
2 
The vibration of structures with one degree 
of freedom 

All real structures consist of an infinite number of elastically connected mass elements and 
therefore have an infinite number of degrees of freedom; hence an infinite number of 
coordinates are needed to describe their motion. This leads to elaborate equations of 
motion and lengthy analyses. However, the motion of a structure is often such that only a 
few coordinates are necessary to describe its motion. This is because the displacements of 
the other coordinates are restrained or not excited, being so small that they can be 
neglected. Now, the analysis of a structure with a few degrees of freedom is generally 
easier to carry out than the analysis of a structure with many degrees of freedom, and 
therefore only a simple mathematical model of a structure is desirable from an analysis 
viewpoint. Although the amount of information that a simple model can yield is limited, 
if it is sufficient then the simple model is adequate for the analysis. Often a compromise 
has to be reached, between a comprehensive and elaborate multi-degree of freedom model 
of a structure which is difficult and costly to analyse but yields much detailed and accurate 
information, and a simple few degrees of freedom model that is easy and cheap to analyse 
but yields less information. However, adequate information about the vibration of a 
structure can often be gained by analysing a simple model, at least in the first instance. 

The vibration of some structures can be analysed by considering them as a one degree 
or single degree of freedom system; that is, a system where only one coordinate is 
necessary to describe the motion. Other motions may occur, but they are assumed to be 
negligible compared with the coordinate considered. 

A system with one degree of freedom is the simplest case to analyse because only one 
coordinate is necessary to describe the motion of the system completely. Some real 
systems can be modelled in this way, either because the excitation of the system is such 
that the vibration can be described by one coordinate, although the system could vibrate 
in other directions if so excited, or the system really is simple as, for example, a clock 
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pendulum. It should also be noted that a one, or single degree of freedom model of a 
cumplicated system can often be constructed where the analysis of a particular mode of 
vibration is to be carried out. To be able to analyse one degree of freedom systems is 
therefore essential in the analysis of structural vibrations. Examples of structures and 
motions which can be analysed by a single degree of freedom model are the swaying of a 
tall rigid building resting on an elastic soil, and the transverse vibration of a bridge. Before 
considering these examples in more detail, it is necessary to review the analysis of 
vibration of single degree of freedom dynamic systems. For a more comprehensive study 
see Engineering Vibration Analysis with Application to Control Systems by C .  F. Beards 
(Edward Arnold, 1995). It should be noted that many of the techniques developed in single 
degree of freedom analysis are applicable to more complicated systems. 

2.1 FREE UNDAMPED VIBRATION 

2.1.1 Translation vibration 

In the system shown in Fig. 2.1 a body of mass rn is free to move along a fixed horizontal 
surface. A spring of constant stiffness k which is fixed at one end is attached at the other 
end to the body. Displacing the body to the right (say) from the equilibrium position 
causes a spring force to the left (a restoring force). Upon release this force gives the body 
an acceleration to the left. When the body reaches its equilibrium position the spring force 
is zero, but the body has a velocity which carries it further to the left although it is retarded 
by the spring force which now acts to the right. When the body is arrested by the spring 
the spring force is to the right so that the body moves to the right, past its equilibrium 
position, and hence reaches its initial displaced position. In practice this position will not 
quite be reached because damping in the system will have dissipated some of the 
vibrational energy. However, if the damping is small its effect can be neglected. 

If the body is displaced a distance x, to the right and released, the free-body diagrams 
(FBDs) for a general displacement x are as shown in Fig. 2.2(a) and (b). 

The effective force is always in the direction of positive x .  If the body is being retarded 
f will be calculated to be negative. The mass of the body is assumed constant: this is 
usually so but not always, as, for example, in the case of a rocket burning fuel. The spring 
stiffness k is assumed constant: this is usually so within limits (see section 2.1.3). It is 
assumed that the mass of the spring is negligible compared with the mass of the body; 
cases where this is not so are considered in section 2.1.4.1. 

Fig. 2.1. Single degree of freedom model - translation vibration. 
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Fig. 2.2. (a) Applied force; (b) effective force. 

From the free-body diagrams the equation of motion for the system is 

mi: = -kx or X + (k/m)x = 0. (2.1) 

(2.2) 

This will be recognized as the equation for simple harmonic motion. The solution is 

x = A cos OT + B sin ax, 
where A and B are constants which can be found by considering the initial conditions, and 
w is the circular frequency of the motion. Substituting (2.2) into (2.1) we get 

- w’ (A cos u# + B sin m) + (k/m) (A cos OT + B sin a) = 0. 

Since (A cos OT + B sin OT) # 0 

w = d(k/m) rad/s, 

(otherwise no motion), 

and 

x = A cos d(k/m)r + B sin d(k/m)t. 

Now 

x = x, at t = 0, 

thus 

x, = A cos 0 + B sin 0, and therefore x, = A, 

and 

i = O a t t  = 0, 

thus 

0 = -Ad(k/m) sin 0 + Bd(k/m) cos 0, and therefore B = 0; 

that is, 

x = x, cos d(k/m)t. (2.3) 
The system parameters control w and the type of motion but not the amplitude x,, which 
is found from the initial conditions. The mass of the body is important, but its weight is 
not, so that for a given system, w is independent of the local gravitational field. 

The frequency of vibration, f ,  is given by 

w 
f = -, 27r or f = ~ i ( i ) H z .  2 z  (2.4) 

The motion is as shown in Fig. 2.3. 
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Fig. 2.3. Simple harmonic motion. 

The period of the oscillation, 7, is the time taken for one complete cycle so that 

1 
-r = - = 2d(rn/k)  seconds. (2.5) 

The analysis of the vibration of a body supported to vibrate only in the vertical or y 
direction can be carried out in a similar way to that above. 

It is found that for a given system the frequency of vibration is the same whether the 
body vibrates in a haimntal or vertical direction. 

Sometimes more than one spring acts in a vibrating system. The spring, which is 
considered to be an elastic element of constant stiffness, can take many forms in practice; 
for example, it may be a wire coil, rubber block, beam or air bag. Combined spring units 
can be replaced in the analysis by a single spring of equivalent stiffness as follows. 

f 

2.1.1.1 Springs connected in series 

The three-spring system of Fig. 2.4(a) can be replaced by the equivalent spring of Fig. 
2.4(b). 

Fig. 2.4. Spring systems. 

If the deflection at the free end, 6, experienced by applying the force F is to be the same 
in both cases, 

6 = F/k, = F/k, + F/k, + F/k3, 

that is, 

l/ke = $ki. 
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In general, the reciprocal of the equivalent stiffness of springs connected in series is 
obtained by summing the reciprocal of the stiffness of each spring. 

2.1.1.2 Springs connected in parallel 

The three-spring system of Fig. 2.5(a) can be replaced by the equivalent spring of Fig. 
2.5(b). 

Fig. 2.5. Spring systems. 

Since the defection 6 must be the same in both cases, the sum of the forces exerted by 
the springs in parallel must equal the force exerted by the equivalent spring. Thus 

F = k , 6  + k,6 + k,6 = kea, 

that is, 
3 

k, = ,x ki. 
, = I  

In general, the equivalent stiffness of springs connected in parallel is obtained by 
summing the stiffness of each spring. 

2.1.2 Torsional vibration 

Fig. 2.6 shows the model used to study torsional vibration. 
A body with mass moment of inertia I about the axis of rotation is fastened to a bar of 

torsional stiffness kT If the body is rotated through an angle 0, and released, torsional 
vibration of the body results. The mass moment of inertia of the shaft about the axis of 
rotation is usually negligible compared with I. 

For a general displacement 6, the FBDs are as given in Fig. 2.7(a) and (b). Hence the 
equation of motion is 

10 = -k,O 

or 

This is of a similar form to equation (2.1); that is, the motion is simple harmonic with 
frequency (1/2n) d ( k / ~ )  HZ. 
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Fig. 2.6. Single degree of freedom model - torsional vibration. 

Fig. 2.7. (a) Applied torque; (b) effective torque. 

The torsional stiffness of the shaft, k,, is equal to the applied torque divided by the angle 
of twist. 
Hence 

GJ 

1 
kT = -, for a circular section shaft, 

where G = modulus of rigidity for shaft material, 
J = second moment of area about the axis of rotation, and 
1 = length of shaft. 

Hence 

0 1  

2rr 2rr 
f = ~ = - d(GJ/li) Hz, 

and 

8 = 8, COS d(GJ/ll)t, 
when 8 = 8, and b = 0 at t = 0. 

equivalent shaft of different length but with the same stiffness and a constant diameter. 
If the shaft does not have a constant diameter, it can be replaced analytically by an 
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For example, a circular section shaft comprising a length I, of diameter d, and a length 
1, of diameter d2 can be replaced by a length I, of diameter d, and a length 1 of diameter 
d,  where, for the same stiffness, 

(GJ/’%ength I2 diameter d ,  = (GJ/l) length I dmmeirrd, 

that is, for the same shaft material, d,*/12 = dI4/l. 
Therefore the equivalent length le of the shaft of constant diameter d, is given by 

1, = 1, + (d,/d2)41,. 

It should be noted that the analysis techniques for translational and torsional vibration 
are very similar, as are the equations of motion. 

2.1.3 Non-linear spring elements 

Any spring elements have a force-deflection relationship that is linear only over a limited 
range of deflection. Fig. 2.8 shows a typical characteristic. 

Fig. 2.8. Non-linear spring characteristic. 

The non-linearities in this characteristic may be caused by physical effects such as the 
contacting of coils in a compressed coil spring, or by excessively straining the spring 
material so that yielding occurs. In some systems the spring elements do not act at the 
same time, as shown in Fig. 2.9 (a), or the spring is designed to be non-linear as shown in 
Fig. 2.9 (b) and (c). 

Analysis of the motion of the system shown in Fig. 2.9 (a) requires analysing the 
motion until the half-clearance a is taken up, and then using the displacement and velocity 
at this point as initial conditions for the ensuing motion when the extra springs are 
operating. Similar analysis is necessary when the body leaves the influence of the extra 
springs. 
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Fig. 2.9. Non-linear spring systems. 

2.1.4 Energy methods for analysis 

For undamped free vibration the total energy in the vibrating system is constant 
throughout the cycle. Therefore the maximum potential energy V,, is equal to the 
maximum kinetic energy T,, although these maxima occur at different times during the 
cycle of vibration. Furthermore, since the total energy is constant, 

T + V = constant, 

and thus 

d 
dt 
- ( T  + V) = 0. 

Applying this method to the case, already considered, of a body of mass m fastened to 
a spring of stiffness k, when the body is displaced a distance x from its equilibrium 
position, 

strain energy (SE) in spring = 
kinetic energy (KE) of body = f mi2.  

la2. 

Hence 

v = ;la2, 

and 
1 .2 T = i m .  

Thus 

d 
dt 
- (;mi2 + ;la2) = 0, 

that is 
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or 

i + ( i ) x  = 0, as before in equation (2.1). 

This is a very useful method for certain types of problem in which it is difficult to apply 

Alternatively, assuming SHM, if x = x, cos m, 
Newton’s laws of motion. 

the maximum SE, V,,, = &xi, 
and 

the maximum KE, T,,, = h(x,o)’. 

Thus, since T,,, = V,,, 
;&) = 2mkoz, 

or o = d(k/m) rad/s. 

Energy methods can also be used in the analysis of the vibration of continuous systems 
such as beams. It has been shown by Rayleigh that the lowest natural frequency of such 
systems can be fairly accurately found by assuming any reasonable deflection curve for 
the vibrating shape of the beam: this is necessary for the evaluation of the kinetic and 
potential energies. In this way the continuous system is modelled as a single degree of 
freedom system, because once one coordinate of beam vibration is known, the complete 
beam shape during vibration is revealed. Naturally the assumed deflection curve must be 
compatible with the end conditions of the system, and since any deviation from the true 
mode shape puts additional constraints on the system, the frequency determined by 
Rayleigh’s method is never less than the exact frequency. Generally, however, the 
difference is only a few per cent. The frequency of vibration is found by considering the 
conservation of energy in the system; the natural frequency is determined by dividing the 
expression for potential energy in the system by the expression for kinetic energy. 

2.1.4.1 The vibration of systems with heavy springs 

The mass of the spring element can have a considerable effect on the frequency of 
vibration of those structures in which heavy springs are used. 

Consider the translational system shown in Fig. 2.10, where a rigid body of mass M is 
connected to a fixed frame by a spring of mass m, length I ,  and stiffness k. The body 
moves in the x direction only. If the dynamic deflected shape of the spring is assumed to 
be the same as the static shape, the velocity of the spring element is y = (y/l)x, and the 
mass of the element is (m/l)dy. 

Thus 
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Fig. 2.10. Single degree of freedom system with heavy spring. 

and 

v = ;kxz. 

Assuming simple harmonic motion and putting T,, = V,,, gives the frequency of free 
vibration as 

f = L{( k )Hz,  
2n M + (m/3) 

that is, if the system is to be modelled with a massless spring, one third of the actual spring 
mass must be added to the mass of the body in the frequency calculation. 

d 
dr 

Alternatively, - (T + V) = 0 can be used for finding the frequency of oscillation. 

2.1.4.2 Transverse vibration of beams 

For the beam shown in Fig. 2.11, if m is the mass unit length and y is the amplitude of the 
assumed deflection curve, then 

where w is the natural circular frequency of the beam. 

energy. If the bending moment is M and the slope of the elastic curve is 0, 
The strain energy of the beam is the work done on the beam which is stored as elastic 

V = iIMd0. 
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Beam segment shown enlarged below 

- -  
Fig. 2.1 I. Beam deflection. 

Usually the deflection of beams is small so that the following relationships can be 
assumed to hold: 

dY 6 = - and Rde = dr; 
dx 

thus 

1 d e  d2y 
R dx dx2’  
_ - - - -  - - 

From beam theory, M/I = E/R, where R is the radius of curvature and EI is the flexural 
rigidity. Thus 
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Since 

This expression gives the lowest natural frequency of transverse vibration of a beam. It 
can be seen that to analyse the transverse vibration of a particular beam by this method 
requires y to be known as a function of x. For this the static deflected shape or a part 
sinusoid can be assumed, provided the shape is compatible with the beam boundary 
conditions. 

2.1.5 The stability of vibrating structures 

If a structure is to vibrate about an equilibrium position, it must be stable about that 
position; that is, if the structure is disturbed when in an equilibrium position, the elastic 
forces must be such that the structure vibrates about the equilibrium position. Thus the 
expression for o2 must be positive if a real value of the frequency of vibration about the 
equilibrium position is to exist, and hence the potential energy of a stable structure must 
also be positive. 

The principle of minimum potential energy can be used to test the stability of structures 
that are conservative. Thus a structure will be stable at an equilibrium position if the 
potential energy of the structure is a minimum at that position. This requires that 

dV d'V 
~ = 0 and ~ 

dq dq2 ' 
where q is an independent or generalized coordinate. Hence the necessary conditions for 
vibration to take place are found, and the position about which the vibration occurs is 
determined. 

Example 1 

A link AB in a mechanism is a rigid bar of uniform section 0.3 m long. It has a mass of 
10 kg, and a concentrated mass of 7 kg is attached at B. The link is hinged at A and is 
supported in a horizontal position by a spring attached at the mid-point of the bar. The 
stiffness of the spring is 2 kN/m. Find the frequency of small free oscillations of the 
system. The system is as follows. 
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For rotation about A the equation of motion is 

~ , e  = -k2e 

e + (kaz/IA)e = 0. 

that is, 

This is SHM with frequency 

1 
-d(ka2/IA) Hz. 
2A 

In this case 

a = 0.15 m, 1 = 0.3 m, k = 2000 N/m, 

and 

I, = 7(0.3)2 + f x 10 (0.3)2 = 0.93 kg mz. 

Hence 

Example 2 

A uniform cylinder of mass m is rotated through a small angle 0, from the equilibrium 
position and released. Determine the equation of motion and hence obtain the frequency 
of free vibration. The cylinder rolls without slipping. 
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If the axis of the cylinder moves a distance x and turns through an angle 8 so that 
x = r e  

KE = f mi’ + 2&, where I = f mr‘. 

Hence 

KE = fmr282. 
SE = 2 x f x k [ ( r  + a)q2  = k(r + a)’&. 

Now, energy is conserved, so (imr’82 + k(r + is constant; that is, 

d 
- (: rnr’82 + k(r + a)’&) = 0 
dt 

or 

imr22BB + k(r  + 4’288 = 0. 

Thus the equation of the motion is 

k(r + a)’e 
e +  = 0. 

(t)mr’ 

Hence the frequency of free vibration is 

Example 3 

A uniform wheel of radius R can roll without slipping on an inclined plane. Concentric 
with the wheel, and fixed to it, is a drum of radius r around which is wrapped one end of 
a string. The other end of the string is fastened to an anchored spring, of stiffness k, as 
shown. Both spring and string are parallel to the plane. The total mass of the wheel/drum 
assembly is m and its moment of inertia about the axis through the centre of the wheel 0 
is I. If the wheel is displaced a small distance from its equilibrium position and released, 
derive the equation describing the ensuing motion and hence calculate the frequency of 
the oscillations. Damping is negligible. 
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The rotation is instantaneously about the contact point A so that taking moments about 
A gives the equation of motion as 

1,s = -k(R + r)’O. 

(The moment due to the weight cancels with the moment due to the initial spring 
tension.) 

Now I ,  = I + mR2, so 

k(R + r)’ e +  ( I + mR2 ) 0 =  0, 

and the frequency of oscillation is 

An alternative method for obtaining the frequency of oscillation is to consider the 
energy in the system. 

Now 
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SE, v = k ( ~  + r)z&, 

and 

KE, T = aAb2, 
(weight and initial spring tension effects cancel) so 

T + V = +ZAGz + ik(R + r)’OZ, 

and 

d 

dt 
-((T + V) = 41A2e6 + !k(R + r)’288 = 0. 

Hence 

ZAG + k(R + r)’8 = 0,  

which is the equation of motion. 
Or, we can put V,,, = T,,,, and if 8 = 0, sin u# is assumed, 

;k(R + r)’& = iIA@z8i, 

so that 

w =  i( k(R;  ”’) rad/s , 

where 

ZA = I + mr’ and f = ( 4 2 n ) H z .  

Example 4 

A simply supported beam of length 1 and mass mz carries a body of mass m, at its mid- 
point. Find the lowest natural frequency of transverse vibration. 

The boundary conditions are y = 0 and d2y/dx2 = 0 at x = 0 and x = 1. These 
conditions are satisfied by assuming that the shape of the vibrating beam can be 
represented by a half sine wave. A polynomial expression can be derived for the deflected 
shape, but the sinusoid is usually easier to manipulate. 
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y = yo sin(nx/l) is a convenient expression for the beam shape, which agrees with 
the boundary conditions. Now 

Hence 

and 

/ y 2  dm = /1y:  sin’ (y) >dx + $ m ,  

= yi (m ,  + F). Thus 

1 

If m2 = 0, 

EI d EI 
w = -~ = 4 8 . 7 7  

2 Pm, m11 

The exact solution is 48 EI/m,13, so the Rayleigh method solution is 1.4% high. 

Example 5 

Find the lowest natural frequency of transverse vibration of a cantilever of mass m, which 
has rigid body of mass M attached at its free end. 
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The static deflection curve is y = (Yd21’)(3k2 - x’). Alternatively y = y,(l - cos kx/21)  
could be assumed. Hence 

and 

Example 6 

Part of an industrial plant incorporates a horizontal length of uniform pipe, which is 
rigidly embedded at one end and is effectively free at the other. Considering the pipe as a 
cantilever, derive an expression for the frequency of the first mode of transverse vibration 
using Rayleigh’s method. 

Calculate this frequency, given the following data for the pipe: 
Modulus of elasticity 200 GN/m2 
Second moment of area about bending axis 0.02 m4 
Mass 6 x lo4 kg 
Length 30 m 
Outside diameter l m  
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For a cantilever, assume 

y = y, (1 - cos z). 
This is compatible with zero deflection and slope when x = 0, and zero shear force and 
bending moment when x = 1. Thus 

fi = y, (;)’cos -. Z X  

dr2 21 

Now 

and 

= y:m(+-+). 

Hence, assuming the structure to be conservative, that is, the total energy remains constant 
throughout the vibration cycle, 

Et 
13.4. - _ _  - 

Thus 

o = 3.66 {(s) rad/s and f = 2K {(s) Hz. 
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In  this case 

EZ 200 x io9 x 0.02 Is . ~- - 
6 x lo4 x 303 

Hence 

w = 5.75 rad/s and f = 0.92 Hz. 

Example 7 

A uniform building of height 2h and mass m has a rectangular base a x b which rests on 
an elasic soil. The stiffness of the soil, k,  is expressed as the force per unit area required 
to produce unit deflection. 

Find the lowest frequency of free low-amplitude swaying oscillation of the building. 

The lowest frequency of oscillation about the axis 0-0 through the base of the building 
is when the oscillation occurs about the shortest side, of length a. 
Io is the mass moment of inertia of the building about axis 0-0. 
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The FBDs are: 

and the equation of motion for small 8 is given by 
1,8 = mghe - M, 

where M is the restoring moment from the elastic soil. 
For the soil, k = force/(area x deflection), so considering an element of the base as 

shown, the force on element = kb dx x x e ,  and the moment of this force about axis 0-0 
= kb dx x xex. Thus the total restoring moment M, assuming the soil acts similarly in 
tension and compression, is 

''P 
M = 21, kbx2tMx 

( ~ 1 2 ) ~  ka3b 
3 12 

= 2kbe- - - ~ e. 

Thus the equation of motion becomes 

I , e  + (g - mgh ) 8 = 0. 

f - 2 a  1 i( k a 3 W 0 -  -") Hz. 

Motion is therefore simple harmonic, with frequency 

An alternative solution can be obtained by considering the energy in the system. In this 
case, 

T = !I,$, 
and 

UP rnghtf 
V = ).2f0 kbdx x x 0  x x 6  - ,  

2 
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where the loss in potential energy of the building weight is given by mgh (1 - cos 8) = 
mgh#/2, since cos 8 = 1 - #/2 for small values of 8. Thus 

V = (141)c. ka3b mgh 

Assuming simple harmonic motion, and putting T,,, = V,,,, gives 

ka3b/12 - mgh 

O2 = i I ,  1 
as before. 

Note that for stable oscillation, o > 0, so that 

(%-mgh)>O, 

that is, ka'b > 12mgh. 
This expression gives the minimum value of k ,  the soil stiffness, for stable oscillation of 

a particular building to occur. If k is less that 12 mghla'b the building will fall over when 
disturbed. 

2.2 FREE DAMPED VIBRATION 

All real structures dissipate energy when they vibrate. The energy dissipated is often very 
small, so that an undamped analysis is sometimes realistic; but when the damping is 
significant its effect must be included in the analysis, particularly when the amplitude of 
vibration is required. Energy is dissipated by frictional effects, for example that occurring 
at the connection between elements, internal friction in deformed members, and windage. 
It is often difficult to model damping exactly because many mechanisms may be operating 
in a structure. However, each type of damping can be analysed, and since in many 
dynamic systems one form of damping predominates, a reasonably accurate analysis is 
usually possible. 

The most common types of damping are viscous, dry friction and hysteretic. Hysteretic 
damping arises in structural elements due to hysteresis losses in the material. 

The type and amount of damping in a structure has a large effect on the dynamic 
response levels. 

2.2.1 Vibration with viscous damping 

Viscous damping is a common form of damping which is found in many engineering 
systems such as instruments and shock absorbers. The viscous damping force is propor- 
tional to the first power of the velocity across the damper, and it always opposes the 
motion, so that the damping force is a linear continuous function of the velocity. Because 
the analysis of viscous damping leads to the simplest mathematical treatment, analysts 
sometimes approximate more complex types of damping to the viscous type. 
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Consider the single degree of freedom model with viscous damping shown in Fig. 
2.12. 

Fig. 2.12. Single degree of freedom model with viscous damping. 

The only unfamiliar element in the system is the viscous damper with coefficient c. This 
coefficient is such that the damping force required to move the body with a velocity X is 
CX. 

For motion of the body in the direction shown, the free body diagrams are as in Fig. 
2.13(a) and (b). 

Fig. 2.13. (a) Applied force; (b) effective force. 

The equation of motion is therefore 
m2 + cx + kx = 0. (2.6) 

This equation of motion pertains to the whole of the cycle: the reader should verify that 
this is so. (Note: displacements to the left of the equilibrium position are negative, and 
velocities and accelerations from right to left are also negative.) 

Equation (2.6) is a second-order differential equation which can be solved by assuming 
a solution of the form x = Xe”‘. Substituting this solution into equation (2.6) gives 

(ms2 + cs + k)Xe”=O. 
Since Xe” # 0 (otherwise no motion), 

ms2 + cs + k = 0. 
If the roots of the equation are s, and sz, then 

c d(c2 - 4mk) 
Sl.2 = - ~ f 

2m 2m 

Hence 

where XI and X, are arbitrary constants found from the initial conditions. The system 
response evidently depends upon whether c is positive or negative, and on whether c2 is 
greater than, equal to, or less than 4mk. 

x = Xlesl‘ + &e’2‘, 
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The dynamic behaviour of the system depends upon the numerical value of the radical, 
so we define critical damping as that value of c(c,) which makes the radical zero; that 
is, 

c, = 2d(km). 

Hence 

cc/2m = d(k/m) = 4 the undamped natural frequency, 

and 

c, = 2d(km) = 2mw. 

The actual damping in a system can be specified in terms of c, by introducing the 
damping ratio c. 
Thus 

c = clc,, 

Sl.2 = [ - c f d(C2 - 1)]a  

and 

(2.7) 

The response evidently depends upon whether c is positive or negative, and upon whether 
c is greater than, equal to, or less than unity. Usually c is positive, so we only need to 
consider the other possibilities. 

Case 1. 6 e 1; that is, damping less than critical 

From equation (2.7) 

s1.z = - 60 * jd(1 - cz)4 where j = d(- l), 

so 

2 1 = e-<w[xleJ4(l - <‘)w + x e-J”(l - c2)W 

and 

x = Xe-‘W sin (d(1 - c2> ux + +). 

The motion of the body is therefore an exponentially decaying harmonic oscillation with 
circular frequency w, = d(1 - C’), as shown in Fig. 2.14. 

The frequency of the viscously damped oscillation w,, is given by w, = 
d(1 - C2),  that is, the frequency of oscillation is reduced by the damping action. 
However, in many systems this reduction is likely to be small, because very small values 
of care common; for example, in most engineering structures c i s  rarely greater than 0.02. 
Even if C = 0.2, w, = 0 . 9 8 ~  This is not true in those cases where c i s  large, for example 
in motor vehicles where 6 is typically 0.7 for new shock absorbers. 
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Fig. 2.14. Vibration decay of system with viscous damping, < < 1 .  

Case 2. c = 1; that is, critical damping 
Both values of s are -0. However, two constants are required in the solution of equation 
(2.6); thus x = (A + Br)e-" may be assumed. 

Critical damping represents the limit of periodic motion; hence the displaced body is 
restored to equilibrium in the shortest possible time, and without oscillation or overshoot. 
Many devices, particularly electrical instruments, are critically damped to take advantage 
of this property. 

Case 3. c > 1; that is, damping greater than critical 
There are two real values of s, so x = X,e'" + X2eS2'. 

shown in Fig. 2.15. 
Since both values of s are negative the motion is the sum of two exponential decays, as 

- -  
Fig. 2.15. Disturbance decay of system with viscous damping < > 1 .  
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2.2.1.1 Logarithmic decrement A 

A convenient way of determining the damping in a system is to measure the rate of decay 
of oscillation. It is usually not satisfactory to measure u,, and o because unless c > 0.2, 
o= 0,. 

The logarithmic decrement, A, is the natural logarithm of the ratio of any two 
successive amplitudes in the same direction, and so from Fig. 2.16 

XI 
XI 1 

A = ln- 

where XI and X,, are successive amplitudes as shown. 
Since 

x = Xe-'" sin (u,,r + +), 

if 
XI = Xe-'", then XI, = xe-'@('+ '"), 

where 5 is the period of the damped oscillation. 

I 

Fig. 2.16. Vibration decay. 

Thus 

Xe-'" 
A = In xe-m (1 + 7") = C m .  

Since 

2R 2 K  
.r,=-= 

0" d ( l  - <*)' 
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then 

For small values of (( $ 0.25), A = 2 4  
It should be noted that this analysis assumes that the point of maximum displacement in 

a cycle and the point where the envelope of the decay curve Xe-rw touches the decay curve 
itself, are coincident. This is usually very nearly so, and the error in making this 
assumption is usually negligible, except in those cases where the damping is high. 

For low damping it is preferable to measure the amplitude of oscillations many cycles 
apart so that an easily measurable difference exists. 

In this case 

since 

Example 8 
Consider the transverse vibration of a bridge structure. For the fundamental frequency it 
can be considered as a single degree of freedom system. The bridge is deflected at mid- 
span (by winching the bridge down) and suddenly released. After the initial disturbance 
the vibration was found to decay exponentially from an amplitude of 10 mm to 5.8 mm in 
three cycles with a frequency of 1.62 Hz. The test was repeated with a vehicle of mass 
40 000 kg at mid-span, and the frequency of free vibration was measured to be 1.54 
Hz. 

Find the effective mass, the effective stiffness, and the damping ratio of the structure. 
Let rn be the effective mass and k the effective stiffness. Then 

f l  = 1.62 = L{(:) 2n  Hz, 

and 

if it is assumed that 

Thus (%I= rn 

is small enough for f Y  = f .  

rn + 40 x 10' 
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so 
m = 375 x lo3 kg. 

Since 

k = (2nfl)’m, 
k = 38 850 kN/m. 

Now 

= 0.182. 

where XI, XI, and X,,  are the amplitudes of the first, second and fourth cycles, respectively. 
Hence 

and so 4‘ = 0.029. (This compares with a value of about 0.002 for cast iron material. The 
additional damping originates mainly in the joints of the structure.) This value of 
confirms the assumption that f v  = f .  

Example 9 
A light rigid rod of length L is pinned at one end 0 and has a body of mass m attached at 
the other end. A spring and viscous damper connected in parallel are fastened to the rod 
at a distance a from the support. The system is set up in a horizontal plane: a plan view 
is shown. 

Assuming that the damper is adjusted to provide critical damping, obtain the motion of 
the rod as a function of time if it is rotated through a small angle 0, and then released. 
Given that 0, = 2” and the undamped natural frequency of the system is 3 rad/s, calculate 
the displacement 1 s after release. 

Explain the term logarithmic decrement as applied to such a system and calculate its 
value assuming that the damping is reduced to 80% of its critical value. 
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Let the rod turn through an angle 8 from the equilibrium position. Note that the system 
oscillates in the horizontal plane so that the FBDs are: 

Taking moments about the pivot 0 gives 

1,8 = - ca24 - h2e, 
where Io = mL2, so the equation of motion is 

mL28 + ca2& + ka28 = 0. 

Now the system is adjusted for critical damping, so that [ = 1. The solution to the 
equation of motion is therefore of the form 

8 = (A + &)e-". 

Now, 8 = 0, when t = 0, and de/dt = 0 when t = 0. Hence 

e, = A, 

and 

0 = Be-" + (A + Bt) (-o)e-", 

so that 

B = eoa 

e = eo(i + @)e-". 

8 = 2(1 + 3) e-3 = 0.4". 

Hence 

If o = 3 rad/s, t = 1 s and 0, = 2", 

The logarithmic decrement 

so that if [ = 0.8, 

5.027 
0.6 

A = - -  - 8.38 
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2.2.2 Vibration with Coulomb (dry friction) damping 

Steady friction forces occur in many structures when relative motion takes place between 
adjacent members. These forces are independent of amplitude and frequency; they always 
oppose the motion and their magnitude may, to a first approximation, be considered 
constant. Dry friction can, of course, just be one of the damping mechanisms present; 
however, in some structures it is the main source of damping. In these cases the damping 
can be modelled as in Fig. 2.17. 

Fig. 2.17. System with Coulomb damping. 

The constant friction force Fd always opposes the motion, so that if the body is 
displaced a distance xo to the right and released from rest we have, for motion from right 
to left only, 

m j l =  F,-kr 

m i  -+ kx = F,. 
or 

(2.8) 
The solution to the complementary function is x = A sin wt + B cos wt, and the 

complete solution is 

F, 
k 

x = A s i n w t +  B c o s w t + -  
(2.9) 

where w = d(k/m) rad/s. 
Note. The particular integral may be found by using the D-operator. Thus equation (2.8) 
is 

(D2 + w’)x = Fdm 

x = (l/wz)[l + (D2/w2)]-’F4m 
so 

= [l  - (D2/w2) + -]Fdrnw’ = Fdk. 
The initial conditions were x = xo at t = 0, and 1 = 0 at t = 0. Substitution into 

equation (2.9) gives 

Fd A = O  and B=x,--- .  
k 
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Hence 

[Ch. 2 

Fd 
x =  x o - -  c o s m + - .  (2 .10)  ( 9 k 

At the end of the half cycle right to left, m = n and 

2Fd 
x,, = n/m) = - xo + -9 

k 

that is, there is a reduction in amplitude of 2Fdk per half cycle. 
From symmetry, for motion from left to right when the friction force acts in the 

opposite direction to the above, the initial displacement is (xo - 2Fdk) and the final 
displacement is therefore (xo - 4Fdk),  that is, the reduction in amplitude is 4Fdk per cycle. 
This oscillation continues until the amplitude of the motion is so small that the maximum 
spring force is unable to overcome the friction force Fd. This can happen whenever the 
amplitude is S + ( F d k ) .  The manner of oscillation decay is shown in Fig. 2.18; 
the motion is sinusoidal for each half cycle, with successive half cycles centred on 
points distant + (Fdk)  and - (Fdk)  from the origin. The oscillation ceases with 
1x1 S F d k .  The zone x = +- Fdk is called the dead zone. 

Fig. 2.18. Vibration decay of system with Coulomb damping. 

To determine the frequency of oscillation we rewrite the equation of motion (2.8) as 

mil + k(x - (Fdk))  = 0. 

Now if x' = x - (Fdk) ,  x '  = X so that mi." + kr' = 0, from which the frequency of 
oscillation is (1/2n)d(k/m) Hz; that is, the frequency of oscillation is not affected by 
Coulomb friction. 
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Example 10 

Part of a structure can be modelled as a torsional system comprising a bar of stiffness 
10 kN m/rad and a beam of moment of inertia about the axis of rotation of 50 kg m2. The 
bottom guide imposes a friction torque of 10 N m (see figure). 

Given that the beam is displaced through 0.05 rad from its equilibrium position and 
released, find the frequency of the oscillation, the number of cycles executed before the 
beam motion ceases, and the position of the beam when this happens. 

Now 

o = d($) = d( = 14.14rad/s. 

Hence 

14.14 
27r 

f =- -  - 2.25 Hz. 

4Fd 4 x 10 
Loss in amplitude/cycle = ~ - - ~ rad 

k 1 0' 

= 0.004 rad. 

Number of cycles for motion to cease 
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0.05 

0.004 
-~ - - - 12;. 

The beam is in the initial (equilibrium) position when motion ceases. The motion is shown 
below. 

2.2.3 Vibration with combined viscous and Coulomb damping 

The free vibration of dynamic structures with viscous damping is characterized by an 
exponential decay of the oscillation, whereas structures with Coulomb damping possess a 
linear decay of oscillation. Many real structures have both forms of damping, so that their 
vibration decay is a combination of exponential and linear functions. 

The two damping actions are sometimes amplitude-dependent, so that initially the 
decay is exponential, say, and only towards the end of the oscillation does the Coulomb 
effect show. In the analyses of these cases the Coulomb effect can easily be separated from 
the total damping to leave the viscous damping alone. The exponential decay with viscous 
damping can be checked by plotting the amplitudes on logarithmic-linear axes when the 
decay should be seen to be linear. 

If the Coulomb and viscous effects cannot be separated in this way, a mixture of linear 
and exponential decay functions have to be found by trial and error in order to conform to 
the experimental data. 
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2.2.4 Vibration with hysteretic damping 

Experiments on the damping that occurs in solid materials and structures that have been 
subjected to cyclic stressing have shown the damping force to be independent of 
frequency. This internal, or material, damping is referred to as hysteretic damping. Since 
the viscous damping force cx is dependent upon the frequency of oscillation, it is not a 
suitable way of modelling the internal damping of solids and structures. The analysis of 
systems and structures with this form of damping therefore requires the damping force c i  
to be divided by the frequency of oscillation LU Thus the equation of motion becomes 

However, it has been observed from experiments carried out on many materials and 
structures that under harmonic forcing the stress leads the strain by a constant angle, a. 

Thus for an harmonic strain, E = sin vr, where v is the forcing frequency, the induced 
stress is o = o, sin (vt + a). Hence 

mii + (c/u) i  + kx = 0. 

o = oo cos a sin vt + 0, sin a cos vt 

= o, cos a sin vt + o, sin a sin vt + - . i 
The first component of stress is in phase with the strain E, whilst the second component 

is in quadrature with E and lr/2 ahead. Putting j = d(-l), 

o = a, cos a sin vt + jo, sin a sin vt. 

Hence a complex modulus E* can be formulated, where 

= E '  + jE", 

where E '  is the in-phase or storage modulus, and E" is the quadrature or loss modulus. 
The loss factor q, which is a measure of the hysteretic damping in a structure, is equal 

to E"/E ', that is, tan a. 
It is not usually possible to separate the stiffness of a structure from its hysteretic 

damping, so that in a mathematical model these quantities have to be considered together. 
The complex stiffness k* is given by k* = k( 1 + jq), where k is the static stiffness and q 
is the hysteretic damping loss factor. 

2.2.5 Complex stiffness 

In most real structures it is not possible to separate the stiffness and damping effects 
because they are inherent properties which are often coupled. Realistic mathematical 
models of structures therefore require these quantities to be considered together in the 
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form of a complex stiffness. Although this is rather an awkward physical concept it is 
widely used in analysis. 

The complex stiffness k* is equal to k(1 + jq), where k is the static stiffness, j = 4-1 
and q is the hysteretic damping loss factor. 

The equation of free motion for a single degree of freedom system with hysteretic 
damping is therefore mi + k*x = 0. Fig. 2.19 shows a single degree of freedom model 
with hysteretic damping of coefficient cH. 

Fig. 2.19. Single degree of freedom with hysteretic damping. 

The equation of motion is 

mi + (cdo)i + kx = 0. 

Now if x = XeJ", 

x = j o x  and (%)i = jcHx. 

Thus the equation of motion becomes 

mi + (k + jcH)x = 0. 

Since 

we can write 

m+f + k*x = 0, 

that is, the combined effect of the elastic and hysteretic resistance to motion can be 
represented as a complex stiffness, k*. 

A range of values of q for some common engineering materials is given in the 
following table. For more detailed information on material damping mechanisms and loss 
factors, see Damping of Materials and Members in Structural Mechanics by B .  J. Lazan 
(Pergamon, 1968), and Chapter 5. 
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Material Loss factor 

Aluminium-pure 
Aluminium alloy-dural 
Steel 
Lead 
Cast iron 
Manganese copper alloy 
Rubber-natural 
Rubber-hard 
Glass 
Concrete 

0.00002-0.002 
0.0004-0.001 
0.001-0.008 
0.008-0.014 
0.003-0.03 
0.05-0.1 
0.1-0.3 
1 .o 
0 .000~ .002  
0.01-0.06 

2.2.6 Energy dissipated by damping 

The energy dissipated per cycle by the viscous damping force in a single degree of 
freedom vibrating system is approximately 

4 cxdx ,  1: 
if x = X sin wt is assumed for the complete cycle. The energy dissipated is therefore 

rrl2 
41 cX’w’ cos2 wt dt = zcwX2. 

0 

The energy dissipated per cycle by Coulomb damping is 4Fd X approximately. Thus an 
equivalent viscous damping coefficient for Coulomb damping c, can be deduced, where 

~rc,wX’ = 4F,X, 

that is, 

Fd 
c, = -. 

rrWX 

The energy dissipated per cycle by a force F acting on a system with hysteretic damping 

For harmonic motion x = X sin wt. 
is IF dx, where F = k*x = k ( l  + j q ) x ,  and x is the displacement. 

so 

F = kX sin wt + jqkx sin wt 
= kX sin wt + qkX cos wt. 

Now 

X d(X’ - X Z )  
sin wt = -, therefore cos wt = 

X X 
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Thus 

[Ch. 2 

F = kr 2 qkJ(Xz - x'). 

This is the equation of an ellipse as shown in Fig. 2.20. The energy dissipated is given 
by the area enclosed by the ellipse. 

Fig. 2.20. Elliptical force-displacement relationship for a system with hysteretic damping. 

Hence 

/ Fdx = [ (kr 2 q b / ( X 2  - x2))dx 

= d i 2 q k .  
An equivalent viscous damping coefficient C, is given by 

m,ox2 = qkx2, 

77k 

that is 

c ,  = -, 
w 

Note also that c = c H a  

Example 11 
A single degree of freedom system has viscous damping, with < = 0.02. Find the energy 
dissipated per cycle as a function of the energy in the system at the start of that cycle. Also 
find the amplitude of the 12th cycle if the amplitude of the 3rd cycle is 1.8 mm. 

< 6 1, so In ( X , / X 2 )  = 2.4' = 0.126. 

Thus 
0.126 - X , / X 2  = e - 1.134. 

Energy at start of cycle = ikx; (stored as strain energy in spring) 
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Energy at end of cycle = ikx,' 
Energy dissipated during cycle ikx: - ikx: - - = 1 - (XJX,)* = 1 - 0.7773 = 0.223, 

Energy at start of cycle ikx: 
that is, 22.3% of the initial energy is dissipated in one cycle. 

Now 

X,/X, = 1.134, XJX, = 1.134, ... , (X, - l)/Xn = 1.134. 

therefore 

X3/Xlz = (1.134)9 = 3.107 
that is 

1.8 

3.107 
XI, = ~ = 0.579 nim. 

2.3 FORCED VIBRATION 
Many real structures are subjected to periodic excitation. This may be due to unbalanced 
rotating or reciprocating components of machinery or equipment, wind or current effects, 
or a shaking foundation. Usually very low vibration amplitudes are required over a large 
range of exciting forces and frequencies to keep dynamic stresses, noise, fatigue and other 
effects to acceptable levels. Some periodic forces are harmonic, but even if they are not, 
they can be represented as a series of harmonic functions using Fourier analysis 
techniques. Because of this the response of structures and dynamic systems subjected to 
harmonic exciting forces and motions must be studied. Non-periodic excitation such as 
shock, impulse and random, are considered later, in sections 2.3.5 to 2.3.9. 

2.3.1 Response of a viscous damped structure to a simple harmonic exciting 
force with constant amplitude 

In the system shown in Fig. 2.21, the body of mass m is connected by a spring and viscous 
damper to a fixed support, whilst a harmonic force of circular frequency v and amplitude 
F acts upon it, in the line of motion. 

Fig. 2.21. Single degree of freedom model of a forced system with viscous damping. 
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The equation of motion is 
mi + cx + kr = F sin vt. (2.11) 

The solution to mi + c i  + kr = 0, which has already been studied, is the 
complementary function; it represents the initial vibration which quickly dies away. The 
sustained motion is given by the particular solution. A solution x = X (sin vt - Q) can be 
assumed, because this represents simple harmonic motion at the frequency of the exciting 
force with a displacement vector which lags the force vector by Q, that is, the motion 
occurs after the application of the force. 

Assuming x = X sin(vt - Q), 
x = ~ v c o s ( v t - ~ )  = Xvsin(v t -4  + 4x1, 

2 = - XV* sin (w - Q) = XV’ sin (M - Q + n). 

mxv’ sin (vt - Q + n) + cxv sin (M - Q + z/2) + k~ sin (vt - Q) 

and 

The equation of motion (2.11) thus becomes 

= F sin vt. 

A vector diagram of these forces can now be drawn (Fig. 2.22). 

Fig. 2.22. Force vector diagram. 

From the diagram, 
F” = (kx - mxv‘)‘ + (CXV)’, 

X = F/d((k - rnv’)’ + (cv)’), 

tan Q = C X V / ( ~ X  - ~ x v ’ ) .  

or 
(2.12) 

and 

Thus the steady-state solution to equation (2.1 1) is 

F 
x =  sin (vt - Q), 

d((k  - mv’)’ + (CV)’) 
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where 

9 = tan-'( k - m v  cv z). 

The complete solution includes the transient motion given by the complementary 
function: 

x = Ae-'" sin ( d ( 1  - C')t + a). 
Fig. 2.23 shows the combined motion. 

I 

Fig, 2.23. Forced vibration, combined motion. 

Equation (2.12) can be written in a more convenient form if we put 

F 
k 

w = {(i) rad/s and X ,  = --. 

Then 

1 
(2.13) - 

X - -  

xs d( [ l  - (f)'] + [2$]} ' 

and $I = tan-' [ :: :;:21 

X/Xs is known as the dynamic magnification factor, because X ,  is the static deflection of 

By considering different values of the frequency ratio v / q  we can plot X / X s  and 4 as 

The effect of the frequency ratio on the force vector diagram is shown in Fig. 2.26. 
The importance of mechanical vibration arises mainly from the large values of X/Xl 

experienced in practice when v/w has a value near unity: this means that a small harmonic 

the system under a steady force F, and X is the dynamic amplitude. 

functions of frequency for various values of 6. Figs 2.24 and 2.25 show the results. 
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Fig. 2.24. Amplitude-frequency response for system of Fig. 2.21. 

Fig. 2.25. Phase-frequency response for system of Fig. 2.21. 

force can produce a large amplitude of vibration. The phenomenon known as resonance 
occurs when the forcing frequency is equal to the natural frequency, that is when v/w = 1. 
The maximum value of X/Xs actually occurs at values of v/o less than unity: the value can 
be found by differentiating equation (2.13) with respect to v/w. Hence 

( ~ / w ) ( ~ ~ ~ ) ~ ~ ~  = 4(1 - 2 [ * )  = 1 for [small, 
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Fig. 2.26. Forced vibration vector diagrams: (a) v/w 4 1, exciting force approximately equal to 
spring force; (b) v/w = 1, exciting force equal to damping force, and inertia force equal to spring 

force; (c) v/w S- 1, exciting force nearly equal to inertia force. 

and 

<X/Xs>max = 1/(25;1(1 - 6')). 
For small values of [, (X/Xs)m.x = l /2c which is the value pertaining to v/w = 1; 

1/2< is a measure of the damping in a system and is referred to as the Q factor. 
Both reciprocating and rotating unbalance in a system produce an exciting force of the 

inertia type and result in the amplitude of the exciting force being proportional to the 
square of the frequency of excitation. 

For an unbalanced body of mass m, at an effective radius r, rotating at an angular speed 
v, the exciting force is therefore m, rv'. If this force is applied to a single degree of freedom 
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system such as that in Fig. 2.21, the component of the force in the direction of motion is 
m,rv2sinvr, and the amplitude of vibration is 

(2.14) 
(mr /m>r(v /d  

d((1 - (V/W)’)’ + (2C v/o)’) . 
X =  

(see equation (2.13)). 

The value of v/w for maximum X found by differentiating equation (2.14) is given 
by 

(v/@xmax = 1/41 - 26’) 

that is, the peak of the response curve occurs when v > UR This is shown in Fig. 2.27. 
Also, 

x,,, = (mr/m)d2Cd(l - 6’). 
It can be seen that away from the resonance condition (V/O = 1) the system response 

is not greatly affected by damping unless this happens to be large. Since in most 
mechanical systems the damping is small ( C  < 0.1) it is often permissible to neglect the 
damping when evaluating the frequency for maximum amplitude and also the amplitude- 
frequency response away from the resonance condition. 

Fig. 2.27. Amplitude-frequency response, with rotating unbalance excitation. 

It can be seen from Figs 2.24,2.26 and 2.27 that the system response at low frequencies 
( e m )  is stiffness-dependent, and that in the region of resonance the response is damping- 
dependent, whereas at high frequencies (+@ the response is governed by the system 
mass. It is most important to realize this when attempting to reduce the vibration of a 
structure. For example, the application of increased damping will have little effect if the 
excitation and response frequencies are in a region well away from resonance, such as that 
controlled by the mass of the structure. 
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2.3.2 Response of a viscous damped structure supported on a foundation 
subjected to harmonic vibration 

The system considered is shown in Fig. 2.28. The foundation is subjected to harmonic 
vibration A sin vt and it is required to determine the response, x ,  of the body. 

Fig. 2.28. Single degree of freedom model of a vibrated system with viscous damping. 

The equation of motion is 

mji = C(J - i )  + k@ -x). 

u = x - y, and equation (2.15) becomes 

(2.15) 

If the displacement of the body relative to the foundation, u, is required, we may write 

mu + cu + ku = - mj: = mv2 A sin vt. 

This equation is similar to (2.11) so that the solution may be written directly as 

1 2c(v/w) - (v/w)’ 1. ( sin vt - tan-’ A(v/@’ 

d((1 - (v/@’>’ + (2CV/N2) 
u =  

If the absolute motion of the body is required we rewrite equation (2.15) as 

m i  + cx + kx = cy + ky 
= CAVCOS vt + kA sin vt 
= Ad(k2 + (cv)’) sin (vt + a) 

where 

-, cv 
a = tan -. 

k 

Hence, from the previous result, 

Ad(k’ + (cv)’) 

d((k  - mv’)’ + (cv)’) 
x =  sin (vt- I$ + a). 

The motion transmissibility is defined as the ratio of the amplitude of the absolute body 
vibration to the amplitude of the foundation vibration. Thus, 
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X 
motion transmissibility = - 

A 

2.3.2.1 Vibration isolation 

The dynamic forces produced by machinery are often very large. However, the force 
transmitted t3 thz foundation or supporting structure can be reduced by USiirg flexible 
mountings with the correct properties; alternatively a machine can be isolated from 
foundation vibration by using the correct flexible mountings. Fig. 2.29 shows a model of 
such a system. 

Fig. 2.29. Single degree of freedom system with foundation. 

The force transmitted to the foundation is the sum of the spring force and the damper 
force. Thus the transmitted force = kx + c i  and Fn the amplitude of the transmitted force 
is given by 

FT = d[(WZ + (cvX)’]. 
The force transmission ratio or transmissibility, T,, is given by 

F, Xd[kZ  + (cv)’] 
F F 

T , = - =  

since 
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i r 1  + (41 
TR = m.[211.) 

Therefore the force and motion transmissibilities are the same. 
The effect of v/o on TR is shown in Fig. 2.30. It can be seen that for good isolation 

v/w>d2, hence a low value of w is required which implies a low stiffness, that is, a 
flexible mounting: this may not always be acceptable in practice where a certain minimum 
stiffness is usually necessary to satisfy operating criteria. 

Fig. 2.30. Transmissibility-frequency ratio response. 

It is particularly important to be able to isolate vibration sources because structure- 
borne vibration can otherwise be easily transmitted to parts that radiate well, and serious 
noise problems can occur. Theoretically, low stiffness isolators are desirable to give a low 
natural frequency. However, this often results in isolators that are too soft and stability 
problems may arise. The system can be attached rigidly to a large block which effectively 
increases its mass so that stiffer isolators can be used. The centre of mass of the combined 
system is also lowered, giving improved stability. For the best response a mounting 
system may be designed with snubbers, which control the large amplitudes while 
providing little or no damping when the amplitudes are small. 

There are four types of spring material commonly used for resilient mountings and 
vibration isolation: air, metal, rubber and cork. Air springs can be used for very low- 
frequency suspensions: resonance frequencies as low as 1 Hz can be achieved whereas 



56 The vibration of structures with one degree of freedom [Ch. 2 

metal springs can only be used for resonance frequencies greater than about 1.3 Hz. Metal 
springs can transmit high frequencies, however, so rubber or felt pads are often used to 
prohibit metal-to-metal contact between the spring and the structure. Different forms of 
spring element can be used such as coil, torsion, cantilever and beam. Rubber can be used 
in shear or compression but rarely in tension. It is important to determine the dynamic 
stiffness of a rubber isolator because this is generally much greater than the static stiffness. 
Also rubber possesses some inherent damping although this may be sensitive to ampli- 
tude, frequency and temperature. Natural frequencies from 5 Hz upwards can be achieved. 
Cork is one of the oldest materials used for vibration isolation. It is usually used in 
compression and natural frequencies of 25 Hz upwards are typical. 

Example 12 

A spring-mounted body moves with velocity u along an undulating surface, as shown. 
The body has a mass m and is connected to the wheel by a spring of stiffness k ,  and a 

viscous damper whose damping coefficient is c. The undulating surface has a wavelength 
L and an amplitude h. 

Derive an expression for the ratio of amplitudes of the absolute vertical displacement of 
the body to the surface undulations. 

The system can be considered as 

where 
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2x2 
y = hcos-andz = vt. 

L 

Hence 

2n v 2n v 
L L 

y = h cos ~ t = h cos vt, where v = --. 

The FBDs are 

Hence the equation of motion is 

nrir' = -k(x - y) - c ( i  - y), 

m i  + c i  + kr = cy + ky. 
or 

Now 

y = h COS M ,  

so 

nrir' + c i  + kr = d[k2  + ( c v ) ~ ] ~  sin ( M  + @). 

Hence, if x = X,, sin (vt + a), then 

hd[k2 + ( c v ) ~ ]  xo = 
d [ ( k  - rnv2)2 + (CV)*] 

so, 

d [ k 2  + (yJ] 
- _ -  X O  

h {( [ k  - (y4* + ( y  cr} 
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Example 13 

The vibration on the floor in a building is SHM at a frequency in the range 15-60 Hz. It 
is desired to install sensitive equipment in the building which must be insulated from floor 
vibration. The equipment is fastened to a small platform which is supported by three 
similar springs resting on the floor, each carrying an equal load. Only vertical motion 
occurs. The combined mass of the equipment and platform is 40 kg, and the equivalent 
viscous damping ratio of the suspension is 0.2. 

Find the maximum value for the spring stiffness, if the amplitude of transmitted 
vibration is to be less than 10% of the floor vibration over the given frequency range. 

T, = 0.1 with < = 0.2 is required, thus 

[I - (;)I2 + [o.4(;)12 = im[ i  + (0.4$], 

that is, 

(ir - 17.84 (;) - 99 = 0. 

Hence 

V 
- = 4.72. 
o 

When 

v = 15 x 2nrad/s, o = 19.97 rad/s. 

Since 

0 = {(i) and m = 40 kg, 

total k = 15 935 N/m, 

that is, the stiffness of each spring = 15 935/3 N/m = 5.3 kN/m. 

15 Hz. 
The amplitude of the transmitted vibration will be less than 10% at frequencies above 
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Example 14 

A machine of mass m generates a disturbing force F sin vt; to reduce the force transmitted 
to the supporting structure, the machine is mounted on a spring of stiffness k with a 
damper in parallel. Compare the effectiveness of this isolation system for viscous and 
hysteretic damping. 

viscous damping. From section 2.3.2.1, 

Hysteretic damping. From section 2.2.6, 

c v  V 
Putting 77 = - = 2<-, 

k 0 

The effectiveness of these isolators can be compared using these expressions for T,. The 
results are given in the table below. 

It can be seen that the isolation effects are similar for the viscous and hysteretically 
damped isolators, except at high frequency ratios when the hysteretic damping gives much 
better attentuation of TR. At these frequencies it is better to decouple the viscous damped 
isolator by attaching small springs or rubber bushes at each end. 

Viscously damped Hysteretically damped 
isolator isolator 

Value of TR when v = 0' 
Frequency ratio v/w for resonance 
Value of TR at resonance 4 1 

Value of T, when v/w = 42 
Frequency ratio v /w  for isolation 
High frequency, v/w S 1, attenua- 
tion of TR 

1 
1 

d(1 + q2) 1 - -  - 
77 77 

1 
> 42 

1 
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Example 15 

A motor-generator set of mass 100 kg is installed using antivibration (AV) mountings 
which deflect 1 mm under the static weight of the set. The mountings are effectively 
undamped and from dynamic test results it is found that the static stiffness and the 
dynamic stiffness are the same. 

When running at 1480 rev/min the amplitude of vibration of the set is measured to be 
0.2 mm To reduce this vibration, it is proposed to fasten the motor generator to a concrete 
block of mass 300 kg which is then to be mounted on the same AV mounts as before. 
Calculate the new amplitude of vibration. 

For undamped mounts, 

F 
k - mv’ 

x =  

Initially, 

F 
k - m,v  2 ’  XI = 

and when on the block, 

F 
k - m2v 2 ’  x, = 

that is, 

x, k - m2v2 

x2 k - m,v 
_ _  

2 ’  
- 

Now 

100 x 9.81 
k =  = 981 x 10’ N/m, 

lo-’ 

2 n x  1480 
60 

v =  = 155 rad/s, 

m, = 100 kg and m2 = 400 kg. 

Thus 

xI 
x2 

981 x lo3 - 400 (155)2 
981 x lo3  - 100 (155)2 

_ -  - 
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981 - 9600 

981 - 2400 
= 6.07. - - 

Forced vibration 61 

Since 

0.2 

6.07 
x ,  = 0.2 mm, x, = ~ - - 0.033 mm. 

Example 16 
A machine of mass 550 kg is flexibly supported on rubber mountings which provide a 
force proportional to displacement of 210 kN/m, together with a viscous damping force. 
The machine gives an exciting force of the form RvZ cos vt, where R is a constant. At very 
high speeds of rotation, the measured amplitude of vibration is 0.25 mm, and the 
maximum amplitude recorded as the speed is slowly increased from zero is 2 mm. Find 
the value of R and the damping ratio. 

Now, 

X = Rv’/(d(k - mv’)’ + c’vz). 

If v is large, 

X+Rv’/(d(m’v4)) = R/m. 

Hence 

R = mX = (550 x 0.25)/1000 = 0.1375 kg m. 

For maximum X ,  dX/dv = 0, hence v’ = 2k2/(2mk - c’), and 

s o  

<d(l - c’) = R/(2mXm,,) = 0.1375/(2 x 550 x 2 x lo-’) = 0.0625, 

that is, 

< = 0.0625. 

2.3.3 Response of a Coulomb damped structure to a simple harmonic 
exciting force with constant amplitude 

In the system shown in Fig. 2.31 the damper relies upon dry friction. 

opposes the motion: 
The equation of motion is non-linear because the constant friction force F, always 

mx + kx + F, = F sin vt 
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Fig. 2.31. Single degree of freedom model of a forced system with Coulomb damping. 

If F, is large compared to F, discontinuous motion will occur, but in most structures Fd is 
usually small so that an approximate continuous solution is valid. The approximate 
solution is obtained by linearizing the equation of motion; this can be done by expressing 
Fd in terms of an equivalent viscous damping coefficient, cd. From section 2.2.6, 

4Fd, 
nvx. 

Cd = ~ 

The solution to the linearized equation of motion gives the amplitude X of the motion 
as 

Hence 

F 
d [ ( k  - mv’)’ + (4FJnX)’I ’ 

X =  

that is, 

X d(1 - ( ~ F , , / z F ) ~ )  - _  - 
x s  1 - (v/m)2 

This expression is satisfactory for small damping forces, but breaks down if 4FJxF< 1; 
that is, Fd > (n/4)F. 

At resonance the amplitude is not limited by Coulomb friction. 

2.3.4 Response of a hysteretically damped structure to a simple harmonic 
exciting force with constant amplitude 

In the single degree of freedom model shown in Fig. 2.32 the damping is hysteretic. 
The equation of motion is 

mi + k*x = F sin vt. 

Since 
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Fig. 2.32. Single degree of freedom model of a forced system with hysteretic damping. 

k* = k(l + jq), 

F sin vt 

(k - mv’) + jqk 
x =  

and 

This result can also be obtained from the analysis of a viscous damped system by 
substituting c = qk/v.  

q = 2J = l /Q .  
It should be noted that if c = qk/v, at resonance c = qd(km); that is, 

1 
Since Q = -, 

77 

if a structure is made from a concrete material for which q = 0.02, a Q factor of 50 may 
be expected. For a steel, with q = 0.005 a Q factor of 200 may be expected and for a cast 
iron with q = 0.01, Q = 100. In practice Q values very much lower than these occur, 
often by an order of magnitude; that is, Q factors of 10 or less are common. Most of the 
additional damping found in structures originates in the joints between the connected 
components of the structure. Joint damping is often the most significant form of damping 
in a structure and keeps the dynamic response to acceptable levels; it is fully discussed in 
Chapter 5.  

2.3.5 Response of a structure to a suddenly applied force 

Consider a single degree of freedom undamped system, such as the system shown in Fig. 
2.33, which has been subjected to a suddenly applied force, F. The equation of motion is 
m i  + kx = F. The solution to this equation comprises a complementary function 
A sin ox + B cos ox, where w = d(k/m) rad/s together with a particular solution. The 
particular solution may be found by using the D-operator. Thus the equation of motion can 
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Fig. 2.33. Single degree of freedom model with constant exciting force. 

be written 

1 + 7 x =-, ( 9 f 
x =  ( 1 + -  "J - -  f - (1 -7- ...)- = -. 

and 

D2 F F  D2 -1  

k k '  

that is, the complete solution to the equation of motion is 

F 
x = A sin U# + B cos wt + -. 

k 

If the initial conditions are such that x = 1 = 0 at t = 0, then B = - F/k and A = 0. 
Hence 

F 
k 

x = - (1 - cos ox). 

The motion is shown in Fig. 2.34. It will be seen that the maximum dynamic 
displacement is twice the static displacement occurring under the same load. This is an 
important consideration in structures subjected to suddenly applied loads. 

If the structure possesses viscous damping of coefficient c, the solution to the equation 
of motion is x = Xe-'" sin (wVt + 6) + F/k. 

Fig. 2.34. Displacement-time response for the system shown in Fig. 2.33. 
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With the same initial conditions as above, 

J(l - '")I. ( 6 : [ 4 1  - <'> sin d(1 - <'>t + tan-' 
e-crur 

x = -  1 -  

This reduces to the undamped case if < = 0. The response of the damped system is shown 
in Fig. 2.35. 

Fig. 2.35. Displacement-time response for a single degree of freedom system with viscous damping. 

2.3.6 Shock excitation 

Some structures are subjected to shock or impulse loads arising from suddenly applied, 
non-periodic, short-duration exciting forces. 

The impulsive force shown in Fig. 2.36 consists of a force of magnitude F,,JE which 
has a time duration of E. 

Fig. 2.36. Impulse. 

The impulse is equal to 

/ y E (+)di. 

When F,,, is equal to unity, the force in the limiting case &+O is called either the unit 
impulse or the delta function, and is identified by the symbol 6(t  - <), where 

6( t -  a d <  = 1. 1: 
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Since F dt = m dv, the impulse F,, acting on a body will result in a sudden change in 
its velocity without an appreciable change in its displacement. Thus the motion of a single 
degree of freedom system excited by an impulse F,, corresponds to free vibration with 
initial conditions x = 0 and x = v, = F,,,,Jm at t = 0. 

Once the response g(t), say, to a unit impulse excitation is known, it is possible to 
establish the equation for the response of a system to an arbitrary exciting force F(t). For 
this the arbitrary pulse is considered to comprise a series of impulses as shown in Fig. 
2.37. 

Fig. 2.37. Force-time pulse. 

If one of the impulses is examined which starts at time 5, its magnitude is F ( { ) g ,  
and its contribution to the system response at time t is  found by replacing the time with the 
elapsed time (t - 5)  as shown in Fig. 2.38. 

If the system can be assumed to be linear, the principle of superposition can be applied, 
so that 

x(t)  = F(5 )g(t - 51d5. 
This is known as the Duhamel integral. 

2.3.7 Wind- or current-excited oscillation 
A structure exposed to a fluid stream is subjected to a harmonically varying force in a 
direction perpendicular to the stream. This is because of eddy, or vortex, shedding on 
alternate sides of the structure on the leeward side. Tall structures such as masts, bridges 
and chimneys are susceptible to excitation from steady winds blowing across them. 
Consider a circular cylinder of diameter D exposed to a fluid which flows past the cylinder 
with a velocity v. When v is large enough, vortices are formed in the wake which are shed 
in a regular pattern over a wide range of Reynolds’ numbers. 

VDP Reynolds number = -, 
P 
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Fig. 2.38. Displacement-time response to impulse. 

where p and p are the mass density and viscosity of the fluid, respectively. 
The vortices are shed from opposite sides of the cylinder with a frequency fs. The 

Strouhal number relates the excitation frequency,fs, to the velocity of fluid flow, v (m/s), 
and the hydraulic mean diameter, D(m), of the structure as follows: 

fsD Strouhal number = -. 
V 

This vortex shedding causes an alternating pressure on each side of the cylinder, which 
acts as a harmonically varying force which is perpendicular to the direction of the 
undisturbed flow of magnitude 

fC,pv2 A 

where C, is the drag coefficient and A is the projected area of the cylinder perpendicular 
to the direction of flow. If the frequencyf, is close to the natural frequency of the structure, 
resonance may occur. 

For a structure. 

4 x area of cross-section 

circumference 
D =  

so that for a chimney of circular cross-section and diameter d, 

= d, 
4(n;14) d' D =  

Rd 

and for a building of rectangular cross-section a x b, 
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2ab 

(a + b)' 
- 4ab 

2(a + b) 
D =  - 

Experimental evidence suggests a value of 0.2-0.24 for the Strouhal number for most 
flow rates and wind speeds encountered. This value is valid for Reynolds numbers in the 
range 3 x 10' - 3.5 x lo6. 

For a comprehensive discussion of this form of excitation see Flow Induced Vibration 
by R. D. Blevins (Van Nostrand, 1977). 

Example 17 

For constructing a tanker terminal in a river estuary a number of cylindrical concrete piles 
were sunk into the river bed and left free-standing. Each pile was 1 m in diameter and 
protruded 20 m out of the river bed. The density of the concrete was 2400 kg/ m ' and the 
modulus of elasticity 14 x lo6 kN/m2. Estimate the velocity of the water flowing past a 
pile which will cause it to vibrate transversely to the direction of the current, assuming a 
pile to be a cantilever and taking a value for the Strouhal number 

= 0.22, fso 
U 

wheref, is the frequency of flexural vibrations of a pile, D is the diameter and u is the 
velocity of the current. 

Consider the pile to be a cantilever of mass m, diameter D and length E; then the 
deflection y at a distance x from the root can be taken to be y = y,(l - cos m/21), where 
y, is the deflection at the free end. 

Thus 



Sec. 2.31 Forced vibration 69 

Hence 

Substituting numerical values gives w = 5.53 rad/s, that is, f = 0.88 Hz. When 
fs = 0.88 Hz resonance occurs; that is, when 

fsD 0.88 
0.22 0.22 

v=---- - - 4 m/s. 

2.3.8 Harmonic analysis 

A function that is periodic but not harmonic can be represented by the sum of a number 
of terms, each term representing some multiple of the fundamental frequency. In a linear 
system each of these harmonic terms acts as if it alone were exciting the system, and the 
system response is the sum of the excitation of all the harmonics. 

For example, if the periodic forcing function of a single degree of freedom undamped 
system is 

F, sin (vr + a,) + Fz sin (2vr + &) + F, sin (3vt + a;) 
+ ... + F, sin (nvz + an), 

the steady-state response to F, sin (vr + a,) is 
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and the response to F2 sin (2vt + &) is 

C 

and so on, so that 

n 

Clearly that harmonic that is closest to the system natural frequency will most influence 
the response. 

A periodic function can be written as the sum of a number of harmonic terms by writing 
a Fourier series for the function. A Fourier series can be written - 

F(t)  = 7 an + c (a, cos nvt + 6, sin nvt), 

where 

a, = '/I' F(t)dt, 
7 0  

and 

For example, consider the first four terms of the Fourier series representation of the square 
wave shown in Fig. 2.39 to be required; 7 = 2~ so v = 1 rad/s. 

a0 
2 

F(t) = - + a, COS vt + a2 COS 2vt + ... 

+ b, sin vt + 6, sin 2vt + ..., 
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Fig. 2.39. Square wave. 

F(t)dr = ~ 1 dt + ~ - 1 dt = 0, 217 7 0  2 K  2 I: 2 K  2 1; 
'I' 7 0  

a, = - 

a, = - F(t)  cos vtdt 

2 II 2 "  
2 K  0 2 K  

= -1 cos vtdt + ~ - c o s  vtdr = 0. 

Similarly 

a, = a3 = ... = 0. 

b, = 'I' F(t)  sin vtdt 
T o  

= L/:sin vtdt + ~ - sin vtdt 
2K 2 K  2 Ip 

4 1 z 1  2K = - [ - cos MI, +  COS VfIn = -. 
m m m 

Since v = 1 radls, 

4 
b, =-. 

K 

It is found that b, = 0, b, = 4 1 3 ~  and so on. Thus 

1 1 1 1 
F(t) = - sin t + - sin 3t + -sin 5r + - sin 7r + ... " [  K 3 5 7 
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is the series representation of the square wave shown. 

steady-state response is given by 

[Ch. 2 

If this stimulus is applied to a simple undamped system with o = 4 rad/s, say, the 

4 4 4 4 
- sin t -sin 3t -sin 5t -sin 7t 
7c 3K 5K 7a 

x =  + + + ..., 
1 - (t)’ 1 - (t)’ 1 - (i)’ 1 - (:)2 

that is, x = 1.36 sin t + 0.97 sin 3t - 0.45 sin 5t - 0.09 sin 7 t  - . . . 
Usually three or four terms of the series dominate the predicted response. 
It is worth sketching the components of F(r) above to show that they produce a 

reasonable square wave, whereas the components of x do not. This is an important 
result. 

2.3.9 Random vibration 

If the vibration response parameters of a dynamic system are accurately known as 
functions of time, the vibration is said to be deterministic. However, in many systems and 
processes responses cannot be accurately predicted; these are called random processes. 
Examples of a random process are turbulence, fatigue-, the meshing of imperfect gears, 
surface irregularities, the motion of a car running along a rough road and building 
vibration excited by an earthquake. Fig. 2.40 shows a random process. 

Fig. 2.40. Example random process variable as a function of 1. 

A collection of sample functions x,(t) ,  xz(t), x,(t), ..., xn(t) which make up the random 
process x(t)  is called an ensemble, as shown in Fig. 2.41. These functions may comprise, 
for example, records of noise, pressure fluctuations or vibration levels, taken under the 
same conditions but at different times. 

Any quantity that cannot be precisely predicted is non-deterministic and is known as a 
random variable or a probabilistic quantity; that is, if a series of tests is conducted to find 
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the value of a particular parameter x and that value is found to vary in an unpredictable 
way that is not a function of any other parameter, then x is a random variable. 

Fig. 2.41. Ensemble of a random process. 

2.3.9. I Probability distribution 

If n experimental values of a variable x are x,, x,, x?, ..., xn, the probability that the value 
of x will be less than x' is n'/n, where n' is the number of x values that are less than or equal 
to x'; that is, 

Prob (x c x ' )  = n'/n. 

When n approaches 00 this expression is the probability distribution function of x, denoted 
by P(x) ,  so that 

P(x)  = Lt (n'/n) 
n-i- 

The typical variation of P(x)  with x is shown in Fig. 2.42. Since x( t )  denotes a physical 
quantity, 

Prob (x < - w )  = 0, and Prob ( x  < + -) = 1 .  
The probubiliQ densivfunction is the derivative of P(x)  with respect to x and this is 
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Fig. 2.42. Probability distribution function as a function of x. 

denoted by p(x);  that is, 

dP(x) 
p(x) = - 

4x1 

1 7  

= L t [  A x 4  LLr 
P(x + Ax) - P(x)  

where P(x + Ax) - P(x) is the probability that the value of x( t )  will lie between x and 
x + Ax (Fig. 2.42). Now, 

dP(x) 
p(x) = -1 

4x1 

so that 

P(x) = 1; P(X)dX- 

1- 
Hence 

m 

P(,) = p(x)dx = 1, 

so that the area under the probability density function curve is unity. 
A random process is stationary if the joint probability density 

p(x(fl), x(tA x(f3),  ... > 
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depends only upon the time differences r, - t,, t3 - r2 and so on, and not on the actual time 
instants; that is, the ensemble will look just the same if the time origin is changed. A 
random process is ergodic if every sample function is typical of the entire group. 

The expected value of Ax), which is written 

EVWI o r A ,  

is - 
EMx)] = = I_ Ax)p(x)d--$, 

so that the expected value of a stationary random process x(t )  is 

E[x(tAl = E[x(t ,  + 01 
for any value of t .  

If Ax) = x,  the expected value or mean value of x ,  

E[x] or X, is - 
E[x]  = X = 1- xp(x)dr.  

E[x2] = 2’ = I_ x2p(x)dx. 

In addition, iffix) = x2, the mean square value X ’ of x is 

The variance of x ,  $, is the mean square value of x about the mean, that is, 

- 
d = E[(x  - X)’] = (x  - X)2p(x)dx = (5 ,) - (SZ)’. 1- 

u is the standard deviation of x,  hence 

variance = (standard deviation)’ = {mean square - (mean)2) 

If two (or more) random variables xI and x2, represent a random process at two different 
instants of time, then 

~ m l t x 2 ) i  = [ Jl f i x l ~ x , ) p ( x , ~ z ~ ~ , ~ z ,  

E [ x ( t , ) ~ ( t , ) l  = W&), 
and if r ,  and t2 are the two instants of time, 

which is the auto-correlation function for the random process (Fig. 2.43). 
For random processes that are stationary, 

E[x(t ,) ,  x(tz)l = W , ,  t2) = WZ - 2 , )  = R(.r), 

say, since the average depends only upon time differences. If the process is also 
ergodic, 
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then 

[Ch. 2 

1 =  
R(T) = Lt -1 x(f)x(t  + z)dt. 

T- 2x-T 

It is worth noting that 

R(0) = E[x(t)*] = Lt L1T x*(t)dt, 
T+- 2T-7 

which is the average power in a sample function. 

Fig. 2.43. Random processes. 

2.3.9.2 Random processes 
The most important random process is the Gaussian, or normal random process. This is 
because a wide range of physically observed random waveforms can be represented as 
Gaussian processes, and the process has mathematical features which make analysis 
relatively straightforward. 

The probability density function of a Gaussian process x(r) is 
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P ( 4  = -e-[ 1 -&)I, 1 x - X  d(2Tc)o 

where o is the standard deviation of x,  and X is the mean value of x. 
The values of o and X may vary with time for a non-stationary process but are 

independent of time if the process is stationary. 
One of the most important features of the Gaussian process is that the response of a 

linear system to this form of excitation is usually another, but still Gaussian, random 
process. The only changes are that the magnitude and standard deviation of the response 
may differ from those of the excitation. 

A Gaussian probability density function is shown in Fig. 2.44. It can be seen to be 
symmetric about the mean value X, and the standard deviation o controls the spread. 

Fig. 2.44. Gaussian probability density function. 

The probability that x(t )  lies between - iloand + Lo, where il is a positive number, can 
be found since, if X = 0, 

1 exp (- L z).. 
2 d  

Prob { - ilosx(t)s + no} = ~ 5 :*:42m 
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Fig. 2.45 shows the Gaussian probability density function with zero mean. 

[Ch. 2 

Fig. 2.45. Gaussian probability density function with zero mean. 

This integral has been calculated for a range of values of A; the results are given in the 
table opposite. The probability that x(t)  lies outside the range - Lo to + Lo is 1 minus the 
value of the above integral; this probability is also given. 

2.3.9.3 Spectral density 

The spectral density S(w) of a stationary random process is the Fourier transform of the 
autocorrelation function R ( @ .  It is given by 

S(w) = ~ R(.r)e-’-d.r. 2n l e  

Jh 

e 

The inverse, which also holds true, is 

R(7) = S(w)e-jmTdm 
- 

I f . s = O  

R(0) = S(w)dw = E[x*], 

that is, the mean square value of a stationary random process x is the area under the S(w) 
against frequency curve. A typical spectral density function is shown in Fig. 2.46. 



Value of A Rob h o b  
[- ; loSx(t )S3La]  b(0 > b 1  

0 0 1 .oooo 
0.2 0.1585 0.8415 
0.4 0.3108 0.6892 
0.6 0.4515 0.5485 
0.8 0.5763 0.4237 
1 .o 0.6827 0.3173 
1.2 0.7699 0.2301 
1.4 0.8586 0.1414 
1.6 0.8904 0.1096 
1.8 0.928 1 0.0719 
2.0 0.9545 0.0455 
2.2 0.9722 0.0278 
2.4 0.9835 0.0164 
2.6 0.9907 0.0093 
2.8 0.9949 0.005 1 
3.0 0.9973 0.0027 
3.2 0.9986 0.00137 
3.4 0.9993 0.00067 
3.6 0.9997 0.00032 
3.8 0.9998 0.00014 
4.0 0.9999 0.00006 

Fig. 2.46. Typical spectral density function. 
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A random process whose spectral density is constant over a very wide frequency range 
is called white noise. If the spectral density of a process has a significant value over a 
narrower range of frequencies, but one that is nevertheless still wide compared with the 
centre frequency of the band, it is termed a wide-bandprocess (Fig. 2.47). If the frequency 
range is narrow compared with the centre frequency it is termed a narrow-band process 
(Fig. 2.48). Narrow-band processes frequently occur in engineering practice because real 
systems often respond strongly to specific exciting frequencies and thereby effectively act 
as a filter. 

Fig. 2.47. Wide-band process. 

2.3.10 The measurement of vibration 

The most commonly used device for vibration measurement is the piezoelectric 
accelerometer, which gives an electric signal proportional to the vibration acceleration. 
This signal can readily be amplified, analysed, displayed, recorded, and so on. The 
principles of this device can be studied by refemng to Fig. 2.49 which shows a body of 
mass m supported by an elastic system of stiffness k and effective viscous damping of 
coefficient c. 

This dynamic system is usually enclosed in a case which is fastened to the surface 
whose vibration is to be measured. The body has a pointer fixed to it, which moves over 
a scale fastened to the case, that is, it measures u, the motion of the suspended body 
relative to that of the vibrating surface so that u = x - y. 
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Fig. 2.48. Narrow-band process. 

Now from section 2.3.2, the amplitude of u is 

A o '  u=u 
so that if w is low and v S4 

Fig. 2.49. Vibration measuring device. 
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that is, the device measures the input vibration amplitude; when operating in this mode it 
is called a vibromerer, and if w is high so that w S- v, then 

that is, the device measures the input vibration acceleration amplitude; when operating in 
this mode it is called an accelerometer. 

By adjusting the system parameters correctly it is possible to make 

have a value close to unity for exciting frequencies v up to about 0 . 3 ~  Commercial 
accelerometers usually have piezoelectric elements instead of a spring and damper, so that 
the electric signal produced is proportional to the relative motion, u, above. 

Piezoelectric accelerometers are widely used for measuring the vibration of structures. 
The output of these accelerometers is governed by their sensitivity; in general the larger 
and therefore the heavier the accelerometer, the greater its sensitivity and the greater the 
output for a given excitation g-level. However, accelerometers have to be attached to the 
structure and large accelerometers may affect the response of the structure due to their 
added mass and they may also have a limited frequency range. Smaller accelerometers 
have stiffer piezoelectric elements which are less sensitive but can operate at higher 
frequencies. The output of piezoelectric accelerometers is easily amplified, analysed and 
recorded. 

Strain gauges are also often used to measure the dynamic response of a structure. These 
rely on the change in resistance of a wire caused by a change in its length. Dynamic 
measurements require using an a.c. bridge circuit, the carrier frequency used determining 
the range of frequency measurements possible. These gauges are cheap and easy to apply 
to a structure, and the bridge output is easily recorded and analysed. 

Non-contacting capacitance and impedance transducers are also sometimes used. 


