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Abstract 

This study investigates the possibilities and the limitations for utilizing machine 

learning algorithms in industrial quality control. This has been done by a number of 

steps: Quality improvement practitioners have been interviewed about the difficulties 

and problems they encounter. Machine learning has been studied through literature 

review to understand what kind of problems machine learning may solve and what 

would be needed in terms of resources. Then quality control issues have been paired 

with machine learning solutions and discussed in terms of resource requirements. There 

has also been a construction of a machine learning algorithm for solving a specific 

quality control problem for Scania, acoustic deviation detection, where the resources 

and usefulness were studied first hand. The readiness of machine learning as a tool in 

industry is discussed. Finally, a model has been synthesized for evaluating the 

feasibility of machine learning projects in quality control. 
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Sammanfattning 

Denna studie har undersökt möjligheterna och begränsningarna för att använda 

maskininlärning i industriell kvalitetskontroll. Detta har gjorts genom ett antal 

delmoment: Utövare inom kvalitetsförbättringar har intervjuats om de svårigheter och 

problem de möter. Maskininlärning har studerats genom litteraturstudie för att förstå 

vad för slags problem maskininlärning kan lösa och vilka resurser som behövs. 

Kvalitetsproblem har parats ihop med maskininlärningslösningar, och diskuteras med 

hänsyn till resurskrav och genomförbarhet. Vidare har en maskininlärningsalgoritm 

konstruerats för att lösa ett specifikt kvalitetsproblem åt Scania, detektering av 

ljudkvalitet, där resursbehov och användbarhet har studerats på nära håll. Det diskuteras 

hur redo maskininlärning är att användas som ett verktyg i industrin. Slutligen har en 

modell sammanställts för att utvärdera genomförbarheten av projekt i maskininlärning 

inom kvalitetskontroll.  
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1. Introduction  

1.1 Background 

Automation is the use of control systems to operate machines and processes. This has 

historically had a big influence on industrial production, with important milestones such 

as the automatic control of the steam engine, continuous chemical production, and 

industry robots. As information technology has developed, computers and utilization of 

information has had a greater importance in automation. Modern industries often use 

multiple IT systems for tasks such as process control, tracing products, and handling 

capacity. As companies accumulate larger amounts of data, the field of automating data 

analysis has grown; Computer programs using so called machine learning algorithms 

are being developed to make better predictions and decisions from data.  

 

Quality Control is the task of assuring that the products produced reach a certain 

standard, either set by the company or by the customers. The field developed rapidly 

during the second half of the 20
th

 century and is today an integral part of most 

manufacturing companies. It serves multiple purposes: By measuring what is important 

to a product or component, bad components can be excluded before they are delivered 

to the customer. Furthermore, processes can be controlled so that quality deviations 

occur less frequently, which results in higher quality and lower costs.  

 

The development within Machine Learning has been rapid the last few years, and has 

especially been applied in IT for improvements in search engines, speech recognition, 

and online marketing. There is untapped potential in manufacturing industry using this 

kind of software based automation, and it is not obvious how it can be used, where it is 

useful, or how to implement it.  

 

1.2 Problem statement 

There is an uncertainty in how machine learning algorithms can improve industrial 

quality control in terms of improved quality and reduced costs, and an uncertainty about 

the requirements to implement these algorithms.  

 

1.3 Purpose 

The purpose of this study is to investigate the possibilities and limitations machine 

learning has on industrial quality control.  
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1.4 Research question 

Of what use can machine learning be for industrial quality control, and what limitations 

are there in terms of resources, reliability and precision?  

 What kind of machine learning is suitable for what kind of problems?  

 What resources are needed in terms of time, money, competence, and 

computational resources?  

 What result may this lead to regarding quality and cost? 

 

1.5 Expected contribution  

The study is expected to contribute with a procedure for decision about implementation 

of machine learning in quality control, by creating a model of what is required and how 

it will contribute to a successful implementation.  

 

1.6 Delimitations 

The construction of a machine learning program will be limited to known algorithms 

and configuration, as I do not seek to develop new, but focus on the aspects of 

application. I choose to limit the width of the scope to study one particular quality issue 

(engine sound detection), although conceptually broadening my findings to further 

quality issues. This is because of the depth required to construct and train a machine 

learning algorithm. There are applications where using multiple algorithms together 

may be advantageous. For the same reason, I choose to exclude this from my study.  

 

There could be potential in matching all kinds of errors with audio, even errors that do 

not create hearable noise, to investigate whether a computer can hear errors which 

humans cannot. That is, however, beyond this scope.  

 

The use of machine learning will be limited by quality control and quality engineering. 

The use of machine learning for optimization of production parameters is briefly 

introduced but not studied.  

 

1.7 Method  

First, quality control problems were identified through theory study, participation in 

testing at Scania as well as interviews with quality personnel at Scania. These have been 

matched up with potential machine learning algorithms. The participation included 

working in the final testing department at Scania and observing the problems they face. 

Interviews were conducted semi-structured to gain the interviewees perspective of 

quality control.  
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Second, a machine learning algorithm has been developed for Quality Control at Scania, 

where the problem at hand was to detect engine sound anomalies. The resources 

required for this in terms of time, cost, competence and computational resources has 

been documented and analyzed. As part of the preparation, quantitative sound data has 

been collected. 

 

Third, a model has been proposed to generalize the findings of resource requirements to 

other type of quality control problems as well. It has been done by analyzing the 

situational factors affecting each step in the development of the machine learning 

algorithm, and connecting them with resource requirements. 

 

The study has been inductive, where the starting point has been the empirical results, 

which then together with theory has been combined to form new theories. The machine 

learning algorithm was based on quantitative data including audio data and quality data 

from a large number of engines. The problems and use for machine learning in quality 

control has been based on qualitative interviews. 
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2. Industrial Quality Control 

Quality Control (QC) is the practice of ensuring and improving quality of a company’s 

products and services. For consumers, the quality of a product is often considered to be 

the “fitness for use” of the product (Montgomery, 2013). This can be attained by a good 

design, and by conformance to that design. In QC, the focus is on the latter: to make the 

products conform to the intended design by reducing variability in processes and 

products. From here on, quality refers to conformance to design.  

 

The costs associated with quality can be categorized into prevention costs, appraisal 

costs, internal failure costs, and external failure costs (Montgomery, 2013). Generally, 

the total quality costs are reduced by increasing prevention and appraisal costs, since 

that reduces failure costs even more. Besides reducing costs, high quality can be of 

strategic importance since it may increase the business reputation among customers and 

employees, which can strengthen the company’s market position and competitiveness. 

 

The three major methods of quality control are Acceptance Sampling, Statistical Process 

Control, and Experimental Design (Fountoulaki, et al., 2011) When testing is expensive, 

time consuming and or destructive, there are advantages with testing only a sample of 

products to draw conclusions about the whole batch. This is called Acceptance 

Sampling.  

 

Process control is somewhat different. It sets out to monitor and identify the cause of 

variation in a process. By noting the distribution of product measurements when a 

process is well functioning, later measurements can be compared to this. By calculating 

the probability that each measurement or group of measurements is a sample from that 

same distribution of a well functioning process, one can determine if there is something 

wrong with the production process. The goal is not only to find defective parts, but to 

detect when something is wrong with the process, to be able to correct it as soon as 

possible. There are many well used tools to visualize the process, and to structure the 

analysis of what may be wrong, including Cause-and-Effect Diagram, Control Charts, 

Scatter Plots and Histograms.  

 

Experimental design is mainly practiced when setting up a production process or 

introducing a new product. The method uses statistical experiments to find good 

parameters for the production process. It is done by making changes in the input 

parameters and observing the output of the production (Fountoulaki, et al., 2011). It can 

also be used to compare different production lines, production techniques, or to evaluate 

the functionality of design features.  
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Most studies within the field of quality control concerns process control. Many of these 

set out to improve common tools for specific purposes.  

 

Yeong et al (2017) exemplify the use of Coefficient of Variation in control charts, as 

well as show how it can be used more accurately in a variable parameters chart. 

Coefficient of Variation is the ratio of standard deviation to the mean of a process, and 

can be a better indicator of process behavior than standard deviation and mean 

separately, if the standard deviation is a linear function of the process mean.  

 

Teoh et al (2016) write about how adaptive control charts are used to enhance the 

sensitivity in assignable cause variations. The adaptive control chart examined is the 

variable sample size chart, where there are warning zones between in-control and out-

of-control which signals to increase the sample size. They show how to optimize the 

sample size based on median run length.  

 

When control charts are set up on a new process, the first step is to measure the process 

variation to determine mean and standard deviation to control. Diko et al (2017) derive 

new charting constants to determine how many measurements must be done in this 

initial phase, both analytically and numerically.  

 

The capability of a process is its ability to produce parts within tolerance, i.e. 

requirements on the product. By reducing the variability in the production process, more 

parts will be produced within tolerance, and the scrap rate can be reduced. For products 

comprising a vast number of components, this is especially important, since one faulty 

component may be enough to make the product not function properly, and so the 

number of faulty final products is much higher than for each component (Montgomery, 

2013). 

 

Some resent studies in the field of process capability include Ganji & Gildeh (2016) 

who investigate how to index capability when the specifications are asymmetric: the 

upper and lower tolerances are not on equal distance from the nominal value. Weusten 

& Tummers (2016) study how to set preliminary specification limits based on the 

performance of the process, to be able to estimate a capability index.  

 

Regarding implementing new tools and systems such as machine learning in quality 

control, a consideration is change resistance among employees. Sim & Rogers (2008) 

discuss resistance to implementation of improvement programs, where the main 

contributing factors are aging workforce and low commitment from management.  
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3. Machine Learning 

Machine learning, a subfield of artificial intelligence, is the science and application of 

algorithms that use data to make predictions and decisions (Raschka, 2015). Instead of 

setting up rules manually for analyzing data, machine learning algorithms can 

numerically approach rules and connections in data. There are three main categories of 

algorithms for different kind of problems: Supervised learning, unsupervised learning, 

and reinforcement learning. 

 

3.1 Supervised machine learning  

Supervised machine learning solves the type of problems where there is historical input 

data and corresponding solutions. There are mainly two types: Classification problems, 

and regression problems (Raschka, 2015). For classification problems, the solution to 

each instance is a category of a set of predetermined categories. An example of 

classification problem would be to determine if a photo has a person in it. The 

categories would be having a person, or not having a person. Another classification 

problem would be to determine the genre of a song, where the genres would be the 

predetermined categories. For regression problems, instead the solution is a numeric 

value on a continuous scale. An example would be to predict the air temperature given 

the location and time. See figure 1 for a visual comparison. 

 

 

Figure 1 – difference between classification and regression (Oakes, 2016) 

 

There are two phases of a supervised algorithm. The first one is training the algorithm, 

which tries to create a function from the known input data to the known output data. 

This is done numerically. During this phase, the algorithm is fed with historical data, 

and returns the function which maps input to output data. During the second phase, new 
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input data is fed to the algorithm, and it returns categories for classifiers, and numerical 

values for regression (Raschka, 2015).  

 

To evaluate how well a classification algorithm performs, accuracy is commonly used. 

It is a measure of proportion of correctly classified entries. This is achieved by using 

input data with known output data, which the algorithm has not been trained on.  

 

3.2 Unsupervised learning  

Unsupervised learning is the categorizing of data, without knowing the categories of 

previous data. One common method is clustering. There are multiple clustering 

algorithms, but the general principle is to categorize instances based on similarities in 

data. One example would be segmenting a market into categories based on the 

customers’ buying patterns. Another type of unsupervised learning is anomaly 

detection, which attempts to detect outliers in the data. It tries to identify whether an 

observation comes from the same distribution as previous data. This concept is similar 

to process control in quality practices. The main difference is that in a machine learning 

algorithm, the distribution is defined by the computer, and can therefore be immensely 

complex. One approach to this is to manually identify the features in which anomalies 

may occur, to reduce the dimensions (Ng, 2013). Anomaly detection can be used 

together with classification algorithms, to identify classes with little data (Dunning & 

Friedman, 2014). Combinations of multiple algorithms can be powerful (Ko, et al., 

2016), however, constructing these is more complex and time consuming, as multiple 

algorithms must be chosen and integrated. For that reason, this paper will only consider 

one algorithm at the time.  

 

3.3 Reinforcement learning  

Reinforcement learning is fairly different from the other methods. The algorithm 

attempts to maximize some kind of reward, by acting in an environment and receiving 

feedback from the environment. The environment is often formulated as a Markov 

Decision Process, where the environment is in some state, and an action will move the 

environment into a new state. An example would be a chess playing algorithm. For each 

state of the board, there are multiple actions to take (moving the pieces), and they all 

yield new states (the board after the opponent moves). The reward could be the 

advantage in pieces and position, and the ultimate reward is check mate.  

 

Quality is often concerned with identifying and separating bad parts from good, and that 

is the case for engine audio as well. For this reason, this theory chapter will expand 

further on classification algorithms.  
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3.4 Perceptron 

One of the simplest of machine learning classification algorithms, which many others 

are built upon, is the Perceptron, which mimics a neuron in brains; see figure 2 of 

perceptron flowchart. Each feature in a sample is multiplied by a weight, and the 

weights are summed, and put through an activation function. For the perceptron, the 

activation function is a step function where a threshold number determines which class 

the sample belongs to. The goal of the training phase is to change the weights such that 

each sample corresponds to its known class. The weights are updated with the learning 

function, which takes the difference between the output and the desired output, 

multiplied by a learning rate (Raschka, 2015). 

 

                    
   

 

 

Where w is used to update the weight vector, such that            ,      is the 

class label,   is the predicted class label, and n is the learning rate. The   
   

xji is the 

input value. The weights are updated after each sample, in what is called an online 

learning. The perceptron will only find a solution if the classes are linearly separable. 

By changing activation function from the step function, better results can be reached.  

 

 

Figure 2 - Perceptron flowchart (Raschka, 2017) 

 

3.5 Neural networks  

Neural networks are networks of neurons, using parallel neurons. Deep neural networks 

also use sequential neurons, creating layers of neurons between input and output, see 

figure 3. Using parallel neurons allows for different inputs to be weighted differently for 

their influence on class belonging. Using sequences of neurons allows complex non-

linear functions to be created. The outputs of some neurons are simply features for the 

next neuron downstream. Neural networks have been increasingly popular in many 

applications because of their ability to model complex functions (Raschka, 2015).  
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Figure 3 – Deep Neural Network (ODSC Team, 2016) 

 

3.6 Activation function 

The activation function can be configured in multiple ways. It has the input of the sum 

of weights times the feature values, and outputs a value representing the class 

estimation. Instead of using a step function as in the perceptron, a smoother function can 

be better to adjust for the distance of the error. A common activation function is the 

sigmoid function. In contrast to the perceptron, the max and min values are asymptotes, 

meaning even fairly good estimates will have a small error.  

     
 

     
 

The sigmoid function, a common activation function 

 

3.7 Gradient descent 

When building networks of neurons, there are weights for each layer to estimate. This is 

commonly done through what is called gradient descent. The error is defined as the 

difference of the estimate and the desired output. To minimize this error, the gradient 

for each weight is calculated. Then, a step is taken in the opposite direction of the 

gradient. This requires the activation function to be increasing. The weights are updated 

and the procedure is repeated.  

 

3.8 Imbalanced data 

Having an imbalanced amount of data, such that the classes are significantly different in 

size, may cause problems. As the algorithm used may favor the larger classes during 

training, the final algorithm may be bad at detecting the more unusual classes. There are 

a few ways of dealing with this problem. The first would be to collect more data, to 
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even the classes out. If this is not possible, one could duplicate existing data from small 

classes, or delete data from larger classes. This is called oversampling and 

undersampling. A risk with oversampling is overtraining, and a risk with undersampling 

is that the algorithm will be undertrained.  Another way of dealing with this problem is 

to synthesize samples of the classes that are small. One popular method is Synthetic 

Minority Over-sampling Technique, which works by creating a synthetic sample 

somewhere in the feature space between one sample selected at random, and one of its 

k-nearest neighbors, see figure 4.   

 

 

Figure 4 – Synthetic Minority Over-Sampling Technique (SMOTE),  

where Y1 and Y2 are created from combinations of X (Xie, et al., 2015) 

 

3.9 Confusion Matrix 

One way of measuring how well an algorithm performs is by using a Confusion Matrix. 

When studying only two classes of data, each instance can be from either class, and can 

be estimated to belong to either class. This creates four different scenarios, as shown in 

table 1. To evaluate an algorithm, using the confusion matrix can be a good tool for 

understanding what is wrong. For example, it can indicate which class seems to be 

harder to detect or if the algorithm prefers one class over the other. This is especially 

interesting in the context of quality, where it is important to control the tendency of type 

I and type II errors, that is, the risk of classing a bad part as good, and a good part as 

bad, respectively. Depending on the cost of quality priorities, this may look different for 

different companies. For high quality products such as trucks, minimizing type I error is 

much more important than type II error. This is because a type I error means the error is 

not detected, and so the product may be delivered to the customer, where it will be 

unsatisfactory. A type II error, in contrast, will be investigated for reparation, but later 

correctly classified (Montgomery, 2013).  
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Table 1 – Confusion Matrix with four Scenarios 

 Actually positive Actually negative 

Predicted positive Correctly approved Type I error 

Predicted negative Type II error Correctly rejected 

 

 

3.10 Tuning a Neural Network  

For a machine learning algorithm to learn how to transform input to output, just 

showing training data is not enough. A suitable algorithm has to be selected, as 

discussed. Next step is to build a program which can adjust the weights, to learn. 

Gradient descent has been mentioned as a method for determining the direction in 

feature space to step in order to reduce the error. This is a numerical optimization 

problem in high dimension, and has to be calibrated. One parameter to adjust is the 

learning rate, which is the step size taken in the direction of the gradient. This affects 

how fast the program converges, whether it will constantly overshoot the target, and 

whether the program can get stuck in local minima. Similarly, the batch size, how many 

of the samples are trained on at once, affects the speed of convergence, as well as 

possibility to overcome local minima due to noise. Other parameters to tune were L2 

regularization which is punishment for overfitting, and number of iterations. There is no 

right way to do this, and this is done iteratively after each training and evaluation, 

before training again. See figure 10 in section 8. In connection to this, the network 

architecture may also be considered a parameter for tuning, such as the node 

configuration. There have been advancements in how to integrate the parameter tuning 

and network architecture into the machine learning phase, although this is not in wide 

use (Cortes, et al., 2017).  

 

3.11 Convolutional Neural Networks 

Convolutional Neural Networks (CNN’s) are networks developed for image sources of 

input. Instead of looking for patterns between any input features, the CNN will look for 

patterns in features that are close by. This requires that the input data is not just one 

vector, but organized in a two-dimensional coordinate system, such as an image with 

pixels along x- and y-dimensions. This allows the CNN to identify nearby features in 

both x- and y directions. A common task is to classify a photo based on the objects in 

the photo. Since an object can appear at any x- and y-position, the CNN approach is to 

try all x- and y-positions. This is done by only looking at a small part of the image at the 

time, and determining whether the object is there. The multiple layers in a CNN build 
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up small features such as edges or patterns, and further downstream combinations of 

small features to images that reminds of objects, see figure 5.  

 

 

Figure 5 – Convolutional Neural Network filters in  

three levels detecting faces (Strong Analytics, 2016) 

 

3.12 Recurrent Neural Network 

Recurrent Neural Networks (RNN’s) are neural networks where the nodes are not only 

connected from input towards output, but where some nodes connect back to nodes 

upstream, creating cycles. See figure 6. This enables networks to process sequences of 

input vectors, and consider previous vector inputs as well as the current. This makes 

them especially useful for data which is related to previous data, such as words in 

sentences, stock prices over time, or sound over time. One well known version is the 

LSTM network, where the memory is especially good at considering long-term 

dependencies (Britz, 2015). 

 

 

 

Figure 6 – Recurrent Neural Network, where Xi is input vector,  

hi is output, and A is node structure. (Olah, 2015) 

 

3.13 Predicting sample size requirements 

In classification, the larger data set available for training, the higher is the expected 

outcome of accuracy. Accuracy can then be described as a function of sample size. How 

this function looks is interesting to know because in a typical application there is a 

required accuracy from the beginning, which directs how much data has to be collected, 

and or if the project is feasible. Figueroa et al (2012) showed that this can be modeled as 
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the inverse power law, using only a few test runs of different sample sizes, to predict the 

accuracy on larger sample sizes.  

 

                             

 

The variables a, b, and c, depend on the specific dataset and algorithm, and have to be 

found anew for each problem. This is done by a least squares approximation from a 

number of test runs. In their study, they used sample sizes between 53 and 280 to 

predict accuracy for greater sample sizes. 
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4. Machine Learning and Quality Control 

Machine learning as a tool has been applied in many different environments. Quality 

control has to some extent been examined as well, specifically process control.  

 

One field that has been studied is control chart patterns such as shifts, trends, and 

cycles. Detecting patterns is important to minimizing variation by identifying the root 

cause and adjusting the process accordingly. Guh & Shiue (2005) found that decision 

trees could be used to identify control chart patterns. Wang, et al. (2008) also managed 

to recognize anomaly types using decision trees. Gauri & Chakraborty (2007) trained a 

deep neural network to find control chart patterns and features. 

 

Other studies set out to determine whether machine learning can be used to classify 

processes in or out of control. Smith (1994) used a neural network for X-bar and R 

charts to determine if a process was out of control. For large shifts in mean, she 

managed to detect equally well with neural networks as with regular control limits, but 

for large shifts, neural networks outperformed control limits. Shao & Chiu (1999) 

trained a neural network to identify different assignable causes, in an attempt to 

integrate statistical process control with feedback control of a few parameters. Most of 

these studies use simulated data. 

 

Pacella & Semeraro (2007) highlight the problem that many quality characteristics are 

correlated, and use a recurrent neural network to monitor quality on autocorrelated 

process data. Low et al (2003) also consider autocorrelated data, but specifically focus 

on variance out of control in their proposed neural network procedure.  

 

There have been some practical implementations as well. There are a few successful 

studies published on quality of fruit detected with visual machine learning algorithms 

(Pandey, et al., 2013) (Sa, et al., 2016). Plastic injection molding has also been studied, 

with production parameters as inputs (Ribeiro, 2005) (Tellaeche & Arana, 2013).  

 

Optimizing process parameters with machine learning can be considered experimental 

design. The field of diagnosis in artificial intelligence concerns determining whether a 

system is behaving correctly, and if not, what the reason for that is. These are very 

similar in the sense that both model the production system, but the main difference seem 

to be that diagnosis focuses on cause analysis, while experimental design focuses on 

finding the optimum. Machine learning algorithms are especially useful to model 

complex and unknown functions. Often in chemical industry, there is good 

understanding for the processes already, and for that reason, machine learning may not 
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be needed. Quality is often ensured with a feedback controller such as a Model 

Predictive Control. Machine learning to understand the process has successfully been 

used in assembly, although the requirements of product and production data are very 

high. Bosch held a competition in 2016 where they shared production data with an 

online community of data scientist, who tried to classify manufacturing failures (Bosch, 

2016). Out of 1373 contestants, the best submission reached a Mathew Correlation 

Coefficient of 0.52. The winners used XGBoost and Random Forests for their 

algorithm. 
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5. Audio processing 

Audio processing is a subfield of signal processing, which concern analysis and 

modification of signals. This field is vast and in this section I will cover the audio 

processing that is commonly used as preprocessing for machine learning purposes.  

 

5.1 Audio Sampling 

There are multiple steps of signal processing needed to make sense of audio data in a 

way that humans do. A digital audio recording in its rawest form (.WAV) is a vector of 

air pressure measurements, equally spaced in time. As we want the machine learning 

algorithm to treat the data similar to how humans comprehend sound, we want these 

measurements represented in frequencies.  

 

5.2 Frequency representations 

For static sound, sound that does not shift pitch over time, a Discrete Fourier Transform 

is appropriate. This is a transform that will approximate the discrete values with cosine 

functions at given frequencies, see figure 7. 

 

 

Figure 7 – Fourier transform from time  

domain to frequency domain (Elster, 2017) 

 

For sound that changes over time, however, this frequency approximation will not be 

representative. A Short Time Fourier Transform (STFT) is instead when the signal is 

divided into short time sequences, called windows, and the Fourier Transform is 

performed on them, under the approximation that the frequency is not changed inside 

the window. A naïve approach to the window is the rectangular window function, which 

is a vector of 1’s for a sequence of values, and 0 for all others. This is then multiplied 
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with the signal to create a windowed signal. This creates clear cuts at the end of the 

window. One problem with this approach is that the Fourier Transform consists of 

continuous cosine curves, creating ripple frequency artifacts at the end of the window as 

the function may be discontinuous there, see figure 8. For this reason, there are more 

sophisticated window functions, such as triangular or bell shaped, which give less 

ripples in frequencies. So besides representing the actual signal, window functions will 

introduce misrepresentations to the Fourier Transform. (Müller, 2015)   

 

 

Figure 8 – Rectangle window function with frequency  

artifacts in the frequency domain (Müller, 2015) 

 

There is a tradeoff between accuracy in time and in frequency. When using a longer 

window function, the artifacts at the end of the window will be less apparent, while 

information on frequency changes during the window is lost. A shorter window gives a 

better view of frequency changes, but creates more artifacts that will ripple through the 

frequencies (Bradford, 2007). For speech recognition, a typical window size is 20 to 40 

ms, with 50% overlap between frames. A Hamming window is often used. The power 

spectral density is the power of the signal for each frequency, as a function of frequency 

(measured in Watts/Hz). This is (proportional to) the square of the amplitude of the 

signal. 

 

5.3 Human imitating analysis 

The Mel Frequency Cepstrum Coefficients (MFCC) is a procedure to map the frequency 

spectrum into a scale that better represents how humans perceive sound (Davis & 

Mermelstein, 1980). Out of all the frequencies we can perceive, humans are better at 
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perceiving differences in lower frequencies than in higher frequencies. This is often 

done in preprocessing of speech. Speech recognition is a more common audio 

classification task than engine classification. One may ask if this step is necessary for 

engines, since the noise could be in frequencies where humans cannot detect them. If 

there are engines that make noises humans cannot detect, those instances would not 

have been classified as noise, but as good sounding engines. For this reason, it makes 

sense to investigate the sound humans hear. There could be potential in matching all 

kinds of errors with audio, to investigate whether a computer can hear other errors as 

well. That is, however, beyond the scope of this paper. 

 

The Mel filter will sum up the powers over a number of frequency bins. For higher 

frequencies, more frequencies are included, see figure 9. The logarithm of this power is 

then taken to represent the human sensitivity to volume.  

 

 

Figure 9 – 256 frequency bins are mapped into 26 Mel bins 

 

For deep neural networks, this has been used as the only preprocessing successfully, 

sometimes referred to as fbank (Hinton, et al., 2012). To gain the MFCC, a DFT is 

further conducted on the fbank to identify features of speech. Finally, this is normalized, 

by subtracting the mean of each coefficient from each frame (Hinton, et al., 2012). This 

is also discussed by Tóth (2013). 

 

5.4 Machine learning from audio 

Machine learning from audio is a field which has been primarily focused on speech 

recognition. In speech recognition, the task is to interpret the sound of spoken words as 

words and sentences (Hinton, et al., 2012); (Abdel-Hamid, et al., 2014). Studies have 
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also been done on bird whistles (Ross, 2006) and urban sound identification (Piczak, 

2015), as well as music genre classification (Sigtia & Dixon, 2014).  

 

Sound data is often preprocessed before an algorithm is trained on it. As described by 

Velik (2008), neural networks cannot learn to conduct Fourier transforms. For parallel 

computing purposes, however, a network with predetermined weights in its initial layers 

can be used to conduct a Fourier transform (Velik, 2008). 

 

As an activation function, the rectifier function,              , is a good choice in 

deep neural networks for sound classification (Tóth, 2013). First, the backpropagation 

works better on rectifier functions than the popular sigmoid, because of the avoided 

gradient vanishing effect since the rectifier is linear (Tóth, 2013). Second, many weighs 

are set to 0 due to negative activity values, which increases the performance of the 

network as well (Maas, et al., 2013). Third, it is faster to compute since the exponential 

does not have to be calculated (Tóth, 2013). 

 

Tóth (2013) also states that it has been popular to train neural networks with only one 

hidden layer, but recently it has shifted to using deeper networks. The demonstrator 

used 2000 neurons per hidden layer, and 1-5 hidden layers, on the TIMIT dataset of 

recorded sentences, a well known database for benchmarking in speech recognition. 

Furthermore, dropout reduces the level of overfitting in deep neural networks, in 

supervised learning tasks such as speech recognition (Srivastava, et al., 2014). They also 

use the TIMIT dataset for demonstration.  

 

Besides DNN’s, CNN’s have also been successful at classifying sound. Hinton et al 

(2012) state that an advantage with CNN’s are their “temporal invariance”, that is, their 

ability to detect a certain sound regardless of when it appears in time. Furthermore, they 

argue that there is an advantage with some invariance in the frequency dimension as 

well, due to variation in a spoken voice.  

 

Recurrent Neural Networks have also had success in speech recognition (Graves, et al., 

2013). They are suitable since they have a memory, and can for that reason consider 

many previous inputs in time. In the case of audio, each frequency window is processed 

as a separate input, which makes them possible to handle input sequences of different 

length, something typically not possible for DNN’s or CNN’s. Furthermore, because of 

the depth in time, recurrent neural networks can learn immensely complex dynamic 

patterns, such as spoken words, changing tone 10’s of times per second (Sutskever, et 

al., 2013)  
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6. Current testing situation 

During my participation at the Engine Test department at Scania, I received a good 

understanding of what they do and what problems they face. After the engines have 

been assembled, they are tested on how well they function. The engines arrive, one at 

the time, to a test cell where it is will be tested. Before its arrival, it has been prepared 

with a number of lids etc to make the testing go fast. The test bed operator receives the 

engine and locks it in position. Hoses and tubes are connected with all the necessities to 

run the engine. The operator leaves the test bed room and starts the engine from their 

control panel. An artificial load is put on the engine, simulating pulling the load of a 

truck. The power and torque are measured, together with temperature, rpm and other 

information. The engine goes through a program of different speeds, depending on 

which type of engine it is. All the measured values appear on the operator’s screen in 

real time, and all measurements have tolerances. When a tolerance is overstepped, the 

number is highlighted in red for the operator to spot. The operator also listens to the 

engine sound through headphones, to detect anomalies. When the engine stops, the 

operator prints a deviation report for the measured parameters during the test cycle. The 

operator then turns the lights out in the test cell and searches for leakage from the 

engine using a flashlight. There is fluorescent material in all the liquids making them 

easy to spot in the dark. If there is anything wrong with the engine, a repairer is called 

upon to take the case forward. Most of the measurements are automated through 

sensors, and compared with tolerances automatically. The major tasks for the test bed 

operators are checking for leakage, listening to the engine for anomalies, handling of the 

engine and its setup, and supervising the test run in case something would go wrong.  

 

Checking for leakage requires walking around the engine, and lighting up with a 

flashlight one part at the time. The input data here is visual, and the output is leakage or 

not, which is a classification problem. This could potentially be solved with machine 

learning, but would require a change of setup, including cameras, and different lighting. 

The problem is not trivial however, since the leakage can be small and may only be seen 

from a certain angle. Furthermore, some leakage which comes from the test bed 

equipment could be accepted, and so the operator or algorithm would have to be able to 

tell the difference. The algorithm potential is image recognition classification, such as a 

convolutional neural network.  

 

Handling the engines and setting up the test bed for each engine is a manual task. It 

could hypothetically be automated, but requires lots of gripping and moving through 

space, and must be flexible enough to adapt when new engine types are introduced. 

Input is an engine and equipment at certain positions, and output is an engine setup for 
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testing. This seems as if it is not suitable for machine learning. Industrial robots have 

been trained with reinforcement learning, so that they are rewarded when they act 

correctly. It seems that it is too critical to get this right every time, it might as well be 

done manually.  

 

Supervising the test run means looking at the engine through a window, making sure all 

the hoses and tubes stay connected through the test run and looking at the control panel 

for out-of-tolerance measurements. It also includes looking out for the unexpected, 

which is why this seems difficult to do with machine learning. Unsupervised learning 

such as anomaly detection could be used on the visuals of the cell. One problem with 

this would be the vast amount of data that would be the input, in the form of real time 

video.  
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7. Interviews 

Three interviews have been conducted, with somewhat different focus and scope. The 

first interview presented below is closely related to quality control and quality 

engineering, and did for that reason contribute more to the reflections of the potential of 

machine learning in quality control. The second interview widens the perspective of 

quality in an organization, and examines the applications in field quality. The third 

examines the market for machine learning services, as well as contribute with insights 

into broader applications in industry and sound analysis.  

 

7.1 Interview with Johansson 

I interviewed Krister Johansson at Scania, who works with error proofing in production. 

They faced many types of issues. Most of them consisted of detecting defects and 

originated from previous defects.  

 

They had had problems with drilling a hole at a certain location of parts. To detect if the 

hole was not drilled, they had set up a vision system. The system was simple and it was 

programmed to detect holes in a visual interface. If a hole was not detected, the 

conveyor belt would be stopped and an operator would have to approve or remove the 

part. (Johansson, 2017) This type of problem could work with a machine learning 

algorithm as well, but does not seem practical. Detecting a hole is such an easy task that 

a probe or any kind of sensor should be able to do it.  

 

When a defect arises, there are often many defective products, since the machines are 

configured to produce with low variation. The problem for the quality engineers is then 

to trace down how the defect arises, to correct it. This requires good knowledge of every 

step in the process (Johansson, 2017). This could be compared with a medical doctor, 

diagnosing a patient. This analogy is interesting because machine learning algorithms 

have been used to aid doctors making accurate medical diagnoses (Al-Shayea, 2011); 

(Li & Zhou, 2007). The input for this algorithm would be the end quality of the product, 

and the output would be what process is behaving incorrectly and causes the defect. The 

problem with this would be the large amounts of input parameters there may be, 

together with the small amount of historical data on defects, and large number of defects 

possible. An alternative would be to teach the algorithm which machines are in contact 

with which parts of the components. However, then it would not be machine learning, 

as the algorithm would not learn the possible defects from experience, but from a list 

handed to it. Johansson did sound interested in a system like this when I discussed it 

with him.  
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Perhaps diagnosis with machine learning can be done on a work station level. The more 

often quality is measured, the easier it is to connect input to output. If quality is 

measured right after a machining operation, this may well be subject to machine 

learning and diagnostics that the operator normally does. Just by going through what 

machine settings the operator changes, it may be possible to learn from this to apply 

either as recommendations or as automatic adjustments, as a control system.  

 

Many inspection tasks are automated, especially those measuring dimensions. Some 

surfaces are inspected manually for surface defects. There were also camera systems for 

surface defect detection. One system was using machine learning, and was trained with 

pictures of good and bad components. The software was made by an external firm, 

while the integration with the product line and operator was done by Scania. Since 

surface defects are difficult to measure, it has traditionally been done manually. 

Programmed vision systems can be used as well, but are not as flexible for different 

kinds of defects as systems trained with machine learning. The time to train the network 

did not seem to take more than a few hundred images, while the installation with PLC 

and interface for the operator took the main part of the implementation time and effort. 

The competence required was not in machine learning at all, that is essentially what the 

external firm is providing, but in operations. The system requires a server with a high-

end Graphics Processing Unit (GPU) for consumers, to process the images in real time. 

It also requires standard industrial cameras with resolution good enough do detect small 

defects. Although the software license was somewhat expensive, and the server required 

some setup, that can be used for more than one inspection. For that reason, Johansson 

sees great opportunities with this system for future inspection needs. (Johansson, 2017) 

 

Another of the problems they faced was detecting gaps between two components after 

assembly. This was done manually for a time before a camera solution was tested. In 

this camera solution, many cameras took photos of the assembled components. The 

images were then processed in external software to produce an estimate of the gap 

between the components. There was a tolerance which this measurement was compared 

to, to determine whether the assembly passed (Johansson, 2017). This is a special kind 

of problem where dimensions are determined by photographs, which often are 

considered inexact. It required weeks of configuration with overlapping manual checks 

to make sure the camera solution was good enough, and that it was trustworthy. I was 

under the impression that the system did not use machine learning, but rather was 

trained through a vision interface. This problem could probably be approached with 

machine learning, using image recognition software for regression. However, this seems 

unnecessarily complicated considering that the problem is linear. It would require time 
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to build the system and knowledge of machine learning algorithms, as well as 

computational resources such as a server. For the same problems, I believe simpler 

sensors could be advantageous, such as photoelectric or laser sensors.  

 

In a modular product range like Scania’s, variations of parts can come together to form 

multiple subassemblies and final products. A problem that may arise is the assembly of 

incorrect parts, creating an undesired subassembly. To avoid this, sensors can control 

what part is being used. Scania uses bar codes on the parts with information on what 

model it is, and a bar code scanner to detect it (Johansson, 2017). This is a simple 

solution which does not set out to detect features to dimensionally different parts. This 

requires that each part has the correct bar code on them. An alternative would be to use 

multiple sensors to detect features which are different for different part models. This 

may be complicated and require lots of sensors, as well as being inflexible for new part 

introductions. Image recognition software could be of use for this purpose. Training a 

machine learning algorithm to classify different parts should not be too difficult, since 

the differences between different models are much greater than the variation within, 

assumed all model differences are visible from the outside. However, a system like this 

would require computational resources and training time. The simple system of bar 

codes may well be just as effective as long as they are correct and readable.  

 

When having problems with the process, understanding what is happening is essential to 

finding the problem. As some machines are operated with closed doors, it may be 

difficult to get a good understanding for what is going wrong. By inserting cameras 

inside the machines, and displays on the outside, the operator can watch what is 

happening and notice if the machine is behaving out of the ordinary (Johansson, 2017). 

This is a simple yet effective solution that allows control over the process by the 

operator. An obvious alternative is to have glass doors on the machine. However, 

cameras can give a better view, since it is possible to position them in multiple angles. 

Machine learning in this situation would be about detecting what is not going right. 

Vision systems would require video, since machining is done over time. This is 

computationally very heavy and it would be difficult to detect anomalies, considering 

the variations in appearance due to cutting fluids. Many machines have sensors for their 

own control system. This could perhaps be relevant input for machine learning, as 

discussed above. For gaining initial control, however, machine learning does not seem 

to contribute.  

 

I asked Johansson about reliability for new systems, including their machine learning 

system for surface defects. To make sure they are reliable, all new systems are run in 

parallel with previous systems, such as manual quality control. The most important 
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aspect of a new system for Scania is that is does not approve any defective parts. The 

whole configuration is then between warning about too many defective parts, and just 

the right ones. If the system warns too often, instead, the operators feel that they cannot 

trust it. For that reason, the decision to start using a new system is made by the 

technician when they consider the system reliable (Johansson, 2017). However, 

machines could be considered more reliable than people. Some defects, such as surface 

defects, are hard to measure and compare, and it is not easy to have a guideline for what 

to pass and what to scrap. For this reason, it is often up to the operator, and different 

operators may take different decisions on borderline cases. Furthermore, human errors 

occur in inspection, and can be affected by mood and focus. In the quality gates, work 

stations in the production line where inspections are made, Scania has focused on 

improving ergonomics and reducing distractions in attempts to improve quality 

inspection (Johansson, 2017). 

 

7.2 Interview with Snellman 

I also interviewed Isolde Snellman, who works with Quality Information at Scania. She 

develops tools for statistics about field quality, and makes customized quality reports on 

demand. The internal customers are mostly field quality engineers, following up on 

quality issues the end users have experienced.  

 

The problems the field quality engineers are facing include detection of deviation in 

quality, deciding whether to start a quality case, tracking down the root cause, develop a 

solution, and deciding on market action. (Snellman, 2017) 

 

Detecting deviations may seem like something suitable for machine learning. However, 

what to detect here is the increase in the ratio of faulty components per all of those 

components. Since it seems fairly clear what to look for, there can hardly be a need for 

machine learning.  

 

Machine learning can potentially be useful for root cause analysis. Association rule 

learning is a method for finding relationships in large datasets. If a breakdown in one 

specific component more often occurs in trucks that come with another component, this 

can be learnt as a rule and displayed (Snellman, 2017). It would then be up to the 

engineer to examine the causality of the relationship. The data is readily available for 

the Quality Information team. Developing this kind of system also requires high 

competence in machine learning, which is available as well. It will take time to develop, 

tune, and implement it. Since there are systems for the same purpose today, the value of 

the new system would only be the additional insights. When I asked Snellman about 
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transitions between systems, she though running both old and new systems in parallel 

for a while would let the users test both on the same data, and discover for themselves 

the advantages of the new system. One idea was to introduce the system to some users 

and train them in it, which later would show their colleagues (Snellman, 2017). 

 

Besides regular quality improvements, Snellman sees great possibilities with machine 

learning, including for forecasting, report classification, and even for truck driving 

feedback.  

7.3 Interview with Strömbäck 

The final interview was conducted with Henrik Strömbäck, IT architect at IBM. He told 

me about a few projects they have done in predictive maintenance. By collecting data 

about breakdowns, noise and vibrations, they had built systems that could predict 

breakdowns, which then could be prevented by maintenance.   

 

Many of their customers are not sure how this new technology can be used and what 

kind of results they can expect. IBM and their competitors contribute with knowledge in 

the field, as well as experience from similar industrial applications they have done 

before (Strömbäck, 2017).  

 

There seems to be two main types of products, the first being standard applications such 

as image classification and speech recognition, which are offered ready to use as a cloud 

service. The other type is custom made products, which requires designing a machine 

learning algorithm adapted for that specific task (Strömbäck, 2017).  

 

Strömbäck’s view on reliability is that customers realize that custom made machine 

learning implementations are experimental initially, and that it may take some 

adjustments before a system is ready to be used by a large number of users on a daily 

basis.  
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8. Development of acoustic classifier 

8.1 Iteration and resource observations 

According to Kotsiantis (2007), the flowchart (figure 10) describes the steps and orders 

in making a machine learning classification algorithm work. As I set out to do this 

myself, the resources needed for each step have been considered. 

 

 

Figure 10 – Flowchart of classification  

construction procedure (Kotsiantis, 2007) 

 

The process of developing a supervised machine learning algorithm is not as straight 

forward as it may seem. It is an iterative process, not only in the sense of numerical 

computations, but in the design phase as well. The further down you get in the 

flowchart, the more times you may have to iterate to get it right. There are guidelines 

and practices on how to preprocess data and tips for network architectures, but there are 

no right answers. The resource requirements were studies throughout the project 

including: 

 

 Time – to do/wait 

 Time – to calculate 

 Knowledge – Machine Learning, subject 
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 Cost 

 Computational resources 

 Storage of data 

 

8.2 Identifying of the problem 

Identification of the problem may seem like a trivial part, but formulating a problem 

which can be solved by a machine is no obvious task for someone unfamiliar with 

machine learning. One must consider what the available data is, such as if there is input 

data with matching output data or not. Then one needs to consider the output, if it is a 

classifier, a regression, or a decision to interact. My project was to automate detection 

of bad sounding engines. The problem is to separate bad sound from good sound; a 

classification problem with two classes. There was previous data to train the algorithm 

on, and so I could use supervised learning. An initial idea was to have the algorithm 

separate different types of engine errors from each other, and so even this early step had 

to be revisited in the process. The identification of the problem is not too time 

consuming, as it is often fairly clear when a project is initialized.  

 

8.3 Identifying required data 

Identification of required data includes figuring out what data is needed, finding what 

data is collected and what needs to be collected, collect data, finding who owns the data, 

and being granted access to that data. In my case, there was data collected for a time 

period, but to gain more data, I had to wait for more engines to be tested. To gain access 

to the data, I had to wait for the owner to grant me access, as well as talk to a number of 

employees to figure out in which internal systems the data I was interested in was 

stored. Generally, collecting data can be very time consuming, depending on the 

production rate and amount of data required. The amount of data needed depends on 

how complex the data is. Identifying which data is required does not require too much 

knowledge of machine learning, although it does require knowledge of the task and of 

the organization, which someone working with the problem typically has. Depending on 

the amount of data, storage needs to be considered as well.  

 

This step was revisited multiple times in the process, when trying out smaller datasets of 

less internal variation in the classes to easier distinguish them.  

 

8.4 Data preprocessing 

Data preprocessing requires knowledge and computational resources. After having 

collected all the data, I integrated different data sets to create one set of the data I 
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needed. I then built a program that would cut the sound files to make the sounds 

comparable. This was done through visually identifying a frequency span where the 

difference in rpm was easily detected, through a spectrogram, see figure 11. The 

amplitude for each point in time in this frequency span was averaged, and the points in 

time where the amplitude average changed the most were used to identify the changes in 

rpm. This cutting reduced the data, making it easier to work with, but may have lead to 

that sound classified as bad was cut off from some files.  

 

 

Figure 11 – Spectrogram of an engine sound 

 

 

The sound data was then transformed to the frequency domain using a Short Time 

Fourier Transform, as described in the Theory section. Both window function and 

window length have been iterated a few times.  

 

In a later iteration, the STFT was transformed to the logged Mel scale. The final 

Discrete Fourier Transform to receive the MFCC was not performed, as discussed in the 

theory section. 

 

As a Deep Neural Network algorithm was selected later on the input for the algorithm 

had to be of equal length. For this reason, the STFTs where cut off which further 

reduced the data, but also risked that dynamic noise were cut off. The data was later 

normalized around 0 with a variance of 1, for each feature to make the gradient descent 

more effective.  
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When using a Convolutional Neural Network instead, I also had to revisit the 

preprocessing, and decided to pad the short instances with 0’s instead of cutting the 

longer data short. That has the effect that all data was used, leaving bad sound at the end 

of the sound files detectable. I also avoided cutting the data short based on rpm and 

frequency, and so the log Mel frequency representations of the full sound recordings 

were used.  

 

This stage requires knowledge about how the data needs to look for an algorithm to 

handle it, as well as specific knowledge of the kind of data. It also requires active time, 

and depending on the dimensions and size of the data, preprocessing may require some 

computational resources as well.  

 

8.5 Definition of training set  

The training set was chosen based on the small number of instances in the class of bad 

sounding engines. To not lose any of the data when training, cross validation was used, 

in such a way that algorithm was run multiple times, with change in which data was test 

and which was training data. To make sure each of the classes was represented 

proportionately in the test and training sets, a stratified k-fold cross validation was used, 

using the same distribution between the classes in both test and training set. 

 

This is not too time consuming and there are common proportions to use. To make the 

findings general, the training set data should not be handpicked but randomly selected. 

Having 80% training and 20% testing is common, but using larger amounts of data may 

make it possible to include as much as 99% of the data in the training set (Raschka, 

2015). It only requires some understanding about the tradeoff between training and 

testing.  

 

8.6 Algorithm selection 

Selecting the algorithm is a major part of solving the problem. There are often multiple 

alternatives that can solve similar problems, and there is often no obvious best 

alternative. To be able to make a good decision, one should have knowledge of different 

algorithms, and it may take time to be well informed of the advantages and 

disadvantages of the different alternatives. For sound classification, some well used 

algorithms are  

 

 Deep Neural Networks 

 Recurrent Neural Networks  

 Convolutional Neural Networks 
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I have first used a Deep Neural Network (DNN) and in a later iteration a Convolutional 

Neural Network (CNN). See the theory section for a discussion on how they work and 

what they are good for. The DNN was a first choice because it has showed successful 

results on speech recognition, while being fairly straight forward to construct. The CNN 

being a special case of DNN, was later chosen because of its success in image 

recognition. Perhaps counterintuitive, image data is fairly similar to sound data, 

considering that the sound after processing is represented in a spectrogram or similar, 

see Figure 12 of log Mel sound.  

 

Recurrent Neural Networks are good at detecting complex dynamic relationships in 

time series data, and have been successfully used on the TIMIT dataset (Sutskever, et 

al., 2013). However, since engine data is not especially dynamic, and since RNN’s are 

considered more difficult to train than other networks (Sutskever, et al., 2013), I chose 

to focus on the DNN and CNN.  

 

 

Figure 12 – Spectrogram of an engine sound on the log mel scale  

 

8.7 Training the algorithm 

The training phase includes running the algorithm in training mode, feeding it the 

training data with classified samples. This especially requires time, as it is done so many 

times. It also requires computational resources. There is a tradeoff between 

computational power and time to run the training. For large networks, the training can 

be done on multiple servers at the same time (Zaharia, 2016), and at a GPU to increase 

the computation speed. Some companies offer servers for short term renting, 

specifically for large computations, called cloud computing. Since many servers then 

can be used in parallel, the time can be greatly reduced. The software may also affect 
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how long it takes to train the algorithm. I used Scikit-learn library in Python 3 for DNN, 

and Keras on backend Theano for CNN, both run on CPU on a PC. Each run took 

between 1 and 5 hours, and was iterated many times. 

 

8.8 Evaluation with test set 

The evaluation of the training is done with the test set. It is fast and easy compared to 

the training. Good performance measurements should be selected to determine how 

successful the algorithm is. I used a confusion matrix to be able to separate type I and 

type II errors. The result can be an indicator on how to proceed with tuning or whether 

to back further in the process.  

 

8.9 Parameter tuning 

Tuning of the parameters is done based on the performance of the test set, performance 

on the training set, as well as the loss function convergence. This is a systematic 

exploration since it is repeated many times. It takes some active time to make a plan for 

how to change parameters depending on result, and to revise that plan. The parameters 

will also affect training time. This part of the process requires good understanding for 

how the algorithm works and is the final step of making a successful machine learning 

program.  



38 

 

9. Results 

9.1 Audio classification 

From the DNN, the results were unsuccessful, meaning there was no accuracy on the 

testing set that reached more than slightly higher than a naïve guess. The higher 

accuracy the algorithm received on the training set, the lower it received on the testing 

set.  

 

For the CNN, however, partially successful results have been achieved. For the whole 

dataset, containing a combination of engine models and different engine errors, no 

accurate results were reached. For dataset containing only one engine type and one type 

of error, the CNN was able to classify the test set successfully. The network that 

reached this accuracy was a convolutional neural network in thirteen layers, consisting 

of convolutional layers, pooling layers, and fully connected layers. Specifics on the 

network architecture can be found in Appendix I. Some results are showed in table 2 

below.  

 

Table 2 – selection of the many test evaluation results 

Networks Type I errors Type II errors 

CNN – type I focus 0.0% 12.5% 

CNN – type II focus 20.0% 4.0% 

DNN 13.0% 84.90% 

 

9.2 Resource requirements 

The resources that were needed for this specific design, is presented in Table 3 below. 

The values are cumulative, such that the time to do/wait/calculate is a sum of all 

iterations. As none of the steps required direct costs such as server renting, that resource 

column has been excluded.  
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Table 3 – resource requirements 

 

In the following section, the tradeoffs between the different types of resources will be 

discussed.  

 

9.3 Quality problems and potential solutions 

In table 4 below are the results of my analysis based on the interviews and literature 

review, for what machine learning can be used for when it comes to quality. As stated 

above, I have not studied these as in-depth as engine sound, and for that reason cannot 

determine their actual feasibility. This is, however, an indicator of what could be studied 

and or tested further. 

 

  

  

Time 

to 

do/wait 

Time to 

calculate Knowledge 

Computational 

power Storage 

Problem - - Basic ML - - 

Identification 

of required 

data 

A few 

weeks - 

Task & 

organization - 

100s of 

GB 

Data pre-

processing 

A few 

weeks Minutes Data & ML 

Personal 

Computer 

100s of 

GB 

Definition of 

training set - - Some ML - - 

Algorithm 

selection Days - Good ML - - 

Training - Weeks - 

Personal 

Computer 

10s of 

GB 

Evaluation 

with test set - Minutes Some ML - - 

Parameter 

tuning Hours - Good ML - - 
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Table 4 – quality problems and potential machine learning solutions 

Quality Problem Machine Learning Feasibility 

Audio anomalies Classification (CNN) Feasible 

Checking for leakage Image classification Potential 

Setting up engines Reinforcement learning 

Unnecessarily 

complicated 

Supervising testing Image classification Potential 

Feature detection Image classification 

Unnecessarily 

complicated 

Cause diagnosis 

Multidimensional 

Regression, association 

rule learning Potential 

Machine adjustments 

Multidimensional 

Regression Potential 

Surface defects Image classification Feasible 

Assembly gaps Image Regression 

Unnecessarily 

complicated 

Part identification Image classification 

Unnecessarily 

complicated 

Machine error cause Image classification 

Unnecessarily 

complicated 

Field quality detection 

Association rule 

learning 

Unnecessarily 

complicated 

Field quality cause 

analysis 

Association rule 

learning Feasible 

Predictive maintenance Classification Feasible 

Control chart pattern 

detection Classification Feasible 

Optimizing production 

parameters Classification Potential 

 

For the discussion that led to this, see sections Theory, Current testing situation, and 

Interviews above.  
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10. Analysis & discussion 

10.1 Audio classifier 

Engine sound is complex. In contrast to music and voices, engines are not adapted to 

make sounds humans can easily detect and distinguish; the sound is merely a byproduct. 

This is both the reason for this project, and the reason for why the problem is so difficult 

to solve. The results of the CNN were relatively successful, considering that the 

algorithm could tell apart all bad engines from most good engines, of one type. This 

means CNN’s are one alternative of how to solve this problem. To make the engine 

sound classifier more accurate, there are requirements which are not met today. The 

main issue is insufficient training data. Scania makes large quantities of engines, but 

very few of them sound bad when tested. This means there is plenty of data in total, but 

very little concerning bad sounding engines. Furthermore, Scania produces many engine 

models, which naturally sound differently. Each engine model will also have different 

sounds for different kind of errors. As this may be difficult to collect, a realistic solution 

may be to go with other algorithms. One that may seem promising is anomaly detection. 

As discussed in the theory section, anomaly detection calculates distributions in feature 

space, to determine whether or not a sample belongs to the population of good samples. 

The advantage of this would be that it may work with only sound samples of good 

engines, which is the vast majority. An apparent disadvantage is the inability to separate 

different kinds of bad engines from each other. However, this is clearly an aspect of 

lower priority. Furthermore, classifiers rely on categorized data to train on, which 

requires that the data is correctly categorized. Considering that it is difficult to tell 

engine sounds apart, there is a high risk that some engines in the training set are 

incorrectly categorized. This could naturally lead to an algorithm which cannot separate 

good and bad sounding engines. By using unsupervised techniques, such as anomaly 

detection, this problem can be avoided. 

 

10.2 Resource model synthesis  

The idea here is to create a model for what kind of scenario leads to what kind of 

resource requirements. There are a few well known tradeoffs in computing, of 

computational time, memory, and computational resources. Computational resources 

and memory can both be connected to money, as they can be bought or rented through 

cloud computing services. The different inputs for this kind of model would be the 

situation, which can be broken down into  
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 Solution requirements 

o What requirements there are on accuracy etc 

 Data  

o How large the data is  

o How complex the data is in terms of how difficult it is to understand and 

preprocess, including number of dimensions 

 Organization 

o How rigid the organization in terms of change and data availability 

 

Besides requirements for the algorithm, different organizations may have different 

resources available already, such as in-house competence or computational resources.  

 

Accuracy requirements will affect the algorithm selection, the training and the 

parameter tuning. A high accuracy requires careful selection of the algorithm, as the 

algorithm needs to suit the data well. This requires more knowledge of different 

machine learning algorithms, but also good understanding of the structure of the data. 

The training is mainly affecting the time, as more advanced algorithms generally require 

longer computational time. Parameter tuning would also require more time, and 

knowledge, as this is the final step to achieve a well functioning algorithm.  

 

The data size will naturally affect computational times for data preprocessing, training 

and testing, as well as storage requirements. The complexity of the data will affect the 

knowledge and time required for data preprocessing, and the knowledge and time 

required to select a suiting algorithm. A complex dataset may also increase the effort to 

select a good training set.  

 

The time it takes to identify the data needed, and being able to access that data can be 

different in different organizations, depending on how restrictive the IT systems are and 

how access procedures are designed. This also affects what software is available and 

allowed which may increase difficulties of preprocessing and training.   

 

The parts of the situation each set requirement for the process steps according with 

above analysis. Further are these process steps dependent on resources in accordance 

with the result table. As I remove the process steps, and connect the situation directly to 

the resources needed, I find the relationship portrayed in the Figure 13 below.  
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Figure 13 – graph portraying the relationships of situational elements  

and resources required for successful machine learning design 

 

The idea is that this model should help the understanding of what different machine 

learning problems need in terms of resources to be solved successfully. By first 

identifying the situation, the required resources could be understood. The second step 

would be to compare the available resources with required, and consider acquiring 

additional resources. It would be useful with this relationship described as some kind of 

function, for example where a certain measurement of accuracy would require a certain 

level of skill etc. That is however not possible to determine, and this model does not set 

out to do so. This should rather be considered an indicative guide. It is important to note 

that this is based on one demonstrator project and would benefit from being verified by 

further studies. One key takeaway, regardless of the exact connections, is that if a 

company increases all of their resources dedicated to machine learning projects, it will 

become better at solving any machine learning problem.  

10.3 Matching problems with machine learning 

The problems discussed are by no means exhaustive; there are certainly more quality 

related problems suitable for machine learning. The feasibility is based on the 

interviews and my understanding of the problems and machine learning. The point here 

is not to decide whether or not these can be solved with machine learning, but to come 

with suggestions on future investigations, and to show that there may be plenty more 

applications, even in this narrow field of machine learning in quality control.  
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10.4 Reliability 

Reliability, in terms of quality, refers to how rarely a product fails (Montgomery, 2013). 

The reliability of a quality detection system could similarly be considered reliable if it 

rarely fails to detect quality. This can be measured in hard numbers such as accuracy or 

type I and type II errors. However, reliability can also be considered whether the system 

is trusted. One issue to consider is how to make the people working with the system 

trust that it does what it is supposed to. Isolde Snellman experienced that users were 

overconfident in the results, when the system provided results in new applications 

(Snellman, 2017). This causes a risk that the results are trusted to a higher extent that 

they should, leading to bad decision making. Krister Johansson also talked about trust, 

and argued for the importance of eliminating type I errors first. Then, the system should 

be configured to eliminate type II errors, to increase trust. False alarms were the main 

issue for distrust in his experience (Johansson, 2017). Naturally, type II errors are easier 

for operators to detect than type I errors, since type II may require an operator to double 

check the quality manually for those classed as bad quality. Discovering type I errors, 

instead, requires a manual check of all good parts, which is a much more comprehensive 

task. To properly ensure high accuracy and trust, initially running systems in parallel 

may be a good solution, which will make it possible to study both type I and type II 

errors and how they decrease to a satisfying level. By first focusing on eliminating type 

I errors, and then focusing on type II errors, there is a risk of actually increasing type I 

errors. If type I errors are first eliminated, the class border is fairly close to the good 

samples in feature space. If later, only type II errors are detected and subject to training, 

this could move the class border away from the good samples, increasing type I errors.  

 

One clear advantage of a human operator is their ability to act on the unexpected. An 

algorithm can act according to how it is taught, but is bad at understanding new 

situations. An example would be if an audio detection system was introduced that can 

determine what is wrong with the engine, and then it encounters a new error, or a new 

type of engine, or a broken microphone. How it would act in this situation is difficult to 

determine, but it would probably not be able to handle the situation satisfactory. A 

natural solution would have some kind of other-class for anomalies, which would signal 

an operator to help.  

 

10.5 Readiness of machine learning in industry 

As new technologies develop, they may be more or less ready to be applied on a wider 

scale. This is the case for machine learning as well. Although it has conceptually existed 

for half a century, it is in recent years machine learning has really taken off, partly due 

to the advances in hardware. Whether it is ready to be used depends on the requirements 
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for accuracy, and how common the problem at hand is. The Imagenet Large Scale 

Visual Recognition Challenge is an annual challenge which serves as a benchmark in 

visual classification, and is a good indicator for how far the technology has reached. 

Deep neural networks won the first time in 2012 and have been the winners since. In 

2015, the algorithms surpassed human accuracy, see figure 14. 

 

 

Figure 14 – Error reduction over time due to development  

in Machine Learning (Stanford Vision Lab, 2017) 

 

Speech recognition is one of the main applications for machine learning on sound, and 

is therefore one of the most studied. Although speech recognition consists of many 

steps, including making sentences, one on the first is to recognize the sounds and 

classify them. As mentioned earlier, the TIMIT dataset is well known for 

benchmarking. The error rate has decreased over time:   

 

 

Figure 15 – TIMIT phone error rate development over time  

(Abdel-rahman, et al., 2009) (Abdel-Hamid, et al., 2014) (Lu, et al., 2016)  
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The slow increase indicates that classifying sound is difficult, and that there is a long 

way to go before perfection. In speech recognition, sounds are combined to form words, 

and words to form sentences. This makes it possible to guess on similar sounds or 

similar sounding words depending on the other content in the word or sentence. As a 

high functionality has been reached, the incentives to improve speech recognition 

further may have decreased.  

 

Competence in machine learning is sought after in the modern job market, and many 

competent students end up in large software companies. Some of these companies offer 

their knowledge as a service to others as well, such as industrial companies. The range 

of services spans from parallel computing servers, to software licenses, or even 

pretrained algorithms ready to use in the cloud. For standard tasks like image 

recognition or speech recognition, these solutions may be excellent approaches, 

effectively eliminating the need for machine learning competence in-house. For more 

specific problems, however, these are not enough, as a solution will have to be 

customized.  

 

10.6 Testing setup 

The current test cells have a microphone on the wall. It samples in 22050 samples per 

second, in stereo sound. The cells are small rooms with closed doors, and from in there 

you can hear an engine being tested in the next cell. The walls are hard and covered 

with equipment used for testing engines. To improve the ability to detect anomalous 

sounds, for both operators and computers, an improvement in this environment could be 

a good step.  

 

First of all, I recommend sampling in 44100 Hz. A sampling rate is twice the maximum 

frequency possible to reproduce with frequency analysis. This means 22 kHz sampling 

only yields about 11 kHz as a maximum frequency to detect. Instead, by using the 44.1 

kHz standard sampling rate, the analysis will be able to detect up to 22 kHz, which 

includes the full hearable spectrum up to 20 kHz.  

 

The bit depth, that is, the resolution of each sample, is 16-bit as of today. This is 

common in CD quality music recordings. Higher bit depth than that does not sound 

better, however it can matter when the audio signal is being processed. For that reason, 

most audio professionals use 24-bit (Connor, 2008). In this application, the audio is 

being processed in multiple steps, and so I would recommend considering 24-bit of bit 

depth.  
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Stereo could be useful if it was recorded from different microphones at different 

locations in the cell. As of now, the audio signal is very similar, due to the distance 

between the engine and the microphone, and due to echoes in the test cell. For that 

reason, half the data is not useful. I would recommend recording in mono for data size 

reduction.  

 

As sound volume decreases by the square of the distance to the source, having the 

microphone closer to the engine could yield better recordings, as more direct engine 

sound would be recorded, and less reflected from the walls. Please note that it is 

important that the microphone is in the same position, and probably should not be 

moved back and forth for each engine test. Another way to reduce the reflection from 

the walls is to introduce sound absorbent materials where possible. A problem with this 

is that the cells are subject to a rough environment with engine fluids leaking, and 

already covered with equipment. Perhaps absorbent ceiling panels could be something 

to further investigate.  

 

Absorbent materials will decrease echoing, and make the direct engine audio signal 

clearer; however it will not reduce noise from adjacent test cells. Insulating walls, 

particularly with heavy materials, would reduce this noise. Since this seems to be a 

rather comprehensive measure, I would suggest starting out with others. Furthermore, 

when engine testing is done at a lower capacity, one step towards improvement would 

be to simply use every other test cell, leaving an empty in between. Another approach 

would be scheduling the test cells so that every other cell set up their engine while the 

others run the tests. However, the sound from adjacent cells is not a major contributor to 

noise, in my view.   

 

Good equipment can make a difference as well, in both ends. Microphones can have a 

huge difference in quality. Some may be adapted for speech or music, but the 

microphones that should be used in this setting are those which represent sound in the 

most natural way. There are dust and water resistant microphones for industrial 

environments available. Likewise, the headphones used by the operators can affect their 

ability to detect noise. Besides the ability to represent sound while new, speakers lose 

their ability over time, especially if they are used extensively. Without knowing the 

quality of the microphones or headphones used at Scania, I would recommend trying 

high-end products to evaluate the difference.  

 

Storage of audio data is one of the major limitations to training a machine learning 

algorithm, as discussed. For that reason, I recommend storing more data, but also 
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storing it differently. Today the data reflects what is produced, that is, more of some 

engine types, and very few with sound anomalies. To better be able to train a machine 

learning algorithm, sound anomalies must be prioritized. I recommend saving all 

recordings of anomalous sounds going forward, as well as equal amounts of data from 

different engine types. I do recommend continuing saving the files in WAV format, as 

other formats are compressed with loss of information. To reduce the overall space 

requirements, I would suggest a lossless compression. Besides increasing the potential 

for machine learning in the future, saving anomalous sound makes a good starting point 

for training operators at detecting anomalies.  

 

10.7 Ways to integrate with testing 

If a machine learning algorithm could be 100% accurate on detecting sound anomalies, 

the operator would not have to listen to the engines run. Their presence is still required 

since they are setting up the engines for testing, and check for leakage afterwards. 

However, operators could potentially service multiple test cells. This is not the case for 

a near future. Before this will be feasible, more anomalous sounds must be recorded, or 

other algorithms explored, as discussed above. A first step to integrate this technology 

with the testing could be through the preprocessing. Instead of listening to the engine 

sounds, the operators could potentially be analyzing spectrograms. If this makes it easier 

or harder to detect than listening to sound is hard to say, but it will require training for 

the operators. Advantages of using this is that two spectrograms can be compared side 

by side, they can be discussed and analyzed with all information available at the same 

time, where you do not have to take time to listen again. A potential advantage if this 

would work out well is that it may be faster than listening. The effect of this is as 

discussed above, that operators may be able to take care of multiple test cells. Just like 

the actual sounds, the spectrograms will be easier to interpret and distinguish with 

suggested setup improvements. 

 

10.8 Quality and cost considerations 

The demonstrator would not improve quality control due to its limited scope of engine 

types, and accuracy issues. However, further developed versions may improve quality 

control. Improving quality control can lead to better quality, and lower costs. Quality 

from the production process does not get better directly by detection, however, it 

increases the ability to control the production processes. Furthermore, quality control 

detects bad products and prevents them from reaching the customers, which increases 

quality of products sold. Increasing quality comes with costs, of four main types: 

prevention costs, appraisal costs, internal failure costs, and external failure costs 

(Montgomery, 2013). Prevention costs include quality engineering, process design and 
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process control, whereas appraisal costs include product inspection. There is a natural 

tradeoff between costs of quality, since spending more on prevention and appraisal 

reduces costs of failure. Where the balance between these is, depends on the production 

cost of the product as well as on the company’s quality aspiration. For example, a 

manufacturer of plastic toys may not invest heavily in prevention or appraisal, since 

production costs are so low that a high internal scrap rate is acceptable, and external 

failures rarely lead to warranty claims. In contrast, a truck manufacturer relies on 

prevention and appraisal because of the high production costs, leading to expensive 

scrapping and repairing, and high requirements from customers followed by expensive 

warranty claims.  

 

Automation is often considered for cost reduction in high output manufacturing, and 

cost is one consideration in this case as well. Using machine learning algorithms to 

inspect audio quality could lead to a reduction in personnel requirements, as discussed 

above. However, I argue a reduction in inspection costs is secondary to the accuracy of 

the inspection. In line with the explanation above, reducing appraisal costs may lead to 

an increase in other costs, as a consequence of lower quality. For that reason, inspection 

accuracy should be of focus when determining whether to implement machine learning, 

even if it would increase the cost of inspection. Reducing costs while improving 

accuracy would naturally be the most beneficial, which may well be possible due to this 

new technology.   

 

10.9 Recommended future research 

Other types of preprocessing could be examined in relation to engine sounds. Bradford 

(2007) suggests multiple methods for static and dynamic sounds and vibrations, and so 

does Abdel-Hamid et al (2014). Other types of machine learning algorithms should also 

be examined, such as RNN or Anomaly Detection with statistical distributions. 

Furthermore, the resource requirements relationship model needs further examination in 

more machine learning projects to verify, specify, or change it. One of the previously 

mentioned delimitations was hearable sound. It may be possible for machine learning 

algorithms to pick up sound details which humans cannot hear, which would have to be 

classified with quality data other than sound. Field quality of early engine breakdowns 

could potentially be used for this classification. In relation to this could preprocessing 

be examined which does not imitate human hearing. Moreover, production parameters 

could be optimized using machine learning and quality, to model the production 

processes for improvement purposes. Multiple quality problems feasible to solve with 

machine learning have been suggested in the results section, which requires further 

studies.   
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