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The University of Texas at Arlington

Lecture 5

CSE 5343/4342
Embedded Systems II

Based heavily on slides by Dr. Roger Walker

Embedded II - Projects

• Teams of 2 students per team may be formed –
teams have already been formed.

• Each team should select a class project 
involving multi-core/multi-threaded system(s) for 
embedded applications.  Example topics 
include:
– Write a new or convert an existing program to run on 

a multi-core/multi-threaded system around an 
embedded application.

– Investigate, write and report on a particular area of a 
multi-core/multi-threaded system around an 
embedded application.

– Select an application, design and build a system 
using multi-core/multi-threaded processing around an 
embedded application.
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Embedded II – Projects (cont’d)

• Some previous projects include: 
– A device driver for Data Translation DT9816 

with real-time Linux, Modifying;
– DTConsole for uses with DT9800 series 

modules, Literature review of recent multi-
treading/multi-core applications and, 
Conversion of Pavement Profiler and 
Automated Texture Measurement System 
from single core to multi-core. 

Embedded II – Projects (cont’d)

• Project Proposal:
– Projects proposed must obtain my approval 

before beginning.  An initial proposal should 
be turned in to me by Thursday, March 4th.

– Proposals should include:
• a semi-detailed plan of what you propose to do 
• list the names and email addresses of each 

member of your group
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Fundamental Concepts of 
Parallel Programming
(Textbook - Chapter 3)

Lecture Topics

1. Additional Information on VMM 
Systems (IBM View)

2. Moving to Parallel Processing
3. Threads Role in Parallel Processing
4. Basic Concepts in Parallel 

Computing
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VMM Information*

• VMM – two types are used for implementing hypervisors.
• Type 1 hypervisors run directly on the system hardware.

*http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf

**Symmetric MultiProcessing (SMP) Server

**

Type 1 Hypervisors

• Hypervisors are currently classified in two types: [1]
• A Type 1 (or native or bare-metal) hypervisor is 

software that runs directly on a given hardware platform 
(as an operating system control program). A guest 
operating system thus runs at the second level above 
the hardware. The classic type 1 hypervisor was 
CP/CMS, developed at IBM in the 1960s, ancestor of 
IBM's current z/VM. More recent examples are Xen, 
VMware's ESX Server, L4 microkernels, TRANGO, 
IBM's LPAR hypervisor (PR/SM), Microsoft's Hyper-V
(currently in Beta), and Sun's Logical Domains
Hypervisor (released in 2005). A variation of this is 
embedding the hypervisor in the firmware of the 
platform, as is done in the case of Hitachi's Virtage
hypervisor. KVM, which turns a complete Linux kernel 
into a hypervisor, is also Type 1. 
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TYPE 2 Hypervisor

• Type 2 hypervisors run on a host operating system that 
provides virtualization services, such as I/O device 
support and memory management.

Type 2 Hypervisors

• A Type 2 (or hosted) hypervisor is software that 
runs within an operating system environment. A 
"guest" operating system thus runs at the third 
level above the hardware. Examples include 
VMware Server (formerly known as GSX), 
VMware Workstation, VMware Fusion, the open 
source QEMU, Microsoft's Virtual PC and 
Microsoft Virtual Server products, InnoTek's
VirtualBox, as well as SWsoft's Parallels 
Workstation and Parallels Desktop. 
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Hypervisors Supported by IBM 
systems

For other systems using Types 1 and 2 see:: 
http://en.wikipedia.org/wiki/Virtual_machine_monitor
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Clock Speed Increase Has Flattened Out

• Recall the reasons for going to Parallel Processing 
• Problems caused by higher speeds

– Excessive power consumption
– Heat dissipation
– Current leakage

• Power consumption critical for mobile devices
• Mobile computing platforms increasingly important

– Retail laptop sales now exceed desktop sales
– Laptops may be 35% of PC market in 2007
– Embedded Market

• New strategy: Limit CPU speed and sophistication; put 
multiple CPUs (“cores”) on a single chip
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Early History of Parallel Computing

• Multiple-processor systems supporting 
parallel computing

• 1960s: Experimental systems
• 1980s: Microprocessor-based commercial 

systems
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Old Dynamic of Parallel Computing

Parallel computers
are expensive

There are not many
parallel computers

Most people do not learn
parallel programming

Parallel computing
not mainstream

Parallel programming
is difficult

Parallel programming
environments are inadequate
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Late History of Parallel 
Computing (Intel View)

• 2004: Intel demos dual-core CPU
• 2006: Intel demos quad-core CPU
• Clovertown sub-architecture (Core) 

supposedly scalable to 32+ cores
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New Dynamic of Parallel Computing

PCs are parallel computers

Everyone has a
parallel computer

More people learning
parallel programming

Parallel programming
considered mainstream

Parallel programming
gets easier

Parallel programming
environments improve
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Thread Initiation

Recall:
• A process can have one or more threads, 

each of which operates independently.
• Threads within the same process share 

the same address space, certain 
resources but have their own stack.

18

Processors-Threads 
Relationship
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Thread Concepts in Parallel 
Programming

• Parallel Programming Concepts center on 
the design, development and deployment 
of threads within an application.

• The program performs a sequence of 
actions. Sequential programs are relatively 
simple as only one thing happens at a 
time.

19
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Methodology

• To move from linear model to parallel 
programming model designers must 
rethink the idea of process flow

• Study problem, sequential program, or 
code segment

• Look for opportunities for parallelism
• Try to keep all processors busy doing 

useful work
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Ways of Exploiting Parallelism

• Data decomposition (Domain): different 
activities assigned to different threads 
(e.g., GUIs)

• Task (functional) decomposition: Multiple 
threads performing the same operation but 
on different datasets (e.g., signal 
processing, scientific computing)

• Pipelining (Data Flow): one thread’s output 
is the input to the next thread

22

Task Decomposition

• Decomposing a program by the functions that it 
performs is called task decomposition. 

• One of the simplest ways to achieve parallel 
execution. 

• Running tasks in parallel this way usually 
requires slight modifications to the individual 
functions to avoid conflicts and to indicate that 
these tasks are no longer sequential. 
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Task Decomposition – Examples

Examples:

Weed and mow your garden
One gardener to weed and one gardener to mow

Grading
The job is to grade a large stack of answer sheets
for a test. Break stack into sub-stacks or tasks

Paint-by-Numbers
Painting a single color is a single task
Number of tasks = number of colors
Two artists: one does even, other odd

24

Weed And Mow Your Lawn –
Example

Consider a situation in which you want to weed and mow your lawn. 

You have two gardeners. You can assign the task to the gardeners

based on the type of activity. 

Example: Weeding and Mowing a Lawn
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• Example: If we were discussing gardening, task 
decomposition would suggest that gardeners be 
assigned tasks based on the nature of the 
activity: if two gardeners arrived at a client's 
home, one might mow the lawn while the other 
weeded. Mowing and weeding are separate 
functions broken out as such. To accomplish 
them, the gardeners would make sure to have 
some coordination between them, so that the 
‘weeder’ is not sitting in the middle of a lawn that 
needs to be mowed. 

Weed And Mow Your Lawn –
Example (cont’d)

Task (Functional) Decomposition

• First, divide tasks among processors
• Second, decide which data elements are 

going to be accessed (read and/or written) 
by which processors
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f()

s()

r()
q()h()

g()

In a task decomposition we look for functions that can execute simultaneously. In 
this drawing the arrows represent the precedence constraints among the functions. 
For example, function “h” cannot execute until function “g” is completed, and 
function “s” cannot execute until functions “h”, “q”, and “r” are done.

Task (Functional) Decomposition

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition
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Data Decomposition

• Dividing large data sets whose elements can be 
computed independently and associating the needed 
computation among threads is known as data 
decomposition. 

• Key points to remember about data decomposition are: 
– The same independent operation is applied 

repeatedly to different data. 
– Computation-intensive tasks with a large degree of 

independence like computation-intensive loops in 
applications are good candidates for data 
decomposition.

Data (Domain) Decomposition 
Example

Find the largest element of an array
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Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)
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Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)
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Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)
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Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition 
Example (cont’d)
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Data Decomposition
• As the number of processor cores increases, data 

decomposition allows the problem size to be increased. 
This allows for more work to be done in the same 
amount of time.

• To illustrate, consider the gardening example. Two more 
gardeners are added to the work crew. Rather than 
assigning all four gardeners to one yard, we can we can 
assign the two new gardeners to another yard, 
effectively increasing our total problem size. Assuming 
that the two new gardeners can perform the same 
amount of work as the original two, and that the two yard 
sizes are the same, we've doubled the amount of work 
done in the same amount of time. 
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Which Decomposition 
Method to Use?

Task decomposition and data decomposition can often be applied to the same problem; 

choose depending on the number of available resources and the size of the task.

Examples:

• Data decomposition: In the mural painting example, you can divide the wall into 

two halves and assign each of the artists one half and all the colors needed to 

complete the assigned area.

• Task decomposition: In the final exam grading problem, if the graders take a 

single key and grade only those exams that correspond to that key, it would be 

considered task decomposition. Alternatively, if there are different types of 

questions in the exam, such as multiple choice, true/false, and essay, the job of 

grading could be divided based on the tasks to specialists in each of those question 

types.
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Data Flow Decomposition 
• Many times, when decomposing a problem, the critical 

issue isn't what tasks should do the work, but how the 
data flows between the different tasks. In these cases, 
data flow decomposition breaks up a problem by how 
data flows between tasks. 

• The producer/consumer problem is a well known 
example of how data flow impacts a programs ability to 
execute in parallel. The output of one task, the producer, 
becomes the input to another, the consumer. The two 
tasks are performed by different threads, and the second 
one, the consumer, cannot start until the producer 
finishes some portion of its work. 
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Delays in Data Flow

• One gardener prepares the tools, that is, he puts 
gas in the mower, cleans the shears, and other 
similar tasks for both gardeners to use. No 
gardening can occur until this step is mostly 
finished, at which point the true gardening work 
can begin. The delay caused by the first task 
creates a pause for the second task, after which 
both tasks can continue in parallel. In computer 
terms, this particular model occurs frequently. 
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Data Flow Decomposition Example

• Special kind of task decomposition
• “Assembly line” parallelism
• Example: 3D rendering in computer 

graphics

RasterizeClipProjectModel

Input Output

Data Flow Decomposition Example -
Pipelining
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RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 1

RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 2
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RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 3

RasterizeClipProjectModel

The pipeline processes 1 data set in 4 steps

Data Flow Decomposition Example –
Step 4
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RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 1

RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 2
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RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 3

Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

CPU 0 CPU 1 CPU 2 CPU 3

Data Flow Decomposition Example –
Five Data Sets; Step 1

As the number of data sets increases, all four of the processors are busier a 
greater percentage of the time. 
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Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

CPU 0 CPU 1 CPU 2 CPU 3

Data Flow Decomposition Example –
Five Data Sets; Step 4

As the number of data sets increases, all four of the processors are busier a 
greater percentage of the time. 
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Characteristics of 
Producer/Consumer Problem

• The dependence created between consumer and 
producer can cause significant delays if this model is not 
implemented correctly. A performance-sensitive design 
seeks to understand the exact nature of the dependence 
and diminish the delay it imposes. It also aims to avoid 
situations in which consumer threads are idling while 
waiting for producer threads. 

• The ideal case, the hand-off between producer and 
consumer is completely clean, as in the example of the 
file parser. The output is context-independent and the 
consumer has no need to know anything about the 
producer. Many times, however, the producer and 
consumer components do not enjoy this independence
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Load Balancing

If the consumer is finishing up while the producer 
is completely done, one thread remains idle 
while other threads are busy working away. This 
issue violates an important objective of parallel 
processing, which is to balance loads so that all 
available threads are kept busy. Because of the 
logical relationship between these threads, it can 
be very difficult to keep threads equally 
occupied. 
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Challenges You'll Face 

• Threads enable higher performance by by allowing two or more 
activities to occur simultaneously. However, threads add a 
measure of complexity that requires thoughtful consideration 
to navigate correctly. This is due to more than one activity is 
occurring in the program. Managing simultaneous activities and their 
possible interaction leads to four types of problems: 

1. Synchronization is the process by which two or more threads 
coordinate their activities. For example, one thread waits for another 
to finish a task before continuing. 

2. Communication refers to the bandwidth and latency issues 
associated with exchanging data between threads. 

3. Load balancing refers to the distribution of work across multiple 
threads so that they all perform roughly the same amount of work. 

4. Scalability is the challenge of making efficient use of a larger 
number of threads when software is running on more-capable 
systems. (E.g.,, if a program is written to make good use of four 
processor cores, will it scale properly when its run with eight 
processor cores? )



31

61

Parallel Programming Patterns
• For years object-oriented programmers have been using design patterns to 

logically design their applications. 
• ‘Parallel programming is no different than object-oriented programming in 

that is also uses design patterns’
1. Task-level parallelism - Task 

• In this pattern, the problem is decomposed into a set of tasks that operate
independently. It is often necessary remove dependencies between tasks or 

separate dependencies using replication. 
2. Divide and Conquer - Task/Data

• The problem is divided into a number of parallel sub-problems. Each sub-
problem is solved independently. 

3. Geometric Decomposition  - Data 
• The geometric decomposition pattern is based on the parallelization of the data 

structures. - each thread is responsible for operating on data 'chunks'. 
4. Pipeline  - Data Flow 

• Identical to that of an assembly line. - break down the computation into a series 
of stages and have each thread work on a different stage simultaneously. 

5. Wavefront - Data Flow
• The wavefront pattern is useful when processing data elements along a diagonal 

in a two-dimensional grid 
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Task-level Parallelism Pattern

In many cases, the best way to achieve parallel 
execution is to focus directly on the tasks themselves. In 
this case, the task-level parallelism pattern makes the 
most sense. In this pattern, the problem is decomposed 
into a set of tasks that operate independently. It is often 
necessary remove dependencies between tasks or 
separate dependencies using replication. Problems that 
fit into this pattern include the so-called embarrassingly 
parallel problems, those where there are no 
dependencies between threads, and replicated data 
problems, those where the dependencies between 
threads may be removed from the individual threads. 



32

63

Example: Wavefront Pattern

The Numbers illustrate the order in which the data elements 
are processed.
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Example: Error Diffusion

• Image processing problem
• How to transform almost-continuous-tone 

digital images to lesser tone presentation 
devices (e.g., 8-bit grayscale to 1bit b/w)
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Example: Error Diffusion 
Algorithm

The basic error diffusion algorithm does its work in a simple three step process: 

1. Determine· the output value given the input value of the current pixel. This step 
often uses quantization, or in the binary case, thresholding. For an 8-bit 
grayscale image that is displayed on a one bit output device, all input values in 
the range [0, 127] are to be displayed as a 0 and all input values between [128, 
255] are to be displayed as a 1 on the output device. 

2. Once the output value is determined, the code computes the error between what 
should be displayed on the output device and what is actually displayed. As an 
example, assume that the current input pixel value is 168. Given that it is 
greater than our threshold value (128), we determine that the output value will 
be a 1. This value is stored in the output array. To compute the error, the 
program must normalize output first, so it is in the same scale as the input 
value. That is, for the purposes of computing the display error, the output pixel 
must be 0 if the output pixel is 0 or 255 if the output pixel is 1. In this case, the 
display error is the difference between the actual value that should have been 
displayed (168) and the output value (255), which is -87. 

3. Finally, the error value is distributed on a fractional basis to the neighboring 
pixels in the region.
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Example: Error Diffusion
Initial Implementation 
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Example: Error Diffusion
Pixels Shown by Weights
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Example: Error Diffusion 
Subdividing the Work Among Threads
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Example: Error Diffusion
Multi-page Situation
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Chapter 3 Key Points
• Decompositions fall into one of three categories: task, 

data, and data flow:
1. Task-level parallelism partitions the work between threads 

based on tasks
2. Data decomposition breaks down tasks based on the data that 

the threads work on.
3. Data flow decomposition breaks down the problem in terms of 

how data flows between the tasks. 
• Most parallel programming problems fall into one of 

several well known patterns. 
• The constraints of synchronization, communication, load 

balancing, and scalability must be dealt with to get the 
most benefit out of a parallel program. 

• Many problems that appear to be serial may, through a 
simple transformation, be adapted to a parallel 
implementation. 
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