#### Bringing the Vision of Plug-and-play to High-Performance Computing on Orbit

Presentation to HPEC 2009 22 Sept 2009

#### Outline

- Introduction
- Space Plug-and-Play Avionics (SPA)
- Extending SPA to HPEC
- Conclusions

### Space PnP Avionics (SPA)

- Introduction
- Key Features
- Status

#### Analogy of Consumer PnP with SPA



USB interface chip



### Space Plug-and-play Avionics Key Features

- Single-point interfaces (e.g. SPA-S) and protocols
- Appliqué Sensor Interface Module (ASIM)
- Electronic datasheets (XTEDS)
- Software -- Satellite data model (SDM)
- Test bypass
- Pushbutton toolflow

#### Interfaces



- SPA-U (Data transport = USB 1.1, limited to 12 Mbps for entire bus)
- SPA-S (Data transport = Spacewire, limited to 600 Mbps per direction per link)

#### Distribution of bandwidth in systems



Heterogeneity – Mixture of SPA networks



# Applique Sensor Interface Module (ASIM) – Simplifying SPA Engineering and SPA Compliance



# eXtended Transducer Electronic Datasheet (xTEDS)



- Primary mechanism for selfdescription
  - Embedded in hardware and software applications
  - Describes "knobs" and "measurands"
- Conveys "semantic precision" through a common data dictionary (CDD)
- Enforces order in the "LEGO universe" of SPA (features only exist if known through XTEDS)
- Recently released to public domain
  - Studied as possible AIAA and ISO standard

# The Satellite Data Model (SDM) – Building Awareness into Plug-and-play



#### Test Bypass – Automating Support for Hardware-inthe-Loop





## Push-button Tool Flow (aka Satellite Design Automation)



#### Other Tenets of SPA

- Seek OS independence
- Seek decentralization
- Seek to conceal (unnecessary) complexity through encapsulation

#### **SPA Status**

- SPA Workshops (eight from 2004-2006)
- Creation of Responsive Space Testbed (Kirtland AFB)
- Flight developments
  - RESE (SPA-U, 4-port) Launched and operated September 2007
  - TacSat 3 (SPA-U, 4-port) Integration into TacSat 3 (Launched in 2009)
- Adoption of SPA as central interface approach for TacSat 5
- Creation of outreach concepts for SPA-based CubeSats
- International agreement (with Sweden) and pursuit of national/international standards for SPA

## Plug-and-play Satellite (PnPSat)



- First spacecraft ever built entirely on PnP principles
  - Decentralized, scalable computation
  - Use of satellite data model
  - All components (even panels) are SPA devices
  - up to 48 mounting sites
- Ambitious development schedule
  - Targeting flight in 2009

Component and Experiment Accommodations

- A full complement of PnPSat components shown
  - By recessing electrical infrastructure and harnessing, we significantly increase flexibility for component and experiment mounting
  - Initial version of PnPSat may have fewer spacecraft components than the version shown





Magnetometer

Primary

Experiment

(Example Only)

Battery

Coarse Sun

Sensor

Module

Assembly (2)

#### Encapsulation (complexity hiding)



### Encapsulation (complexity hiding)





#### Miniaturization CubeFlow = SPA+CubeSat

- Targeting PnP platforms as small as cubesats (100mm)
- Supports increased payload mass fraction and creation of PnP nanosatellites
- Compact nanosat modular form factor (NMF)standard (70mm x 70mmx12.5mm)



### **CubeFlow Training**



- "Eli Whitney meets spacecraft"
- Short course based on the principles of SPA embedded in takeapart Cubesats
  - Entire system (with laptop console) fits in briefcase
  - Fifteen+ kitsdistributed so far (May 2009 course)
  - More CubeFlow courses planned

# SPA for high-performance embedded systems?

- Scaling of SPA interfaces currently limited
- Complex processing architectures far from plug-and-play

# Example Processing Chain Framework for high-performance (surveillance) sensor



### **Generic Processing System**



#### Example 1: TacSat 2 Processing System



# Example 2: Sensor And Fusion Engine (SAFE) Processing System



# Problems With Ad Hoc HPEC Frameworks

- Constant reinvention of reconfigurable computation architectures
- Fragile, proprietary link structures
- Difficult migration across heterogenous partitions

How could SPA concepts be applied?

# Avoiding the "yet another reconfigurable computer" syndrome

- Nodes based on single computation device
- Ok to have heterogeneous node composition
- Regular socket and messaging infrastructure
- Not ok to have disparate socket/interface/messaging infrastructure
- Pray for the existence of adequate tools to handle amortizing code (circuitize-able) into the fabric of distributed nodes
- Use SPA-like ideas to manage the whole thing

## MPP Platform to study high-bisection bandwidth reconfigurable computing architectures



# Conceptual "HPEC SPA" network without optical (multiple ports/device)



Conceptual HPEC-SPA network based on optical transport



### SPA-Optical "exec summary"

- Also referred to as SPA-10 (original Gbps target, just a label now)
- Expect to have properties similar to (nonscalable)
   SPA-S, but higher link speed
  - Use of embedded clock recovery
- Desire to support optical physical layer for data, command, synchronization
  - Allows >Tbps scaling through WDM
  - Allows flexibility in "provisioning" (i.e. assigning particular wavelengths, protocols, to particular SPA-10 ports)
  - Allows greater flexibility in managing topology, routing policies, faults

### SPA-10 Device concepts

#### **RAW Device Types Interface schemes** Fixed wavelength Sensor (camera, radar, comm, etc.) Tuned wavelength SPA-10 Device Mass storage WDM within single device **Processing** node

SPA-10 Possible Interface Details

Hybrid F/O



### **SPA Computation**

 Addressing interconnection bottleneck leaves the problem of efficiently mapping computation problems to resources

# Complex (multi-FPGA board) Circuit Representation



### Partition into Unit-sized Portions



# Insertion of Socketing Infrastructure



## Wavelength Assignments to Sockets



Transferral to Idealized Backplane



Idealized Optical Backplane

### SPA-10 Modules



(Wavelength multiplexing drawn as spatial multiplexing for illustrative purposes)



# Idealized (vs. practical) optical backplanes

- Idealized: as described in Gilder's Telecosm
  - Infinite resource, every actor has own wavelength
- Practical: limited by finite resources and protocol barriers
  - Limited number of physical channels (fibers)
  - Limited number of wavelengths (CWDM,DWDM)
  - Differing channel characteristics (transceiver data rates, single-vs-multi-mode, transceiver spectral characteristics)
  - Time-slotting (time-division multiple access)
  - Protocol assignment (matching disparate OSI stacks)
  - Limitations of optical resources (e.g., outages due to time necessary to implement switch re-assignments)

# Practical implementation



# How to "LEGO-ize" Anything (generalization of plug-and-play)



#### Challenges in "plug-and-play" provisioning



Source: http://www.kasahara.elec.waseda.ac.jp/ schedule/

- Mapping algorithms into a variety of node types
  - FPGA-based
  - Single/multicore processors
- Coordinating socketing
  - Messaging protocol
  - Establishing finite fabric resource allocation effectively with tolerable gaps in time due to transitions in provisioned configurations

# Advent of Megacompilers?



### In-house SPA-O R&D Testbed (plan)



### Summary

- Space plug-and-play (SPA) continues to gain momentum (completion of PnPSat 1, start of PnPSat 2, TacSat 5, ORS Chileworks, CubeFlow, standardization)
- SPA-Optical / SPA-10 represents a collection of concepts to extend SPA to high-performance embedded computation
- Early work on SPA-Optical testbed underway at AFRL (Kirtland AFB)