and Varaiya result would predict. However,
complete characterization of every partial-band jam-
ming channel is beyond our computational ability.

Work on the design and characterization of uni-
versal channel codes has been conducted by Wesel
et al. across several code paradigms for numer-
ous channels. For periodic fading channels, trellis
codes were developed in [12], universal serially
concatenated turbo codes were developed in [13],
and universal LDPC codes (the first appearance of
the present work) were developed in [2]. Universal
LDPC codes for partial-band jamming and more
generally for Gaussian (multi-input multi-output)
channels were studied in [14]. In [15] Tse discusses
the theory of universal codes for periodic channels
(referred to as parallel channels) as well as for
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MIMO channels. In particular, universal codes are
presented as a solution to the tradeoff between
diversity and multiplexing. Furthermore, they note
that parallel universal codes may be transformed
to MIMO universal codes via DBLAST as was
demonstrated by Matache in [16].

We also note the work of Haet al. [17] who have
hybridized Gaussian approximated density evolution
to include channel erasures. Ha determines optimal
variable degree puncturing proportions in order to
achieve rate compatibility. In contrast, the codes in
this paper employ fixed rates, and our main motiva-
tion is to emphasize the robustness of these codes
under varying channel conditions. Block fading with
block interleaving yields periodic fading. Related
work that addresses the general problem of coded
performance in block fading channels is given in
[18] and [19]. In particular the specifics of LDPC-
coded performance under block fading are discussed
in [20] and [21]. As part of the universal discussion
we present results for several instances of OFDM-
like channels. Prior work applying turbo coding to
OFDM can be found in [22] and [23]. The authors of
[24] considered LDPC-coded OFDM systems with
M-PSK signaling.

The next section of the paper provides MI defi-
nitions and a design methodology for LDPC codes
in the context of periodic scalar fading channels.
Section III discusses the design and operation of
LDPC codes for the period-2 channel in detail. To
demonstrate that robust performance is not limited
to the period-2 channel, Section IV provides perfor-
mance results for an LDPC code on four period-256
channels. A test of average performance on long
periodic channels is made in Section V using the
partial-band jamming channel. Finally, conclusions
from this work are drawn in Section VI.

II. PERIODIC SCALAR FADING CHANNELS

A. Mutual Information for Periodic Scalar Fading
Channels

The MI of the channely = ax + n, where scale
factor a is known at the receiver, can be expressed
as,

I(X; Y, A) = I(X; A) + I(X; Y |A)

= I(X; Y |A),
(2)

where X and A are independent (scalar) RVs.
I(X; Y |A) = EA[I(X; Y |A = a)] is the expectation

that defines the average MI of this channel ifA
is varying at the receiver. If, however,A is a
deterministic constant (A = a) then the MI can be
computed directly,

I(X; aX + N) = I(X; X +
N

a
)

= h(X +
N

a
)− h(

N

a
).

(3)

The extension of this result to periodic fading
follows for a particular instance of thep-element
vectora,

I(a) =
1

p

p−1∑
i=0

I(Xi; Xi +
N

ai

), (4)

which can also be used to define the capacity of a
frequency selective fading channel in the context of
OFDM modulation wherei indexes the subcarriers.
If both Xi and N are complex Gaussian random
variables and eachXi has the same average power,
E[X2

i ] = Ex, then the average MI per symbol is,

I(a) =
1

p

p−1∑
i=0

log2

(
1 +

|ai|2 Ex

2σ2

)
, (5)

where σ2 is the per-dimension variance of the
AWGN channel anda is a vector of complex
scalars. The constant power constraint causes the
MI in (5) to be less than the water-filling capacity
that can be achieved if the transmitter knowsa.

Nevertheless, Shannon’s basic noisy coding the-
orem ensures that for eacha there is a code with
fixed symbol powerEx and rateR that achieves
reliable communication withR arbitrarily close to
I(a). For example,p parallel Gaussian-alphabet
codes could be designed with theith code assigned
rate Ri = log2

(
1 + |ai|2Ex

2σ2

)
. A solution that uses

a separate code for each subcarrier is, of course,
unattractive as it requires transmitter and receiver
to coordinate code selection depending ona and, of
course, has tremendous complexity for largep. Prac-
tically speaking, systems that do have knowledge of
a at the transmitter can apply bit filling by using
symbols from a single code and varying the modu-
lation cardinality on each subcarrier. Asynchronous
digital subscriber line (ADSL) systems employ this
technique [25].

In this paper we turn to the broader result of
Root and Varaiya [3] who proved that asingle
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Fig. 2. (a) Code performance on thea = [1, a] fading channel in
terms of SNR. (b) Code performance on thea = [1, a] fading channel
in terms of SNR in excess of channel capacity for each corresponding
channel. Dashed lines indicate operation of a code optimized for the
a = [1, 0] channel, solid lines indicate operation of a code optimized
for the a = [1, 1] channel.

code exists that can communicate reliably at rates
arbitrarily close to the compound channel capacity
given by (1). While Shannon stated that for each
channel there exists a code that provides reliable
communication for that channel, Root and Varaiya
showed that for a givensetof channels (collectively
this set forms the compound channel) there isa
code that provides reliable communication onall
channels within this set. In the succeeding sections,
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Fig. 3. (a) Code performance on thea = [1, a] fading channel in
terms of MI. (b) Code performance on thea = [1, a] fading channel
in terms of MI in excess of code rate (1/3). Dashed lines indicate
operation of a code optimized for thea = [1, 0] channel, solid lines
indicate operation of a code optimized for thea = [1, 1] channel.

simulation and density evolution results will show
that a single LDPC code can perform with less than
0.1 bits ofexcessMI (per real signaling dimension)
for compound channels where the cardinality of
the channel set is large. Excess MI is defined
as the difference between the channel MI where
the desired error probability is achieved and the
information transmission rateR. We use excess MI
as a performance measure throughout the remainder
of the paper. Section III includes and explanation of
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why we prefer excess MI rather than excess SNR.

B. LDPC Code Design for period-p Fading Chan-
nels

Following the assumption in [9] that the output
of an individual variable or constraint node has a
Gaussian distribution we extend the derivation of
[9] to include a known periodic fading vectora. We
attempt to preserve the notation originally proposed
in [9], however, we introduce and simplify notation
at points and also begin the derivation from the
constraint side of the graph in order to arrive at
a set of recursion relations that are linear inλ (λ
(ρ) is the distribution of variable (constraint) node
degrees from an edge-wise perspective). This is
done to facilitate the use of a linear program for
selection of a rate-maximizingλ vector. We begin
by stating that the log-likelihood messages entering
a degree-k constraint node, denotedvi, are related
to an outgoing message, denotedu, as follows:

tanh
(u

2

)
=

k−1∏
i

tanh
(vi

2

)
, (6)

if we assume that messagesvi and u are drawn
from independent and identically distributed (i.i.d.)
Gaussian random variablesvi ∼ N (mv, 2mv) and
u ∼ N (mu, 2mu) (where the subscript is dropped
from v’s because they are identically distributed)
then the expectations of the left and right hand sides
of this update relation can be expressed as,

E
[
tanh

u

2

]
= E

[
tanh

v

2

]k−1

. (7)

This is the expected value of LLR messages de-
parting degree-k constraint nodes (an additional
subscript is added tomu to denote the degree,
i.e. mu,k). Chung introduced the functionφ(x) =
1 − E

[
tanh n

2

]
for n ∼ N(x, 2x) which permits

(7) to be described by,

mu,k = φ−1

(
1− E

[
tanh

v

2

]k−1
)

. (8)

The introduction of parameterr = 1 −
E

[
tanh v

2

]
further simplifies (8) to mu,k =

φ−1
(
1− [1− r]k−1

)
. The expected value of any

given constraint-to-variable message is obtained by
averaging over the constraint degree distribution of
the code,

mu =
dr∑

k=2

ρkmu,k =
dr∑

k=2

ρkφ
−1

(
1− [1− r]k−1

)
,

(9)
whereρk denotes the fraction of edges connected to
degree-k constraint nodes. Degree-i variable nodes
have their mean values,mv,i, updated in corre-
spondence to the periodic initial means given by

maj
=

2a2
j

σ2 and the means of messages arriving from
constraint nodes (mu),

mv,i(j) = maj
+ (i− 1)mu, j ∈ {0, . . . , p− 1}.

(10)
According to the Gaussian approximation, randomly
selected edges emanating from variable nodes ad-
here to the following Gaussian mixture density,

fv =

p−1∑
j=0

dl∑
i=2

λi

p
N (mv,i(j), 2mv,i(j)) . (11)

Where the outer summation mixes over the periodic
fading vector and the inner summation mixes over
the variable node edge-wise degree distribution. Lit-
eral evaluation of the expectationE

[
tanh v

2

]
yields,

E[tanh
v

2
] =

∫

R

(
tanh

x

2

)
fvdx

= 1− 1

p

p−1∑
j=0

dl∑
i=2

λiφ(mv,i(j)).

(12)

Parameterr = 1 − E
[
tanh v

2

]
is expressed in

terms of the right hand side of (12); while (10)
is substituted with an additional index̀to denote
iteration.

r =
1

p

p−1∑
j=0

dl∑
i=2

λiφ (mv,i (j))

r(`) =

dl∑
i=2

λi

p−1∑
j=0

1

p
hi

(
maj

, r(`−1)
)
,

(13)

The above recursion is linear inλ, and uses,

hi

(
maj

, r(`−1)
)

=

φ

(
maj

+ (i− 1)
dr∑

k=2

ρkφ
−1

(
1− (

1− r(`−1)
)k−1

))
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note that if m
(`)
u → ∞ (which implies that an

asymptotically long code will converge for the given
set of initial meansma0 , . . . ,map−1) iff r(`) → 0.

The parameterr(`) is initialized such thatr(0) =

1
p

p−1∑
j=0

φ
(
maj

)
. A linear program (LP) which seeks

a rate maximizingλ given a set of initial means
ma0 , . . . , map−1 and a fixed right degree distribution
ρ follows:

Min
(
−

∑
λi/i

)

s.t.

1T λ = 1

λi > 0, ∀i

r >

dl∑
i=2

λi

p−1∑
j=0

1

p
hi

(
maj

, r
)

0 < r <
1

p

p−1∑
j=0

φ
(
maj

)
.

(14)

To obtain a code of a given rate (say 1/3) for
a particular channel (saya = [1, a] period-2),
the above LP operates as the kernel of a doubly
nested loop. The outer loop monotonically increases
channel SNR in small increments such that the
inner loop is able to find the first(λ, ρ) pair
that achieves the rate constraint. For each step of
the outer loop, the inner loop sweeps a set of
concentratedρ values (concentrated right degree
sequences were proven to be nearly optimal in [9])
and performs the above LP at each step to find
the rate maximizingλ values for each specifiedρ.
The ρ concentration starts at relatively high value
(degree 15 for instance) and is decremented in steps
of size 0.25 until the achievable rate peaks for the
given SNR constraint. Manipulations of the above
procedure suggest empirically that the problem of
optimizing rate for a given channel SNR constraint
is convex in the parameterization of concentratedρ’s
(meaning a unique rate-maximizing concentratedρ
distribution exists). The columns in Table I labeled
‘ [1, 0]’ are the result of the optimization procedure
when it is applied to the period-2a = [1, 0] channel.
Optimization results for thea = [1, 1] channel are
also provided in the table.

Figure 1 provides asymptotic threshold and sim-
ulation results for thea = [1, 1] and a = [1, 0]
optimized codes acrossa = [1, a] period-2 fading.

i λi [1,1] λi [1,0] ρi [1,1] ρi [1,0]

2 0.3010 0.3317 - -
3 0.1474 0.1247 - -
4 - 0.0416 - -
5 0.2075 0.1780 0.3000 0.5000
6 0.0097 - 0.7000 0.5000
15 0.3344 0.3239 - -

TABLE I

DEGREE DISTRIBUTIONS OPTIMIZED USINGGAUSSIAN

APPROXIMATION TO DENSITY EVOLUTION ADAPTED TO PERIODIC

FADING. COLUMNS LABELED a = [1, 0] INDICATE THE

DISTRIBUTION RESULTING FROM OPTIMIZATION FOR THE

PERIOD-2 CHANNEL WHERE HALF OF ALL RECEIVED SYMBOLS

ARE ERASED. COLUMNS LABELED a = [1, 1] INDICATE A

PERIOD-2 CODE OPTIMIZED FORAWGN.

As expected, the thresholds of each of these codes
is best on the channel for which it was designed and
worst on the opposite channel. A third curve (dia-
mond) that provides thresholds for channel-specific
designs on each of elevena = [1, a] channels is also
plotted. Note that for0 < a < 1 the channel-specific
[1, a] designs do have lower thresholds than the[1, 1]
and[1, 0] designs, but these channel specific designs
provide a relatively small improvement. Also note
that the excess MI required by the simulations is
always less that 0.1 bits.

III. LDPC PERFORMANCE ON PERIOD-2 FADING

CHANNELS

A. Demonstration of Universal Performance

Figures 2 and 3 present simulation results for
(n, k)=(15000, 5000) LDPC codes realized from
degree distributions in Table I. As described in
Section II, these degree distributions were found
by constraining periodic density evolution for the
a = [1, 1] (i.e. Gaussian) anda = [1, 0] (i.e.
Gaussian with every other symbol erased) channels
and using a linear program (LP) solver to find the
respective minimum threshold rate-1/3 codes with
maximum left degree 15.

The codes were conditioned using the Approx-
imate Cycle EMD (ACE) technique developed in
[26], where EMD stands for extrinsic message de-
gree. This graph construction technique is partic-
ularly attractive for use in conjunction with den-
sity evolution as it places no constraints on the
underlying degree distribution of the code. The ACE



7

technique sets out to maximize the multiplicity of
“extrinsic” edges connected to short cycles in the
graph (where extrinsic edges are edges that do not
participate in the cycle). Such a construction im-
proves the stopping set distribution in the graph by
increasing the mean stopping set size [27]. Stopping
sets can be shown to be formed by closed clus-
ters of cycles [26] (e.g. cycles that are completely
interconnected). Ensuring that short cycles have at
least a minimum number of extrinsic connections
increases the average number of nodes required to
form a stopping set. For the codes used in this paper
every cycle of length 24 or less has at four or more
extrinsic connections.

Figures 2 and 3 describe the performance of these
codes in a period-2 channel witha = [a0 a1],
wherea0 = 1 and a1 = a (signaling is via BPSK
modulation). Fig. 2(a) clearly shows that a decrease
in a requires an increase in SNR to maintain con-
stant BER. The plot of BER versus absolute SNR,
however, does not provide an adequate view of the
respective performance on each of the channels.
Meaning, we might gather that performance on
the a = [1, 1] channel is about 1.2 dB away (at
BER = 10−5) from binary-input (BI) additive white
Gaussian noise (BI-AWGN) capacity (-2.27 dB),
however we can less easily determine if the code is
performing as well on say thea = [1, 0.5] channel.
To gain a better view from this perspective, Fig. 2(b)
plots BER performance vs.excessSNR. This plot
is constructed by subtracting the SNR required to
achieve a MI level of 1/3 of a bit on each respective
a = [1, a] channel from the absolute operating SNRs
for each curve in Fig. 2(a). On the plot we see
that the performance of the[1, 0] optimized code
is clustered in a 0.5 dB range near 1 dB of excess
SNR while that of the[1, 1] optimized code varies
over roughly a 1.5 dB range. Also note that on this
plot the[1, 0] optimized code has better excess SNR
performance on thea = [1, 1] channel than on the
a = [1, 0] channel. These are points that we will
return to shortly.

Fig. 3(a) plots BER versus MI using (4) in the
context of BPSK constrained signaling. This plot
is created by noting that the SNR of each plotted
point in Fig. 2(a) has a corresponding MI (under
the BPSK and periodic channel constraints). MI in
excess of 1/3 of a bit (the code-rate) is given in
Fig. 3(b). From Figs. 3(a) and 3(b) we can see
that the[1, 0] code performs better at low SNR but
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Fig. 4. MI and SNR in excess of that required for 0.33 bits per
channel use under BPSK modulation ina = [1, a] period-2 fading.
The operating points of two LDPC codes at BER=10−5 are plotted.
Curves from left to right indicate excess MI and excess SNR for a =
{1.0,0.8,0.6,0.4,0.2,0.0}

has a more severe error floor (i.e. flattening of the
BER curve at high SNR) than the[1, 1] code. The
trade-off between low-SNR performance and error
floor is well-known, but it is not the focus of this
paper. Instead, we focus on the universal behavior
displayed by both codes.

Note the tightening of the performance of both
codes (the[1, 1] code at all BERs and the[1, 0]
code in the high BER regime before its error floors
appear) when measured in terms of excess MI in
Fig. 3(b) as compared to the measurement in terms
of excess SNR Fig. 2(b). This tightening across
channel variation can be seen as a consequence of
removing the bias that is inherent to using SNR as
a comparative performance measure across different
channel realizations. We emphasize this point in
Fig. 4 which provides curves describing the excess
SNR required to achieve MI in excess of 1/3 of a
bit under BPSK signaling for each of the considered
a = [1, a] channels (six total).

Each of the curves in Fig. 4 describes the relation-
ship between excess MI (on the vertical axis) and
excess SNR (on the horizontal axis) for a particular
a = [1, a] channel. The origin on the vertical axis
represents 1/3 of a bit of MI and the origin on the
horizontal axis represents the SNR level required to
produce 1/3 bit of MI on each of the given channels.
Note that each channel requires a different absolute
SNR to achieve 1/3 bit of MI, but that on this plot
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these differing SNRs are the single point of zero
excess SNR. Points on the plot away from the origin
measure MIs and SNRs inexcessof 0.33 bits per
symbol (bps) capacity-achieving levels.

The differing slopes for each of these channels
reveals that there is a choice to be made between ex-
cess MI and excess SNR as a metric for comparing
performance across channels. For a fixed value of
one metric, the other varies with channel selection.
For example, a constant excess MI of 0.1 bits could
correspond to an excess SNR anywhere from 1.5 dB
to 2.75 dB. Conversely, a constant excess SNR of
2 dB could correspond to an excess MI anywhere
from 0.0675 bits to 0.14 bits. Given this choice, we
select excess MI because it appears in the exponent
of the information theoretic proofs of the channel
coding theorem [28] while excess SNR does not. We
also note that excess MI may be applied to channels
where excess SNR has no meaning, such as erasure
channels and discrete alphabet channels (such as the
common binary symmetric channel).

Excess SNR and MI operating points from Fig-
ures 2(b) and 3(b) at BER =10−5 have been
superimposed on Fig. 4. From this plot we see that
at BER =10−5 the [1, 0] code performs a little better
than the [1, 1] code. However, that performance
difference is not the focus of this paper. In fact,
both codes are good universal codes. In terms of
excess MI, each code performs best on the channel
for which it was designed but requires only about
0.02 bits more MI to maintain a BER =10−5 on the
opposite channel.

In terms of excess SNR, the[1, 0] code performs
best on the[1, 1] channel and worst on the[1, 0]
channel. This illustrates the problems inherent with
using excess SNR to compare performance across
different channels. Also in terms of excess SNR, the
[1, 1] code performs best on thea = [1, 1] channel,
where it requires about 1.1 dB of excess SNR to
achieve BER =10−5, and worst on thea = [1, 0]
channel, where it requires about 2.7 dB of excess
SNR to achieve BER =10−5.

This difference of more than 1.5 dB in required
excess SNR would not indicate an especially robust
code if one considered excess SNR rather than
excess MI as the measure of interest. Again note that
the total MI variation from worst to best channel
is approximately 0.02 bits for both codes. The
large excess SNR difference can be explained by
observing that the slope of excess MI versus excess

SNR is smaller for thea = [1, 0] channel than
for the a = [1, 1] channel. This is because the
mutual information of thea = [1, 0] channel is
entering saturation. Specifically, the MI of a BPSK,
a = [1, 0] channel saturates at 0.5 bits of MI (or
0.167 = 0.5 - 0.33 bits of excess MI).

Fig. 1 uses dashed curves to show the simulated
performance of the[1, 1] and [1, 0] optimized codes
at BER =10−5 from data plotted in Fig. 3(b), across
the channel parameterization. At this BER the[1, 0]
optimized code slightly outperforms the[1, 1] opti-
mized code on thea = [1, 1] channel. However, the
[1, 0] optimized code has already entered a flooring
region on this channel and if the measurement was
taken at BER=10−6 (see Fig. 3(b)) then the[1, 1]
code would exhibit better performance than the[1, 0]
code for some channels. Error flooring of the[1, 1]
code on thea = [1, 0] channel is also observed.
In general we state that both the[1, 0] and [1, 1]
codes exhibit flooring on their respective opposing
channels.

The MI gap between threshold and simulation in
Fig. 1 remains nearly constant for each of the two
codes as the channel is varied the froma = [1, 1]
(Gaussian) toa = [1, 0] (Gaussian with every other
symbol erased). In the case of the[1, 1] optimized
code this gap is approximately∆[1,1] = 0.06 bits and
in the case of the[1, 0] code the gap is∆[1,0] = 0.02
bits. We believe that the outperformance in terms
of absolute gap to threshold of the[1, 0] versus
the [1, 1] optimized code is related to the particular
code that was generated for each of these cases
and also the difference in the achievable matrix
conditioning (the approximate cycle conditioning
technique of [26] was used to construction the final
parity matrix for each code) given the separate input
degree distributions. The absolute gap, however, is
less consequential than the observation that a given
code realization tracks threshold prediction with a
fixed offset across channel realizations.

In summary, this section has empirically de-
scribed the robustness of the designed codes to
period-2 fading. When each of the six channels
provides MI of at least 0.43 bits (i.e. approximately
0.1 bits above the transmitted rate of 1/3) the codes
communicate at or below BER=10−5. Furthermore,
the performance variation of each code, on all
channels, is approximately 0.02 bits of MI. We
say that these two codes are universal for period-
2 fading since their MI requirement is essentially
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Fig. 5. MI and SNR in excess of that required for 1.0 bit per
channel use on 8-PSK ina = [1, a] period-2 fading. The operating
points of two LDPC codes and a serial turbo code are plotted. Each
code modulates 10,000 8-PSK symbols per block at BER =10−5.
Curves from left to right indicate excess MI and excess SNR for a =
{1.0,0.8,0.6,0.4,0.2,0.0}.

constant (within 6% variation from best to worst
case excess MI) against channel variation. In the
next section we compare the performance of the
designed LDPC codes to that of a serially concate-
nated convolutional code.

B. Comparison with Serially Concatenated Convo-
lutional Codes

LDPC codes represent one of several well known
realizations of random linear codes with manage-
able decoding complexity. Parallel and serially con-
catenated convolutional (turbo) codes also exhibit
capacity approaching performance under AWGN
channel conditions. The original work to describe
the performance of serial turbo codes in AWGN
was performed in [29]. Work that considers serial
turbo codes as universal codes has been conducted
in [13]. The authors in [13] present an 8-PSK
serially concatenated turbo code (SCTC) for period-
2 periodic fading. We compare this toa = [1, 0]
and a = [1, 1] LDPC codes combined with 8-PSK
modulation.

Figure 5 simultaneously plots excess MI and ex-
cess SNR for six different channel parameterizations
under an 8-PSK modulation constraint. Each of
the six curves (one for each of the six channels)
represents the relationship between excess MI (on
the vertical axis) and excess SNR (on the horizontal

axis), as in Fig. 4. In this plot, however, the origin
on the vertical axis represents 1.0 bit of MI and
the origin on the horizontal axis represents the SNR
level required to produce 1.0 bit of MI on each of
the given channels.

Also plotted in Fig. 5 are the BER=10−5 oper-
ating points ofa = [1, 1] and a = [1, 0] optimized
(from Table I) length 30,000, rate-1/3, LDPC codes
on these six channels using Gray-labeled 8-PSK
modulation (10,000 total channel symbols). Note
that no interleaving is used between the code and
the 8-PSK mapper, instead the columns of the
parity matrix that describes the code are uniformly
permuted. The BER=10−5 operating points of a rate-
1/3 length-10,000 serial turbo code optimized for
period-2 fading [13] are also provided. This code
was constructed from a 4-state rate-1/2 outer code
and a 4-state rate-2/3 linear recursive systematic
inner code ([13] provides a description of code
generator polynomials).

It is important not to neglect scale in these plots.
For instance the difference in the MI performance
of the a = [1, 0] optimized LDPC code across the
channels is less than 0.05 bits. The serial turbo code
exhibits a consistent excess SNR requirement that
is striking, but has a variation in excess MI of 0.1
bits. The wider variation in excess MI of the serial
turbo code comes from its exceptionally good per-
formance on channels with lowa values. Although
the worst case performance is quite similar, the
serial turbo code is strictly better than thea = [1, 1]
optimized LDPC code and exhibits performance that
is comparable to that of thea = [1, 0] optimized
LDPC code.

IV. LDPC PEFORMANCE ON PERIOD-p
CHANNELS

So far we have designed LDPC codes for the two
extremes of period-2 fading channels and found that
each code did well across the entire spectrum of
period-2 fading channels. For the rest of the paper
we will see how LDPC codes designed for period-2
fading work on channels with fading period much
larger than 2. The only justification for such an
unmotivated application is that the codes turn out
to do surprisingly well. The point of this exercise is
to illustrate that even without careful design for uni-
versality, LDPC codes often turn out to approximate
universal behavior.
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Fig. 6. Four period-256 fading channels.

Consider the four period-256 channels in Fig. 6.
These fading profiles are generated by realizing
channels with 4, 8, and 16 multi-path components in
the time domain. The time channels are randomly
generated with each tap magnitude drawn from a
Rayleigh distribution and each tap phase is drawn
uniformly. Exponential interarrival times between
taps are assumed and an exponentially decaying
envelope is imposed on the randomly realized taps.
The 256-point fast-fourier-transform (FFT) of each
of these channels is taken and the magnitude of the
resulting FFT coefficients (OFDM subcarrier gains)
are shown for each channel in the plot. Channel
(d) is identical to channel (c) with the exception of
the erasure of an arbitrarily selected block of 125
consecutive subcarriers.

The MI performance of the rate-1/3, blocklength-
15,000a = [1, 1] optimized LDPC code on these
channels using QPSK modulation, where even(odd)
code bits are mapped to I(Q) components, is given
in Fig. 7. Half of the subcarriers in channel (d)
provide no MI. Thus, for the same total MI, the
non-erased subcarriers of channel (d) must provide
twice as much MI, on the average, as the subcarriers
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Fig. 7. Code performance on four period-256 fading channels in
terms of MI. The SCTC code converges on channel d only for the
case 2x128 block interleaving.

of channels (a), (b), and (c). As a result, channel
(d) requires a significantly higher SNR for a given
level of performance than channels (a), (b), and (c).
However, Fig. 7 shows that from the MI point of
view the LDPC code works virtually as well on
channel (d) as on channels (a,b,c).

It may seem surprising that the code can commu-
nicate with 125 of the 256 subcarriers completely
erased. However, the supremum of erasure rates for
this code on the BEC channel is

ε∗ = sup(ε = x0|
xl = x0λ(1− ρ(1− xl−1)) → 0, l →∞),

which hasε∗ = 0.613 (equivalent to 157 of 256
subcarriers being erased). Note thatε∗ is an asymp-
totic measure that can only be achieved in the limit
of infinite block length. For the length 15,000 code
used in this simulation (thea = [1, 1] optimized
code), ε∗ = 0.59 (151 of 256 subcarriers) was
found via simulation. Thus the minimum capacity
of the QPSK BEC channel on which this code
can be expected to communicate reliably is given
by CBEC = 2(1 − ε∗) = 0.82. The high SNR
(erasure) capacity of channel (d) is equal to2(1 −
(125/256)) = 1.02 bits. Therefore, it is reasonable
to expect that the code can operate on this channel
when SNR is large. However, we emphasize the
more remarkable result that the difference in MI
required for the code to operate on each of these
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four very different period-256 channels is less than
0.025 bits.

As described in [30], an SCTC can perform well
on channels (a),(b), and (c) through the use of
a random channel interleaver. Fig. 7 shows this
performance and the performance on these three
channels without channel interleaving for an SCTC
with equivalent rate and block length as the pre-
sented LDPC code. The SCTC without random
channel interleaving performs better on channels
with more rapid fading characteristics as the dwell
time within a given fade is comparatively shorter on
these channels.

Note that the SCTC fails to provide reliable
communication at any SNR on channel (d) (the 50%
erasure channel) unless the interleaver is “matched”
to the channel. The best SCTC performance on
channel (d) is given by a 2-by-128 block interleaver
resulting in a channel with every other symbol
erased which then becomes similar to a period-
2 channel. This particular SCTC is designed to
have optimal performance under the period-2a =
[1, 0] channel. Therefore, it is not surprising that
the SCTC slightly outperforms the (a = [1, 1]
optimized) LDPC code by 0.04 bits of excess MI.
However, such channel and interleaver matching
schemes do not follow the theme of universality
in a Root and Varaiya sense and LDPC codes
seem to be a more reasonable choice than SCTC
to achieve universality. In fact, to date we know
of no coding methodology, other than LDPC, that
can communicate so close to the theorectical limits
without the augmentation of a matched channel
interleaver on channels such as (d).

V. LDPC PERFORMANCE ON THE

PARTIAL -BAND JAMMING CHANNEL

Now we consider the partial-band jamming chan-
nel. The PBJ model used in this paper is the same as
the one previously described in [10] and [11]. We
limit our discussion to the case of coherently de-
tected BPSK modulation under a frequency-hopped
scenario in which a fractionρ of the available
channels are jammed. All of the channels experience
additive thermal noise due to the receiver front end.
The SNR of this noise is fixed toEb/No = 20 dB
to be consistent with the results in [10]. Channels
that are jammed also incur the addition of band-
limited white Gaussian noise with power spectral
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maintain a constant Gaussian signaling capacity (Gauss MI) and
BPSK constrained capacity (BPSK MI) of 1/3 of a bit are also
displayed. FER =10−3 for the three simulated curves.

densityρ−1NI over a fractionρ of the band. The
total jamming noise powerρ(ρ−1NI) + (1− ρ)0 is
equal toNI , and is independent ofρ. Bit-energy-
to-interference ratio,Eb/NI , is the most common
measure of performance on this channel. Perfect
channel state information has been assumed for the
LDPC results that will be presented. This implies
that very low values ofEb/NI tend to make jammed
channels look like erasures as the log-likelihood
ratios computed from channel observations are in-
versely scaled by the noise variance in a given
subchannel. On the other hand, asρ is increased
to unity (where all subchannels are jammed), the
channel begins to appear much like a standard
AWGN channel.

Fig. 8 provides simulation results for two rate-
1/3 LDPC codes. Both are realized from the degree
sequence of thea = [1, 0] optimized code described
in Table I. The first code has length 4096 (k=1368,
n=4096, rate = 0.334) and the second length 15,000.
The performance of a length 4096 turbo product
code with comparable rate [10] is also provided. An
important parameter for code performance on the
partial-band jamming channel is the so-called dwell
interval. This quantity describes the number of suc-
cessive code symbols that will be transmitted on a
given sub-channel before the modulation is hopped
to another sub-channel. For sake of comparison with



12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−16

−14

−12

−10

−8

−6

−4

−2

0

ρ

S
N

R
J (

dB
)

TPC N=4096
LDPC N=4096
LDPC N=15000
BPSK MI = 0.64 bits
BPSK MI = 0.50 bits
BPSK MI = 0.42 bits
BPSK MI = 0.40 bits
BPSK MI = 0.33 bits

0.64 

0.50 

0.42 
0.40 

0.33 

Fig. 9. SNR vs.ρ operating points for FER=10−3 of rate-1/3 length
4096 and 15,000 LDPC codes and a rate-1/3 length 4096 TPC code
compared to BPSK-constrained constant-MI curves of 0.33, 0.40,
0.42, 0.5, and 0.64 bits.

results in [10] we have fixed the dwell interval to
32 for the length 4096 code and to 30 for the length
15,000 code. We have also made the assumption that
channels are “framed” around single code words.
This implies that for the length 4096 code there
are 128 subchannels anddρ128e of these will be
jammed. There are 500 subchannels per frame for
the length 15,000 code. The distribution of jammed
subchannels is realized uniformly and independently
from one codeword transmission to the next. This
technique is meant to yield an average jamming
result for a given code across a parameterization
of ρ andEb/No.

Constant MI curves for the partial-band jamming
channel are also included in Fig. 8. To compute
these curves consider the MI level in partial-band
jamming,

MI = ρf (SNRJ) + (1− ρ)f (SNRNJ) , (15)

whereSNRJ defines the symbol signal-to-noise ra-
tio in the jammed subchannels andSNRNJ defines
the symbol signal to noise ratios in the non-jammed
subchannels. In the case of complex Gaussian sig-
naling, f(x) = log2(1 + x), and for the BPSK
constrained casef(x) is evaluated via numerical
integration. In the partial-band jamming simulations
performed for this paper,SNRNJ is held fixed at a
level which corresponds toEb/No = 20dB. In the
unconstrained case the termlog2 (1 + SNRNJ) is
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Fig. 10. Operating points for FER=10−3 of a rate-1/2 LDPC code
with blocklength 4096 on the partial-band jamming channel.Eb/Ni

vs. ρ curves that maintain a constant Gaussian signaling capacity
(Gauss MI) of 0.5 bits and BPSK constrained capacities (BPSK MI)
of 0.5 and 0.64 bits are also displayed.

therefore a constant (η) which can be determined
via solution to the equationη = log2 (1 + ηEb/No),
which is η = 9.96 bits (for Eb/No = 20 dB).
In the BPSK constrained caseMIBPSK (SNRNJ)
saturates toη = 1 bit at this high SNR.

We are interested in values of(ρ, SNRJ) that
yield constant levels of MI. We therefore fix the
MI to some constant level, say1/3 of a bit. If
we also fixρ, it is possible to uniquely determine
SNRJ (analytically for unconstrained and via table
lookup for the BPSK constrained case). The result-
ing SNRJ can then be converted toEb/NI via the
following relations:

SNRJ =
Es

NI

ρ
+ No

=
1

1

ρR
Eb
NI

+ 1

R
Eb
No

Eb

NI

=
SNRJ

ρR

(
1− SNRJ

R
Eb
No

) .
(16)

A large discrepancy can be observed between
the BPSK-constrained and Gaussian-signaling MI
curves in Fig. 8. This is due primarily to the fact
that the non-jammed subchannels provide far more
MI (9.96 bits) than the 1 bit maximum provided
by BPSK modulation, which in turn implies that
with Gaussian signaling, just a small fraction of
the subchannels need to be non-jammed for the
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expected MI in the channel to reach1/3 of a bit.
We note that a capacity-approaching system that
achieves an average spectral efficiency of1/3 of a
bit can be achieved by simultaneously increasing
modulation cardinality and decreasing code rate.
For instance a rate-1/6 code driving QPSK can be
expected to perform better in an absoluteEb/NI

sense than the rate-1/3 BPSK system.
The curves in Fig. 8 represent the FER =10−3

operating points of rate-1/3 systems or the contours
of constant MI of 1/3 of a bit. Fig. 9 plots differen
constant MI curves in terms of an absoluteSNRJ

ordinate. This avoids rate-dependent compression of
the ordinate (sinceEb

NI
' SNRJ−10 log10 (ρR)) and

allows for distinguishable contours of constant MI.
In the plot, each constant contour is labeled with its
represented level of MI.

When the partial-band jamming channel provides
0.4 bits of MI, the length 15,000 LDPC code (the
a = [1, 0] optimized code) operates with an FER
= 10−3 at all values ofρ. The same can be stated
for the length 4096 code when the channel supports
0.42 bits of MI. Restating this result, the length
15,000 code provides reliable communication when
the excess MI in the channel is∆MI = 0.4− 1/3,
or roughly 0.067 bits and similarly the length-
4096 code requires 0.087 bits of excess MI. The
closeness with which the simulated performance
tracks constant contours of MI in the figure provides
clear empirical evidence of code robustness across
an extremely broad range of channels.

To demonstrate that not all codes exhibit this
property, we have also plotted the performance of
the turbo product code in Fig. 9. Whenρ = 1 this
code requires 0.5 bits of MI to achieve FER10−3.
At lower ρ values, however, the code requires up
to 0.64 bits of MI to maintain constant FER. We
note that the MI level (e.g. 0.4 bits) required for the
LDPC codes to achieve reliable communication in
this channel is comparable to the levels required
by the period-2 and period-256 fading channels.
Finally, since the majority of channels in this paper
have operating modes that provide less than 0.5 bits
of MI (the [1, 0] channel and OFDM channel d), we
have been restricted (in the context of robust coding)
to the use of codes with rate less than 1/2. Since
the PBJ channel provides no such obstacle, Fig. 10
plots the performance of a rate-1/2 code. The degree
distribution for the selected code was designed using
Gaussian approximation for thea = [1, 1] channel

with maximum left and right degrees less than 16
and was built with an information lengthk = 2048.
The plot shows that when the PBJ channel provides
roughly 0.64 bits of MI that the code operates
reliably at FER =10−3.

VI. CONCLUSION

In this paper, we have taken an MI, rather than an
SNR, approach to measuring code performance over
periodic Gaussian and partial-band jamming chan-
nels. Root and Varaiya showed that a single code
exists that can communicate reliably on all of the
channels in a given set provided that the rate of the
code is less than the smallest MI of all channels in
the set. It has been shown for a quantized spread of
all period-2 channels, under BPSK and 8-PSK mod-
ulation, and for several arbitrarily selected period-
256 channels, under QPSK modulation, that LDPC
codes provide a practical example of Root and
Varaiya’s promise of “universal” codes. We have
described and used periodic density evolution to
design codes matched to channels and to determine
the thresholds of existing codes across parameteri-
zations of thea = [1, a] channel. Root and Varaiya’s
theorem applies to any particular instance of the
partial-band jamming channel. However, we have
averaged the performance of a given code across
many thousands of instances of the PBJ channel in
order to test the universality of the codes across a
large sampling of channels. While it is true that the
performance of the codes on some particular PBJ
channel may have been poor (and such an event
would go undetected due to the averaging process),
we have nevertheless shown that the average excess
MI requirements of the codes on this channel are
very similar to those of the codes on the periodic
fading channels.
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