
1

The University of Texas at Arlington

Lecture 5

CSE 5343/4342
Embedded Systems II

Based heavily on slides by Dr. Roger Walker

Embedded II - Projects

• Teams of 2 students per team may be formed –
teams have already been formed.

• Each team should select a class project
involving multi-core/multi-threaded system(s) for
embedded applications. Example topics
include:
– Write a new or convert an existing program to run on

a multi-core/multi-threaded system around an
embedded application.

– Investigate, write and report on a particular area of a
multi-core/multi-threaded system around an
embedded application.

– Select an application, design and build a system
using multi-core/multi-threaded processing around an
embedded application.

2

Embedded II – Projects (cont’d)

• Some previous projects include:
– A device driver for Data Translation DT9816

with real-time Linux, Modifying;
– DTConsole for uses with DT9800 series

modules, Literature review of recent multi-
treading/multi-core applications and,
Conversion of Pavement Profiler and
Automated Texture Measurement System
from single core to multi-core.

Embedded II – Projects (cont’d)

• Project Proposal:
– Projects proposed must obtain my approval

before beginning. An initial proposal should
be turned in to me by Thursday, March 4th.

– Proposals should include:
• a semi-detailed plan of what you propose to do
• list the names and email addresses of each

member of your group

3

Fundamental Concepts of
Parallel Programming
(Textbook - Chapter 3)

Lecture Topics

1. Additional Information on VMM
Systems (IBM View)

2. Moving to Parallel Processing
3. Threads Role in Parallel Processing
4. Basic Concepts in Parallel

Computing

4

VMM Information*

• VMM – two types are used for implementing hypervisors.
• Type 1 hypervisors run directly on the system hardware.

*http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay.pdf

**Symmetric MultiProcessing (SMP) Server

**

Type 1 Hypervisors

• Hypervisors are currently classified in two types: [1]
• A Type 1 (or native or bare-metal) hypervisor is

software that runs directly on a given hardware platform
(as an operating system control program). A guest
operating system thus runs at the second level above
the hardware. The classic type 1 hypervisor was
CP/CMS, developed at IBM in the 1960s, ancestor of
IBM's current z/VM. More recent examples are Xen,
VMware's ESX Server, L4 microkernels, TRANGO,
IBM's LPAR hypervisor (PR/SM), Microsoft's Hyper-V
(currently in Beta), and Sun's Logical Domains
Hypervisor (released in 2005). A variation of this is
embedding the hypervisor in the firmware of the
platform, as is done in the case of Hitachi's Virtage
hypervisor. KVM, which turns a complete Linux kernel
into a hypervisor, is also Type 1.

5

TYPE 2 Hypervisor

• Type 2 hypervisors run on a host operating system that
provides virtualization services, such as I/O device
support and memory management.

Type 2 Hypervisors

• A Type 2 (or hosted) hypervisor is software that
runs within an operating system environment. A
"guest" operating system thus runs at the third
level above the hardware. Examples include
VMware Server (formerly known as GSX),
VMware Workstation, VMware Fusion, the open
source QEMU, Microsoft's Virtual PC and
Microsoft Virtual Server products, InnoTek's
VirtualBox, as well as SWsoft's Parallels
Workstation and Parallels Desktop.

6

Hypervisors Supported by IBM
systems

For other systems using Types 1 and 2 see::
http://en.wikipedia.org/wiki/Virtual_machine_monitor

12

Clock Speed Increase Has Flattened Out

• Recall the reasons for going to Parallel Processing
• Problems caused by higher speeds

– Excessive power consumption
– Heat dissipation
– Current leakage

• Power consumption critical for mobile devices
• Mobile computing platforms increasingly important

– Retail laptop sales now exceed desktop sales
– Laptops may be 35% of PC market in 2007
– Embedded Market

• New strategy: Limit CPU speed and sophistication; put
multiple CPUs (“cores”) on a single chip

7

13

Early History of Parallel Computing

• Multiple-processor systems supporting
parallel computing

• 1960s: Experimental systems
• 1980s: Microprocessor-based commercial

systems

14

Old Dynamic of Parallel Computing

Parallel computers
are expensive

There are not many
parallel computers

Most people do not learn
parallel programming

Parallel computing
not mainstream

Parallel programming
is difficult

Parallel programming
environments are inadequate

8

15

Late History of Parallel
Computing (Intel View)

• 2004: Intel demos dual-core CPU
• 2006: Intel demos quad-core CPU
• Clovertown sub-architecture (Core)

supposedly scalable to 32+ cores

16

New Dynamic of Parallel Computing

PCs are parallel computers

Everyone has a
parallel computer

More people learning
parallel programming

Parallel programming
considered mainstream

Parallel programming
gets easier

Parallel programming
environments improve

9

17

Thread Initiation

Recall:
• A process can have one or more threads,

each of which operates independently.
• Threads within the same process share

the same address space, certain
resources but have their own stack.

18

Processors-Threads
Relationship

10

Thread Concepts in Parallel
Programming

• Parallel Programming Concepts center on
the design, development and deployment
of threads within an application.

• The program performs a sequence of
actions. Sequential programs are relatively
simple as only one thing happens at a
time.

19

20

Methodology

• To move from linear model to parallel
programming model designers must
rethink the idea of process flow

• Study problem, sequential program, or
code segment

• Look for opportunities for parallelism
• Try to keep all processors busy doing

useful work

11

Ways of Exploiting Parallelism

• Data decomposition (Domain): different
activities assigned to different threads
(e.g., GUIs)

• Task (functional) decomposition: Multiple
threads performing the same operation but
on different datasets (e.g., signal
processing, scientific computing)

• Pipelining (Data Flow): one thread’s output
is the input to the next thread

22

Task Decomposition

• Decomposing a program by the functions that it
performs is called task decomposition.

• One of the simplest ways to achieve parallel
execution.

• Running tasks in parallel this way usually
requires slight modifications to the individual
functions to avoid conflicts and to indicate that
these tasks are no longer sequential.

12

23

Task Decomposition – Examples

Examples:

Weed and mow your garden
One gardener to weed and one gardener to mow

Grading
The job is to grade a large stack of answer sheets
for a test. Break stack into sub-stacks or tasks

Paint-by-Numbers
Painting a single color is a single task
Number of tasks = number of colors
Two artists: one does even, other odd

24

Weed And Mow Your Lawn –
Example

Consider a situation in which you want to weed and mow your lawn.

You have two gardeners. You can assign the task to the gardeners

based on the type of activity.

Example: Weeding and Mowing a Lawn

13

25

• Example: If we were discussing gardening, task
decomposition would suggest that gardeners be
assigned tasks based on the nature of the
activity: if two gardeners arrived at a client's
home, one might mow the lawn while the other
weeded. Mowing and weeding are separate
functions broken out as such. To accomplish
them, the gardeners would make sure to have
some coordination between them, so that the
‘weeder’ is not sitting in the middle of a lawn that
needs to be mowed.

Weed And Mow Your Lawn –
Example (cont’d)

Task (Functional) Decomposition

• First, divide tasks among processors
• Second, decide which data elements are

going to be accessed (read and/or written)
by which processors

14

f()

s()

r()
q()h()

g()

In a task decomposition we look for functions that can execute simultaneously. In
this drawing the arrows represent the precedence constraints among the functions.
For example, function “h” cannot execute until function “g” is completed, and
function “s” cannot execute until functions “h”, “q”, and “r” are done.

Task (Functional) Decomposition

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition

15

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition

16

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition

f()

s()

r()
q()h()

g()

CPU 0

CPU 2

CPU 1

Task (Functional) Decomposition

17

33

Data Decomposition

• Dividing large data sets whose elements can be
computed independently and associating the needed
computation among threads is known as data
decomposition.

• Key points to remember about data decomposition are:
– The same independent operation is applied

repeatedly to different data.
– Computation-intensive tasks with a large degree of

independence like computation-intensive loops in
applications are good candidates for data
decomposition.

Data (Domain) Decomposition
Example

Find the largest element of an array

18

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

19

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

20

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

21

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

Find the largest element of an array

CPU 0 CPU 1 CPU 2 CPU 3

Data (Domain) Decomposition
Example (cont’d)

22

43

Data Decomposition
• As the number of processor cores increases, data

decomposition allows the problem size to be increased.
This allows for more work to be done in the same
amount of time.

• To illustrate, consider the gardening example. Two more
gardeners are added to the work crew. Rather than
assigning all four gardeners to one yard, we can we can
assign the two new gardeners to another yard,
effectively increasing our total problem size. Assuming
that the two new gardeners can perform the same
amount of work as the original two, and that the two yard
sizes are the same, we've doubled the amount of work
done in the same amount of time.

44

Which Decomposition
Method to Use?

Task decomposition and data decomposition can often be applied to the same problem;

choose depending on the number of available resources and the size of the task.

Examples:

• Data decomposition: In the mural painting example, you can divide the wall into

two halves and assign each of the artists one half and all the colors needed to

complete the assigned area.

• Task decomposition: In the final exam grading problem, if the graders take a

single key and grade only those exams that correspond to that key, it would be

considered task decomposition. Alternatively, if there are different types of

questions in the exam, such as multiple choice, true/false, and essay, the job of

grading could be divided based on the tasks to specialists in each of those question

types.

23

45

Data Flow Decomposition
• Many times, when decomposing a problem, the critical

issue isn't what tasks should do the work, but how the
data flows between the different tasks. In these cases,
data flow decomposition breaks up a problem by how
data flows between tasks.

• The producer/consumer problem is a well known
example of how data flow impacts a programs ability to
execute in parallel. The output of one task, the producer,
becomes the input to another, the consumer. The two
tasks are performed by different threads, and the second
one, the consumer, cannot start until the producer
finishes some portion of its work.

46

Delays in Data Flow

• One gardener prepares the tools, that is, he puts
gas in the mower, cleans the shears, and other
similar tasks for both gardeners to use. No
gardening can occur until this step is mostly
finished, at which point the true gardening work
can begin. The delay caused by the first task
creates a pause for the second task, after which
both tasks can continue in parallel. In computer
terms, this particular model occurs frequently.

24

Data Flow Decomposition Example

• Special kind of task decomposition
• “Assembly line” parallelism
• Example: 3D rendering in computer

graphics

RasterizeClipProjectModel

Input Output

Data Flow Decomposition Example -
Pipelining

25

RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 1

RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 2

26

RasterizeClipProjectModel

Data Flow Decomposition Example –
Step 3

RasterizeClipProjectModel

The pipeline processes 1 data set in 4 steps

Data Flow Decomposition Example –
Step 4

27

RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 1

RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 2

28

RasterizeClipProjectModel

Data Flow Decomposition Example –
Two Data Sets; Step 3

Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

CPU 0 CPU 1 CPU 2 CPU 3

Data Flow Decomposition Example –
Five Data Sets; Step 1

As the number of data sets increases, all four of the processors are busier a
greater percentage of the time.

29

Data set 0

Data set 1

Data set 2

Data set 3

Data set 4

CPU 0 CPU 1 CPU 2 CPU 3

Data Flow Decomposition Example –
Five Data Sets; Step 4

As the number of data sets increases, all four of the processors are busier a
greater percentage of the time.

58

Characteristics of
Producer/Consumer Problem

• The dependence created between consumer and
producer can cause significant delays if this model is not
implemented correctly. A performance-sensitive design
seeks to understand the exact nature of the dependence
and diminish the delay it imposes. It also aims to avoid
situations in which consumer threads are idling while
waiting for producer threads.

• The ideal case, the hand-off between producer and
consumer is completely clean, as in the example of the
file parser. The output is context-independent and the
consumer has no need to know anything about the
producer. Many times, however, the producer and
consumer components do not enjoy this independence

30

59

Load Balancing

If the consumer is finishing up while the producer
is completely done, one thread remains idle
while other threads are busy working away. This
issue violates an important objective of parallel
processing, which is to balance loads so that all
available threads are kept busy. Because of the
logical relationship between these threads, it can
be very difficult to keep threads equally
occupied.

60

Challenges You'll Face

• Threads enable higher performance by by allowing two or more
activities to occur simultaneously. However, threads add a
measure of complexity that requires thoughtful consideration
to navigate correctly. This is due to more than one activity is
occurring in the program. Managing simultaneous activities and their
possible interaction leads to four types of problems:

1. Synchronization is the process by which two or more threads
coordinate their activities. For example, one thread waits for another
to finish a task before continuing.

2. Communication refers to the bandwidth and latency issues
associated with exchanging data between threads.

3. Load balancing refers to the distribution of work across multiple
threads so that they all perform roughly the same amount of work.

4. Scalability is the challenge of making efficient use of a larger
number of threads when software is running on more-capable
systems. (E.g.,, if a program is written to make good use of four
processor cores, will it scale properly when its run with eight
processor cores?)

31

61

Parallel Programming Patterns
• For years object-oriented programmers have been using design patterns to

logically design their applications.
• ‘Parallel programming is no different than object-oriented programming in

that is also uses design patterns’
1. Task-level parallelism - Task

• In this pattern, the problem is decomposed into a set of tasks that operate
independently. It is often necessary remove dependencies between tasks or

separate dependencies using replication.
2. Divide and Conquer - Task/Data

• The problem is divided into a number of parallel sub-problems. Each sub-
problem is solved independently.

3. Geometric Decomposition - Data
• The geometric decomposition pattern is based on the parallelization of the data

structures. - each thread is responsible for operating on data 'chunks'.
4. Pipeline - Data Flow

• Identical to that of an assembly line. - break down the computation into a series
of stages and have each thread work on a different stage simultaneously.

5. Wavefront - Data Flow
• The wavefront pattern is useful when processing data elements along a diagonal

in a two-dimensional grid

62

Task-level Parallelism Pattern

In many cases, the best way to achieve parallel
execution is to focus directly on the tasks themselves. In
this case, the task-level parallelism pattern makes the
most sense. In this pattern, the problem is decomposed
into a set of tasks that operate independently. It is often
necessary remove dependencies between tasks or
separate dependencies using replication. Problems that
fit into this pattern include the so-called embarrassingly
parallel problems, those where there are no
dependencies between threads, and replicated data
problems, those where the dependencies between
threads may be removed from the individual threads.

32

63

Example: Wavefront Pattern

The Numbers illustrate the order in which the data elements
are processed.

64

Example: Error Diffusion

• Image processing problem
• How to transform almost-continuous-tone

digital images to lesser tone presentation
devices (e.g., 8-bit grayscale to 1bit b/w)

33

65

Example: Error Diffusion
Algorithm

The basic error diffusion algorithm does its work in a simple three step process:

1. Determine· the output value given the input value of the current pixel. This step
often uses quantization, or in the binary case, thresholding. For an 8-bit
grayscale image that is displayed on a one bit output device, all input values in
the range [0, 127] are to be displayed as a 0 and all input values between [128,
255] are to be displayed as a 1 on the output device.

2. Once the output value is determined, the code computes the error between what
should be displayed on the output device and what is actually displayed. As an
example, assume that the current input pixel value is 168. Given that it is
greater than our threshold value (128), we determine that the output value will
be a 1. This value is stored in the output array. To compute the error, the
program must normalize output first, so it is in the same scale as the input
value. That is, for the purposes of computing the display error, the output pixel
must be 0 if the output pixel is 0 or 255 if the output pixel is 1. In this case, the
display error is the difference between the actual value that should have been
displayed (168) and the output value (255), which is -87.

3. Finally, the error value is distributed on a fractional basis to the neighboring
pixels in the region.

66

Example: Error Diffusion
Initial Implementation

34

67

Example: Error Diffusion
Pixels Shown by Weights

68

Example: Error Diffusion
Subdividing the Work Among Threads

35

69

Example: Error Diffusion
Multi-page Situation

70

Chapter 3 Key Points
• Decompositions fall into one of three categories: task,

data, and data flow:
1. Task-level parallelism partitions the work between threads

based on tasks
2. Data decomposition breaks down tasks based on the data that

the threads work on.
3. Data flow decomposition breaks down the problem in terms of

how data flows between the tasks.
• Most parallel programming problems fall into one of

several well known patterns.
• The constraints of synchronization, communication, load

balancing, and scalability must be dealt with to get the
most benefit out of a parallel program.

• Many problems that appear to be serial may, through a
simple transformation, be adapted to a parallel
implementation.

36

References

• Richard H. Carver and Kuo-Chung Tai, Modern
Multithreading: Implementing, Testing, and Debugging
Java and C++/Pthreads/ Win32 Programs, Wiley-
Interscience (2006).

• Michael J. Quinn, Parallel Programming in C with MPI
and OpenMP, McGraw-Hill (2004).

• http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topi
c/eicay/eicay.pdf

• http://en.wikipedia.org/wiki/Virtual_machine_monitor
• Material from Intel course on Parallel Computing,

‘Recognizing Potential Parallelism’
• Class Text – Chapter 3

