THE WILLIAM LOWELL PUTNAM

MATHEMATICAL COMPETITION

1985-2000
Problems,

Solutions,
and Commentary

Kiran S. Kedlaya
Bjom Poonen
Ravi Vakil

The William Lowell Putnam Mathematical Competition 1985-2000

Originally published by

The Mathematical Association of America, 2002.
ISBN: 978-1-4704-5124-0
LCCN: 2002107972

Copyright © 2002, held by the American Mathematical Society Printed in the United States of America.

Reprinted by the American Mathematical Society, 2019 The American Mathematical Society retains all rights except those granted to the United States Government.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at https://www.ams.org/

The William Lowell Putnam Mathematical Competition 1985-2000

Problems, Solutions, and Commentary

Kiran S. Kedlaya

Bjorn Poonen
Ravi Vakil

MAA PROBLEM BOOKS SERIES

Problem Books is a series of the Mathematical Association of America consisting of collections of problems and solutions from annual mathematical competitions; compilations of problems (including unsolved problems) specific to particular branches of mathematics; books on the art and practice of problem solving, etc.

Committee on Publications
Gerald Alexanderson, Chair
Problem Books Series Editorial Board
Roger Nelsen Editor
Irl Bivens Clayton Dodge
Richard Gibbs George Gilbert
Art Grainger Gerald Heuer
Elgin Johnston Kiran Kedlaya
Loren Larson Margaret Robinson

The Contest Problem Book VII: American Mathematics Competitions, 1995-2000 Contests, compiled and augmented by Harold B. Reiter
The Contest Problem Book VIII: American Mathematics Competitions (AMC 10), 2000-2007 Contests, compiled and edited by J. Douglas Faires \& David Wells
The Contest Problem Book IX: American Mathematics Competitions (AMC 12), 2001-2007 Contests, compiled and edited by J. Douglas Faires \& David Wells
A Friendly Mathematics Competition: 35 Years of Teamwork in Indiana, edited by Rick Gillman
The Inquisitive Problem Solver, Paul Vaderlind, Richard K. Guy, and Loren C. Larson
International Mathematical Olympiads 1986-1999, Marcin E. Kuczma
Mathematical Olympiads 1998-1999: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng
Mathematical Olympiads 1999-2000: Problems and Solutions From Around the World, edited by Titu Andreescu and Zuming Feng
Mathematical Olympiads 2000-2001: Problems and Solutions From Around the World, edited by Titu Andreescu, Zuming Feng, and George Lee, Jr.
The William Lowell Putnam Mathematical Competition Problems and Solutions: 1938-1964, A. M. Gleason, R. E. Greenwood, L. M. Kelly

The William Lowell Putnam Mathematical Competition Problems and Solutions: 1965-1984, Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson
The William Lowell Putnam Mathematical Competition 1985-2000: Problems, Solutions, and Commentary, Kiran S. Kedlaya, Bjorn Poonen, Ravi Vakil
USA and International Mathematical Olympiads 2000, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2001, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2002, edited by Titu Andreescu and Zuming Feng

USA and International Mathematical Olympiads 2003, edited by Titu Andreescu and Zuming Feng
USA and International Mathematical Olympiads 2004, edited by Titu Andreescu, Zuming Feng, and Po-Shen Loh

Dedicated to the Putnam contestants

Introduction

This book is the third collection of William Lowell Putnam Mathematical Competition problems and solutions, following [PutnamI] and [PutnamII]. As the subtitle indicates, the goals of our volume differ somewhat from those of the earlier volumes.

Many grand ideas of mathematics are best first understood through simple problems, with the inessential details stripped away. When developing new theory, research mathematicians often turn to toy ${ }^{\dagger}$ problems as a means of getting a foothold. For this reason, Putnam problems and solutions should be considered not in isolation, but instead in the context of important mathematical themes. Many of the best problems contain kernels of sophisticated ideas, or are connected to some of the most important research done today. We have tried to emphasize the organic nature of mathematics, by highlighting the connections of problems and solutions to other problems, to the curriculum, and to more advanced topics. A quick glance at the index will make clear the wide range of powerful ideas connected to these problems. For example, Putnam problems connect to the Generalized Riemann Hypothesis (1988B1) and the Weil Conjectures (1991B5 and 1998B6).

1 Structure of this book

The first section contains the problems, as they originally appeared in the competition, but annotated to clarify occasional infelicities of wording. We have included a list of the Questions Committee with each competition, and we note here that in addition Loren Larson has served as an ex officio member of the committee for nearly the entire period covered by this book. Next is a section containing a brief hint for each problem. The hints may often be more mystifying than enlightening. Nonetheless, we hope that they encourage readers to spend more time wrestling with a problem before turning to the solution section.

The heart of this book is in the solutions. For each problem, we include every solution we know, eliminating solutions only if they are essentially equivalent to one already given, or clearly inferior to one already given. Putnam problems are usually constructed so that they admit a solution involving nothing more than calculus, linear algebra, and a bit of real analysis and abstract algebra; hence we always

[^0]include one solution requiring no more background than this. On the other hand, as mentioned above, the problems often relate to deep and beautiful mathematical ideas, and concealing these ideas makes some solutions look like isolated tricks; therefore where germane we mention additional problems solvable by similar methods, alternate solutions possibly involving more advanced concepts, and further remarks relating the problem to the mathematical literature. Our alternate solutions are sometimes more terse than the first one. The top of each solution includes the score distribution of the top contestants: see page 51. When we write "see 1997A6," we mean "see the solution(s) to 1997A6 and the surrounding material."

After the solutions comes a list of the winning individuals and teams. This includes one-line summaries of the winners' histories, when known to us. Finally, we reprint an article by Joseph A. Gallian, "Putnam Trivia for the Nineties," and an article by Bruce Reznick, "Some Thoughts on Writing for the Putnam."

2 The Putnam Competition over the years

The competition literature states: "The competition began in 1938, and was designed to stimulate a healthy rivalry in mathematical studies in the colleges and universities of the United States and Canada. It exists because Mr. William Lowell Putnam had a profound conviction in the value of organized team competition in regular college studies. Mr. Putnam, a member of the Harvard class of 1882, wrote an article for the December 1921 issue of the Harvard Graduates' Magazine in which he described the merits of an intercollegiate competition. To establish such a competition, his widow, Elizabeth Lowell Putnam, in 1927 created a trust fund known as the William Lowell Putnam Intercollegiate Memorial Fund. The first competition supported by this fund was in the field of English and a few years later a second experimental competition was held, this time in mathematics between two institutions. It was not until after Mrs. Putnam's death in 1935 that the examination assumed its present form and was placed under the administration of the Mathematical Association of America."

Since 1962, the competition has consisted of twelve problems, usually numbered A1 through A6 and B1 through B6, given in two sessions of three hours each on the first Saturday in December. For more information about the history of the Putnam Competition, see the articles of Garrett Birkhoff and L. E. Bush in [PutnamI].

The competition is open to regularly enrolled undergraduates in the U.S. and Canada who have not yet received a college degree. No individual may participate in the competition more than four times. Each college or university with at least three participants names a team of three individuals. But the team must be chosen before the competition, so schools often fail to select their highest three scores; indeed, some schools are notorious for this. Also, the team rank is determined by the sum of the ranks of the team members, so one team member having a bad day can greatly lower the team rank. These two factors add an element of uncertainty to the team competition.

Prizes are awarded to the mathematics departments of the institutions with the five winning teams, and to the team members. The five highest ranking individuals are designated Putnam Fellows; prizes are awarded to these individuals and to each
of the next twenty highest ranking contestants. One of the Putnam Fellows is also awarded the William Lowell Putnam Prize Scholarship at Harvard. Also, in some years, beginning in 1992, the Elizabeth Lowell Putnam Prize has been awarded to a woman whose performance has been deemed particularly meritorious. The winners of this prize are listed in the "Individual Results" section. The purpose of the Putnam Competition is not only to select a handful of prize winners, however; it is also to provide a stimulating challenge to all the contestants.

The nature of the problems has evolved. A few of the changes reflect changing emphases in the discipline of mathematics itself: for example, there are no more problems on Newtonian mechanics, and the number of problems involving extended algebraic manipulations has decreased. Other changes seem more stylistic: problems from recent decades often admit relatively short solutions, and are never open-ended.

The career paths of recent Putnam winners promise to differ in some ways from those of their predecessors recorded in [PutnamI]. Although it is hard to discern patterns among recent winners since many are still in school, it seems that fewer are becoming pure mathematicians than in the past. Most still pursue a Ph.D. in mathematics or some other science, but many then go into finance or cryptography, or begin other technology-related careers. It is also true that some earlier winners have switched from pure mathematics to other fields. For instance, David Mumford, a Putnam Fellow in 1955 and 1956 who later won a Fields Medal for his work in algebraic geometry, has been working in computer vision since the 1980s.

3 Advice to the student reader

The first lesson of the Putnam is: don't be intimidated. Some of the problems relate to complex mathematical ideas, but all can be solved using only the topics in a typical undergraduate mathematics curriculum, admittedly combined in clever ways. By working on these problems and afterwards studying their solutions, you will gain insight into beautiful aspects of mathematics beyond what you may have seen before.

Be patient when working on a problem. Learning comes more from struggling with problems than from solving them. If after some time, you are still stuck on a problem, see if the hint will help, and sleep on it before giving up. Most students, when they first encounter Putnam problems, do not solve more than a few, if any at all, because they give up too quickly. Also keep in mind that problem-solving becomes easier with experience; it is not a function of cleverness alone.

Be patient with the solutions as well. Mathematics is meant to be read slowly and carefully. If there are some steps in a solution that you do not follow, try discussing it with a knowledgeable friend or instructor. Most research mathematicians do the same when they are stuck (which is most of the time); the best mathematics research is almost never done in isolation, but rather in dialogue with other mathematicians, and in consultation of their publications. When you read the solutions, you will often find interesting side remarks and related problems to think about, as well as connections to other beautiful parts of mathematics, both elementary and advanced. Maybe you will create new problems that are not in this book. We hope that you follow up on the ideas that interest you most.

Year	Cut-off score for			
	Median	Top ~ 200	Honorable Mention	Putnam Fellow
1985	2	37	66	91
1986	19	33	51	81
1987	1	26	49	88
1988	16	40	65	110
1989	0	29	50	77
1990	2	28	50	77
1991	11	40	62	93
1992	2	32	53	92
1993	10	29	41	60
1994	3	28	47	87
1995	8	35	52	85
1996	3	26	43	76
1997	1	25	42	69
1998	10	42	69	98
1999	0	21	45	69
2000	0	21	43	90
TABLE 1.				

4 Scoring

Scores in the competition tend to be very low. The questions are difficult and the grading is strict, with little partial credit awarded. Students who solve one question and write it up perfectly do better than those with partial ideas for a number of problems.

Each of the twelve problems is graded on a basis of 0 to 10 points, so the maximum possible score is 120 . Table 1 shows the scores required in each of the years covered in this volume to reach the median, the top 200, Honorable Mention, and the rank of Putnam Fellow (top five, or sometimes six in case of a tie). Keep in mind that the contestants are self-selected from among the brightest in two countries. As you can see from Table 1, solving a single problem should be considered a success. In particular, the Putnam is not a "test" with passing and failing grades; instead it is an open-ended challenge, a competition between you and the problems.

Along with each solution in this book, we include the score distribution of the top 200 or so contestants on that problem: see page 51 . This may be used as a rough indicator of the difficulty of a problem, but of course, different individuals may find different problems difficult, depending on background. The problems with highest scores were 1988A1 and 1988B1, and the problems with the lowest scores were 1999B4 and 1999B5. When an easier problem was accidentally placed toward the end of the competition, the scores tended to be surprisingly low. We suspect that this is because contestants expected the problem to be more difficult than it actually was.

5 Some basic notation

The following definitions are standard in modern mathematics, so we use them throughout this book:

$$
\begin{aligned}
\mathbb{Z} & =\text { the ring of integers }=\{\ldots,-2,-1,0,1,2, \ldots\} \\
\mathbb{Q} & =\text { the field of rational numbers }=\{m / n: m, n \in \mathbb{Z}, n \neq 0\} \\
\mathbb{R} & =\text { the field of real numbers } \\
\mathbb{C} & =\text { the field of complex numbers }=\{a+b i: a, b \in \mathbb{R}\}, \text { where } i=\sqrt{-1} \\
\mathbb{F}_{q} & =\text { the finite field of } q \text { elements. }
\end{aligned}
$$

The cardinality of a set S is denoted $\# S$ or sometimes $|S|$. If $a, b \in \mathbb{Z}$, then " $a \mid b$ " means that a divides b, that is, that there exists $k \in \mathbb{Z}$ such that $b=k a$. Similarly, " $a \nmid b$ " means that a does not divide b. The set of positive real numbers is denoted by \mathbb{R}^{+}.

We use the notation $\ln x$ for the natural logarithm function, even though in higher mathematics the synonym $\log x$ is more frequently used. It is tacitly assumed that the base of the logarithm, if unspecified, equals $e=2.71828 \ldots$. If logarithms to the base 10 are intended, it is better to write $\log _{10} x$. More generally, $\log _{a} x=(\log x) /(\log a)$ denotes logarithm to the base a. In computer science, the notation $\lg n$ is sometimes used as an abbreviation for $\log _{2} n$. (In number theory, when p is a prime number, $\log _{p} x$ sometimes also denotes the p-adic logarithm function [Kob, p. 87], a function with similar properties but defined on nonzero p-adic numbers instead of positive real numbers. But this book will have no need for this p-adic function.)

Rings for us are associative and have a multiplicative unit 1 . If R is a ring, then $R[x]$ denotes the ring of all polynomials

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where n is any nonnegative integer, and $a_{0}, a_{1}, \ldots, a_{n} \in R$. Also, $R[[x]]$ denotes the ring of formal power series

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

where the a_{i} belong to R.
If R is a ring and $n \geq 1, M_{n}(R)$ denotes the set of $n \times n$ matrices with coefficients in R, and $\mathrm{GL}_{n}(R)$ denotes the subset of matrices $A \in M_{n}(R)$ that have an inverse in $M_{n}(R)$. When R is a field, a matrix $A \in M_{n}(R)$ has such an inverse if and only if its determinant $\operatorname{det}(A)$ is nonzero; more generally, for any commutative ring, A has such an inverse if and only if $\operatorname{det}(A)$ is a unit of R. (The reason to insist that the determinant be a unit, and not just nonzero, is that it makes $\mathrm{GL}_{n}(R)$ a group under multiplication.) For instance, $\mathrm{GL}_{2}(\mathbb{Z})$ is the set of matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with $a, b, c, d \in \mathbb{Z}$ and $a d-b c= \pm 1$.

6 Acknowledgements

We are grateful to the many individuals who have shared ideas with us. Much of our material is adapted from the annual articles in the American Mathematical Monthly
and Mathematics Magazine, by Alexanderson, Klosinski, and Larson. Many additional solutions were taken from the web, especially from annual postings of Dave Rusin to the sci.math newsgroup, and from postings in recent years of Manjul Bhargava, Kiran Kedlaya, and Lenny Ng at the website

```
http://www.unl.edu/amc
```

hosted by American Mathematics Competitions; hopefully these postings will continue in future years. We thank Gabriel Carroll, Sabin Cautis, Keith Conrad, Ioana Dumitriu, J.P. Grossman, Doug Jungreis, Andrew Kresch, Abhinav Kumar, Greg Kuperberg, Russ Mann, Lenny Ng, Naoki Sato, Dave Savitt, Hoeteck Wee, and Eric Wepsic, who read parts of this book and contributed many suggestions and ideas that were incorporated into the text, often without attribution. We thank Jerry Alexanderson, Loren Larson, and Roger Nelsen for detailed and helpful comments on the entire manuscript. We thank Pramod Achar, Art Benjamin, George Bergman, Mira Bernstein, Anders Buch, Robert Burckel, Ernie Croot, Charles Fefferman, Donald Sarason, Jun Song, Bernd Sturmfels, Mark van Raamsdonk, and Balint Virag for additional comments, and for suggesting references. We thank Joe Gallian and Bruce Reznick for permission to reprint their articles [G2] and [Re4].

We thank also the members of the Questions Committee in the years covered in this volume: Bruce Reznick, Richard P. Stanley, Harold M. Stark, Abraham P. Hillman, Gerald A. Heuer, Paul R. Halmos, Kenneth A. Stolarsky, George E. Andrews, George T. Gilbert, Eugene Luks, Fan Chung, Mark I. Krusemeyer, Richard K. Guy, Michael J. Larsen, David J. Wright, Steven G. Krantz, Andrew J. Granville, and Carl Pomerance. Loren Larson has served as an ex officio member of the committee for nearly the entire period covered by this book. Finally, we thank Don Albers, Elaine Pedreira, Martha Pennigar, Beverly Ruedi, and the other staff at the Mathematical Association of America for their assistance and support throughout this project.

Kiran S. Kedlaya
Bjorn Poonen
Ravi Vakil

Berkeley / Palo Alto
Fall 2001

Contents

Introduction vii
1 Structure of this book vii
2 The Putnam Competition over the years viii
3 Advice to the student reader ix
4 Scoring X
5 Some basic notation xi
6 Acknowledgements xi
Problems 1
Hints 35
Solutions 51
The Forty-Sixth Competition (1985) 53
The Forty-Seventh Competition (1986) 65
The Forty-Eighth Competition (1987) 76
The Forty-Ninth Competition (1988) 88
The Fiftieth Competition (1989) 101
The Fifty-First Competition (1990) 116
The Fifty-Second Competition (1991) 135
The Fifty-Third Competition (1992) 154
The Fifty-Fourth Competition (1993) 171
The Fifty-Fifth Competition (1994) 191
The Fifty-Sixth Competition (1995) 204
The Fifty-Seventh Competition (1996) 217
The Fifty-Eighth Competition (1997) 232
The Fifty-Ninth Competition (1998) 250
The Sixtieth Competition (1999) 262
The Sixty-First Competition (2000) 278
Results 295
Individual Results 295
Team Results 301
Putnam Trivia for the Nineties
by Joseph A. Gallian 307
Answers 321
Some Thoughts on Writing for the Putnam by Bruce Reznick 311
Bibliography 323
Index 333
About the Authors 337

Bibliography

[ACGH] Arbarello, E., M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves vol. 1, Springer-Verlag, New York, 1985. (1991B3)
Ahlfors, L., Complex analysis, third ed., McGraw-Hill, 1979. (1989B3)
[An] Andrews, P., Where not to find the critical points of a polynomial Variation on a Putnam theme, Amer. Math. Monthly 102 (1995), 155-158. (1991A3)
[Ap1] Apostol, T., Calculus vol. 1, second ed., John Wiley \& Sons, New York, 1967. (1992A4, 1993B4)
[Ap2] - Calculus vol. 2, second ed., John Wiley \& Sons, New York, 1969. (1985B6, 1987A5, 1990A5, 1995B2, 1996A1, 1996B2)
[APMO] The Asian-Pacific Mathematical Olympiad; problems available at Problems Corner section of American Mathematics Competition website http://www.unl.edu/amc. (1988A5, 1992B1)
[Ar] Artin, E., Galois theory, Univ. of Notre Dame Press, Notre Dame, 1944. (1992B6)
[AS] Allouche, J.-P. and J. Shallit, "The ubiquitous Prouhet-Thue-Morse sequence," in C. Ding, T. Helleseth, and H. Niederreiter, eds., Sequences and their applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16. (1992A5)
[At] Atkinson, K. E., An introduction to numerical analysis, second ed., John Wiley \& Sons, New York, 1989. (1996B2)
[AZ] Almkvist, G. and D. Zeilberger, The method of differentiating under the integral sign, J. Symbolic Computation 10 (1990), 571-591. (1997A3)
[Bak1] Baker, A., A concise introduction to the theory of numbers, Cambridge Univ. Press, Cambridge, 1984. (1991B4)
[Bak2] ——, Transcendental number theory, Cambridge Univ. Press, Cambridge, 1975. (1998B6)
[Bar] Barnett, S., Matrices: Methods and applications, Oxford Univ. Press, New York, 1990. (1988B5)
[BB] Borwein, J. M. and P. B. Borwein, Strange series and high precision fraud, Amer. Math. Monthly 99 (1992), no. 7, 622-640. (1987A6)
[BC] Borwein, J. and K.-K. S. Choi, On the representations of $x y+y z+z x$, Experiment. Math. 9 (2000), no. 1, 153-158. (1988B1)
[BCG] Berlekamp, E. R., J. H. Conway and R. K. Guy, Winning ways for your mathematical plays, Academic Press, New York, 1982. (1993A6, 1995B5, 1997A1)
[BD] Boyce, W. E. and R. C. DiPrima, Elementary differential equations and boundary value problems, seventh ed., John Wiley \& Sons, New York, 2001. (1988A2, 1995A5, 1997A3)
[Bel] Bell, E. T., Class numbers and the form $x y+y z+z x$, Tôhoku Math. J. 19 (1921), 105-116. (1988B1)
[Berg] Berger, M., Geometry I, Springer-Verlag, New York, 1994. (1990B6)
[Bernau] Bernau, S. J., The evaluation of a Putnam integral, Amer. Math. Monthly 95 (1988), 935. (1985B5)
[Berndt] Berndt, B. C., Ramanujan's notebooks, part I, Springer-Verlag, New York, 1985. (1986A3)
[Bi] Birkhoff, G., Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc. 85 (1957), 219-227. (1997A6)
[BJL] Beth, T., D. Jungnickel and H. Lenz, Design theory, vols. I and II, second ed., Cambridge Univ. Press, Cambridge, 1999. (2000B6)
[Bl] Blumenthal, L. M., Theory and applications of distance geometry, second ed., Chelsea, New York, 1970. (1993B5)
[Br] Brauer, A., On a problem of partitions, Amer. J. Math. 64 (1942), 299-312. (1991B3)
[BX] Brown, J. E. and G. Xiang, Proof of the Sendov conjecture for polynomials of degree at most eight, J. Math. Anal. Appl. 232 (1999), no. 2, 272-292. (1991A3)
[C] Christol, G., Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci. 9 (1979), no. 1, 141-145. (1989A6)
[CF] Cusick, T. W. and M. E. Flahive, The Markoff and Lagrange spectra, Amer. Math. Soc., Providence, RI, 1989.(1986B5)
[CG] Coxeter, H. S. M. and S. Greitzer, Geometry revisited, New Mathematical Library 19, Math. Association of America, Washington, DC, 1967. (1997A1, 1998B2)
[CKMR] Christol, G., T. Kamae, M. Mendès France, and G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. France 108 (1980), no. 4, 401-419. (1989A6)
[CKP] Carrier, G. F., M. Kroork, C. E. Pearson, Functions of a complex variable: Theory and technique, McGraw-Hill Book Co., New York, 1966. (2000A4)
[Co] Conrad, K., The origin of representation theory, Enseign. Math. 44 (1998), 361-392. (1988B5)
[Da] Davis, P., Circulant matrices. John Wiley \& Sons. New York, 1979. (1988B5).
[De] Devaney, R., An introduction to chaotic dynamical systems, second ed., Addison-Wesley, Redwood City, 1989. (1992B3)
[DMc] Dym, H. and H. P. McKean, Fourier series and integrals, Academic Press, New York, 1972. (1995A6)
[EFT] Ebbinghaus, H.-D., J. Flum, and W. Thomas, Mathematical logic, second ed., translated from the German by M. Meßmer, Springer-Verlag, New York, 1994. (1988B2)
[Ei] Eisenbud, D., Commutative algebra with a view towards algebraic geometry, Graduate Texts in Math. 150, Springer-Verlag, New York, 1995. (1986B3)
[En] Enderton, H. B., Elements of set theory, Academic Press, New YorkLondon, 1977. (1989B4)
[Er] Erdős, P., On the set of distances of n points, Amer. Math. Monthly 53 (1946), 248-250. (1990A4)
[Fe] Feynman, R. P., "Surely you're joking, Mr. Feynman!": Adventures of a curious character, Bantam Books, New York, 1985. (1997A3)
[FN] Fel'dman, N. I. and Yu. V. Nesterenko, "Number theory, IV, transcendental numbers," in A. N. Parshin and I. R. Shafarevich eds., Encyclopaedia Math. Sci. 44, Springer-Verlag, Berlin, 1998. (1993A5)
[Fo] Folland, G. B., Real analysis, John Wiley \& Sons, New York, 1984. (1993B3)
[FPS] Flynn, E. V., B. Poonen, and E. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2 curve, Duke Math. J. 90 (1997), no. 3, 435-463. (2000A6)
[Fr] Fraleigh, J. B., A first course in abstract algebra, sixth ed., Addison-Wesley, Reading, MA, 1999. (1990B4)
[Fu] Fulton, W., Introduction to toric varieties, Princeton Univ. Press, Princeton, 1993. (1996B6)
[FW] Frankl, P. and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), no. 4, 357-368. (1988A4)
[G1] Gallian, J. A., Fifty years of Putnam trivia, Amer. Math. Monthly 96 (1989), 711-713.
[G2] _-, Putnam trivia for the 90s, Amer. Math. Monthly 107 (2000), 733735, 766.
[GK] Glasser M. L. and M. S. Klamkin, On some inverse tangent summations, Fibonacci Quart. 14 (1976), no. 5, 385-388. (1986A3)
[GKP] Graham, R. L., D. E. Knuth and O. Patashnik, Concrete mathematics: A foundation for computer science, second ed., Addison-Wesley, Reading, MA, 1994. (1995A4)
[Gl] Glaisher, J. W. L., A theorem in trigonometry, Quart. J. Math. 15 (1878), 151-157. (1986A3)
[Göd] Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter System I, Monatshefte für Math. und Physik 38 (1931), 173-198. English translation by Elliot Mendelson: "On formally undecidable propositions of Principia Mathematica and related systems I" in M. Davis, ed., The undecidable, Raven Press, 1965. (1988B2)
[Gor] Gorenstein, D., Finite groups, second ed., Chelsea Publishing Co., New York, 1980. (1992B6)
[GR] Gradshteyn, I. S. and I. M. Ryzhik, Table of integrals, series and products (translated from the Russian), Academic Press, Boston, 1994. (1999B2)
[Gr1] Graham, R. L., "Rudiments of Ramsey theory," in CBMS Regional Conference Series in Mathematics 45, Amer. Math. Soc., Providence, R.I., 1981. (1996A3, 2000A2)
[Gr2] _-, "Old and new Euclidean Ramsey theorems," in Discrete geometry and convexity (New York 1982), Ann. New York Acad. Sci. 440, New York Acad. Sci., New York, 1985, pp. 20-30. (1988A4)
[Guy] Guy, R. K., Unsolved problems in number theory, second ed., SpringerVerlag, New York, 1994. (1986B5, 2000A2)
[Had] Hadwiger, H., Ein Überdeckungssatz für den Euklidischen Raum, Portugaliae Math. 4 (1944), 140-144. (1988A4)
[Hal] Halmos, P., Problems for mathematicians, young and old, Math. Association of America, Washington, DC, 1991. (1988A2, 1989B4, 1992A5)
[Har] Hartshorne, R., Algebraic geometry, Graduate Texts in Math. 52, SpringerVerlag, New York, 1977. (1991B5)
[He] Hensley, D., Lattice vertex polytopes with interior lattice points, Pacific J. Math. 105 (1983), 183-191. (1990A3)
[HiS] Hindry, M. and J. H. Silverman, Diophantine geometry: An introduction, Graduate Texts in Math. 201, Springer-Verlag, New York, 2000. (1998B6)
[HJ] Horn, R. A. and C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985. (1997A6)
[HLP] Hardy, G. H., J. E. Littlewood and G. Pólya, Inequalities, reprint of the 1952 ed., Cambridge Univ. Press, Cambridge, 1988. (1985A2)
[Hof] Hoffman, K., Analysis in Euclidean space, Prentice-Hall, Englewood Cliffs, NJ, 1975. (1999A5)
[Hol] Hollis, S., Cones, k-cycles of linear operators, and problem B4 on the 1993 Putnam competition, Math. Mag. 72 (1999), no. 4, 299-303. (1993B4)
[Hon1] Honsberger, R., Ingenuity in mathematics, Math. Association of America, Washington, DC, 1970. (1992A6, 1993A6, 1993B1, 1995B6)
[Hon2] -_, Mathematical gems II, Math. Association of America, Washington, DC, 1976. (1990A4, 1991B3)
[Hon3] ——, Mathematical gems III, Math. Association of America, Washington, DC, 1985. (1993A6)
[HoS] Howard, R. and P. Sisson, Capturing the origin with random points: Generalizations of a Putnam problem, College Math. J. 27 (1996), no. 3, 186-192. (1992A6)
[HoU] Hopcroft, J. E. and J. D. Ullman, Introduction to automata theory, languages, and computation. Addison-Wesley, Reading, MA, 1979. (1990A5)
[Hu] Hume, A., A tale of two greps, Software - Practice and experience 18 (1988), no. 11, 1063-1072. (1990A5)
[HW] Hardy, G. H. and E. M. Wright, An introduction to the theory of numbers, fifth ed., Clarendon Press, Oxford, 1988. (1993B3, 1996B2)
[IMO59-77] Greitzer, S., International Mathematical Olympiads 1959-1977, Math. Assoc. of Amer., Washington, DC, 1978.
[IMO79-85] Klamkin, M. S., International Mathematical Olympiads 1979-1985, Math. Assoc. of Amer., 1986. (1987B6, 1991B3, 1993A6, 1996A5) Despite its title, this book contains the 1978 IMO as well.
[IMO86] The 1986 International Mathematical Olympiad; problems and solutions published in a pamphlet by American Mathematics Competition. (1993B6)
[IMO87] The 1987 International Mathematical Olympiad; problems and solutions published in a pamphlet by American Mathematics Competition. (1990A4)
[IMO88] An Olympiad down under: A report on the 29th International Mathematical Olympiad in Australia, Australian Mathematics Foundation Ltd., Belconnen, 1988. (1986B5, 1992A5, 1999A3)
[IMO93] The 1993 International Mathematical Olympiad; problems and solutions published in a pamphlet by American Mathematics Competition. (2000B5)
[IR] Ireland, K. and M. Rosen, A classical introduction to modern number theory, second ed., Graduate Texts in Math. 84, Springer-Verlag, New York, 1990. (1991B5)
[J] Jacobson, N. Basic algebra. II, W. H. Freeman and Co., San Francisco, CA, 1980. (1992B6, 1999A2)
[Ka] Kannan, R., Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), no. 2, 161-177. (1991B3)
[Ke] Kedlaya, K. S., The algebraic closure of the power series field in positive characteristic, Proc. Amer. Math. Soc. 129 (2001), 3461-3470. (1998B6)
[Kl] Kleber, M., The best card trick, Math. Intelligencer 24 (2002), no. 1, to appear. (1986A4)
[Kob] Koblitz, N., p-adic numbers, p-adic analysis, and zeta-functions, second ed., Springer-Verlag, New York-Berlin, 1984. (1985A2, 1990B5)
[Koe] Koestler, A., The act of creation, Dell, New York, 1964. (Reznick)
[Kör] Körner, T. W., Fourier analysis, Cambridge Univ. Press, Cambridge, 1988. (1988B3)
[Lan1] Lang, S., Algebra, third ed., Addison-Wesley, Reading, MA, 1993. (1998B6)
\qquad , Algebraic number theory, second ed., Graduate Texts in Math. 110, Springer-Verlag, New York, 1994. (1991B5)
[Lar1] Larson, L. C., Problem-solving through problems, Springer-Verlag, New York-Berlin, 1983. (1985A4, 1988B3, 1989A1, 1990A3, 1999A2)
[Lar2] __ "Comments on Bruce Reznick's chapter," in A. H. Schoenfeld, ed., Mathematical thinking and problem solving, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994, pp. 30-38. (1989B5)
[Le] Le, M., A note on positive integer solutions of the equation $x y+y z+z x=n$, Publ. Math. Debrecen 52 (1998), no. 1-2, 159-165. (1988B1)
[LR] Larman, D. G. and C. A. Rogers, The realization of distances within sets in Euclidean space, Mathematika 19 (1972), 1-24. (1988A4)
[LS] Liu, J. and A. Schwenk, Remarks on Problem B-3 on the 1990 William Lowell Putnam Mathematical Competition, Math. Magazine 67 (1994), no. 1, 35-40. (1990B3)
[Mar] Marden, M., The search for a Rolle's theorem in the complex domain, Amer. Math. Monthly 92 (1985), no. 9, 643-650. (1991A3)
[Mat] Matiyasevich, Yu., The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191 (1970), 279-282 (in Russian). (1988B2)
[MathS] The Mathematics Student 28, no. 5, February 1981. (1999A2)
[MH]
Morse, M. and G. A. Hedlund, Symbolic dynamics, Amer. J. Math. 60 (1938), 815-866. (1992A5)
[Mi] Milnor, J., Dynamics in one complex variable, Vieweg, Wiesbaden, 1999. (1992B3)
[Mon1] Alexanderson, G. L., H. M. W. Edgar, D. H. Mugler, and K. B. Stolarsky eds., Problems and solutions, Amer. Math. Monthly 92 (1985), 735-736. (Reznick)
[Mon2] Bateman, P. T., H. G. Diamond, K. B. Stolarsky, and D. B. West eds., Problems and solutions, Amer. Mathematical Monthly 94 (1987) 691-692. (Reznick)
[Mon3] Bumby, R. T., F. Kochman, D. B. West eds., Problems and solutions, Amer. Math. Monthly 100 (1993), no. 3, 290-303. (1986A3)
[Mon4] -_, Problems and solutions, Amer. Math. Monthly 102 (1995), no. 1, 74-75. (1989A5)
[Mon5] ——, Problems and solutions, Amer. Math. Monthly 103 (1996), no. 3, 266-274. (1986A3)
[Mord1] Mordell, L. J., On the number of solutions in positive integers of the equation $y z+z x+x y=n$, Amer. J. Math. 45 (1923), 1-4. (1988B1)
[Mord2] ——, Diophantine equations, Pure and Applied Mathematics 30, Academic Press, London-New York, 1969. (1988B1)
[Mort] Morton, P., Arithmetic properties of periodic points of quadratic maps II, Acta Arith. 87 (1998), no. 2, 89-102. (2000A6)
[MS] Morton P. and J. H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 1994, no. 2, 97-110. (2000A6)
[Na] Narkiewicz, W., Polynomial mappings, Lecture Notes in Math. 1600, Springer-Verlag, Berlin, 1995. (2000A6)
[Nel] Nelsen, R. B., Proofs without words: Exercises in visual thinking, Math. Assoc. of Amer., Washington, DC, 1993. (1993B1)
[New] Newman, D. J., A problem seminar, Springer-Verlag, New York, 1982. (1988A4, 1989A4, 1989B4, 1990A4, 1993A6, 1994A1)
[NZM] Niven, I., H. S. Zuckerman, and H. L. Montgomery, An introduction to the theory of numbers, fifth ed., John Wiley \& Sons, New York, 1991. (1986B3, 1987B3, 1987B6, 1988A5, 1991A6, 1991B3, 1993B3, 1998B6, 2000A2)
[O] Olver, F. W. J., Asymptotics and special functions, Reprint of the 1974 original (Academic Press, New York), A. K. Peters, Wellesley, MA, 1997. (1985B5, 1997A3)
[P1] Poonen, B., The worst case in Shellsort and related algorithms, J. Algorithms 15 (1993), no. 1, 101-124. (1991B3)
[P2] - The classification of rational preperiodic points of quadratic polynomials over Q: a refined conjecture, Math. Z. 228 (1998), no. 1, 11-29. (2000A6)
[Pó] Pólya, G., Mathematics and plausible reasoning vol. I: Induction and analogy in mathematics, Princeton Univ. Press, Princeton, 1954. (1998B2)
[PRV] Poonen, B. and F. Rodriguez-Villegas, Lattice polygons and the number 12, Amer. Math. Monthly 107 (2000), no. 3, 238-250. (1990A3)
[PS] Pólya, G. and G. Szegő, Problems and theorems in analysis, vol. II, revised and enlarged translation by C. E. Billigheimer of the fourth German ed., Springer-Verlag, New York, 1976. (1992B5)
[PutnamI] Gleason, A. M., R. E. Greenwood, and L. M. Kelly, The William Lowell Putnam Mathematical Competition, Problems and solutions: 1938-1964,

Math. Association of America, Washington, DC, 1980. (1986A6, 1992B3, 1993A6, 1994A3, Reznick)
[PutnamII] Alexanderson, G. L., L. F. Klosinski, and L. C. Larson eds., The William Lowell Putnam Mathematical Competition, Problems and solutions: 19651984, Math. Association of America, Washington, DC, 1985. (1990A1, 1990A3, 1991B3, 1992B5, 1993A5, 1994B2, 1995B6, 1998B6, Reznick)
[PZ] Pheidas, T. and K. Zahidi, "Undecidability of existential theories of rings and fields," in Denef et al. eds., Hilbert's Tenth Problem: Relations with arithmetic and algebraic geometry, Contemporary Math. 270, Amer. Math. Soc., Providence, 2000, pp. 49-105. (1988B2)
[Re1] Reznick, B., Review of "A Problem Seminar" by D. J. Newman, Bull. Amer. Math. Soc. 11 223-227. (Reznick)
[Re2] ——, Lattice point simplices, Discrete Math. 60 (1986), 219-242. (Reznick)

$$
[\operatorname{Re} 3]
$$

[Re4] __, "Some thoughts on writing for the Putnam," in A. H. Schoenfeld, ed., Mathematical thinking and problem solving, Lawrence Erlbaum Associates, Hillsdale, NJ, 1994, pp. 19-29. (Reznick)
[ReS] Reznick, S., How to write jokes, Townley, New York, 1954. (Reznick)
[Ri] Ribenboim, P., The new book of prime number records, Springer-Verlag, New York, 1996. (2000A2)
[Robe] Robert, A. M., A course in p-adic analysis, Graduate Texts in Math. 198, Springer-Verlag, New York, 2000. (1991B4)
[Robi] Robinson, J., Definability and decision problems in arithmetic, J. Symbolic Logic 14 (1949), 98-114. (1988B2)
[Ros1] Rosen, K. H., Elementary number theory and its applications, fourth ed., Addison-Wesley, Reading, MA, 2000. (1985A4)
[Ros2] ——, Discrete mathematics and its applications, fourth ed., WCB/ McGraw-Hill, Boston, MA, 1999. (1988B5, 1990B4)
[Ru] Rudin, W., Principles of mathematical analysis, third ed., McGrawHill Book Co., New York-Auckland-Düsseldorf, 1976. (1990A4, 1991A5, 1993B3, 1997A3, 2000A4)
[Sa] Salomaa, A., Computation and automata, Encyclopedia of Mathematics and its Applications 25, Cambridge Univ. Press, Cambridge, 1985. (1990A5)
[Sel] Selmer, E., On the linear Diophantine problem of Frobenius, J. reine angew. Math. 294 (1977), 1-17. (1991B3)
[Se1] Serre, J.-P., A course in arithmetic, translated from the French, Graduate Texts in Math. 7, Springer-Verlag, New York-Heidelberg, 1973. (1991B5, 2000A2)
[Se2] —_, Linear representations of finite groups, translated from the second French ed. by L. L. Scott, Springer-Verlag, New York, 1977. (1985B6, 1992B6)
[Se3] __, Lectures on the Mordell-Weil theorem, translated from the French and edited by M. Brown from notes by M. Waldschmidt, Aspects of Mathematics E15, Friedr. Vieweg \& Sohn, Braunschweig, 1989. (1988B1)
[Shaf] Shafarevich, I. R., Basic algebraic geometry 1, second ed., translated from the 1988 Russian ed. and with notes by M. Reid, Springer-Verlag, Berlin, 1994. (1987B3)
[Shar] Sharp, W. J. C., Solution to Problem 7382 (Mathematics) proposed by J. J. Sylvester, Ed. Times 41 (1884), London. (1991B3)
[She] Shen, A., Three-dimensional solutions for two-dimensional problems, Math. Intelligencer 19 (1997), no. 3, 44-47. (1998B3)
[Sil] Silverman, J. H., The arithmetic of elliptic curves, Graduate Texts in Math. 106, Springer-Verlag, New York, 1986. (1998B6)
[Sim] Simmons, G. F., Calculus with analytic geometry, second ed., McGraw-Hill, New York, 1996. (1993B3)
[SMO] The Swedish Mathematical Olympiad. (1999B2)
[So] Solomon, H., Geometric probability, SIAM, Philadelphia, PA, 1978, p. 124. (1992A6)
[Spt] Spitzer, F., Principles of random walk, second ed., Graduate Texts in Math. 34, Springer-Verlag, New York, 1976. (1995A6)
[Spv] Spivak, M., Calculus, second ed., Publish or Perish, Inc., 1980. (1985A5, 1988B4, 1989A3, 1989A5, 1989B3, 1989B6, 1990A6, 1991B6, 1994B2)
[St] Stanley, R. P., Enumerative combinatorics, vol. 2, with a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin, Cambridge Studies in Advanced Math. 62, Cambridge Univ. Press, Cambridge, 1999. (1995A4)
[Tak] Takács, L., On cyclic permutations, Math. Sci. 23 (1998), no. 2, 91-94. (1995A4)
[Tal] Talvila, E., Some divergent trigonometric integrals, Amer. Math. Monthly 108 (2001), no. 5, 432-435. (2000A4)
[Tar] Tarski, A., A decision method for elementary algebra and geometry, second ed., Univ. of California Press, Berkeley and Los Angeles, CA, 1951. (1988B2)
[USAMO7286] Klamkin, M., U.S.A. Mathematical Olympiads 1972-1986, Math. Assoc. of Amer., Washington, DC, 1988. (2000A6)
[USAMO] The USA Mathematical Olympiad; problems and solutions from individual years published in pamphlets by American Mathematics Competitions. Problems from recent years are available at Problems Corner section of American Mathematics Competition website http://www.unl.edu/amc. (1995B6, 1997B5)
[Wag] Wagon, S., Fourteen proofs of a result about tiling a rectangle, Amer. Math. Monthly 97 (1987), no. 7, 601-617. (1991B3)
[War] Warner, F. W., Foundations of differentiable manifolds and Lie groups, Springer-Verlag, 1983. (1991B2)
[Weil1] Weil, A., Sur les courbes algébriques et les variétés qui s'en déduisent, Hermann, Paris, 1948. This volume was later combined with another volume of Weil and republished as Courbes algébriques et variétés abéliennes, Hermann, Paris, 1971. (1991B5)
[Weil2] ——, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508. (1991B5)
[Wen] Wendel, J. G., A problem in geometric probability, Math. Scand. 11 (1962), 109-111. (1992A6)
[Wh] Whitehead, R. F., On the number of solutions in positive integers of the equation $y z+z x+x y=n$, Proc. London Math. Soc. (2) 21 (1923), xx. (1988B1)
[WH] Williams, K. and K. Hardy, The red book of mathematical problems, Dover Publications, Mineola, New York, 1988. (1986A3, 1987B2)
[Wi] Wilf, H., generatingfunctionology, second ed., Academic Press, Boston, MA, 1994. (1987B2)
[Wo] Woodson, L. C., Professor Lucas visits the Putnam examination, Fibonacci Quarterly 35 (1997), 341. (1995B4)
Wythoff, W. A., A modification of the game of Nim, Nieuw Archief voor Wiskunde (2) 7 (1905-07), 199-202. (1993A6)
[YY] Yaglom, A. M. and I. M. Yaglom, Challenging mathematical problems with elementary solutions vol. II: Problems from various branches of mathemat$i c s$, J. McCawley, Jr. trans., Dover Publications, New York, 1967. (1992A5) Zagier, D., A one-sentence proof that every prime $p \equiv 1(\bmod 4)$ is a sum of two squares, Amer. Math. Monthly 97 (1990), no. 2, 144. (1991B5)

Index

Bold face page numbers indicate pages with background information about the entry, e.g., a detailed explanation or reference, while page numbers in normal type indicate a textual reference.

algebraic function, 259
algebraic geometry, $83,84,231$
algebraic number, 121
Arithmetic-Mean-Geometric-Mean (AMGM) Inequality, 56, 95, 153, 253, 254, 274
automata, 108, 122, 123
Axiom of Choice, 112

Bateman-Horn Conjecture, 279
Beatty sequences, $\mathbf{1 7 9}, 180$
Beatty's Theorem, 179, 216
Bernoulli numbers, 184, 225
Bessel functions, 63, 236
big-O notation, 89, 90, 107, 111, 117, 118, 134, 204, 208, 258, 275
bijection, 21, 53, 82, 123, 124, 140, 141, $173,174,195,223,229$
binary representation, $11,17,39,43,107$, $108,156,157,188$
Birkhoff-von Neumann Theorem, 68
block matrix, 75
Brauer group, 169

Carmichael's lambda function, 57
Catalan numbers, 206
Cauchy's Lemma, 143
Cauchy's Theorem, 282, 283
Cauchy-Schwarz Inequality, 55
Cayley diagram, $\mathbf{1 2 7}$
Cayley digraph, 127
Cayley-Hamilton Theorem, 63, 122, 199, 228
Cayley-Menger determinant, 188
centroid, 40, 47, 129, 130, 130, 131, 132, 233
Chain Rule, 139
change of variables, 183,184
character, 64, 150, 151
Chebychev's Inequality, 55
chess, 158

Chinese Remainder Theorem, 58, 202, 257
circuit, 126
circulant matrix, 98, 99, 276
class number, 94
combinatorial games, 212, 214
compactness, $44,49,104,134,195,230$, 266
companion matrix, 268
Comparison Test, 97, 282
compass and straightedge, 218
complementary sequences, $\mathbf{1 7 9}, 180$
complex numbers, 143
concavity of functions, 48, 55, 132-134, 197, 251
content (of a polynomial over \mathbb{Z}), $\mathbf{2 5 9}$
continued fraction, 74, 212
continuity, $4,7,12,13,20,25,29,32,34$, $42,49,56,68,79,80,85,111,113$, $124,130,132-134,138,139,143,155$, $156,166,176,184,220-222,242,251$, $272,274,275,292,293$
contour integration, 59, 283
contraction mapping, 241
convergence, $10,37,41,42,61,62,72,80$, $89,97,110,111,125,162,183,191$, 194, 195, 204, 221, 222, 228, 234-236, 259, 265, 282-284, 291
convexity, $13,14,26,55,68,118,120,128$, $130,131,134,159,160,230,231,270$
cosine law, see Law of Cosines
countability, $12,44,111,112,120,121$, 195, 219
cycle, 126
de Moivre's Theorem, 35, 58
derangement, 99
Descartes' Rule of Signs, 60, 60, 198
design theory, 294
determinants, xi, $10,18,24,32,45,70$, $97-99,164,188,193,200,211,276$
diagonalization, 227
Dickson's Conjecture, 279
difference operator, 259
differential equations, $36-38,63,70,78$, 89, 93, 110, 111, 124, 207, 235, 239, 243, 270, 275
dimension, 134, 167, 187, 209, 215, 216, 266, 277
directed multigraph, 126, 127
Dirichlet L-function, 95
Dirichlet density, 280
Dirichlet's Theorem, $\mathbf{2 8 0}$
discriminant, $74,178,198,260,261,273$
divisibility of binomial coefficients, 25,147 , 220, 238, 290, 293
division algorithm, 163
Dominated Convergence Theorem, 236, 283
doubly stochastic matrices, 68
dynamical systems, $85,159, \mathbf{1 6 3}, 212,222$
eigenvalue, 49, 63, 93, 98, 99, 167, 184, 199, 200, 207, 227-229, 241, 242, 276277
eigenvector, $9,38,45,49,63,93,99,184$, 207, 227, 241, 242, 270, 276
Eisenstein integers, 91
elliptic curve, 258
Euler ϕ-function, 35, 57, 58, 247, 267, 280
Euler line, 233
Euler's Theorem, 57, 58
Euler-Maclaurin summation formula, 225, 227
Eulerian circuit, 126, 127
Eulerian path, 126, 127
Extreme Value Theorem, 184, 266
Farey series, 182
Fermat's Little Theorem, 86, 202
Fibonacci numbers, 40, 93, 117, 123, 124, $139,173,222,223,252$
field, xi, $5,7,8,11,16,74,83,84,86$, $93-95,107,108,128,148,158,164$, 167, 178, 261
field of complex numbers, xi
field of rational numbers, xi
field of real numbers, xi
finite directed multigraph, 126
finite field, $\mathbf{x i}, 8,11,16,86,107,108,148$, 151, 158, 203, 261
first order sentence, 95, 96
Fourier analysis, 58, 184, 216
Fourier series, 58, 216
Fresnel integrals, 284
functional equation, $92,110,142,154$, 178, 220, 221, 292

Fundamental Theorem of Calculus, 138, 176

Gabriel's Horn, 138
Gall-Peters projection, 255
games, 11, 20, 24, 27, 47, 102, 103, 144, $158,180,182,212-214,233,234$
Gauss sum, 150, 151
Gauss's Lemma, 86, 258, 259
Gauss-Lucas Theorem, see Lucas' Theorem
Gaussian elimination, 97
Gaussian integers, 150
Gegenbauer polynomials, 270
generalized hypergeometric functions, see hypergeometric functions
Generalized Riemann Hypothesis (GRH), vii, 94,95
generating function, 47, 82, 83, 93, 145, 158, 161, 239, 246, 293
generating functions, 266
geometric probability, 159, 160, 182
geometric transformations, 254
geometry, 39, 83
gradient, 46, 68, 217
graph theory, 40, 126, 242
greedy algorithms, $36,48,252$
grep, 123
group theory, $3,11,14,27,57,63,99,109$, $120,126,143,168-170,178,195,202$, 237, 238
harmonic series, 61, 164, 244
height function, 258
Hensel's Lemma, 72, 261
Hilbert metric, 241
Hilbert's Seventeenth Problem, 264
Hilbert's Tenth Problem, 96
hypergeometric functions, 283, 284
Hypothesis H, 279
Inclusion-Exclusion Inequality, 201
Inclusion-Exclusion Principle, 99, 126, 201
indegree, 126
inequalities, $32,49,55,56,65,88,89,95$, $103,104,132,139,151,153,162,180$, 181, 201, 218, 219, 224, 252, 253, 271, 274
inequalities of integrals, $49,85,139,225$, 274
Integral Comparison Test, 89
integral domain, 107
integration by parts, $39,47,50,110,132$, 234, 235, 270, 273, 281, 282

Intermediate Value Theorem, 102, 128, 130, 251, 278, 291
International Mathematical Olympiad, 74, 87, 121, 144, 158, 179, 190, 220, 265, 293
isometric embedding, 211
Jacobi sum, 150, 151
Jensen's Inequality, 55, 56
Jordan canonical form, 63
Kummer's Theorem, 238, 290, 293
L'Hôpital's Rule, 152, 156, 166, 269
Lagrange interpolation, 259, 260, 289
Lagrange multipliers, 217
Lagrange's Theorem, 57, 268
Lambert equal-area cylindrical projection, 255
Laplace transform, 236
lattice polygon, 118
lattices, 91, 111, 118-120, 208, 209
Laurent polynomial, 35, 59
Laurent series, 259
Law of Cosines, 186
Law of Sines, 269, 286
Legendre polynomial, 270
Legendre symbol, 86, 149
Leibniz's formula, 43, 182, 183
lexical scanner, 123
lg , see logarithm
Lie group, 143
Limit Comparison Test, $\mathbf{8 9}$
linear algebra, 166
linear operator, 43,184
linear recursion, $38,92,93,116,117,172$, 199, 207, 208, 246, 252, 265, 267
linear recursive relation, 199
linear recursive sequence, $38,92,93,116$, $117,172,246,252,265,267$
linear transformation, 191, 192, 277
little-o notation, 89, 90, 92, 96, 103, 279
\ln, see logarithm
Local Central Limit Theorem, 208
log, see logarithm
logarithm, xi
logarithmic derivative, 239
Lucas numbers, 212
Lucas' Theorem, 137, 270
Macdonald's function, 63
Markov equation, 74
Markov process, 207
Mean Value Theorem, 117, 198
measure theory, $120,160,270$
Monotone Convergence Theorem, 183, 234
Newton polygon, 128
Newton's method, 72
Newton-Puiseux series, 260
Nim, 213
notation, xi
number theory, $72,120,148,183$
O, see big- O notation
o, see big-o notation
Olympiad, 74, 87, 92, 101, 121, 144, 158, 161, 179, 190, 214, 220, 247, 265, 270, 293
orthogonal polynomials, 270
orthogonality relations for characters, $\mathbf{6 4}$
outdegree, 126
p-adic absolute value, 128
p-adic gamma function, 147
p-adic logarithm function, xi
p-adic numbers, xi, 128, 147, 148
p-adic valuation, 245, 257
p-group, 169
parity, 40, 45, 85, 87, 118, 141, 212, 237, 256, 258
partition, 24, 140, 141, 179, 209, 214, 216
path, 126
Pell's equation, 279
permutation matrix, 68
Perron-Frobenius Theorem, 184, 207, 241, 241, 242
Pick's Theorem, 40, 118, 119
Pigeonhole Principle, 43, 50, 96, 118, 175, 193, 195, 215, 248, 267, 289, 294
Pochhammer symbol, 284
polynomial ring, xi
Postage Stamp Theorem, 143
Power Mean Inequality, 55, 56
primitive root, 202, 247
probability, $2,62,115,159,160,182,183$
product rule, $9,88,136$
Puiseux series, 259
Pythagorean Theorem, 85, 287, 294
Pythagorean triple, 85
quadratic form, 95
quadratic reciprocity, 86
radius of curvature, 210
Ramsey theory, 219
random walk, 207, 208, 209, 241
Ratio Test, 111, 1.25, 235, 284
recursion, $38,46-48,85,92,93,116,117$, $165,172,199,207,208,223,229,230$, $239,246,252,265,267,270$
reduced totient function, see Carmichael's
lambda function
reflection trick, $48, \mathbf{2 5 4}$
règle des nombres moyens, 180
representation theory, $64,99,168,169$
residue theorem, 59
Riemann sum, 12, 114, 115, 134
Riemann zeta function, $\mathbf{1 8 3}$
ring, xi
ring of integers, $\mathbf{x i}$
Rolle's Theorem, 42, 50, 136, 137, 155, 198, 291
Rouché's Theorem, 102, 231
set theory, 173
Siegel zero, 95
sine law, see Law of Sines
sketching, $9,43,88$
spherical cap, 255
Sprague-Grundy theory, 214
stationary phase approximation, $\mathbf{2 8 5}$
Stirling's approximation, 208, 225
Stokes' Theorem, 37, 79
strongly connected, 126, 242
sum of two squares, $33,150,263,278,279$
Sylow subgroup, 238
symmetry, $35,37,38,42,45,71,80,88$, $109,112,117,118,136,160,162,169$, 192, 208, 281

Taylor series, $38,45,48,89,103,104,107$, 156, 204, 257, 275

Taylor's Formula, 155, 257, 273
Taylor's Theorem, $\mathbf{1 3 3}$
Thue-Morse sequence, 158
Thue-Siegel Theorem, 261
transcendental number, 121, 158
Trapezoid Rule, 132, 243
triangle inequality, $103,218,252$
trigonometric substitution, $37,46,50,85$, 192, 217, 292
Turing machine, 95
Twin Prime Conjecture, 279
ultraspherical polynomials, 270
unique factorization domain, 59, 259
USA Mathematical Olympiad, 214, 247
Vandermonde determinant, 70, 98, 276
Vandermonde's identity, 82, 83, 145
vectors, $46,93,159,186,187,218,230$, 231, 233, 276
Venn diagram, 53
weakly connected, 126
Weierstrass M-test, 111
Weierstrass's Theorem, 111
Weil Conjectures, vii, 151, 261
Well Ordering Principle, 112
well-ordered set, 112, 194, 195
Weyl's Equidistribution Theorem, 96, 216
winding number, 230, 231
Wolstenholme's Theorem, 147, 245
Wythoff's game, 180
Zorn's Lemma, 111, 112, 195

Kiran S. Kedlaya is from Silver Spring, MD. He received an AB in mathematics and physics from Harvard (where he was a Putnam Fellow three times), an MA in mathematics from Princeton, and a PhD in mathematics from MIT, and currently holds a National Science Foundation postdoctoral fellowship at the University of California, Berkeley. Other affiliations have included the Clay Mathematics Institute and the Mathematical Sciences Research Institute. His research interests are in number theory and algebraic geometry.

He has been extensively involved with mathematics competitions and problem solving. He has taught at the Math Olympiad Summer Program, served on the USA Mathematical Olympiad committee and on the executive committee of the 2001 International Mathematical Olympiad (held in Washington, DC), served as a collaborating editor for the American Mathematical Monthly problems section, maintained problem information on the World Wide Web for the American Mathematics Competitions, and edited Olympiad compilations for the Mathematical Association of America.

Bjorn Poonen is from Boston. He received the AB degree summa cum laude in mathematics and physics from Harvard University, and the PhD degree in mathematics from the University of California at Berkeley, where he now holds the title of associate professor of mathematics. Other affiliations have included the Mathematical Sciences Research Institute, Princeton University, the Isaac Newton Institute, and the Université de Paris-Sud.

He is a Packard Fellow, a four-time Putnam Competition winner, and the author of over 50 articles. His main research interests lie in number theory and algebraic geometry, but he has published also in combinatorics and probability. Journals for which he serves on the editorial board include the Journal of the American Mathematical Society and the Journal de Théorie des Nombres de Bordeaux. He has helped to create the problems for the USA Mathematical Olympiad every year since 1989.

Ravi Vakil is from Toronto, Canada. He received his undergraduate degree at the University of Toronto, where he was a four-time Putnam Competition winner. After completing a PhD at Harvard, he taught at Princeton and MIT before moving to Stanford, where he is a tenure-track assistant professor. He is currently an American Mathematical Society Centennial Fellow and an Alfred P. Sloan Research Fellow. His field of research is algebraic geometry, with connections to nearby fields, including combinatorics, topology, number theory, and physics. He has long been interested in teaching mathematics through problem solving; he coached the Canadian team to the International Mathematical Olympiad from 1989 to 1996, and one of his other books is titled A Mathematical Mosaic: Patterns and Problem Solving.

THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

The William Lowell Putnam Mathematical Competition is the premier mathematical competition at the undergraduate level in North America. This volume, the third to cover the competition, contains the 192 problems from the years 1985-2000, as they appeared in the competition, with solutions and extensive commentary.

It is unlike the first two Putnam volumes and unlike virtually every other problem-based book, in that it places the problems in the context of important mathematical themes. The authors highlight connections to other problems, to the curriculum, and to more advanced topics. The best problems contain kernels of sophisticated ideas related to important current research, and yet the problems are accessible to undergraduates.

The heart of the book is in the solutions, which have been compiled through extensive research. The authors present the best solutions from the American Mathematical Monthly, Mathematics Magazine, past competitors, and many problem enthusiasts. Often the authors have simplified these solutions, or have developed new solutions of their own. Multiple solutions are common. In editing the solutions, the authors have kept a student audience in mind, explaining techniques that have relevance to more than the problem at hand, suggesting references for further reading, and mentioning related problems, some of which are unsolved.

In addition to problems and solutions, the book contains:

- a hint to each problem, separate from the full solution;
- background information about the competition;
- a list of winning individuals and teams, with current
information about the career paths of winners;
- a topic index;
- Putnam Trivia for the Nineties, by Joseph A. Gallian; and
- Some Thoughts on Writing for the Putnam, by Problems Committee member Bruce Reznick.

The authors of this volume are active research mathematicians who are renowned also for their expository skills. They were themselves winners of the Putnam Competition in most of the years covered by the volume: together they achieved the rank of Putnam Fellow eleven times.

This volume will appeal to students, teachers, and professors, or anyone interested in problem solving as an entrée to beautiful and powerful ideas.

[^0]: \dagger A "toy" problem does not necessarily mean an easy problem. Rather, it means a relatively tractable problem where a key issue has been isolated, and all extraneous detail has been stripped away.

