
AMS / MAA      PROBLEM BOOKS VOL 33

THE WILLIAM LOWELL PUTNAM

MATHEMATICAL COMPETITION

1985 – 2000
Problems,

Solutions,

and Commentary

Kiran S. Kedlaya

Bjorn Poonen

Ravi Vakil



The William Lowell
Putnam Mathematical
Competition 1985-2000

10.1090/prb/033



Originally published by
The Mathematical Association of America, 2002.

ISBN: 978-1-4704-5124-0
LCCN: 2002107972

Copyright © 2002, held by the American Mathematical Society
Printed in the United States of America.

Reprinted by the American Mathematical Society, 2019
The American Mathematical Society retains all rights
except those granted to the United States Government.

⃝∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at https://www.ams.org/

10 9 8 7 6 5 4 3 2 24 23 22 21 20 19



AMS/MAA PROBLEM BOOKS

VOL 33

The William Lowell
Putnam Mathematical
Competition 1985-2000
Problems, Solutions, and
Commentary

Kiran S. Kedlaya
Bjorn Poonen
Ravi Vakil



MAA PROBLEM BOOKS SERIES 

Problem Books is a series of the Mathematical Association of America consisting 

of collections of problems and solutions from annual mathematical competitions; 

compilations of problems (including unsolved problems) specific to particular branches 

of mathematics; books on the art and practice of problem solving, etc. 

Committee on Publications 

Gerald Alexanderson, Chair

Problem Books Series Editorial Board 

Roger Nelsen Editor

Irl Bivens Clayton Dodge 

Richard Gibbs George Gilbert 

Art Grainger Gerald Heuer 

Elgin Johnston Kiran Kedlaya 

Loren Larson Margaret Robinson 

The Contest Problem Book VII: American Mathematics Competitions, 1995-2000 Contests, 
compiled and augmented by Harold B. Reiter 

The Contest Problem Book VIII: American Mathematics Competitions (AMC 10), 2000-2007 
Contests, compiled and edited by J. Douglas Faires & David Wells 

The Contest Problem Book IX: American Mathematics Competitions (AMC 12), 2001-2007 

Contests, compiled and edited by J. Douglas Faires & David Wells 

A Friendly Mathematics Competition: 35 Years of Teamwork in Indiana, edited by Rick 

Gillman 

The Inquisitive Problem Solver, Paul Vaderlind, Richard K. Guy, and Loren C. Larson 

International Mathematical Olympiads 1986-1999, Marcin E. Kuczma 

Mathematical Olympiads 1998-1999: Problems and Solutions From Around the World, edited 

by Titu Andreescu and Zuming Feng 

Mathematical Olympiads 1999-2000: Problems and Solutions From Around the World, edited 

by Titu Andreescu and Zuming Feng 

Mathematical Olympiads 2000-2001: Problems and Solutions From Around the World, edited 

by Titu Andreescu, Zuming Feng, and George Lee, Jr. 

The William Lowell Putnam Mathematical Competition Problems and Solutions: 1938-1964, 
A. M. Gleason, R. E. Greenwood, L. M. Kelly

The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965-1984, 

Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson 

The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and 

Commentary, Kiran S. Kedlaya, Bjorn Poonen, Ravi Vakil 

USA and International Mathematical Olympiads 2000, edited by Titu Andreescu and Zuming 

Feng 

USA and International Mathematical Olympiads 2001, edited by Titu Andreescu and Zuming 

Feng 

USA and International Mathematical Olympiads 2002, edited by Titu Andreescu and Zuming 

Feng 



USA and International Mathematical Olympiads 2003, edited by Titu Andreescu and Zuming 

Feng 

USA and International Mathematical Olympiads 2004, edited by Titu Andreescu, Zuming 

Feng, and Po-Shen Loh 



Dedicated to the Putnam contestants 



Introduction 

This book is the third collection of William Lowell Putnam Mathematical Competition 

problems and solutions, following [Putnam!] and [Putnamll]. As the subtitle indicates, 

the goals of our volume differ somewhat from those of the earlier volumes. 

Many grand ideas of mathematics are best first understood through simple problems, 

with the inessential details stripped away. When developing new theory, research 

mathematicians often turn to toyt problems as a means of getting a foothold. For 

this reason, Putnam problems and solutions should be considered not in isolation, but 

instead in the context of important mathematical themes. Many of the best problems 

contain kernels of sophisticated ideas, or are connected to some of the most important 

research done today. We have tried to emphasize the organic nature of mathematics, 

by highlighting the connections of problems and solutions to other problems, to the 

curriculum, and to more advanced topics. A quick glance at the index will make 

clear the wide range of powerful ideas connected to these problems. For example, 

Putnam problems connect to the Generalized Riemann Hypothesis (1988Bl) and the 

Weil Conjectures (1991B5 and 1998B6). 

1 Structure of this book 

The first section contains the problems, as they originally appeared in the competition, 

but annotated to clarify occasional infelicities of wording. We have included a list of 

the Questions Committee with each competition, and we note here that in addition 

Loren Larson has served as an ex officio member of the committee for nearly the 

entire period covered by this book. Next is a section containing a brief hint for each 

problem. The hints may often be more mystifying than enlightening. Nonetheless, we 

hope that they encourage readers to spend more time wrestling with a problem before 

turning to the solution section. 

The heart of this book is in the solutions. For each problem, we include every 

solution we know, eliminating solutions only if they are essentially equivalent to one 

already given, or clearly inferior to one already given. Putnam problems are usually 

constructed so that they admit a solution involving nothing more than calculus, 

linear algebra, and a bit of real analysis and abstract algebra; hence we always 

t A "toy" problem does not necessarily mean an easy problem. Rather, it means a relatively tractable 
problem where a key issue has been isolated, and all extraneous detail has been stripped away. 

vii 
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include one solution requiring no more background than this. On the other hand, as 

mentioned above, the problems often relate to deep and beautiful mathematical ideas, 
and concealing these ideas makes some solutions look like isolated tricks; therefore 

where germane we mention additional problems solvable by similar methods, alternate 

solutions possibly involving more advanced concepts, and further remarks relating the 

problem to the mathematical literature. Our alternate solutions are sometimes more 

terse than the first one. The top of each solution includes the score distribution of 

the top contestants: see page 51. When we write "see 1997 A6," we mean "see the 

solution( s) to 1997 A6 and the surrounding material." 

After the solutions comes a list of the winning individuals and teams. This includes 

one-line summaries of the winners' histories, when known to us. Finally, we reprint 

an article by Joseph A. Gallian, "Putnam Trivia for the Nineties," and an article by 

Bruce Reznick, "Some Thoughts on Writing for the Putnam." 

2 The Putnam Competition over the years 

The competition literature states: "The competition began in 1938, and was designed 

to stimulate a healthy rivalry in mathematical studies in the colleges and universities 

of the United States and Canada. It exists because Mr. William Lowell Putnam had 

a profound conviction in the value of organized team competition in regular college 

studies. Mr. Putnam, a member of the Harvard class of 1882, wrote an article for the 

December 1921 issue of the Harvard Graduates' Magazine in which he described the 

merits of an intercollegiate competition. To establish such a competition, his widow, 

Elizabeth Lowell Putnam, in 1927 created a trust fund known as the William Lowell 

Putnam Intercollegiate Memorial Fund. The first competition supported by this fund 

was in the field of English and a few years later a second experimental competition 

was held, this time in mathematics between two institutions. It was not until after 

Mrs. Putnam's death in 1935 that the examination assumed its present form and was 

placed under the administration of the Mathematical Association of America." 
Since 1962, the competition has consisted of twelve problems, usually numbered 

Al through A6 and Bl through B6, given in two sessions of three hours each on the 

first Saturday in December. For more information about the history of the Putnam 

Competition, see the articles of Garrett Birkhoff and L. E. Bush in [Putnam!]. 

The competition is open to regularly enrolled undergraduates in the U.S. and 

Canada who have not yet received a college degree. No individual may participate 

in the competition more than four times. Each college or university with at least 

three participants names a team of three individuals. But the team must be chosen 

before the competition, so schools often fail to select their highest three scores; indeed, 

some schools are notorious for this. Also, the team rank is determined by the sum of 

the ranks of the team members, so one team member having a bad day can greatly 

lower the team rank. These two factors add an element of uncertainty to the team 

competition. 

Prizes are awarded to the mathematics departments of the institutions with the 

five winning teams, and to the team members. The five highest ranking individuals 

are designated Putnam Fellows; prizes are awarded to these individuals and to each 
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of the next twenty highest ranking contestants. One of the Putnam Fellows is also 

awarded the William Lowell Putnam Prize Scholarship at Harvard. Also, in some 

years, beginning in 1992, the Elizabeth Lowell Putnam Prize has been awarded to a 

woman whose performance has been deemed particularly meritorious. The winners of 

this prize are listed in the "Individual Results" section. The purpose of the Putnam 

Competition is not only to select a handful of prize winners, however; it is also to 
provide a stimulating challenge to all the contestants. 

The nature of the problems has evolved. A few of the changes reflect changing 

emphases in the discipline of mathematics itself: for example, there are no more 

problems on Newtonian mechanics, and the number of problems involving extended 

algebraic manipulations has decreased. Other changes seem more stylistic: problems 
from recent decades often admit relatively short solutions, and are never open-ended. 

The career paths of recent Putnam winners promise to differ in some ways from those 

of their predecessors recorded in [Putnam!]. Although it is hard to discern patterns 

among recent winners since many are still in school, it seems that fewer are becoming 

pure mathematicians than in the past. Most still pursue a Ph.D. in mathematics or 

some other science, but many then go into finance or cryptography, or begin other 

technology-related careers. It is also true that some earlier winners have switched from 

pure mathematics to other fields. For instance, David Mumford, a Putnam Fellow in 

1955 and 1956 who later won a Fields Medal for his work in algebraic geometry, has 

been working in computer vision since the 1980s. 

3 Advice to the student reader 

The first lesson of the Putnam is: don't be intimidated. Some of the problems relate 

to complex mathematical ideas, but all can be solved using only the topics in a typical 

undergraduate mathematics curriculum, admittedly combined in clever ways. By 

working on these problems and afterwards studying their solutions, you will gain 

insight into beautiful aspects of mathematics beyond what you may have seen before. 

Be patient when working on a problem. Learning comes more from struggling with 

problems than from solving them. If after some time, you are still stuck on a problem, 

see if the hint will help, and sleep on it before giving up. Most students, when they 

first encounter Putnam problems, do not solve more than a few, if any at all, because 

they give up too quickly. Also keep in mind that problem-solving becomes easier with 

experience; it is not a function of cleverness alone. 

Be patient with the solutions as well. Mathematics is meant to be read slowly and 

carefully. If there are some steps in a solution that you do not follow, try discussing it 

with a knowledgeable friend or instructor. Most research mathematicians do the same 

when they are stuck (which is most of the time); the best mathematics research is 

almost never done in isolation, but rather in dialogue with other mathematicians, and 

in consultation of their publications. When you read the solutions, you will often find 

interesting side remarks and related problems to think about, as well as connections 

to other beautiful parts of mathematics, both elementary and advanced. Maybe you 

will create new problems that are not in this book. We hope that you follow up on 

the ideas that interest you most. 
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Cut-off score for 

Year Median Top Honorable Putnam 

~ 200 Mention Fellow 

1985 2 37 66 91 

1986 19 33 51 81 

1987 1 26 49 88 

1988 16 40 65 110 

1989 0 29 50 77 

1990 2 28 50 77 

1991 11 40 62 93 

1992 2 32 53 92 

1993 10 29 41 60 

1994 3 28 47 87 

1995 8 35 52 85 

1996 3 26 43 76 

1997 1 25 42 69 

1998 10 42 69 98 

1999 0 21 45 69 

2000 0 21 43 90 

TABLE 1. Score cut-offs 

4 Scoring 

Scores in the competition tend to be very low. The questions are difficult and the 

grading is strict, with little partial credit awarded. Students who solve one question 

and write it up perfectly do better than those with partial ideas for a number of 

problems. 

Each of the twelve problems is graded on a basis of 0 to 10 points, so the maximum 

possible score is 120. Table 1 shows the scores required in each of the years covered 

in this volume to reach the median, the top 200, Honorable Mention, and the rank 

of Putnam Fellow ( top five, or sometimes six in case of a tie). Keep in mind that 

the contestants are self-selected from among the brightest in two countries. As you 

can see from Table 1, solving a single problem should be considered a success. In 

particular, the Putnam is not a "test" with passing and failing grades; instead it is an 

open-ended challenge, a competition between you and the problems. 

Along with each solution in this book, we include the score distribution of the 

top 200 or so contestants on that problem: see page 51. This may be used as a 

rough indicator of the difficulty of a problem, but of course, different individuals may 

find different problems difficult, depending on background. The problems with highest 

scores were 1988Al and 1988Bl, and the problems with the lowest scores were 1999B4 

and 1999B5. When an easier problem was accidentally placed toward the end of the 

competition, the scores tended to be surprisingly low. We suspect that this is because 

contestants expected the problem to be more difficult than it actually was. 
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5 Some basic notation 

The following definitions are standard in modern mathematics, so we use them
throughout this book:

Z = the ring of integers={ ... , -2, -1, 0, 1, 2, ... }
<Ql = the field of rational numbers= { m/n: m, n E Z, n-/:- 0}
� = the field of real numbers
C = the field of complex numbers= {a+ bi: a, b E �},where i = J=I

lF q = the finite field of q elements.
The cardinality of a set Sis denoted #Sor sometimes ISi. If a, b E Z, then "a I b"

means that a divides b, that is, that there exists k E Z such that b = ka. Similarly,
"a f b" means that a does not divide b. The set of positive real numbers is denoted by 
�+.

We use the notation ln x for the natural logarithm function, even though in higher
mathematics the synonym log x is more frequently used. It is tacitly assumed that the
base of the logarithm, if unspecified, equals e = 2. 71828 .... If logarithms to the base
10 are intended, it is better to write log

1
0 x. More generally, log

a 
x = (log x )  / (log a)

denotes logarithm to the base a. In computer science, the notation lg n is sometimes
used as an abbreviation for log

2 n. (In number theory, when p is a prime number,
log

P 
x sometimes also denotes the p-adic logarithm function [Kob, p. 87], a function

with similar properties but defined on nonzero p-adic numbers instead of positive real
numbers. But this book will have no need for this p-adic function.)

Rings for us are associative and have a multiplicative unit 1. If R is a ring, then
R[x] denotes the ring of all polynomials

where n is any nonnegative integer, and ao, a1, ... , an E R. Also, R[[x]] denotes the
ring of formal power series
where the ai belong to R.

If R is a ring and n 2 1, Mn (R) denotes the set of n x n matrices with coefficients
in R, and GLn (R) denotes the subset of matrices A E Mn (R) that have an inverse in
Mn (R). When R is a  field, a matrix A E Mn (R) has such an inverse if and only if
its determinant det(A) is nonzero; more generally, for any commutative ring, A has
such an inverse if and only if det(A) is a unit of R. (The reason to insist that the
determinant be a unit, and not just nonzero, is that it makes GLn (R) a group under
multiplication.) For instance, GL2 (Z ) is the set of matrices (: : ) with a, b, c, d E Z
and ad - be = ±1.
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sine law, see Law of Sines 

sketching, 9, 43, 88 

spherical cap, 255 
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ultraspherical polynomials, 270 
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Vandermonde determinant, 70, 98, 276 
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vectors, 46, 93, 159, 186, 187, 218, 230, 

231, 233, 276 

Venn diagram, 53 

weakly connected, 126 

Weierstrass M-test, 111 

Weierstrass's Theorem, 111 

Weil Conjectures, vii, 151, 261 

Well Ordering Principle, 112 

well-ordered set, 112, 194, 195 

Weyl's Equidistribution Theorem, 96, 216 

winding number, 230, 231 

Wolstenholme's Theorem, 147, 245 

Wythoff's game, 180 

Zorn's Lemma, 111, 112, 195 
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The William Lowell Putnam Mathematical Competition is the premier mathematical competi-

tion at the undergraduate level in North America. This volume, the third to cover the competi-

tion, con tains the 192 problems from the years 1985–2000, as they appeared in the competition, 

with solutions and extensive commentary. 

It is unlike the first two Putnam volumes and unlike virtually every other problem-based book, 

in that it places the problems in the context of important mathematical themes. The authors 

high light connections to other problems, to the curriculum, and to more advanced topics. The 

best problems contain kernels of sophisticated ideas related to important current research, and 

yet the problems are accessible to undergraduates. 

The heart of the book is in the solutions, which have been compiled through extensive research. 

The authors present the best solutions from the American Mathematical Monthly, Mathematics 
Magazine, past competitors, and many problem enthusiasts. Often the authors have simplified 

these solutions, or have developed new solutions of their own. Multiple solutions are common. 

In editing the solutions, the authors have kept a student audience in mind, explaining tech-

niques that have relevance to more than the problem at hand, suggesting references for further 

reading, and mentioning related problems, some of which are unsolved. 

In addition to problems and solutions, the book contains:  
• a hint to each problem, separate from the full solution; 

• background information about the competition; 

• a list of winning individuals and teams, with current  

information about the career paths of winners; 

• a topic index; 

• Putnam Trivia for the Nineties, by Joseph A. Gallian; and 

• Some Thoughts on Writing for the Putnam, by Problems Committee member Bruce Reznick.

The authors of this volume are active research mathematicians who are renowned also for 

their expository skills. They were themselves winners of the Putnam Competition in most of the 

years covered by the volume: togeth er they achieved the rank of Putnam Fellow eleven times. 

This volume will appeal to students, teachers, and professors, or anyone interested in problem 

solving as an entrée to beautiful and powerful ideas.


