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Abstract

CPMD (Car-Parrinello Molecular Dynamics simulations) is a program

used to calculate the energy or properties of a systems with atoms or

molecules. In this paper, we introduce the fundamental work of CPMD —

Wavefunction Optimization, and interpret the code of it.
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1 Physics

In quantum mechanics, the value of energy of a quantum system is not continuous,

but discrete. Energies are only allowed particular values. A ‘ stationary state ’

is a state of a quantum system with definite energy. ‘ The ground state ’ is a

stationary state with the lowest-energy of the system, and it is the most often

state of a stable system.

In section 1, we show how to calculate the ground state in physics.

1.1 The Schrödinger equation

In 1926, Erwin Schrödinger suggested the following equation for describing the

particle (like single electron or nucleus) of mass m:

−
ℏ

2

2m
▽2ψ + V (r)ψ = iℏ

∂ψ

∂t
,

where ψ = ψ(r, t) is a complex function of position r and time t and satisfies
∫

all space

|ψ(r, t)|2dr = 1.

The first equation is named the Schrödinger equation and is a time dependent

equation. But when in the case, the particles in a static potential V (r),the

energy of the particle is conserved. We can separate the r and t by substituting

ψ = u(r)f(t). The Schrödinger equation can be written as follows,

1

u
(−

ℏ
2

2m
▽2u+ V (r)u) =

iℏ

f

∂f

∂t
.

In this equation, the left-hand side is a function of r only while the right-hand

side is a function of t only. Two sides can only be equal for all value if each is

equal to the same constant. Call the constant E. Then we have 2 equations:

−
ℏ

2

2m
▽2u(r) + V (r)u(r) = Eu(r), (i)

iℏ
∂f(t)

∂t
= Ef(t). (ii)

Equation (i) is called the time-independent Schrödinger equation and we let H =

− ℏ
2

2m
▽2 + V (r), the Hamiltonian operator. Equation (i) can be written in a
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eigenequation form Hu(r) = Eu(r). The solution of equation (ii) is f(t) =

β × exp(− iEt
hslash

), β is a constant. Evidently the time-dependent part is a pure

phase factor. Therefore we can only deal with the time-independent equation to

get the total energy when the particle is in a static potential.

In a many body system (including nuclei and electrons), the Hamiltonian can

write down in a single line. It is

H =
∑

l

−ℏ
2▽2

l

2Ml

+
1

2

∑

l 6=l′

qlql′

|Rl −Rl′ |
, (1.1)

where Ml is the mass of an electron or nucleus and ql is its charge. In (1.1), the

Hamiltonian is simply written as the kinetic term adds the interaction term. But

the simplicity is deceptive because the computation cost is too large. It is unable

to solve unless some simplifications are adopted.

1.2 The Born-Oppenheimer approximation and the Hartree-

Fock Theorem

A first simplification is to remove the nuclei from the quantum mechanics prob-

lem. Because nuclei are thousands of times more massive than electrons, they

move that much more slowly. This is the main idea of the Born-Oppenheimer

approximation (1927); take the nuclei to be static, classical potential (Vion), and

solve the electronic problem without worrying about the nuclei further. Adopt-

ing the Born-Oppenheimer approximation, the (time-independent) Schrödinger

equation becomes:

−
ℏ

2

2m

N
∑

l=1

▽2
l Ψ +

N
∑

l=1

Vion(rl)Ψ +
∑

l<l′

e2

|Rl − Rl′ |
Ψ = εΨ , (1.2)

where m is the mass of the electron and Ψ is an anti-symmetric function of N

electrons.

The next step is to simplify the electronic wave function. An scheme is done

by Fock and Slater (1930). They improved the Hartree equation and showed that

the way to obey the Pauli principle to work within the space of anti-symmetric

wave function. The Hartree-Fock equations might be accurate enough to provide

a satisfactory starting point to calculate many properties, but they are too time-

consuming to solve.
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We note that the reduction in the energy of the electronic system due to the

anti-symmetry of the wave function is called the exchange energy, and the dif-

ference between the many-body energy of an electronic system and the energy of

the system calculated in the Hartree-Fock approximation is called the correlation

energy.

1.3 Density-functional theory and the Kohn-Sham equa-

tion

Density-functional theory, developed by Hohenberg and Kohn (1964) and Kohn

and Sham (1965), provided a simple method for describing the effects of exchange

and correlation, of an electron gas (LDA).

1.Hohenberg and Kohn (1964) proved that the total energy E of a many-

electron system is a unique functional of the electron density n(r). The minimum

value of the total-energy functional is the ground-state energy of the system, and

the density that yields this minimum value is the ground-state density. So one

can say that the density n(r) completely determines the many-body problem.

2.Kohn and Sham (1965) showed how it is possible to replace the many-

electron problem by an exactly equivalent set of one-electron equations (the Kohn-

Sham equation).

The Kohn-Sham energy functional of an system with N electrons is written:

E[{ψl}] = 2
∑

l

∫

ψ∗
l [−

ℏ
2

2m
]▽2ψld

3r +

∫

Vion(r)n(r)d3r +
e2

2

∫

n(r)n(r′)

|r − r′|
d3rd3r′

+EXC [n(r)] + Eion(RA),

(1.3)

where {ψl} is a set of doubly occupied electronic states, Eion is the Coulomb

energy associated with interactions among the nuclei at positions RA, Vion is the

static total electron-ion potential, n(r) is the electronic density given by

n(r) = 2
∑

l

|ψl(r)|
2,

and EXC [n(r)] is the exchange-correlation functional.

Only the minimum value of the Kohn-Sham energy functional has physical

meaning. At the minimum, the Kohn Sham energy functional is equal to the
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ground state energy of the system with the ions in position RA. The Kohn Sham

energy function is very helpful to find the ground state energy.

It is necessary to determine the set of wave functions {ψl} that minimize the

Kohn-Sham energy functional. These are given by the self-consistent solutions

to the Kohn-Sham equations (Kohn and Sham, 1965).

In order to minimize the Kohn-Sham energy functional, we use the Lagrange

multiplier.
∂

∂ψ∗
l (r)

{E[{ψl}] − εl

[

δk,l −

∫

ψ∗
kψl

]

} = 0,

where ψl is the wave function of electronic state l, εl is the Lagrange multiplier

and
∫

n(r)dr = N is the constraint. By above equation we get the Kohn-Sham

equation:

[

−
ℏ

2

2m
▽2 +Vion(r) + VH(r) + VXC(r)

]

ψl(r) = εlψl(r), (1.4)

where εl is the Kohn-Sham eigenvalue, and VH is the Hartree potential (due to

the electron-electron interaction) of the electrons given by

VH(r) = e2
∫

n(r′)

|r − r′|
d3r′.

The Kohn-Sham equations represent a mapping of the interacting many-

electron system onto a system of non-interacting electrons moving in an effective

potential due to all the other electrons. Solving the Kohn-Sham equation (1.4) is

equivalent to find the ground state of the Kohn-Sham energy functional (1.3). If

the exchange-correlation energy functional EXC [n(r)] are known exactly. Then

taking the functional derivative with respect to the density would produce an

exchange-correlation potential VXC(r) that include the effects of exchange and

correlation exactly. In CPMD, we have several choices of methods to calculate

the exchange-correlation tern. Here we introduce one of these methods.

The simplest method of describing the exchange-correlation energy ( [exchange

energy]+[correlation energy] ) of an electronic system is the local-density approx-

imation (LDA; Kohn and Sham, 1965). In LDA the exchange-correlation energy

of an electronic system is constructed by assuming that the exchange-correlation

energy per electron at a point r in the electron gas, εXC(r), is equal to the

exchange-correlation energy per electron in a homogeneous electron gas that has
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the same density as the electron gas at point r. Thus

EXC [n(r)] =

∫

εXC(r)n(r)d3r,

and

VXC(r) =
δEXC [n(r)]

δn(r)
=
∂[n(r)εXC(r)]

∂n(r)
. (1.5)

The LDA, in principle, ignores corrections to the exchange-correlation energy

at a point r due to nearby inhomogeneities in the electron density. Consider-

ing the inexact nature of the approximation,it is remarkable that calculations

performed using the LDA have been so successful.

The Kohn-Sham equations (1.4) with the exchange-correlation potential (1.5)

are a set of eigenequations, and must be solved self consistently so that the

occupied electronic states generate a charge density that produces the electronic

potential that was used to construct a new set of Kohn-Sham equations. Noted

that the sum of the single-particle Kohn-Sham eigenvalues does not give the

total electronic energy because this overcounts the effects of the electron-electron

interaction in the Hartree energy and the exchange-correlation energy.

In the preceding section, we showed how to simplify a many-body problem

into an equivalent effective single-particle problem. However, there still remains

the formidable task of handling an infinite number of non-interacting electrons

moving in the static potential of an infinite number of nuclei or ions. The follow

section shows how to surmount this problem. Two difficult must be overcome:

1.A wave function must be calculated for each of the infinite number of elec-

trons in the system.

2. Since each electronic wave function extends over the entire solid, the basis

set required to expand each wave function infinite.

Both problem can be surmounted by performing calculations on periodic sys-

tems and applying Bloch’s theorem to the electronic wave functions.

1.4 Bloch’s Theorem

Bloch’s theorem states that in a periodic potential V (r) (the periodic condition),

V (r + L) = V (r),
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each electronic wave function can be written as the product of a cell-periodic part

and a wavelike part,

ψl(r) = exp[ik · r]fl(r).

By the use of Bloch’s theorem, the problem of the infinite number of electrons

has now been mapped onto the problem of expressing the wavefunction in terms

of an infinite number of reciprocal space vectors within the first Brillouin zone of

the periodic cell,k.

The cell-periodic part of the wave function satisfies fl(r) = fl(r+L) and can

be expanded using a basis set consisting of a discrete set of plane waves whose

wave vectors are reciprocal lattice vectors of the crystal,

fl(r) =
∑

G

cl,Gexp[iG · r],

where G is the reciprocal lattice vectors defined by G · L = 2πm for all L; L is

the Bravais lattice and m is an integer. Therefore each electronic wave function

can be written as a sum of plane waves,

ψl(r) =
∑

G

cl,k+Gexp[i(k +G) · r]. (1.6)

In principle, an infinite plane-wave basis set is required to expand the elec-

tronic wave functions, but it’s impossible to use an infinite plane-wave basis set

in calculation. Fortunately, the coefficients ci,k+G for the plane waves with small

kinetic energy (ℏ2/2m)|k + G|2 are typically more important than those with

large kinetic energy. Thus the plane-wave basis set can be truncated by some

particular cutoff energy to produce a finite basis set.

1.5 Plane-wave representation of Kohn-Sham equations

The Kohn-Sham equation (1.4):

[−
ℏ

2

2m
▽2 +V (r)]ψl(r) = εlψl(r),

where

V (r) = Vion(r) + VH(r) + VXC(r)

.
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Perform the Fourier transform on V (r).

V (G) =

∫

[unit cell]

1

ν
e−iG·rV (r)d3r,

where G is the reciprocal lattice vector and ν is the volume of the unit cell.

Substitution of (1.6) and the inverse Fourier transform V (r) =
∑

G V (G)eiG·r

into the Kohn-Sham equation gives:

∑

G′

cl,k+G′

[

(
ℏ

2

2m
| k +G |2 −εl)e

i(k+G′)·r +
∑

G′′

V (G′′)ei(k+G′+G′′)·r

]

= 0.

Multiply above equation by (1/υ)e−i(k+G)·r and integral over r, where υ is the

volume subject to the periodic boundary condition of Bloch’s theorem.

∫

1

υ

∑

G′

cl,k+G′

[

(
ℏ

2

2m
| k +G |2 −εl)e

i(G′−G)·r +
∑

G′′

V (G′′)ei(G′+G′′−G)·r

]

d3r = 0,

then

1

υ

∑

G′

cl,k+G′

∫

[

(
ℏ

2

2m
| k +G |2 −εl)e

i(G′−G)·r +
∑

G′′

V (G′′)ei(G′+G′′−G)·r

]

d3r = 0.

Because
∫

eiq·rd3r = υδq,0,

we conclude that

∑

G′

cl,k+G′

[

(
ℏ

2

2m
| k +G |2 −εl)δG,G′ +

∑

G′′

V (G′′)δG′′,G−G′

]

= 0,

then
∑

G′

cl,k+G′

[

(
ℏ

2

2m
| k +G |2 −εl)δG,G′ + V (G−G′)

]

= 0.

So we get the Kohn-Shame equation on reciprocal space,

∑

G′

[

ℏ
2

2m
|k +G|2δGG′ + Vion(G−G′) + VH(G−G′) + VXC(G−G′)

]

cl,k+G′ =

εl cl,k+G .

(1.7)

The set {cl,k+G}l can be derived form equation (1.7). Substituting {cl,k+G}l into

(1.6), we obtain the wavefunctions {ψl}l.
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The Hamiltonian matrix Hk+G,k+G′ is given by the terms in the bracket of

(1.7). The size of the matrix is determined by the choice of the plan-wave cut-

off, and will be intractably large for systems that contain both valence and core

electrons. This problem can be overcome by use of the pseudopotential approxi-

mation.

1.6 Pseudopotential approximation

Although the electronic wave functions can be expanded using a finite set of plane

waves, a plane wave basis set is usually very poorly suited to expanding the wave

functions of the core electrons because the rapid oscillations of the wave functions

in the core region. Otherwise, it is well known that most physical properties of

solids are depend on the valence electrons to a much greater extent than on the

core electrons.

The pseudopotential (Phillips, 1985; Heine and Cohen, 1970; Yin and Cohen,

1982) approximation exploits this by removing the core electrons and by replacing

them and strong ionic potential by a weaker pseudopotential that acts on a set

of pseudo wave functions rather than the true valence wave functions, and allows

the electronic wave functions to be expanded using a much smaller number of

plane-wave basis states.

Using the pseudopotential approximation, we can just handle the valence

electrons of the system and successfully reduce the dimension of the Hamiltonian

matrix Hk+G,k+G′. Equation (1.7) becomes more likely to solve a complicated

system by the pseudopotential approximation.
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Figure 1: Schematic illustration of all-electron (solid lines) and pseudoelectron

(dashed lines) potentials and their corresponding wave functions. The radius at

which all-electron and pseudoelectron values match is designated rc — the radius

of the core region
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2 CPMD

2.1 Introduction to CPMD

CPMD is a program composed of many fortran files. It is an ab initio electronic

structure and molecular dynamics (MD) program using a plane wave/pseudopotential

implementation of density functional theory. It is mainly targeted at Car-Parrinello

MD simulations, but also supports geometry optimizations, Born-Oppenheimer

MD, path integral MD, response functions, excited states and calculation of some

electronic properties. Otherwise, the results can be visualized by the VMD pro-

gram.

The first version of CPMD was produced in 1993. A project was started to

combine the two different ab initio molecular dynamics codes that were used in the

group for computational physics of the IBM Research Laboratory in Rüschlikon.

The newest version is CPMD version 3.11.1 and the code has more than 150’000

lines. In this paper, we adopted CPMD version 3.9.2 on Linux.

2.2 The general procedure for CPMD

Although CPMD includes lots of methods, There is a general procedure for per-

forming CPMD calculations.

At the start, an input file with a specific format is needed. An input file

involves following information: the quantum system, the assignment for CPMD,

the method(s) (might be more than one) and it’s further setups, the restart file,

the cutoff (the size) for the plane-wave basis set, the type of density functional,

pseudopotential and requests for certain information. All these information are

connected with particular keywords. We can control CPMD by those keywords

10



in the input file.

When running CPMD, it produces an output file for writing in information

and results first; and then read the input file to do initialization for calculation.

The wavefunction is in the form of equation (1.6), expanded by a plane-wave set.

The initial wavefunction {ψl} is read form the restart file, or given by an initial

guess from CPMD subroutines. After initializations, CPMD start calculation to

accomplish the assignment in the input file. The outcomes of each calculation

steps are written in the output file and the calculation stops when reaching the

convergence (self-consistent) or the maximum steps. Finally, CPMD writes the

final results in the output file and the restart file. The sequence of CPMD steps

is shown in Fig. 2.

The restart file — RESTART.x is an binary file, which records data of the last

computation and will be rewritten in the next computation. The data include

wavefunctions, coordinates of atoms, cell, occupation number. . . etc. We can tell

CPMD to read the restart file or not, and which data should be read in the input

file.

If any error occurs in running CPMD calculation, CPMD will stop and give

a ‘999’ message. The error will be written in the output file.

11



Figure 2: Flow chart of CPMD procedure
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3 Wavefunction Optimization

Wavefunction optimization is a kind of CPMD calculation used to obtain the

electron structure of the system. It calculate the lowest energy state (the ground

state) under the assumptions that the system is time-independent and the posi-

tions of ions in the system is fixed.

For nearly all CPMD calculations, we have to calculate the electron structure

of the system first, and use that as a base for further calculations. In practice, we

run the wavefunction optimization first, and then run further CPMD calculation

with reading data from the restart file written by the wavefunction optimization

calculation.

3.1 The Contents of Wavefunction Optimization

By the statement in section 1, calculating the ground stat of a system under

the assumptions; the system is time-independent and the positions of ions in the

system is fixed; is to solve a set of Kohn-Sham equations:

[

−
ℏ

2

2m
▽2 +Vion(r) + VH(r) + VXC(r)

]

ψl(r) = εlψl(r). (3.0)

Then, by applying Bloch’s theorem and plane-wave basis set, it becomes to solve

the equation (3.1) to find the coefficients of the wavefunction basis.

∑

G′

[

ℏ
2

2m
|k +G|2δGG′ + Vion(G−G′) + VH(G−G′) + VXC(G−G′)

]

cl,k+G′

= εl cl,k+G .

(3.1)

CPMD provides several methods for the wavefunction optimization calcula-

tion to solve equation (3.1). In this paper, we introduce one of them — the direct
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inversion in the iterative subspace (DIIS). In CPMD, DIIS is the default method

for the wavefunction optimization calculation.

3.2 The DIIS method

The method DIIS is originally introduced by Pauly. It is used to search for a

self-consistent Schrödinger equation in quantum chemistry as well as in density

function theory. For reaching the self-consistency, the Kohn-Sham equation (3.1)

is solved iteratively. The purpose of the DIIS procedure is to utilize as well as

possible the information from m previous steps. This is achieved as follows.

We write the set of vectors, the coefficients of plane-wave basis sets

vi = {cl,k+G}
i

of the ith iteration, as a sum of the converged solution v0 plus an error vector ei:

vi = v0 + ei. (3.2)

The approximation to v0 in the subspace of vi can be obtained by letting

vm+1 =

m
∑

i=1

div
i, (3.3)

where the di are real and subject to the restriction

m
∑

i=1

di = 1, (3.4)

and therefor

em+1 =
m
∑

i=1

die
i. (3.5)

We want to minimize the norm of the error vector em+1:

〈 em+1 | em+1 〉 =
m
∑

i,j=1

didj〈 e
i | ej 〉,
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subject to the constraint (3.4). These requirements can be satisfied by minimizing

the following function with Lagrangian multiplier λ.

∂

∂dk





m
∑

i,j=1

didj〈 e
i | ej 〉 − λ

(

1 −

m
∑

i=1

di

)



 = 0

for k = 1 ∼ m,then

m
∑

i

di〈 e
i | ek 〉 +

m
∑

j

dj〈 e
k | ej 〉 − λ = 0

for k = 1 ∼ m. Here we assume that

〈 ei | ej 〉 = 〈 ej | ei 〉

for all i, j = 1 ∼ m, then we get

2
m
∑

i

di〈 e
i | ek 〉 − λ = 0

for k = 1 ∼ m.

We can absorb the factor of 2 into λ to obtain the following matrix equation:



























b11 b12 . . . b1m 1

b21 b22 . . . b2m 1

...
...

. . .
...

...

bm1 bm2 . . . bmm 1

1 1 . . . 1 0





















































d1

d2

...

dm

−λ



























=



























0

0

...

0

1



























, (3.6)

where the bi,j are given by

bi,j = 〈 ei | ej 〉.

The set {di}
m
i=1

can be obtained by solving equation (3.6). And then em+1

and vm+1 can also be calculated by equations (3.5) and (3.3).
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The error vectors ei are not known yet, but can be approximated within a

quadratic model as follows.

Let E be the Kohn-Sham energy functional, g = ∂E/∂v and H = ∂2E/∂v2

be the first and second derivatives of the energy functional E with respect to the

electronic wavefunction coefficients v respectively. Assuming H to be a constant

diagonal matrix and E to be quadratic, E can be expanded by a Taylor series at

vi:

E(v) = E(vi) + gi(v − vi) +
1

2
H(v − vi)2.

Calculate the derivative of above Taylor series.

E′(v) = gi +H(v − vi) = 0.

Substitute v with v0 and set to be 0, we get:

ei = vi − v0 = H−1gi. (3.7)

In reality, the number of degrees of freedom is much larger than a finite

m. Therefore in a finite number of iterations the condition em+1 = 0 can’t be

achieved. However, the next estimate for v0 can be obtained from equation (3.2),

v0 ≈ vm+1 − em+1. (3.8)

The DIIS use the above algorism to be an iterative method by letting the new

trail vector be:

v = vm+1 −H−1gm+1, (3.9)

where the first derivative of the energy density gm+1 is estimated by

gm+1 =
m
∑

i=1

dig
i. (3.10)
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Substitute equation (3.10) into equation (3.9), the new trail vector v becomes:

v = vm+1 −
m
∑

i=1

H−1dig
i. (3.11)

In CPMD, the data of vi and gi are stored in 2 COMPLEX*16 matrices

C0(NGW,NSTATE) and C2(NGW,NSTATE) respectively. NGW is the num-

ber of the set of plane-wave basis and NSTATE is the number of states used in

calculation. The first column of C0 and C2 indexes the plane-wave basis, and the

second column indexes the valence electronic wavefunction of the of each atom

in the system. In every iteration, C2 is re-calculated, and C0 is rewritten by

equation (3.11). The matrices PME and GDE store the data of C0 and C2 in

each iteration; it means, v1 ∼ vm and g1 ∼ gm are stored in PME and GDE

respectively in the mth iteration. So equation (3.3) and (3.10) can be calculated

by using matrices PME and GDE.

In most applications, the matrix H is too large to store and use in calculation.

In CPMD, the matrix H is approximated by taking to be diagonal part of the

Kohn-Sham Hamiltonian:

Hk+G,k+G′ =
ℏ

2

2m
|k +G|2δGG′ + Vion(G−G′) + VH(G−G′) + VXC(G−G′) .

CPMD stores H−1 in a REAL*8 array V PP (NGW ).

Solving equation (3.6) is solving a classical matrix problem Ax = b. CPMD

use a subroutine DGELSS to solve this equation. DGELSS solves Ax = b by

computing the minimum norm solution:

min
x

‖b− Ax‖2.

We can control the maximum size m + 1 of the matrix in equation (3.6) in

the input file. We write M, the maximum of m, and is called “the number of
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DIIS vectors”. The default of M is 10. M also represents the maximum number

of utilizing previous steps for the new trial vector v.

“DIIS reset” means: “The Kohn-Sham Hamiltonian and the density are re-

calculated, and then a new wavefunction optimization is started.” When perform

wavefunction optimization with DIIS, DIIS reset is happened on poor progress

after a certain number of iterations. The default of this number is the number of

DIIS vectors M , but we can change it or let DIIS resets be disable in the input

file.

In the following, we use an example input file to state the procedure of a

wavefunction optimization with DIIS calculation.

3.3 Procedure for Wavefunction Optimization with DIIS

The input file 1-h2-wave.inp is in the section 4. 1 and it’s output file is in sec-

tion4. 2. The subject of this input file is to calculate the electronic structure of a

single hydrogen molecule — H2.

Because the method used in wavefunction optimization is not stated in this

input file, CPMD uses the default method DIIS. Otherwise, the convergence

criterion of this input file is:

CONV ERGENCE ORBITALS

1.0d− 7

It means that the convergence criterion is reached when the maximum absolute

element of the gradient of total energy C2 is below the tolerance 1.0d− 7.

The detailed procedure of computation part (The 4th step in Fig.2) of the

wavefunction optimization with 1-h2-wave.inp is shown in Fig. 3 in next page.
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Noted that the step in Fig.3, calculating the second partial derivative of the

total energy H , is taken only in the first iteration or the first iteration after DIIS

reset.
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Figure 3: Flow chart of wavefunction optimization with 1-h2-wave.inp
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Figure 4: Distribution of the electron density of H2 (picture form the

website http://www.theochem.ruhr-uni-bochum.de/ axel.kohlmeyer/home.html

CPMD Tutorial)

Fig.4 illustrates, how the electron density is redistributed after wavefunction

optimization: density form the blue area (initial guess) is moved to the red area.
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4 Input and output files

4.1 1-h2-wave.inp

&INFO

isolated hydrogen molecule.

single point calculation.

&END

&CPMD

OPTIMIZE WAVEFUNCTION

CONVERGENCE ORBITALS

1.0d-7

&END

&SYSTEM

SYMMETRY

1

ANGSTROM

CELL

8.00 1.0 1.0 0.0 0.0 0.0

CUTOFF

70.0

&END
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&DFT

FUNCTIONAL LDA

&END

&ATOMS

*H\_ MT\_ LDA.psp

LMAX=S

2

4.371 4.000 4.000

3.629 4.000 4.000

&END

4.2 1-h2-wave.out
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A Appendix

A.1 The contents of main subroutines in DIIS cycle

In A. 3, we list the input and output of main subroutines in the DIIS cycle and

show the relationship between these subroutines in Fig.5.
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Figure 5: Flow chart of main subroutines in DIIS cycle
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A.1.1 RWFOPT.F

The main DIIS loop is in this routine.

A.1.2 FORCES.F

Compute the total energy, the forces on ions.

Input:

C0 electronic wavefunction

TAU0 atomic coordinates

SCR scratch array

LSCR length of scratch array

TFOR If true, calculate the atomic forces

TSTRESS IF true, calculate the stress tensor

NSTATE number of states used in calculation

NKPOINT number of k-point

Output:

ETOT the total energy

FION the forces on ions

A.1.3 RSCPOT.F

Compute the density n(r), the kinetic energy and the potentials.

Input:
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C0 electronic wavefunction

TAU0 atomic coordinates

LSCR length of scratch array

TFOR If true, calculate the atomic forces

TSTRESS IF true, calculate the stress tensor

NSTATE number of states used in calculation

NKPOINT number of k-point

Output:

FION atomic forces(potential part)

RHOE electronic potential

SCR scratch array

A.1.4 VPSI.F

Calculate C2 and store the wavefunction in matrix PSI.

Input:

C0 electronic wavefunction

F occupation numbers

VPOT local potential

IKIND index of k-point

ISPIN dimension of VPOT

35



NSTATE number of states used in calculation

Output:

PSI store the wavefunction in PSI

C2 gradient of the total energy

A.1.5 FNONLOC.F

Calculate the nonlocal pseudopotential contribution of Hamiltonian and C2.

Input:

C2 gradient of the total energy

NSTATE number of states used in calculation

F occupation numbers

IKIND index of k-point

ISPIN dimension of VPOT

Output:

C2 gradient of total energy

A.1.6 OVLAP.F

Compute the overlap matrix 〈C2 |C0 〉.

Input:

C0 electronic wavefunction

C2 gradient of the total energy
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NSTATE number of states used in calculation

Output:

GAM stores 〈C2 |C0 〉

A.1.7 GSCAL.F

Calculate GAM = F ∗GAM .

Input:

GAM

F occupation numbers

NSTATE number of states used in calculation

Output:

GAM = F ∗GAM

A.1.8 ROTATE.F

Calculate C2 = A× C0 ∗GAMT +B ∗ C2.

Input:

A real constant

B real constant

C0 electronic wavefunction

C2 gradient of the total energy

NSTATE number of states used in calculation
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GAM

NGWK = NGW , NGW is the number of plane waves for the wavefunction

cutoff.

Output:

C2 = A× C0 ∗GAMT +B ∗ C2

A.1.9 ZCLEAN.F

Set C2(1, 1 ∼ NSTATE) ≡ 0.0.

Input:

C2 gradient of the total energy

NSTATE number of states used in calculation

NGW number of plane waves for the wavefunction cutoff

Output:

C2

A.1.10 CSIZE.F

Calculate GEMAX and CNORM .

Input:

C2 gradient of the total energy

NSTATE number of states used in calculation

Output:
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GEMAX = G, where G = max | C2(i, j) |; 1 ≤ i ≤ NGW and

1 ≤ j ≤ NSTATE.

CNORM = [ 2

NOCC∗NGWKS ∗ C2 ∗ C2]1/2, where NOCC is the total occu-

pation number and NGWKS is equal to NGW .

A.1.11 TAUCL.F

This subroutine is called when the variable TFOR is TRUE.

Input:

FION the forces on ions

Output:

FION Set FION = 0.0

A.1.12 GSIZE.F

This subroutine is called when the variable TFOR is TRUE.

Calculate GNORM . Input:

FION the forces on ions

Output:

GNORM = [ 1

NTOT

∑

FION(K, IA, IS)2]1/2, where NTOT is the amount

of electrons in the system.

A.1.13 HESELE.F

This subroutine calculates the Hamiltonian H with diagonal approximation and

stores H−1 in the array V PP .
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Noted that HESELE.F is called only in the first iteration or the first iteration

after DIIS reset.

Output:

VPP the inverse of the Hamiltonian

A.1.14 ODIIS.F

This routine is the most important subroutine of the DIIS method. The main

DIIS computation is performed in it.

Input:

C0 electronic wavefunction

C2 gradient of the total energy

VPP the inverse of the Hamiltonian

DT2BYE = DELT ELEC
EMASS , where DELT ELEC is the time step for electron

and EMASS is the electronic mass.

MAXDIS maximum number of vectors in DIIS.

Output:

C0 electronic wavefunction

PME stores previous C0

GDE stores previous C2
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A.1.15 TOL CHK CNVGRAD.F

Check whether the wavefunction is converged based on gradient (C2).

Input:

GEMAX maximum change in wavefunction (calculated in the subroutine

CSIZE.F )

Output:

CONVWF Set to be True, if GEMAX is less than the converge criterion.

A.1.16 PREORTHEO.F

Do preparations for orthogonalizing wavefunction C0.

Input:

C0 electronic wavefunction

NSTATE number of states used in calculation

A.1.17 ORTHO.F

Orthogonalize the set or wavefunction C0.

Input:

C0 electronic wavefunction

NSTATE number of states used in calculation

Output:

C0 electronic wavefunction
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A.1.18 ZHWWF.F

Write the wavefunction in the restart file RESTART.x.
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