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Abstract

CPMD (Car-Parrinello Molecular Dynamigs,simulations) is a program
used to calculate the energy or [properties of ‘a-systems with atoms or
molecules. In this paper, weantroduce the'fundamental work of CPMD —

Wavefunction Optimization,and interpret the code of it.
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1 Physics

In quantum mechanics, the value of energy of a quantum system is not continuous,
but discrete. Energies are only allowed particular values. A ‘stationary state’
is a state of a quantum system with definite energy. ‘The ground state’ is a
stationary state with the lowest-energy of the system, and it is the most often
state of a stable system.

In section 1, we show how to calculate the ground state in physics.

1.1 The Schrodinger equation

In 1926, Erwin Schrodinger suggested the following equation for describing the
particle (like single electron or nucleus) of mass m:
h s o
_0 174 — jH—

where 1 = 9(r,t) is a complex function of position r and time ¢ and satisfies

| it e Za
all space

The first equation is named the Schrodinger equation and is a time dependent
equation. But when in the case, the particles in a static potential V(r),the
energy of the particle is conserved. We can separate the r and t by substituting
= u(r)f(t). The Schrédinger equation’ean'be written as follows,

h? _ihof

1 2
a(—%v u+V(rju) = Tor

In this equation, the left-hand side is a function of r only while the right-hand
side is a function of t only. Two sides can only be equal for all value if each is

equal to the same constant. Call the constant E. Then we have 2 equations:

() + V(ru(r) = Bur), ()
z’h%ﬁt) — Ef (D). (i)

Equation (i) is called the time-independent Schrodinger equation and we let H =

—%Vz + V(r), the Hamiltonian operator. Equation (i) can be written in a
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eigenequation form Hu(r) = FEu(r). The solution of equation (ii) is f(t) =

B x exp(— hsiitsh), ( is a constant. Evidently the time-dependent part is a pure

phase factor. Therefore we can only deal with the time-independent equation to
get the total energy when the particle is in a static potential.
In a many body system (including nuclei and electrons), the Hamiltonian can

write down in a single line. It is

(VA1 Qqr
H=>" —§ I 11
2, o |Ri— R (1.1)

where M, is the mass of an electron or nucleus and ¢ is its charge. In (1.1), the
Hamiltonian is simply written as the kinetic term adds the interaction term. But
the simplicity is deceptive because the computation cost is too large. It is unable

to solve unless some simplifications are adopted.

1.2 The Born-Oppenheimer approximation and the Hartree-

Fock Theorem

A first simplification is to remove:the nu€léi from the quantum mechanics prob-
lem. Because nuclei are thousands-of times.more massive than electrons, they
move that much more slowly. This is the main ided of the Born-Oppenheimer
approximation (1927); take the nuclei-to be-static; elassical potential (Vj,,), and
solve the electronic problem without wortying about the nuclei further. Adopt-
ing the Born-Oppenheimer approximation, the (time-independent) Schrédinger

equation becomes:

__Zv§@+2mon TZ\IJ+Z|R1 7 U=c0, (1.2)

<t

where m is the mass of the electron and W is an anti-symmetric function of N
electrons.

The next step is to simplify the electronic wave function. An scheme is done
by Fock and Slater (1930). They improved the Hartree equation and showed that
the way to obey the Pauli principle to work within the space of anti-symmetric
wave function. The Hartree-Fock equations might be accurate enough to provide
a satisfactory starting point to calculate many properties, but they are too time-

consuming to solve.



We note that the reduction in the energy of the electronic system due to the
anti-symmetry of the wave function is called the exchange energy, and the dif-
ference between the many-body energy of an electronic system and the energy of
the system calculated in the Hartree-Fock approximation is called the correlation

energy.

1.3 Density-functional theory and the Kohn-Sham equa-
tion

Density-functional theory, developed by Hohenberg and Kohn (1964) and Kohn
and Sham (1965), provided a simple method for describing the effects of exchange
and correlation, of an electron gas (LDA).

1.Hohenberg and Kohn (1964) proved that the total energy E of a many-
electron system is a unique functional of the electron density n(r). The minimum
value of the total-energy functional is the ground-state energy of the system, and
the density that yields this minimum value is the ground-state density. So one
can say that the density n(r) completely determines the many-body problem.

2.Kohn and Sham (1965) showed hew it is pgssible to replace the many-
electron problem by an exactly equivalent set of one-electron equations (the Kohn-
Sham equation).

The Kohn-Sham energy functional 6f an system 'with N electrons is written:

El{v] =23 / Uil 7 + / VinlP)n(r)r +5 / o)) g gy

| — ']
+Exc[n(r)] + Eion(Ra),
(1.3)

where {1} is a set of doubly occupied electronic states, F,, is the Coulomb
energy associated with interactions among the nuclei at positions R4, Vi, is the

static total electron-ion potential, n(r) is the electronic density given by
n(r) =23 |tu(r)P,
l

and Exc[n(r)] is the exchange-correlation functional.
Only the minimum value of the Kohn-Sham energy functional has physical

meaning. At the minimum, the Kohn Sham energy functional is equal to the
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ground state energy of the system with the ions in position R4. The Kohn Sham
energy function is very helpful to find the ground state energy.

It is necessary to determine the set of wave functions {¢;} that minimize the
Kohn-Sham energy functional. These are given by the self-consistent solutions
to the Kohn-Sham equations (Kohn and Sham, 1965).

In order to minimize the Kohn-Sham energy functional, we use the Lagrange

multiplier.

o B = & b~ [ w3 o,

where 1); is the wave function of electronic state [, ¢; is the Lagrange multiplier
and [n(r)dr = N is the constraint. By above equation we get the Kohn-Sham
equation:

2

—Qﬁ—m V2 +Vien(r) + Vi (r) + VXC(T)] hi(r) = eh(r), (1.4)

where ¢; is the Kohn-Sham eigenvalue, and Vj is the Hartree potential (due to

the electron-electron interaction) of theselectrons given by

W b n(r’) 3.0
Vu(ry=e /|T—r’|dr'

The Kohn-Sham equations Tepresemt~a mapping of the interacting many-
electron system onto a system of non-interacting electrons moving in an effective
potential due to all the other electrons: Selving the Kohn-Sham equation (1.4) is
equivalent to find the ground state of the Kohn-Sham energy functional (1.3). If
the exchange-correlation energy functional Exc[n(r)] are known exactly. Then
taking the functional derivative with respect to the density would produce an
exchange-correlation potential Vxa(r) that include the effects of exchange and
correlation exactly. In CPMD, we have several choices of methods to calculate
the exchange-correlation tern. Here we introduce one of these methods.

The simplest method of describing the exchange-correlation energy ( [exchange
energy|+|correlation energy| ) of an electronic system is the local-density approx-
imation (LDA; Kohn and Sham, 1965). In LDA the exchange-correlation energy
of an electronic system is constructed by assuming that the exchange-correlation
energy per electron at a point r in the electron gas, exc(r), is equal to the

exchange-correlation energy per electron in a homogeneous electron gas that has



the same density as the electron gas at point r. Thus

Excln(r)] = /5xc(r)n(r)d3r,

and

The LDA, in principle, ignores corrections to the exchange-correlation energy
at a point r due to nearby inhomogeneities in the electron density. Consider-
ing the inexact nature of the approximation,it is remarkable that calculations
performed using the LDA have been so successful.

The Kohn-Sham equations (1.4) with the exchange-correlation potential (1.5)
are a set of eigenequations, and must be solved self consistently so that the
occupied electronic states generate a charge density that produces the electronic
potential that was used to construct a new set of Kohn-Sham equations. Noted
that the sum of the single-particle Kohn-Sham eigenvalues does not give the
total electronic energy because this overcounts the effects of the electron-electron
interaction in the Hartree energy and the-exchange-correlation energy.

In the preceding section, we-showed how .to simplify a many-body problem
into an equivalent effective single-particle problem. However, there still remains
the formidable task of handling "an infinite-number of non-interacting electrons
moving in the static potential of an‘infinite number of nuclei or ions. The follow
section shows how to surmount this problem. Two difficult must be overcome:

1. A wave function must be calculated for each of the infinite number of elec-
trons in the system.

2. Since each electronic wave function extends over the entire solid, the basis

set required to expand each wave function infinite.

Both problem can be surmounted by performing calculations on periodic sys-

tems and applying Bloch’s theorem to the electronic wave functions.

1.4 Bloch’s Theorem

Bloch’s theorem states that in a periodic potential V() (the periodic condition),
V(r+L)=V(r),
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each electronic wave function can be written as the product of a cell-periodic part

and a wavelike part,
Wi(r) = explik - r]fi(r).

By the use of Bloch’s theorem, the problem of the infinite number of electrons
has now been mapped onto the problem of expressing the wavefunction in terms
of an infinite number of reciprocal space vectors within the first Brillouin zone of
the periodic cell k.

The cell-periodic part of the wave function satisfies f;(r) = fi(r + L) and can
be expanded using a basis set consisting of a discrete set of plane waves whose

wave vectors are reciprocal lattice vectors of the crystal,
filr) = Z a.gexpliG -],
a

where G is the reciprocal lattice vectors defined by G - L = 2wm for all L; L is
the Bravais lattice and m is an integer. Therefore each electronic wave function

can be written as a sum of plane waves,
(r) = Z ¢ p+aéepli(h+G) - rl. (1.6)
3

In principle, an infinite plane-wave basis set is required to expand the elec-
tronic wave functions, but it’s impessible to e an‘infinite plane-wave basis set
in calculation. Fortunately, the coefficients-¢;z4¢ for the plane waves with small
kinetic energy (72/2m)|k + G|? are typically more important than those with
large kinetic energy. Thus the plane-wave basis set can be truncated by some

particular cutoff energy to produce a finite basis set.

1.5 Plane-wave representation of Kohn-Sham equations

The Kohn-Sham equation (1.4):
2

= V() = e,

2m

where

V(’f‘) = Vion(’/‘) + VH(’I‘) + VXC(’I‘)



Perform the Fourier transform on V'(r).

V(G) = /[ Lemiory(r)ddr,

unitcell] V

where G is the reciprocal lattice vector and v is the volume of the unit cell.
Substitution of (1.6) and the inverse Fourier transform V(r) = Y, V(G)e'“"

into the Kohn-Sham equation gives:

ﬁ2 1 / ; U "
Z Clk+G [(% ‘ E+G ‘2 _6l)61(k+G )T + Z V(G//>€z(k+G +G )-r] —0.

G/ Gll

—i(k+G)-r

Multiply above equation by (1/v)e and integral over r, where v is the

volume subject to the periodic boundary condition of Bloch’s theorem.

1 h/2 2 . / s ! 1
- § . i(G'-G)r 2 m (G +G"-G)r | 33,
/U — ClLk+G@ [(2 ‘ k + G ‘ 81)6 + V(G )6 ]d r = 0,

Gll
then
=Y e / [<ﬁ—2 | k+G 2 gl Oy <G”>e“G'*G"‘G”] dr =0,
v ’ 2m
Gl G’II
Because

/eiq'rd‘gr = V0,9,

we conclude that

ﬁ2 "
> e [(% | k+ G —e)dee + Y V(G )5G”,G—G’] =0,
G/

G//
then
h? 5 )
Z ClLk+G! |:(% | k + G | _51)6G7G’ —+ V(G — G ):| =0.
G/

So we get the Kohn-Shame equation on reciprocal space,

ﬁ2
Z [%U{; + G‘25GG’ + ‘/ion(G - G/) + VH(G - G/) + VXC(G - G/> :| ClLk+G" =

Gl

€1 ClLk+G -
(1.7)

The set {c;x+¢}i can be derived form equation (1.7). Substituting {¢; x+¢}i into

(1.6), we obtain the wavefunctions {¢},.
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The Hamiltonian matrix Hyyg ki is given by the terms in the bracket of
(1.7). The size of the matrix is determined by the choice of the plan-wave cut-
off, and will be intractably large for systems that contain both valence and core
electrons. This problem can be overcome by use of the pseudopotential approxi-

mation.

1.6 Pseudopotential approximation

Although the electronic wave functions can be expanded using a finite set of plane
waves, a plane wave basis set is usually very poorly suited to expanding the wave
functions of the core electrons because the rapid oscillations of the wave functions
in the core region. Otherwise, it is well known that most physical properties of
solids are depend on the valence electrons to a much greater extent than on the
core electrons.

The pseudopotential (Phillips, 1985; Heine and Cohen, 1970; Yin and Cohen,
1982) approximation exploits this by removing the core electrons and by replacing
them and strong ionic potential by asWweaker pseudopotential that acts on a set
of pseudo wave functions rather than thetiuevalence wave functions, and allows
the electronic wave functions to-be.expanded using-a much smaller number of
plane-wave basis states.

Using the pseudopotential approximations we can just handle the valence
electrons of the system and successfullyreducethe dimension of the Hamiltonian
matrix Hy.cr+o. Equation (1.7) becomes more likely to solve a complicated

system by the pseudopotential approximation.



Figure 1: Schematic illustration of all-electron (solid lines) and pseudoelectron
(dashed lines) potentials and their corresponding wave functions. The radius at
which all-electron and pseudoelectron values match is designated r. — the radius

of the core region



2 CPMD

2.1 Introduction to CPMD

CPMD is a program composed of many fortran files. It is an ab initio electronic
structure and molecular dynamics (MD) program using a plane wave/pseudopotential
implementation of density functional theory. It is mainly targeted at Car-Parrinello
MD simulations, but also supports geometry optimizations, Born-Oppenheimer
MD, path integral MD, response functions, excited states and calculation of some
electronic properties. Otherwise, the results can be visualized by the VMD pro-
gram.

The first version of CPMD was produced in 1993. A project was started to
combine the two different ab initio molecular dynamics codes that were used in the
group for computational physics ofithe IBM Research Laboratory in Riischlikon.
The newest version is CPMD vetsion'3.11.1 and the ¢ode has more than 150’000

lines. In this paper, we adopted?CPMD-wersion 3.9.2 on Linux.

2.2 The general procedure foriCPMD

Although CPMD includes lots of methods, There is a general procedure for per-
forming CPMD calculations.

At the start, an input file with a specific format is needed. An input file
involves following information: the quantum system, the assignment for CPMD,
the method(s) (might be more than one) and it’s further setups, the restart file,
the cutoff (the size) for the plane-wave basis set, the type of density functional,
pseudopotential and requests for certain information. All these information are

connected with particular keywords. We can control CPMD by those keywords
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in the input file.

When running CPMD, it produces an output file for writing in information
and results first; and then read the input file to do initialization for calculation.
The wavefunction is in the form of equation (1.6), expanded by a plane-wave set.
The initial wavefunction {¢;} is read form the restart file, or given by an initial
guess from CPMD subroutines. After initializations, CPMD start calculation to
accomplish the assignment in the input file. The outcomes of each calculation
steps are written in the output file and the calculation stops when reaching the
convergence (self-consistent) or the maximum steps. Finally, CPMD writes the
final results in the output file and the restart file. The sequence of CPMD steps
is shown in Fig. 2.

The restart file — RESTART .x is an, binary file, which records data of the last
computation and will be rewritten in theynext. computation. The data include
wavefunctions, coordinates of atems, cell, occupation number. . . etc. We can tell
CPMD to read the restart file or not, andwhichrdata should be read in the input
file.

If any error occurs in running CPMD calculation, CPMD will stop and give

a ‘999’ message. The error will be written in the output file.

11



Create an output file.

gt

Read the input file.

a

Do initializations.

gt

Perform calculation until reaching the
stop criterion or maximum iteration
steps. The data of each calculation steps

are written in the output file.

g

Write the final results and computational
information in the output file and the
restart file RESTART x.

Figure 2: Flow chart of CPMD procedure
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3 Wavefunction Optimization

Wavefunction optimization is a kind of CPMD calculation used to obtain the
electron structure of the system. It calculate the lowest energy state (the ground
state) under the assumptions that the system is time-independent and the posi-
tions of ions in the system is fixed.

For nearly all CPMD calculations, we have to calculate the electron structure
of the system first, and use that as a base for further calculations. In practice, we
run the wavefunction optimization first, and then run further CPMD calculation
with reading data from the restart file written by the wavefunction optimization

calculation.

3.1 The Contents of Wavefunction Optimization

By the statement in section 1, ealculating-the.ground stat of a system under
the assumptions; the system is time-independent and: the positions of ions in the

system is fixed; is to solve a set of Kohn-Sham equations:

[_% 72 Vion (1) + Vi (r) + Vxe(r) | i(r) = ey (r). (3.0)

Then, by applying Bloch’s theorem and plane-wave basis set, it becomes to solve
the equation (3.1) to find the coefficients of the wavefunction basis.
ﬁ2

> [%m + G %66 + Vion(G — G') + V(G — G') + Vxo(G — &) | cprar
G/

= €1 CLk+C -

(3.1)

CPMD provides several methods for the wavefunction optimization calcula-

tion to solve equation (3.1). In this paper, we introduce one of them — the direct
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inversion in the iterative subspace (DIIS). In CPMD, DIIS is the default method

for the wavefunction optimization calculation.

3.2 The DIIS method

The method DIIS is originally introduced by Pauly. It is used to search for a
self-consistent Schrodinger equation in quantum chemistry as well as in density
function theory. For reaching the self-consistency, the Kohn-Sham equation (3.1)
is solved iteratively. The purpose of the DIIS procedure is to utilize as well as
possible the information from m previous steps. This is achieved as follows.

We write the set of vectors, the coefficients of plane-wave basis sets
v' = {epra)
of the ith iteration, as a sum of the¢onverged solution v¥ plus an error vector e’:
sy S (3.2)

The approximation to v¥ in the subspace of vi“can be obtained by letting

m
"t = Z div’, (3.3)
i=1
where the d; are real and subject to the restriction
m
> di=1, (3.4)
i=1
and therefor
m .
emtl = Z die". (3.5)
i=1

We want to minimize the norm of the error vector ¢™*1:

m
(emth|emtly — Z didj(e'|el),
ij=1
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subject to the constraint (3.4). These requirements can be satisfied by minimizing
the following function with Lagrangian multiplier .
9 f: didj(e' el ) — N (1—§:d~> =0
Ody, ij—1 Y i—1 Il
for k =1 ~ m,then
m

Zdi<ei|ek>+2dj(ek|ej>—)\:0

J

for K =1 ~ m. Here we assume that
(e'|el)y = (e|e")
for all 7,5 =1 ~ m, then we get
m g
2Zdi<e’|ek)—)\:0
i

for k=1~ m.

We can absorb the factor of 2 into'A to.obtain the following matrix equation:

bir bio ... by 1 dy 0

bor bao ... by, 1 do 0
= , (3.6)

b1 bmz2 .. bpm 1 dm 0

1 1 ... 1 0 -\ 1

where the b; ; are given by
bij = (e'[e).

The set {d;}™, can be obtained by solving equation (3.6). And then ™!

m—+1

and v can also be calculated by equations (3.5) and (3.3).
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The error vectors e’ are not known yet, but can be approximated within a
quadratic model as follows.

Let E be the Kohn-Sham energy functional, ¢ = 0E/0v and H = 0°E/0v?
be the first and second derivatives of the energy functional F with respect to the
electronic wavefunction coefficients v respectively. Assuming H to be a constant

diagonal matrix and E to be quadratic, E can be expanded by a Taylor series at

vt
E() = E(v") 4 ¢'(v — ") + %H(v —vh)2.
Calculate the derivative of above Taylor series.
E'(v)=¢'+ H(w—v") =0.
Substitute v with v? and set to be 0, we,get:

' = Bl 4% (3.7)

In reality, the number of deégrees of freedom is' much larger than a finite
m. Therefore in a finite number of iterations the condition e™*! = 0 can’t be

achieved. However, the next estimate for v” can be obtained from equation (3.2),

0 ~ m—|—1 m—|—1. (38)

The DIIS use the above algorism to be an iterative method by letting the new

trail vector be:
v = Um—H _ H—lgm-b-l’ (39)
where the first derivative of the energy density ¢”*! is estimated by

m
gt = "dig'. (3.10)
=1
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Substitute equation (3.10) into equation (3.9), the new trail vector v becomes:
m .
v=0v"— Z H g (3.11)
i=1

In CPMD, the data of v* and ¢ are stored in 2 COMPLEX*16 matrices
CONGW,NSTATFE) and C2(NGW, NST ATFE) respectively. NGW is the num-
ber of the set of plane-wave basis and NSTATFE is the number of states used in
calculation. The first column of C0 and C?2 indexes the plane-wave basis, and the
second column indexes the valence electronic wavefunction of the of each atom
in the system. In every iteration, C2 is re-calculated, and CO0 is rewritten by
equation (3.11). The matrices PME and GDE store the data of C0 and C2 in
each iteration; it means, v! ~ v™ and g' ~ g™ are stored in PME and GDE
respectively in the mth iteration. So equation (3.3) and (3.10) can be calculated
by using matrices PM E and GDE.

In most applications, the matrix is too largetostore and use in calculation.
In CPMD, the matrix H is approximated-by-taking to be diagonal part of the

Kohn-Sham Hamiltonian:
ﬁ2
Hyioprar = %V{? + G|25GG’ + Vion (G — G/) + Vi (G — G/) + Vxeo(G — G/) .

CPMD stores H~! in a REAL*8 array V PP(NGW).
Solving equation (3.6) is solving a classical matrix problem Az = b. CPMD
use a subroutine DGELSS to solve this equation. DGELSS solves Ax = b by

computing the minimum norm solution:
min ||b — Azx||2.
x

We can control the maximum size m + 1 of the matrix in equation (3.6) in

the input file. We write M, the maximum of m, and is called “the number of

17



DIIS vectors”. The default of M is 10. M also represents the maximum number
of utilizing previous steps for the new trial vector v.

“DIIS reset” means: “The Kohn-Sham Hamiltonian and the density are re-
calculated, and then a new wavefunction optimization is started.” When perform
wavefunction optimization with DIIS, DIIS reset is happened on poor progress
after a certain number of iterations. The default of this number is the number of
DIIS vectors M, but we can change it or let DIIS resets be disable in the input
file.

In the following, we use an example input file to state the procedure of a

wavefunction optimization with DIIS calculation.

3.3 Procedure for Wavefunction Optimization with DIIS

The input file 1-h2-wave.inp is inthe seetion-4.1.and it’s output file is in sec-
tiond. 2. The subject of this input file is to calculate the electronic structure of a
single hydrogen molecule — Hs.

Because the method used in wavefunction-optimization is not stated in this
input file, CPMD uses the default method DIIS. Otherwise, the convergence

criterion of this input file is:
CONVERGENCE ORBITALS

1.0d =7

It means that the convergence criterion is reached when the maximum absolute
element of the gradient of total energy C2 is below the tolerance 1.0d — 7.
The detailed procedure of computation part (The 4th step in Fig.2) of the

wavefunction optimization with 1-h2-wave.inp is shown in Fig. 3 in next page.

18



Noted that the step in Fig.3, calculating the second partial derivative of the
total energy H, is taken only in the first iteration or the first iteration after DIIS

reset.

19



Construct initial wavefunction

1 :
1" and store in the atray

Co.

!

Calculate the density 72(F) .

Use the new trail

A

Calculate the total energy E .

'

= m
Calculate the gradient @ (m
represents the mth iteration )

and stored in the array C'2 .

.

Calculate

.(?.2(1'. j)| :

o

G=MAX

v

Calculate A as diagonal

Kohn-Sham Hamiltonian

) =z 5
matrix and store A in the

array VP P &

v

Reproduce CO and C2

to matrices PME and
GDE  respectively.

A

Calculate the error vectors
i =1 0 At
e=H g .Vi=l~m

by using the matrix GDE

A

vector VvV ( stored

. - i+1
in C0Yas v,

Is the convergence

reached ?

End DIIS cycle.

Orthogonalize the set of

wavefunction C0.

T

Check convergence:

G < tolerance 2

1

Calculate the new trail vector

m+1 -1 _m+1
v=v"-H g
m

:1.F?.‘+1 _ Zde—lgi'

i=1

and rewrite C'Q with v.

A

m

m+1 i
Calculate v = Z (f,l‘
i=1

by using the matrix PME .

F Y

h 4

Construct the matrix in

equation (3.6) and solve it

m

to get the set {(7’, }).;1 .

Figure 3: Flow chart of wavefunction optimization with 1-h2-wave.inp
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Figure 4: Distribution of the electron density of H2 (picture form the
website http://www.theochem.ruhr-uni-bochum.de/ axel. kohlmeyer /home.html
CPMD Tutorial)

Fig.4 illustrates, how the electron density is redistributed after wavefunction
o3 SAAEL :?-'F_'-'r

optimization: density form the bh%e;féféa initj;@—‘{ffggess) is moved to the red area.

3 PR

Dl
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4 Input and output files
4.1 1-h2-wave.inp

&INFO
isolated hydrogen molecule.
single point calculation.

&END

&CPMD
OPTIMIZE WAVEFUNCTION
CONVERGENCE ORBITALS
1.0d-7

&END

&SYSTEM
SYMMETRY
1
ANGSTROM
CELL
8.001.01.0 0.0 0.0 0.0
CUTOFF
70.0

&END
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&DFT
FUNCTIONAL LDA

&END

&ATOMS
*H\_ MT\_ LDA.psp
LMAX=S
2
4.371 4.000 4.000
3.629 4.000 4.000

&END

4.2 1-h2-wave.out
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PROGRAM CPMD STARTED AT: Wed Mar 7 18:34:28 2007

B S EE S R Sk EEE S

EE S EE S E ER B EE ST e+
ek B B sl sksskek ek B sdeafek

e £ S e ES B+ B B £

dekesk EE S B ek sk ek

EE S e B ek EE ST e+
sk s ok B E B s sk o

VERSION 3.9.2

COPYRIGHT
[BM RESEARCH DIVISION
MPI FESTKOERPERFORSCHUNG STUTTGART

The CPMD consortium
WWW:  http://www.cpmd.org
Mailinglist: cpmd-list@cpmd.org
E-mail:  c¢pmd@cpmd.org

w6 Nar 7 2007 -- 18:31:26 e

THE INPUT FILE IS: 1-h2-wave.inp
THIS JOB RUNS ON: yui.am.nctu.edu. tw
THE CURRENT DIRECTORY 1IS:

/ root /CPMD/SOURCE
THE TEMPORARY DIRECTORY IS:

/root /CPMD/SOURCE
THE PROCESS 1D IS: 27877
THE JOB WAS SUBMITTED BY: root

s s o s ok s ool sk s sk ok sk sk sk ook s ook i ol ok sl et sl il le s ol sl sk sk ol sl s ok o ok sk skl ok sk okl kol ok
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¥ INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO - INFO -

INFO - INFO *

e s e e s e oo s e oo s e sl ool ol sl e s ol s o e sl e ol o sl ofe ol sl ol el e sl el o sl ol e s ol e sl sl e sl ol e e sl e s sl e sl sl ool ol sl sk e e el o o

¥ isolated hydrogen molecule.
* gingle point calculation.

afe
=

Bl

s e s e s sl e s s i e o Sl o sl s sl e e s e o M el s sl e o el oo e s e sl S S ofe s s sl e o sl s sl e s sl s o e o sl el e e s e e

SINGLE POINT DENSITY OPTIMIZATION

PATH TO THE RESTART FILES: i
GRAM-SCHMIDT ORTHOGONALIZATION
MAXIMUM NUMBER OF STEPS: 10000 STEPS
PRINT INTERMEDIATE RESULTS EVERY 10001 STEPS
STORE INTERMEDIATE RESULTS EVERY 10001 STEPS
NUMBER OF DISTINCT RESTART FILES: ]
TEMPERATURE IS CALCULATED ASSUMING EXTENDED BULK BEHAVIOR
FICTITIOUS ELECTRON MASS: 400.0000
TIME STEP FOR ELECTRONS: 5.0000
TIME STEP FOR IONS: 5.0000
CONVERGENCE CRITERIA FOR WAVEFUNCTION OPTIMIZATION:  1.0000E-07
WAVEFUNCTION OPTIMIZATION BY PRECONDITIONED DIIS
THRESHOLD FOR THE WF-HESSIAN IS 0.5000
MAXIMUM NUMBER OF VECTORS RETAINED FOR DIIS: 10
STEPS UNTIL DIIS RESET ON POOR PROGRESS: 10
FULL ELECTRONIC GRADIENT IS USED
SPLINE INTERPOLATION IN G-SPACE FOR PSEUDOPOTENTIAL FUNCTIONS
NUMBER OF SPLINE POINTS: 5000

EXCHANGE CORRELATION FUNCTIONALS
LDA EXCHANGE: NONE
LDA XC THROUGH PADE APPROXIMATION
S.GOEDECKER, J.HUTTER, M.TETER PRB 54 1703 (1996)

ok DETSP| THE NEW SIZE OF THE PROGRAM IS 1552/ 41692 kBYTES ***

sl Rk R kRl ATOMS ks st sl it fai ol ol ol

NR - TYPE X(bohr) Y(bohr) Z(bohr) MBL
l H 8.259992 7.558904 7.558904 3
2 H 6.857816 7.558904 7.558904 3
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st s sie s sl e afe wie sl oo o e ot ol st ol sl sl sl e ol e o st ol st slesfe sl sl el s ol sl sl ol s sl aleste sl e ol ol el sl e sl sl sle s ol sl ol e e ol

NUMBER OF STATES: I
NUMBER OF ELECTRONS: 2.00000
CHARGE: (0.00000
ELECTRON TEMPERATURE(KELVIN): 0.00000
OCCUPATION

2.0

| Pseudopotential Report Thu Jan 11 18:21:49 1996 |

Atomic Symbol

H
Atomic Number .
Number of core states 0
Number of valence states 1
Exchange-Correlation Functional :

Slater exchange : .6667

LDA correlation : Ceperley-Alder
Electron Configuration : N L Occupation

1 S 1.0000

Full Potential Total Energy -, 445894
Trouiller-Martins normconserving PP

n ] Ic energy

| & .5000 -.23366

2 P .5000 -.23366
Number of Mesh Points : 511
Pseudoatom Total Energy -. 445889

oS e e s el s ole vl sl e sle we ale e e e deide o e e e nle e sl e ale e e ole e o e e wnle e o el e e ole we s e W dle dhe o e sl e ole e i ol
* ATOM MASS  RAGGIO NLCC PSEUDOPOTENTTAL *
* H 1.0080  1.2000 NO S LOCAL *

s s sl s s sl sle s sl sl sl e sl sl sl s sl sl e sl e sl sl sl sl s sl sl sl sl sl R sl s R sl R sl sl R sl sl R R s Rl R sl sl e

OPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPEN
NUMBER OF CPUS PER TASK |
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OPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPENMPOPEN

i RGGEN| THE NEW SIZE OF THE PROGRAM IS 9960/ 49220 kBYTES ***

e ootk sk okl QUPERCELLL, s s sl sl e s s

SYMMETRY : SIMPLE CUBIC
LATTICE CONSTANT(a.u.): 15.11781
CELL DIMENSION: 15.1178 1.0000 1.0000 0.0000 0.0000 0.0000
VOLUME(OMEGA IN BOHR?3): 3455.14651
LATTICE VECTOR AI(BOHR): 15.1178 0.0000 0.0000
LATTICE VECTOR A2(BOHR): .0000 15.1178 0.0000
LATTICE VECTOR A3(BOHR): .0000 0.0000 15.1178
RECIP. LAT. VEC. BI(2Pi/BOHR): 0661 0.0000 0.0000
RECIP. LAT. VEC. B2(2P1/BOHR): .0000 0.0661 0.0000
RECIP. LAT. VEC. B3(2Pi/BOHR): 0.0000 0.0000 0.0661
REAL SPACE MESH: 90 90 90
WAVEFUNCTION CUTOFF(RYDBERG) : 70.00000
DENSITY CUTOFF(RYDBERG): (DUAL= 4.00) 280.00000
NUMBER OF PLANE WAVES FOR WAVEFUNCTION CUTOFF: 17133
NUMBER OF PLANE WAVES FOR DENSITY CUTOFF: 136605

sk e sk sl s oo st stk sk sk el ol sk sk sl ol i s ekl sk s sk sl sk sl sk el s ook o

o O O O n

##% RINFORCEI THE NEW SIZE OF THE PROGRAM IS 12572/ 52616 kBYTES ##*
i FFTPRP| THE NEW SIZE OF THE PROGRAM IS 35644/ 74416 KBYTES ***

GENERATE ATOMIC BASIS SET
H SLATER ORBITALS
1S ALPHA=  1.0000 OCCUPATION= 1.00

INITTALIZATION TIME: 0.37 SECONDS

ok WEOPTS| THE NEW SIZE OF THE PROGRAM IS 38068/ 80036 kBYTES *#**
e PHFAC| THE NEW SIZE OF THE PROGRAM IS 38244/ 106260 kBYTES ##*
s ATOMWE| THE NEW SIZE OF THE PROGRAM IS 38804/ 107064 kBYTES #*#**
ATRHOI CHARGE(R-SPACE): 2.000000 (G-SPACE) : 2.000000

sedkckkskhchok ok sk kR ek sk sk sk sk ek ke kel sk sk kR kel R sl sk o R sk sk sk sl R sheh sk sk ok sk ok
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* ATOMIC COORDINATES ¥
| H 8.259992 7.558904 7.558904
2 H 6.357816 7.558904 7.558904

shskcheckhchekck sk sk ok sk sk sk ke sk shoh sk ko sk ch sk s sk sk sk sk ke sk sk ek sk sheskesk sk sk ks sk ik
DEGREES OF FREEDOM FOR SYSTEM: 3
CPU TIME FOR WAVEFUNCTION INITIALIZATION: 1.53 SECONDS
o RWFOPT| THE NEW SIZE OF THE PROGRAM IS 63428/ 106260 kBYTES #*##*

EWALDI SUM IN REAL SPACE OVER 1# [# 1 CELLS

TOTAL INTEGRATED ELECTRONIC DENSITY

IN G-SPACE = 2.000000

IN R-SPACE = 2.000000
(K+ET+HLAN+X) TOTAL ENERGY = -1.09689769 A.U.
(K) KINETIC ENERGY = 0.81247073 A.U.
(E1=A-S+R) ELECTROSTATIC ENERGY = -0.48640049 A.U.
(S) ESELF = 0.66490380 A.U.
(R) ESR = 0.17302596 A.U.
(L) LOCAL PSEUDOPOTENTIAL ENERGY = -0.84879443 A.U.
(N) N-L PSEUDOPOTENTIAL ENERGY = 0.00000000 A.U.
(X) EXCHANGE-CORRELATION ENERGY = -0.57417350 A.U.
NFI GEMAX CNORM ETOT DETOT TCPU
| 3.816E-02  2.886E-03 -1.096898 0. 000E+00 0.49

2 8.628E-03 1.041E-03 -1.130803  -3.391E-02 0.50

3 2.736E-03  2.293E-04 -1.132376  -1.572E-03 0.50
4 6.115E-04 4.235E-05 -1.132456  -8.056E-05 0.50

5 1.532E-04 7.007E-06 -1.132459  -3.315E-06 0.51

6 3.895E-05 1.396E-06 -1.132460  -1.338E-07 0.51

7 6.271E-06  4.451E-07 -1.132460  -7.716E-09 0.50

8 7.764E-07 1.274E-07 -1.132460  -4.269E-10 0.50

9 1.317E-07 2.819E-08 -1.132460  -1.982E-11 .51
10 1.871E-08 5.247E-09 -1.132460  -8.342E-13 0.50
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RESTART INFORMATION WRITTEN ON FILE . /RESTART. 1
Tk RWFOPT| THE NEW SIZE OF THE PROGRAM IS 65680/ 106260 kBYTES ###*

R Y P Rt e R e e P R R S
* *
+ FINAL RESULTS #
* %

etk ookl Bk ook ol ek sk skl s ekl ekl el el gk ekt

st s et s ol sl sk s sl R ok skt sk R st R ORsR SRR sk sl ol s el ok s o

* ATOMIC COORDINATES *
S s s s s sl e el s e s o S o sk ot ottt st st st s e sl s s s s sl sk ol sk sk st sk ok ek
| H &.259992 7.558904 7.558904
2 H 6.857816 7.558904 7.558904

bk R R R R R R R s R e ks ek g

st s et s ol sl sk s sl R ok skt sk R st R ORsR SRR sk sl ol s el ok s o

ELECTRONIC GRADIENT:
MAX. COMPONENT = 1.87074E-08 NORM = 5.24684E-09

TOTAL INTEGRATED ELECTRONIC DENSITY
IN G-SPACE = 2.000000
IN R-SPACE = 2.000000

(K+EIHLANHX) TOTAL ENERGY = -1.13245953 A.U.
(K) KINETIC ENERGY = 1.09007167 A.U.
(E1=A-S+R) ELECTROSTATIC ENERGY = -0.47319171 A.U.
(S) ESELF = 0.66490380 A.U.
(R) ESR = 0.17302596 A.U.
(L) LOCAL PSEUDOPOTENTIAL ENERGY = -1.09902246 A.U.
(N) N-L PSEUDOPOTENTIAL ENERGY = 0.00000000 A.U.
(X) EXCHANGE-CORRELATION ENERGY = -0.65031702 A.U.

s stk ok egde st e skl ek de sk sl sk sk sk s skl s sl sk sk ok ek sk s ol sk ok e e
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YF
RHOE
SCG
PME

[PEAK NUMBER

BIG MEMORY ALLOCATIONS

1507142
1507142
753571
273210
171410

77]

PEAK MEMORY

PSI
SCR
GK
INYH
RHOPS

8512086 =

15071

42

1026981
409815
204908
136605

68.1 MBytes

s e sl s st sl o sl i sl el ol s o s e sl s sl s e e sl ol st R e s sl sl i e sl s sl s e sl s s R e s s e st sl s e sl R e

e st ol sl sl ool sk et sl e sl sl sl sl sk e o sl s sl e sl sl sl e e

SUBROUTINE
XCENER
INVEFT

S_INVEFT
FWFFT
S_FWFFT
ATRHO
FFT-G/S
VOFRHOA
VPSI
RHOOFR
FORMEN
VOFRHOB
NUMPW
RGGEN
EICALC
PHASE
ODITS
PUTPS

CA

TIMING

LLS
11
12
22
11
12

]

CPU TIME
1.47
0.92
0.82
0.85
053
0.50
0.43

0.24

0.18

0.14

012

0.11

0.11

0.10

0.10

0.08

0.04

0.02

s sl sl e ek e e

B

B

£

B R

ELAPSED TIME

1

Al
.92
92
.84
.54
.53
45
;23



TOTAL TIME 6.306 7.08

ek ok kR R e Rk R ok ok ek o ook o

CPU TIME : 0 HOURS O MINUTES 6.92 SECONDS
ELAPSED TIME : 0 HOURS O MINUTES 7.18 SECONDS

PROGRAM CPMD ENDED AT:  Wed Mar 7 18:34:35 2007
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A Appendix
A.1 The contents of main subroutines in DIIS cycle

In A.3, we list the input and output of main subroutines in the DIIS cycle and

show the relationship between these subroutines in Fig.5.
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RWFOPT.F
v
UPDWEF
A 4
FORCEDR.F
v
FORCESF
v
RSCPOT.F
v
VPSLF
v
FNONLOC.F
v
OVLAPF
¥
GSCALF
v
ROTATEF
v
ZCLEANF
;
CSIZEF
» TAUCL.F
v v
HESELE.F GSIZEF
v
ODIIS.F
v
TOL_CHK_CONVGRADF
v
PREORTHO.F
v
ORTHO.F
v
ZHWWE.F

Figure 5: Flow chart of main subroutines in DIIS cycle
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A.1.1 RWFOPT.F

The main DIIS loop is in this routine.

A.1.2 FORCES.F

Compute the total energy, the forces on ions.

Input:
CO0 electronic wavefunction
TAUO atomic coordinates
SCR scratch array
LSCR length of scratch array
TFOR . If true, calculate the atomic forces
TSTRESS IF true, calculate the stress tensor
NSTATE number of states used.in. calculation
NKPOINT number of k-point
Output:
ETOT the total energy
FION the forces on ions

A.1.3 RSCPOT.F

Compute the density n(r), the kinetic energy and the potentials.

Input:
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CO0 electronic wavefunction
TAUO atomic coordinates
LSCR length of scratch array
TFOR . If true, calculate the atomic forces
TSTRESS IF true, calculate the stress tensor
NSTATE number of states used in calculation
NKPOINT number of k-point
Output:
FION atomic forces(potential part)
RHOE electronic potential
SCR scratch array

A.1.4 VPSLF

Calculate C2 and store the wavefunction in matrix PSI.

Input:
CO0 electronic wavefunction
F occupation numbers
VPOT local potential
IKIND index of k-point

ISPIN dimension of VPOT
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NSTATE number of states used in calculation
Output:
PSI store the wavefunction in PSI

C2 gradient of the total energy

A.1.5 FNONLOC.F

Calculate the nonlocal pseudopotential contribution of Hamiltonian and C2.

Input:
C2 gradient of the total energy
NSTATE number of states used in calculation
F occupation numbers
IKIND index of k-point
ISPIN dimension of VPOT
Output:
C2 gradient of total energy

A.1.6 OVLAP.F

Compute the overlap matrix (C2|C0).

Input:
CO0 electronic wavefunction

C2 gradient of the total energy
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NSTATE number of states used in calculation
Output:
GAM stores (C2|C0)

A.1.7 GSCAL.F

Calculate GAM = F « GAM.

Input:

GAM

F occupation numbers

NSTATE number of states used in calculation
Output:

GAM =FxGAM

A.1.8 ROTATE.F

Calculate C2 = A x C0x GAMT + B x C2.

Input:
A real constant
B real constant
CO0 electronic wavefunction
C2 gradient of the total energy
NSTATE number of states used in calculation
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GAM

NGWK = NGW, NGW is the number of plane waves for the wavefunction

cutoff.
Output:
C2 =AxCOxGAMT + Bx(C2

A.1.9 ZCLEAN.F

Set C2(1,1 ~ NSTATE) = 0.0.

Input:

C2 gradient of the total energy

NSTATE number of states used in calculation

NGW number of plane wavés for the wavefunction cutoff
Output:

C2

A.1.10 CSIZE.F

Calculate GEMAX and CNORM.

Input:
C2 gradient of the total energy
NSTATE number of states used in calculation

Output:
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GEMAX = @, where G = max | C2(i,j) |; 1 <i < NGW and

1< j < NSTATE.

CNORM = [voeeaamrs * C2 * C2]'/?, where NOCC' is the total occu-

pation number and NGW K S is equal to NGW.

A.1.11 TAUCL.F

This subroutine is called when the variable TFOR is TRUE.

Input:

FION the forces on ions
Output:

FION Set FION = 0.0

A.1.12 GSIZE.F

This subroutine is called when the variable TFOR is TRUE.

Calculate GNORM. Input:
FION the forces on ions
Output:

GNORM = [x757 3 FION(K, 1A, 1S5)%"2, where NTOT is the amount

of electrons in the system.

A.1.13 HESELE.F

This subroutine calculates the Hamiltonian H with diagonal approximation and

stores H~! in the array VPP.
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Noted that HESELE.F is called only in the first iteration or the first iteration
after DIIS reset.

Output:
VPP the inverse of the Hamiltonian

A.1.14 ODIIS.F

This routine is the most important subroutine of the DIIS method. The main
DIIS computation is performed in it.

Input:
CO electronic wavefunction
C2 gradient of the total energy
VPP the inverse of the Hamiltonian

DT2BYE = %, where DELT_ELFE(C is the time step for electron

and EMASS is the electronic mass.
MAXDIS maximum number of vectors in DIIS.
Output:
CO0 electronic wavefunction
PME stores previous C0

GDE stores previous C2
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A.1.15 TOL_.CHK_CNVGRAD.F

Check whether the wavefunction is converged based on gradient (C2).

Input:

GEMAX maximum change in wavefunction (calculated in the subroutine

CSIZE.F)
Output:
CONVWEF Set to be True, if GEMAX is less than the converge criterion.

A.1.16 PREORTHEO.F

Do preparations for orthogonalizing wavefunction C0.

Input:
CO0 electronic wavefunction
NSTATE number of states used in ¢aleulation

A.1.17 ORTHO.F

Orthogonalize the set or wavefunction C0.

Input:

CO electronic wavefunction

NSTATE number of states used in calculation
Output:

CO0 electronic wavefunction
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A.1.18 ZHWWE.F

Write the wavefunction in the restart file RESTART .x.
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