
The Weakness of Integrity Protection for LTE

Teng Wu and Guang Gong

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, ON N2L 3G1, Canada

{teng.wu, ggong}@uwaterloo.ca

Abstract

In this paper, we concentrate on the security issues of the integrity protection of LTE and
present two different forgery attacks. For the first attack, referred to as a linear forgery attack,
EIA1 and EIA3, two integrity protection algorithms of LTE, are insecure if the initial value (IV)
can be repeated twice during the life cycle of an integrity key (IK). Because of the linearity of EIA1
and EIA3, given two valid Message Authentication Codes (MACs) our algorithm can forge up to
232 valid MACs. Thus, the probability of finding a valid MAC is dramatically increased. Although
the combination of IV and IK never repeats in the ordinary case, in our well-designed scenario, the
attacker can make the same combination occur twice. The duplication provides the opportunity
to conduct our linear forgery attack, which may harm the security of communication. To test
our linear forgery attack algorithm, we generate two counter check messages and successfully forge
the third one. We also examine the attack timing by simulating real communication. From the
experimental results, our attack is applicable. The second attack is referred to as a trace extension
forgery attack, which works only in theory. However, this attack is more general than the linear
forgery attack. Known only one MAC and message pair, we can construct a different message, who
has the same MAC as the original one, with the probability 1

216
. In this attack, trace function is

applied to the message to shrink the guessing space.
Index Terms. Forgery, MAC, LTE, man-in-the-middle.

1 Introduction

After more than twenty years evolution, cellular system has evolved to the fourth generation. Se-

curity issues of the cellular system are attracting more and more attention, because the expenses of

attacking the system are much cheaper than before.

Integrity protection can protect messages from being modified. It also can prevent the impersonation

attacks. Thus, integrity protection is important in communication, especially in wireless channels.

Compared with wired transmission, active eavesdropping in a wireless environment is relatively easy.

Without integrity protection, attackers can modify messages transmitted over the air as they wish.

In the public key cryptography domain, integrity is protected by digital signatures; similarly, in

symmetric key cryptography, it is protected by MACs. Because computation of digital signatures is

1

inefficient, in some resource-constrained applications, integrity protection is always based on MACs.

A MAC-generating algorithm usually has two components: the underlying cipher and the upper-level

structure. An underlying cipher could be the keyed hash function, block cipher or stream cipher. The

input messages of the algorithm are allowed to have arbitrary length. Input messages pass through the

underlying cipher and become cipher text. This cipher text is assembled by the upper-level structure

to get a length-fixed string, which is the output of the MAC. There are many widely used MACs, such

as HMAC [7], EMAC [11], XCBC [9], OMAC [18], TMAC [13] and XOR MAC [8].

One threat to integrity protection is forgery attacks. If an attacker wants to impersonate some

identities or to modify some messages, he must have the ability to forge the MAC (or the signature

in public key cryptography) of some specific data. In this paper, since the cellular communications

are protected by MACs, we focus on a forgery attack on MAC. There are basically two ways to forge

a MAC: breaking the underlying cipher or bypassing the underlying cipher. The former one is hard

to achieve, since the underlying ciphers are usually chosen to be classical ciphers, which have already

been proven to be secure in both theory and practice. Thus, attackers always choose the latter one,

when they try to forge a MAC. We also chose the latter way, which means our goal is to bypass the

underlying ciphers of the cellular system to forge a MAC.

To bypass the underlying cipher, the attacker can apply either a probabilistic method or a structure

dependent method. The probabilistic method, for example, the birthday attack, can be launched at

most MAC generating algorithms. Although its target is general, the result of a birthday attack is not

very significant, because the searching complexity is still exponential. The attack is also not realistic,

because in practice, the attacker is not allowed to make that many queries. In contrast, some structure-

dependent attacks, which only target on certain MAC-generating algorithms, are more implementable.

Our method being able to forge depends on the linear structures of some specific MACs. It is also a

kind of structure-dependent method.

1.1 Applications of MAC in LTE

UMTS and LTE are two cellular standards proposed and maintained by 3GPP. UMTS is considered

a third-generation cellular communication system. Its successor is called LTE, which is considered

to be the fourth generation. As wireless communication systems, the resources of mobile devices are

constrained. Thus, MACs are used to protect the integrity of these two systems. In UMTS, the

underlying ciphers of MACs are Kasumi [3] and Snow 3G [1]. The former is a block cipher, and the

latter is a stream cipher. When UMTS migrated to LTE, AES was standardized. Consequently, Kasumi

has been replaced by AES. Besides AES and Snow 3G, a new stream cipher, ZUC [5], has been added

into the current standard.

In UMTS, integrity protection algorithms are called UIAs. UIA1 [2] and UIA2 [4] are based on

2

Kasumi and Snow 3G respectively. In LTE, integrity protection algorithms are called EIA. EIA1 is

adopted from UIA2, which is based on Snow 3G; EIA2 is based on AES, and EIA3 [4] is based on

ZUC. We use EIA in this paper to name these integrity protection methods in accordance with LTE,

the latest standard.

1.2 MAC Based On Stream Ciphers and EIA

Wireless communication is widely used in daily life. As a result, stream ciphers are becoming more

important than ever before. Originally, most MACs were based on keyed hash functions and block

ciphers. Now some researchers have turned to the design of MACs based on stream ciphers.

In the past, the research on stream ciphers based MACs has not received much attention as that

of block ciphers or hash functions based MACs. Recently, researchers have realized the importance of

MACs using stream ciphers. Some significant work has been presented, such as GMAC [15], Grain-128a

[6], EIA1, and EIA3. The underlying cipher of GMAC is a block cipher in counter mode, which makes

a block cipher act as a stream cipher. Thus, GMAC can work with other stream ciphers directly.

Both EIA1 and EIA3 have adopted some ideas from GMAC with some modifications to form their own

MAC-generating algorithms.

It is publicly acknowledged that EIA2 can be considered as a secure MAC-generating algorithm,

because it utilizes AES as the underlying cipher and CMAC as the MAC structure. AES is widely used

for commercial purposes, and gets many analyses from academic study. AES has proven to be secure

so far both theoretically and practically. CMAC is a kind of CBC MAC. Such kinds of MACs have

already received many analyses, and proven to be secure.

Unlike EIA2, grounds for trusting EIA1 and EIA3 are not so solid. Since they are not as popular

as AES and CBC MAC, the security of these algorithms is still not well studied. To the authors’ best

knowledge, there has been no significant attack on EIA1 so far, which means it does not evolve after it

is created. EIA3 receives more attacks. But only some of them are significant.

1.3 Related Work

There is already some work analyzing the EIA family. The following attacks are two of the most

significant.

Cycling Attack [17] can be applied to all polynomial MACs. Since EIA1 is a kind of polynomial

MAC, it also suffers such attacks.

ZUC and EIA3 were published later than Snow 3G and EIA1. However, EIA3 has received more

analyses than EIA1. The attack [19] proposed by Thomas et al. makes EIA3 change from v1.3 to v1.5.

After changing to v1.5, EIA3 does not suffer such attacks any more. However, it is still not immune to

our new attack, which will be presented in Section 3.

3

1.4 Our Contributions

Linear structures of EIA1 and EIA3 enable us to forge a valid MAC if we know two MACs generated

by the same IV and IK. On top of such facts, we develop a method that, with known two valid MACs,

we can forge up to 232 valid MACs by introducing a coefficient λ. Since we have 232 valid MAC-message

pairs, the probability of finding a pair with valid MAC and valid message is quite high. Statistically,

there is more than one meaningful pair among those 232 pairs. For brute-force attacks, the probability

of finding the valid MAC of a message is 1
232 . Now the probability that we get a meaningful MAC-

message pair is increased to more than 1
232 . In fact, finding the λ that can generate a meaningful pair

is much easier in practice than finding it in theory, because the messages usually have some specific

structures. Those structures may shrink the searching space. In addition, such an attack does not aim

at only EIA1 and EIA3 but also at some general polynomial MACs.

To prove that our linear forgery attack is doable, we create a scenario from which our attack can

be launched. Such a scenario is based on the observation that the authentication of LTE and UMTS is

not really mutual, although it is claimed to be a mutual authentication. In Extensible Authentication

Protocol - Authentication and Key Agreement (EAP-AKA), only the server sends the challenge to a

client. Checking the response of the challenge, the server can authenticate clients. Nevertheless, a

client does not challenge the server. Thus, it can only authenticate a server by checking the MAC of

the authentication vector. Such a protocol leaves a hole for the replay attack. Ordinarily speaking, the

replay attack cannot get anything. However, because of our attack, the replay attack makes the forgery

possible.

The second attack that we propose in this paper is referred to as a trace extension forgery attack.

For this attack, we can construct a new message, who has the same MAC as the known message, with

the probability 1
216 . The observation is that we can extend the original message such that the difference

between the original MAC and the new MAC is a function of β over GF (264), where β ∈ GF (216) ⊂

GF (264). Then the probability of guessing β is 1
216 , which is greater than the probability of guessing

the MAC. If we get the correct β, then we can forge the message.

The rest part of this paper is organized as followings. In Section 2 we introduce MACs and the EIA

family. In Section 3, we present some security issues of EIA1 and EIA3, and present the linear forgery

attack. In Section 4, we show how the trace extension forgery attack works. Section 5 describes a

scenario from which the linear forgery attack can be launched in practice, and shows some experimental

results of our attack.

4

2 Preliminary

In this section, we introduce the definition of the linear operation. This concept is the vital part of

our attack. Generally, most polynomial MACs, such as EIA1 and EIA3, have this linear property.

2.1 Notation, Definition and Data Representation

For the purpose of this paper, the Linear Operation is defined as

Definition 1 F (x) represents the operation F applied to x. If the operation F satisfies

• F (a+ b) = F (a) + F (b)

• F (c · a) = cF (a),

where a, b and c are from a Galois Field; a, b and c·a ∈ Domain of F , then F is called linear operation.

We also need a function that can map an element in a Galois field to an integer.

Definition 2 A function Nat(x) : GF (264) 7→ Z. ∀x ∈ GF (264), x can be represented as a binary

number under the normal basis. Function Nat(x) returns this binary number as an integer.

Trace function maps an element in a Galois field to its subfield. We borrow the definition of trace

function from Golomb and Gong [12].

Definition 3 Let q be a prime or a power of a prime. For α ∈ F = GF (qn) and K = GF (q), the trace

function TrF/K(x), x ∈ F , is defined by

TrF/K(x) = x+ xq + · · ·+ xq
n−1

, x ∈ F.

We can easily prove TrF/K(x) ∈ GF (q). Thus we omit the proof [12] here.

Table 1 lists all notations used in this paper.

In the following part of this paper, all data variables are presented with the most significant bit on

the left-hand side. For example, V is a 64-bit integer, < V >= (V0V1 · · ·V62V63)2, where Vi is the i-th

bit of V . V0 is the most significant bit.

We use the term “package” and “message” to represent the protocol data unit and the information

that carried by the package respectively. Package is composed of the header (used for control) and

the message. Take the counter check message for example, it is a package of radio resource control

(RRC) protocol. The control message sequence number (SQN) is the header, and the values of different

counters are the messages. These two parts together are called a package of the counter check message.

5

Table 1: Notations used in this paper

Notations Explainations

a||b Concatenation of a and b.

(a)s Represent a in a base-s form.

Example: (1001)2, (1FA8D)16.

< i > The binary representation of i.

Example: < (5)10 >= (101)2.

Li The left shift operator.

L1 is simplified as L.

Example: L(10011011)2 = (00110110)2.

+ Bitwise exclusive or.

· Multiplication in finite field.

Some times, without ambiguity,

we directly write a · b as ab.

[A]i..j The i-th bit to the j-th bit of A.

M A vector.

Example: the message composed

of several blocks. M=M0||M1|| · · · ||Mn−1.

MAC(M) The MAC of the message M.

6

2.2 CBC-MAC, XOR MAC and GMAC

In wireless communication network, MAC is one of the most important elements to secure the

system. CBC-MAC and XOR MAC are two well-known MACs. CBC-MAC comes from the CBC mode

of block ciphers. There are a lot of variations of CBC-MAC, such as EMAC [11], XCBC [9], OMAC [18]

and TMAC [13]. XOR MAC [8] has two categories, XMACC and XMACR. Compared with CBC-MAC,

the structure of XOR-MAC is relatively simple.

GMAC has different design compared with CBC-MAC and XOR MAC, because it is based on the

counter mode of the block cipher. GMAC [15] is standardized by NIST in 2007. When it is used for

encrypted authentication, it is called GCM. GCM outputs both the encrypted data and MAC. When

it is only used to generate MAC without encryption, it is called GMAC. Unlike GCM, GMAC does

not output the encrypted data. GMAC is composed of two parts, GCTR and GHASH. GCTR is the

counter mode of a block cipher. GHASH is a polynomial hash function. Messages first are encrypted

by GCTR, and then passed through GHASH.

2.3 EIA1, EIA2 and EIA3

Because both the underlying cipher and the upper-level structure of EIA2 are proven to be secure,

we do not discuss it in this paper. Hence, in this section, we present more details of EIA1 and EIA3

than of EIA2.

2.3.1 EIA1

...
Truncate

M1 M2 Mn−1 LEN Q

P

OTP

OUTPUT

Figure 1: EIA1: based on Snow 3G

EIA1 is adopted from UIA2. The underlying cipher is Snow 3G. In the evaluation of EIA1, it is said

that EIA1 comes from GMAC. In fact, it only borrows the idea of GHASH. Thus, EIA1 is considered

to be a polynomial MAC. Details of EIA1 are shown in Figure 1. At the beginning stage of EIA1, Snow

3G generates a 160-bit key stream. Then this key stream is truncated into P , Q and OTP . P and Q

7

are 64-bit words. OTP is a 32-bit word. In Figure 1, Mi is the i-th block of message. The length of

each block is 64 bits.

The mathematical description of EIA1 is given by

MAC(M) =

[(
n∑

i=1

P i ·Mn−i + LENGTH

)
·Q

]
0..31

+OTP. (1)

Equation 1 can be written as

MAC(M) =

[
n∑

i=1

P i ·Mn−i ·Q

]
0..31︸ ︷︷ ︸

part1

+

[LENGTH ·Q]0..31 +OTP︸ ︷︷ ︸
part2

.

Part 1 is a linear operation of the message. Part 2 is a value only relevant to the length of the message.

If the length is fixed, part 2 is a constant. So MAC is computed by a linear combination of one linear

block operation and a constant.

2.3.2 EIA2

Kasumi is replaced by AES in the new standard. Accordingly, EIA2 is put into the standard to

replace UIA1. The underlying cipher of EIA2 is AES. As a block cipher, AES can use some existing MAC

generating algorithms without any changes. CMAC [14] is chosen as the MAC generating algorithm of

EIA2. CMAC is a kind of CBC-MAC, which has already been well studied.

2.3.3 EIA3

M [0]

Z0

M [1]

Z1

M [n− 1]

Zn−1...

ZLEN Z32∗(L−1)

OUTPUT

Figure 2: EIA3: based on ZUC

8

Originally, ZUC is not in UMTS. It is added to the standard after the system migrates to LTE. The

integrity protection based on ZUC is EIA3. The same as EIA1, EIA3 is also claimed to be GMAC.

However, Figure 2 suggests that it is much closer to XOR MAC. In Figure 2, M [i] is the i-th bit of

message, Zi is the i-th word of the key stream generated by ZUC. Zi starts with the i-th bit of the key

stream. EIA3 pads every message with a ”1”. Z32∗(L−1) is the mask to encrypt the intermediate tag.

L is equal to dLENGTH/32e+ 2.

A mathematical expression of Figure 2 is given by

MAC(M) =

n−1∑
i=0

M [i]zi︸ ︷︷ ︸
part1

+ zLENGTH + z32∗(L−1)︸ ︷︷ ︸
part2

,

where M [i] is the i-th bit of message; zi is the i-th word in the key stream, i.e. zi = z[i]||z[i+1]|| · · · ||z[i+

31]; L = dLENGTH/32e+ 2. The main observation of EIA3 is that Part 1 is a linear operation. This

is very straightforward:

∑
i

(M [i] +M ′[i])zi =
∑
i

(M [i]zi +M ′[i]zi)

=
∑
i

M [i]zi +
∑
i

M ′[i]zi.

Part 2 is a constant if the length is fixed.

2.4 IV Synchronization Mechanism

EIA1, EIA2 and EIA3 synchronize IVs in the same way. As required by the EIA family, COUNT−I

and FRESH are input as parameters to form IV of the underlying cipher. FRESH is a random number.

COUNT − I is a counter that records how many times IK has already been used so far. It contains

two parts, SQN and hyper frame number (HFN). SQN is the sequence number. It is increased after a

package is sent. When SQN overflows, HFN is increased. COUNT − I and FRESH together are used

to prevent replay attacks.

FRESH and COUNT − I are written in the package to synchronize the transmitter and receiver,

which maintain two counters, named COUNTERtx and COUNTERrx, respectively. The transmitter

uses COUNTERtx as the value of its COUNT − I, and then generates key streams. When the

receiver receives a package, the value of COUNT − I is compared with the value of COUNTERrx. If

the value of COUNT − I is greater than COUNTERrx, FRESH is used to form IV together with

COUNT − I. Then the key streams generated by this IV and IK are used to verify the MAC. If the

value of COUNT − I is smaller than COUNTERrx, this package will be disregarded.

9

3 Security Issue of EIA1 and EIA3

We present our work in this section. Compared with other works before, our attack is more practical.

We need only two valid MACs to forge another valid MAC.

3.1 Quasi-Linearity Property of EIA1 and EIA3

Let M = (M0,M1, · · · ,Mn−1), where Mi is a 64-bit vector, treated as an element in GF (264), which

is defined by a primitive polynomial t(x) = x64 + x4 + x3 + x+ 1. Let α be a root of t(x) in GF (264),

and let β = α232+1. Then β is a primitive element of GF (232), a subfield of GF (264). The minimal

polynomial of α over GF (232) is given by

t1(x) = x2 + ux+ v,

where u = β17, v = β. Then each element in GF (264) can be represented as a + bα, a, b ∈ GF (232).

We define

f(M, P) =

n∑
i=1

Mn−iP
i, for P ∈ GF (264), Mi ∈ GF (264).

Property 1 For any λ ∈ GF (232) ⊂ GF (264),

M1 = (M1,0,M1,1, · · · ,M1,n−1)

M2 = (M2,0,M2,1, · · · ,M2,n−1),

then

f(M1 + M2, P) = f(M1, P) + f(M2, P) (2)

f(λM, P) = λf(M, P). (3)

Proof 1 According to the definition of f(M, P), we have

f(M1 + M2, P) =

n∑
i=1

(M1,n−i +M2,n−i)P
i

=

n∑
i=1

M1,n−iP
i +

n∑
i=1

M2,n−iP
i

= f(M1, P) + f(M2, P).

f(λM, P) =

n∑
i=1

(λMn−i)P
i

= λ

n∑
i=1

Mn−iP
i = λf(M, P).

10

Thus, the assertions are true.

We have the MAC of M generated by EIA1 as

MAC(M) = [Q · f(M, P)]0..31 + [Length ·Q]0..31 +OTP

Let Q · f(M, P) = a + bα, Length ·Q = c + dα, a, b, c, and d ∈ GF (232). From the MAC generation

of EIA1 in Section 2.3.1 and Property 1, the following result follows immediately.

Property 2 For any λ ∈ GF (232),

MAC(M) = a+ c+OTP (4)

MAC(λM) = λa+ c+OTP. (5)

EIA3 has the same property of Property 2. In other words, 4 and 5 are true, where MAC is generated

by EIA3. The proof is straightforward. Thus, we omit it here.

3.2 Linear Forgery Attack Algorithm

Assume that we can make three queries to obtain MACs of the messages Mi, for i = 1, 2, 3, under

the same IV. Let

Q · f(Mi, P) = ai + biα, ai, bi ∈ GF (232). (6)

Theorem 1 Let (i, j, k) be a permutation of (1, 2, 3). For any λ ∈ GF (232)

MAC(Mnew) = λ(MAC(Mi) +MAC(Mj)) +MAC(Mk) (7)

which is a valid MAC value of the message

Mnew = λ(Mi + Mj) + Mk.

Proof 2 We give a proof only for (i, j, k) = (1, 2, 3), since the proofs for the other cases are similar.

In order to prove (7), we compute the results of both sides of (7). According to Properties 1 and 2

MAC(Mnew) = λ(a1 + a2) + a3 + c+OTP. (8)

On the other hand,

λ(MAC(M1) +MAC(M2))) +MAC(M3)

= λ(a1 + c+OTP + a2 + c+OTP) + a3 + c+OTP

= λ(a1 + a2) + a3 + c+OTP. (9)

The assertion follows from (8) and (9).

11

From (7), we have the following corollary.

Corollary 1 Let (i, j) be a permutation of (1, 2), and k ∈ (1, 2). For any λ ∈ GF (232), (7) is true. In

other words, if we have the valid MACs from two queries, then

MAC(λ(M1 + M2) + M1)

= λ(MAC(M1) +MAC(M2)) +MAC(M1)

MAC(λ(M1 + M2) + M2)

= λ(MAC(M1) +MAC(M2)) +MAC(M2)

are valid.

From Corollary 1, we need only two valid MACs to forge a new one. In practice, we can reduce the

number of queries by applying Corollary 1. Obtaining two valid MACs generated by the same IV is

much easier than obtaining three.

The algorithm to forge a valid MAC by using two known valid MACs is shown in Algorithm 1,

where findλ() is a function that returns a λ such that either λ(M1 + M2) + MAC(M1) or λ(M1 +

M2) + MAC(M2) is a valid message. How to find λ, such that the message is also valid, is discussed

in Section 3.3.

Algorithm 1: Linear forgery

Data: two messages M1, M2, and the MACs of these two messages MAC(M1), MAC(M2)

Result: one message and its valid MAC

λ = findλ();

temp = λ(M1 + M2);

if temp + M1 is a valid message then
Mnew = temp + M1;

MAC(Mnew) = λ(MAC(M1) +MAC(M2)) +MAC(M1);

else
Mnew = temp + M2;

MAC(Mnew) = λ(MAC(M1) +MAC(M2)) +MAC(M2);

end

return MAC(Mnew) and Mnew;

Remark 1 EIA’s MAC has 32 bits. An attacker wishes to forge a valid MAC, it is equivalent to him

randomly selecting 32 bits; the probability of success is 1
232 . However, if the attacker can make two

12

queries for obtaining two valid MACs, then he can forge 232 messages with valid MACs. In Section 5,

we will demonstrate how the attacker can obtain two valid MACs in practice.

3.3 How To Find λ

We randomly pick a λ, then we can get a MAC of a message. However, this message may not be

a valid message for a protocol. Thus, the problem is how to find a λ that can generate the MAC of a

valid message.

Usually in a real environment, it is easier to find λ, because there is a relationship between these

two known messages, such as the relationship between two counter check messages. Two counter check

messages have very similar structures. Therefore, most bits in the exclusive or of two counter check

messages are zeros. We need to consider only very few bits, which are nonzero.

Moreover, even if we cannot find the valid message, our linear forgery attack can still cause some

Denial-of-Service (DoS) attacks. Because the MAC is valid, every time the receiver must do the decoding

and then finds the message is not well formatted, the computational resource will be occupied by

verifying and decoding.

4 Trace Extension Forgery Attack

This attack focuses only on EIA1. Assume, we have the message M = M0||M1|| · · · ||Mn−1 and

MAC(M). From EIA1 we know

MAC(M) =

[(
n∑

i=1

P i ·Mn−i + LENGTH

)
·Q

]
0..31

+OTP.

Let

g(M) =

n∑
i=1

P i ·Mn−i.

Then we have the Lemma 1.

Lemma 1 Extend the message M to Mnew = c0|| · · · ||cN−n−1||cN−n +M0|| · · · ||cN−1 +Mn−1, where

N ≥ 248,

ci =

{
α, for i = N − 1, N − 216, N − 232,N − 248, α ∈ GF (264);

0, others.

Let F = GF (264) and K = GF (216). Then we have

g(Mnew) = g(M) + α · TrF/K(P).

13

Proof 3 The proof is very straightforward.

g(Mnew) =

n∑
i=1

P i(Mn−i + cN−i) +

N∑
i=n+1

P icN−i

= g(M) + α · (P 248 + P 232 + P 216 + P)

= g(M) + α · TrF/K(P).

Theorem 2 If the integrity protection method is EIA1, then the probability of finding a message, which

has the same MAC as a known message, is no less than 1
216 .

Proof 4 Assume we have a message M, whose length is LEN , and its MAC is MAC(M). We con-

struct a method that can find another message, whose MAC is also MAC(M). From Lemma 1, Mnew

has the property that g(Mnew) = g(M) + α · TrF/K(P). Since α can be arbitrary element in GF (264),

thus we always have at least one α such that Nat(α ·TrF/K(P) +LEN) ≥ Nat(LEN), where Nat(x) :

GF (264) 7→ Z is the function we defined before. Let t = Nat(α·TrF/K(P)+LEN)−Nat(LEN). We pad

t zeros to the left side of Mnew to get another message denoted by Mf . Obviously, g(Mnew) = g(Mf).

Thus the MAC of Mf is

MAC(Mf) =
[
(g(Mnew) + α · TrF/K(P) + LEN) ·Q

]
0..31

+OTP

=
[
(g(M) + α · TrF/K(P) + α · TrF/K(P) + LEN) ·Q

]
0..31

+OTP

= [(g(M) + LEN) ·Q]0..31 +OTP

= MAC(M).

To get Mf , we need to guess TrF/K(P). Since TrF/K(P) maps P to GF (216), the probability of guessing

TrF/K(P) is 1
216 .

Remark 2 The proof of Theorem 2 naturally gives a way to find the message, who has the same MAC

as the original one. Instead of guessing the MAC, whose probability is 1
232 , our method tries to find

the message, who has the specific MAC. The success probability of trace extension forgery attack is 1
216 ,

which is much greater than 1
232 .

5 Application of Linear Forgery Attack

In this section, we design a scenario in which the same IV and IK will occur twice. Following this,

our linear forgery attack can be launched to get the valid MAC.

14

5.1 A Scenario of Fixing IV

Figure 3 demonstrates the procedure by which we can get the same SQN together with the same IK.

The preconditions are: (1) we can set up the man-in-the-middle (MITM), and (2) there is a malware

on the phone that can shut down and turn on the radio. Perez et al. [16] show that Condition (1) is

applicable. Condition (2) is also easy to satisfy. We can choose the Android smart phone to be our

target because Android is an open platform, which is popular around the world.

UE Attacker BS

AKA AKA Forward

Communication Forward

Record RND

Record communication

Get the package
that want to forge,

Record SQN1, MAC1

Malware
Shut down radio and turn on

Communication

AKA Replay

Communication Relay

Point A

Reach SQN1
Get MAC2

Forge

Restore the communication at point A

Figure 3: Fixing IV

First, the MITM attacker records all user data messages and control messages, including the au-

thentication and key agreement messages. When this attacker observes the package he wants to forge,

he shuts down the radio of the victim and then turns it on. The MITM attacker uses the recorded

AKA messages to conduct a replay attack. In the AKA protocol, mobile devices are not required to

verify whether the random number has been received before or not. Thus, the victim believes it is

talking with the real base station. Notice that the EAP-AKA is claimed to be mutually authenticated.

The user equipment (UE) proves its identity to an radio network controller (RNC) by replying to the

challenge from the RNC. However, since the UE does not send the challenge to the RNC, the RNC

can prove itself only by computing the MAC of the authentication vector. The random number in the

15

authentication vector can make sure each authentication vector is unique. However, the UE cannot

record all random numbers it received before. This enables the replay attack. Such attack makes the

UE accept the fake RNC. Generally, the attacker can get nothing from the replay attack, because he

still cannot get the key. But in our case, we do not care about the key. The only thing we care about

is the SQN. As long as we get two identical SQNs with the same IK, we can launch our linear forgery

attack.

After the victim accepts the random number, it generates the same IK, which is also used in the

session suspended by the attacker. When the victim believes the attacker is the real base station, it

begins to send packages. The attacker replies with the previously recorded packages. The victim may

accept or reject those packages, but it does not matter, because the only target for the attacker is to

increase the victim’s counter until the SQN reaches the recorded value.

As long as we get the sequence number that we want, the MITM attacker applies our linear forgery

attack to forge a valid MAC of the package. This forged package together with the forged MAC will

be forwarded to the real base station. Since the MAC will pass the verification, this package will be

accepted.

5.2 Counter Check Message

A realistic application of our linear forgery attack is that we can forge the counter check message.

In LTE, the integrity of the user plane is not protected. Thus, the counter check message is sent from

the RNC to the UE to check the number of data packages that have been transmitted. The RNC

includes the most significant s bits of its counter in the counter check message. When the UE receives

the counter check message, it compares its own counter with the value included in the counter check

message and sends its counter’s value back. If the difference is not acceptable, the RNC will release

the connection. This procedure is shown in Figure 4. Chen et al. [10] present more details about the

counter check message.

We want to forge the counter check message because sometimes the attacker inserts some data into

user plane data. If the counter check message is conducted correctly, the RNC will find out the insertion.

For example, the MITM attacker inserts a redirect URL command or advertisement into the web page

that the user is browsing. He must expect that RNC cannot detect the insertion. Then he needs to

modify the counter check message.

5.3 Launching Attack

We assume that the MAC-I in Figure 4 is generated by EIA1 or EIA3. IVs of EIA1 and EIA3

are composed of two portions. The least significant four bits represent the Radio Resource Controller

sequence number (RRC SQN). The other twenty-eight bits represent the HFN. Each time an RRC

16

UE RNC

1. Counter check(Cc, FRESH,MAC − I)

2. Counter check response(C′c, FRESH,MAC − I)

3. Release connection, if failed

Figure 4: Counter Check Message.

signal is sent, the RRC SQN is increased by one. If there is an overflow of the RRC SQN, the HFN is

increased by one.

Attacking scenario:

1. RNC sends a counter check message to the MITM attacker.

2. The MITM attacker forwards this message to the UE, and gets the reply form the UE with MAC1.

3. The MITM attacker applies the attack we mentioned above, and gets MAC2.

4. The MITM attacker forges λ(MAC1 + MAC2) + MAC1 or MAC2 + λ(MAC1 + MAC2), then

forwards to the real base station.

5. The RNC finds the difference is acceptable, and continues to communicate with the MITM at-

tacker.

6. The MITM attacker can continue to forward messages between the RNC and the UE without

being detected by the RNC.

This process creates a forged MAC. In this procedure, there is a drawback, i.e., the connection between

the MITM attacker and the RNC may time out during the forgery process. So such attack can forge

only the counter check message that is sent not too long after powering up.

5.4 Experimental Results

In order to test our attack, we generate two counter check messages, in which there are two counters,

as shown in Table 2. The RRC commands of these two packages are listed in Table 3.

17

Table 2: Counter Check Messages

Message Identity UCounter DCounter

M1
10 258 257

50 260 259

M2
10 259 258

50 261 260

Table 3: Counter Check Messages in Hex

Message RRC command

M1

0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21

0xA0 0x1F 0x80 0x01 0x1E 0xA1 0x1A 0x30

0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x02

0x82 0x02 0x01 0x01 0x30 0x0B 0x80 0x01

0x32 0x81 0x02 0x01 0x04 0x82 0x02 0x01

0x03

M2

0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21

0xA0 0x1F 0x80 0x01 0x1E 0xA1 0x1A 0x30

0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x03

0x82 0x02 0x01 0x02 0x30 0x0B 0x80 0x01

0x32 0x81 0x02 0x01 0x05 0x82 0x02 0x01

0x04

18

5.4.1 Forge Procedure

The xor sum of these two messages is

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01

0x00 0x00 0x00 0x03 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00

0x07

Then chose λ =0x1B, λ(M1 + M2) is

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1B

0x00 0x00 0x00 0x2D 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x1B 0x00 0x00 0x00

0x41

Finally, we get the message Mnew = M2 + λ(M1 + M2)

0x30 0x27 0xA1 0x25 0xA4 0x23 0xA0 0x21

0xA0 0x1F 0x80 0x01 0x1e 0xa1 0x1A 0x30

0x0B 0x80 0x01 0x0A 0x81 0x02 0x01 0x18

0x82 0x02 0x01 0x2F 0x30 0x0B 0x80 0x01

0x32 0x81 0x02 0x01 0x1E 0x82 0x02 0x01

0x45

This message is represented in a binary form. Decoding the binary message, we get the result shown

in Figure 5, which demonstrates the xml form of the binary message. From Figure 5, it is obvious that

the forged message still contains the counter values of the bearers 10 and 50. The uplink and downlink

counter values of the bearer 10 are 577 and 531 respectively. They are increased compared with the real

values. The counter values of the bearer 50 are increased as well. The forged value of uplink counter is

274, and the forged downlink counter value is 352. We can also verify the MAC of the message Mnew.

MAC(Mnew) is indeed MAC2 + λ(MAC1 +MAC2). Therefore we successfully forge a valid package,

in which the value of each counter is increased, and the MAC of the message is valid. This means if the

attacker inserts some packages, RNC will not realize that.

19

<DL-DCCH-Message>

<message>

<counterCheck>

<r3>

<counterCheck-r3>

<rrc-TransactionIdentifier>30</rrc-TransactionIdentifier>

<rb-COUNT-C-MSB-InformationList>

<RB-COUNT-C-MSB-Information>

<rb-Identity>10</rb-Identity>

<count-C-MSB-UL>577</count-C-MSB-UL>

<count-C-MSB-DL>531</count-C-MSB-DL>

</RB-COUNT-C-MSB-Information>

<RB-COUNT-C-MSB-Information>

<rb-Identity>50</rb-Identity>

<count-C-MSB-UL>274</count-C-MSB-UL>

<count-C-MSB-DL>352</count-C-MSB-DL>

</RB-COUNT-C-MSB-Information>

</rb-COUNT-C-MSB-InformationList>

</counterCheck-r3>

</r3>

</counterCheck>

</message>

</DL-DCCH-Message>

Figure 5: Decoding result

5.4.2 Timing of Attack

Turning the radio off and on usually costs three to six seconds. If RNC does not time out within

this range, our attack can be launched. There is no requirement for this time-out duration in the

standard. It is decided by the manufacturer. We cannot make a direct test, because analysis of public

communications is forbidden by the law. However, since RRC commands are sent in an ARQ fashion,

we can use the retransmitting time to show the time out duration intuitively. We simulate an Additive

White Gaussian Noise (AWGN) channel. The modulation scheme is Quaternary Phase Shift Keying

(QPSK). The result is shown in Figure 6. Each column is corresponding to a set of coding parameters.

The top row shows the bit Signal to Noise Ratio (SNR), while the bottom row represents the symbol

SNR.

Figure 6 indicates that when the bit SNR or symbol SNR is around −0.2dB, the base station needs

to transmit a message three times on average to ensure that the user can receive that message. If

users are in a building, such a situation may occur with high probability. To make sure all users can

get services, the time out duration must be relatively long. This may give us a chance to conduct the

attack.

6 Conclusion and Future Work

In this paper, we proposed a method whereby two known valid MAC-message pairs generated by

the same IV and IK, we can forge 232 valid MAC-message pairs. In a real environment, we can easily

find a meaningful MAC-message pair among those 232 pairs. We also developed an attack that makes

20

0 2 4 6
0

1

2

3

4

5

6

7
re−transmission times / SNR

Bit SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

0 1 2 3 4 5
0

1

2

3

4

5

6

7
re−transmission times / SNR

Symbol SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

0 2 4 6
0

1

2

3

4

5

6

7

8

9

10
re−transmission times / SNR

Bit SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

−1 0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

10
re−transmission times / SNR

Symbol SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

0 2 4 6
0

2

4

6

8

10

12

14
re−transmission times / SNR

Bit SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

0 1 2 3 4 5
0

2

4

6

8

10

12

re−transmission times / SNR

Symbol SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

−1 0 1 2 3 4 5 6
0

5

10

15

20

25

30
re−transmission times / SNR

Bit SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

0 1 2 3 4 5
0

5

10

15

20

25

30
re−transmission times / SNR

Symbol SNR in dB

re
−

tr
a
n
s
m

is
s
io

n
 t
im

e
s

Figure 6: Retransmission times / SNR

the same IV and IK occur twice. This enables our linear forgery attack in practice.

To prevent our linear forgery attack, the structures of EIA1 and EIA3 need to be changed such that

either the message is involved in generating the key stream or the MAC is generated in a nonlinear

fashion. The problem is how to find a way that can avoid linear structures without compromising

efficiency. So far, this issue seems to be a trade-off.

Although the trace extension forgery attack is only theoretical, the success probability 1
216 is con-

siderable. Besides, it needs merely one pair of message and MAC. This attack shows the polynomial

like MAC is not secure.

In the next stage of our research, the way to fix IV needs some improvement, for it heavily depends

on the timing. If we can find a better way to get the same IV and IK twice, then our attack can launch

at any time of communication (not only the time not too long after powering up), and also the failure

rate caused by timing out will be reduced.

The trace extension attack can only construct the message, whose length is more than 248 blocks.

This number is too huge to be realistic. To improve, we need to reduce the length of the message.

Moreover, if we can map P to a subfield, which is smaller than GF (216), then the probability will be

higher than 1
216 .

21

References

[1] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. Docu-

ment 2: SNOW 3G Specification. September 2006.

[2] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms. Document 1: f8 and

f9 Specification. 2007.

[3] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms. Document 2: Kasumi

Specification. June 2007.

[4] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.

Document 1: 128-EEA3 and 128-EIA3 Specification. January 2011.

[5] 3GPP. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.

Document 2: ZUC Specification. January 2011.

[6] M. Agren, M. Hell, T. Johansson, and W. Meier. Grain-128a: A New Version of Grain-128 with

Optional Authentication. Int. J. Wire. Mob. Comput., 5(1):58–59, December 2011.

[7] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authentication. In

Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology,

CRYPTO ’96, pages 1–15, London, UK, UK, 1996. Springer-Verlag.

[8] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs: New Methods for Message Authentication

Using Finite Pseudorandom Functions. In Proceedings of the 15th Annual International Cryptol-

ogy Conference on Advances in Cryptology, CRYPTO ’95, pages 15–28, London, UK, UK, 1995.

Springer-Verlag.

[9] J. Black and P. Rogaway. CBC MACs for Arbitrary-Length Messages: The Three-Key Construc-

tions. In Proceedings of the 20th Annual International Cryptology Conference on Advances in

Cryptology, CRYPTO ’00, pages 197–215, London, UK, UK, 2000. Springer-Verlag.

[10] L. Chen and G. Gong. Communication System Security, chapter 10, pages 358–359. CRC Press

Taylor & Francis Group, 2012.

[11] P. Erez and R. Charles. CBC MAC for Real-Time Data Sources. J. Cryptology, 13:315–338, 2000.

[12] S. W. Golomb and G. Gong. Signal Design for Good Correlation For Wireless Communication,

Crypography, and Radar. Cambridge University Press, 2005.

22

[13] K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. In Proceedings of the 2003 RSA confer-

ence on The cryptographers’ track, CT-RSA’03, pages 33–49, Berlin, Heidelberg, 2003. Springer-

Verlag.

[14] NIST. Recommendation for Block Cipher Mode of Operation: The CMAC Mode for Authentica-

tion. NIST Special Publication 800-38B. 2005.

[15] NIST. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and

GMAC. NIST Special Publication 800-38D. 2007.

[16] D. Perez and J. Pico. A Practical Attack Against GPRS/EDGE/UMTS/HSPA Mobile Data

Communications. Presented in Black Hat Conference, 2011.

[17] M.-J. O. Saarine. Cycling Attacks on GCM, GHASH and Other Polynomial MACs and Hashes.

In Proceedings of the Fast Software Encryption 2012, 2012.

[18] I. Tetsu and K. Kaoru. OMAC: One-Key CBC MAC. In Pre-proceedings of Fast Software Encryp-

tion, FSE 2003, FSE ’03, pages 137–161. Springer-Verlag, 2002.

[19] F. Thomas, G. Henri, R. Jean-Rene, and M. Videau. A Forgery Attack on the Candidate LTE

Integrity Algorithm 128-EIA3. IACR Cryptology ePrint Archive, 2010:168, 2010.

23

