
Table of Contents

About the Authors

The Windows 2000 Device Driver Book, A Guide

for Programmers, Second Edition

Art Baker

Jerry Lozano

Publisher: Prentice Hall PTR

Second Edition November 20, 2000

ISBN: 0-13-020431-5, 480 pages

The #1 Windows device driver book - fully updated

for Windows 2000!

Step-by-step planning, implementation, testing,

debugging, installation, and distribution

Complete coverage of the new Windows Driver

Model (WDM)

Practical debugging and interactive troubleshooting

CD-ROM: Exclusive tools for streamlining driver

development, plus extensive C/C++ sample driver

library!

Windows Driver Model (WDM) for Windows 2000

and 98 - in depth!

Building drivers that support Plug-and-Play and

Power Management

Windows Management Instrumentation: logging

device errors and events - and interpreting them

Constructing safe reentrant driver code

Handling time-out conditions safely and effectively

Advanced techniques: kernel-mode threads, layered

drivers, and more

Start-to-finish debugging and troubleshooting

techniques

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Foreword by Andrew Scoppa, UCI Corporation

The #1 book on Windows driver development - totally

updated for Windows 2000!

With The Windows 2000 Device Driver Book, any

experienced Windows programmer can master driver

development start to finish: planning, implementation, testing,

debugging, installation, and distribution. Totally updated to

reflect Microsoft’s Windows Driver Model (WDM) for

Windows 2000 and 98, this programming bestseller covers

everything from architecture to tools, and includes a

powerhouse library of exclusive tools and code for

streamlining any driver development project.

You’ll start with a high-level overview of WDM

components and then move quickly into the details of the

development environment and driver installation. Next,

master the Windows 2000 I/O Manager, its data structures,

and its interaction with drivers. Using extensive practical

examples, you’ll implement Plug-and-Play and Power

Management; construct safe reentrant driver code; use

Windows Management Instrumentation to log errors and

events, and more.

The book covers today’s most advanced Windows

driver development techniques and provides extensive

debugging guidance, including crash dump analysis using

WinDbg; lists of common bugcheck codes, meanings, and

probable causes; and much more.

About the CD-ROM

Bonus CD-ROM contains powerful resources for streamlining

device driver development!

An exclusive Device Driver AppWizard that works

with Visual Studio to instantly create your

driver’s framework

A library of complete sample drivers

C++ classes to jumpstart any project-including a

Unicode string handling class that eliminates tedious,

repetitive code

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

An exclusive Driver Installation Utility to simplify

initial testing

UCI

UCI Software Training Centers specializes in high-end

developer, systems, and Internet Training on Microsoft

products and technologies. For more information about

training in this topic and others, UCI can be reached at

800-884-1772, or on the Web at www.ucitraining.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Windows 2000 Device Driver Book, A Guide for Programmers,

Second Edition

Foreword

Preface

 What You Should Already Know

 What's Covered

 What's Not

 About the Sample Code

 History of this Book

 Training and Consulting Services

Acknowledgments

1. Introduction to Windows 2000 Drivers

 Overall System Architecture

 Kernel-Mode I/O Components

 Special Driver Architectures

 Summary

2. The Hardware Environment

 Hardware Basics

 Buses and Windows 2000

 Hints for Working with Hardware

 Summary

3. Kernel-Mode I/O Processing

 How Kernel-Mode Code Executes

 Use of Interrupt Priorities by Windows 2000

 Deferred Procedure Calls (DPCs)

 Access to User Buffers

 Structure of a Kernel-Mode Driver

 I/O Processing Sequence

 Summary

4. Drivers and Kernel-Mode Objects

 Data Objects and Windows 2000

 I/O Request Packets (IRPs)

 Driver Objects

 Device Objects and Device Extensions

 Controller Objects and Controller Extensions

 Adapter Objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Interrupt Objects

 Summary

5. General Development Issues

 Driver Design Strategies

 Coding Conventions and Techniques

 Driver Memory Allocation

 Unicode Strings

 Interrupt Synchronization

 Synchronizing Multiple CPUs

 Linked Lists

 Summary

6. Initialization and Cleanup Routines

 Writing a DriverEntry Routine

 Code Example: Driver Initialization

 Writing Reinitialize Routines

 Writing an Unload Routine

 Code Example: Driver Unload

 Writing Shutdown Routines

 Testing the Driver

 Summary

7. Driver Dispatch Routines

 Announcing Driver Dispatch Routines

 Writing Driver Dispatch Routines

 Processing Read and Write Requests

 Code Example: A Loopback Device

 Extending the Dispatch Interface

 Testing Driver Dispatch Routines

 Summary

8. Interrupt-Driven I/O

 How Programmed I/O Works

 Driver Initialization and Cleanup

 Writing a Start I/O Routine

 Writing an Interrupt Service Routine (ISR)

 Writing a DpcForIsr Routine

 Some Hardware: The Parallel Port

 Code Example: Parallel Port Loopback Driver

 Testing the Parallel Port Loopback Driver

 Summary

9. Hardware Initialization

 The Plug and Play Architecture: A Brief History

 The Role of the Registry for Legacy Drivers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Detecting Devices with Plug and Play

 The Role of Driver Layers in Plug and Play

 The New WDM IRP Dispatch Functions

 Device Enumeration

 Device Interfaces

 Code Example: A Simple Plug and Play Driver

 Summary

10. Power Management

 Hot Plug Devices

 OnNow Initiative

 Wake Requests

 Power Management Issues

 Summary

11. Timers

 Handling Device Timeouts

 Code Example: Catching Device Timeouts

 Managing Devices without Interrupts

 Code Example: A Timer-Based Driver

 Summary

12. DMA Drivers

 How DMA Works under Windows 2000

 Working with Adapter Objects

 Writing a Packet-Based Slave DMA Driver

 Code Example: A Packet-Based Slave DMA Driver

 Writing a Packet-Based Bus Master DMA Driver

 Writing a Common Buffer Slave DMA Driver

 Writing a Common Buffer Bus Master DMA Driver

 Summary

13. Windows Management and Instrumentation

 WMI: The Industry Picture

 The WMI Architecture

 WMI Summary

 Conventional Driver Event Logging

 Summary

14. System Threads

 Definition and Use of System Threads

 Thread Synchronization

 Using Dispatcher Objects

 Code Example: A Thread-Based Driver

 Summary

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

15. Layered Drivers

 An Overview of Intermediate Drivers

 Writing Layered Drivers

 Writing I/O Completion Routines

 Allocating Additional IRPs

 Writing Filter Drivers

 Code Example: A Filter Driver

 Writing Tightly Coupled Drivers

 Summary

16. Driver Installation

 Installation of a Driver

 Auto-Install Using INF Files

 Using a Driver INF File

 Controlling Driver Load Sequence

 Digital Signing of a Driver

 Summary

17. Testing and Debugging Drivers

 Guidelines for Driver Testing

 Why Drivers Fail

 Reading Crash Screens

 An Overview of WinDbg

 Analyzing a Crash Dump

 Interactive Debugging

 Writing WinDbg Extensions

 Code Example: A WinDbg Extension

 Miscellaneous Debugging Techniques

 Summary

A. The Driver Debug Environment

 Hardware and Software Requirements

 Debug Symbol Files

 Enabling Crash Dumps on the Target System

 Enabling the Target System's Debug Client

B. Bugcheck Codes

C. Building Drivers

 The Build Utility

 Using Visual Studio to Build Drivers

Bibliography

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 NEXT >

[oR]

Foreword

Drivers are the most fundamental and technically difficult part of operating system development. As

a reader of this book, you are probably well aware of the complexities involved. Even for the most

seasoned software engineer the task can be daunting. Writing device drivers under Windows 2000

is a big challenge to learn. The most comprehensive, authoritative guide to Windows NT driver

development, The Windows NT Device Driver Book by Art Baker is now a classic. I can not think of

anyone better qualified to write the second edition of Art's outstanding book than Jerry Lozano. Jerry

combines the qualities of strong technologist, excellent writer, and gifted educator. These qualities

have translated into book form very well. Reading this book I felt I was taking one of Jerry's classes.

There are two kinds of books. Some books provide reference information that very much read like

an encyclopedia. Such books are picked up occasionally to answer a specific question. Other books

are tutorial in nature. They are designed to be read from front to back in order to transfer the

knowledge and skill necessary to perform a task.

The Windows 2000 Device Driver Book, like its predecessor, falls clearly into the latter category. It is

intended to be used as an instructional guide for device driver authors. Unlike other books on the

subject, this book does not attempt to reproduce the DDK. The DDK stands as the definitive

reference on the Windows 2000 device driver technology. Instead, The Windows 2000 Device Driver

Book provides the guiding information needed to successfully master W2K driver development. This

book gives developers the knowledge to design, write, and debug Windows 2000 devices, and is

based on a course Jerry created and teaches for UCI. Based on feedback from the course, Jerry

found that one of the biggest problems device driver and kernel-mode code developers face is the

lack of clear, concise technical information on driver models, kernel mode programming, and

hardware interfaces. In this book Jerry has succeeded in solving this problem with detailed

examples and informative coverage in all areas, and presenting it with exceptional clarity.

As the book went to press, it was clear that another chapter was highly desirable. The chapter

concerns USB and IEEE 1394 driver specifics. The revision author has generously agreed to

include this chapter on the book's companion web site: http://www.W2KDriverBook.com. Readers

that need this information should visit this informative site.

Andrew Scoppa

President

UCI Software Technical Training

 NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.W2KDriverBook.com

< BACK NEXT >

[oR]

Preface

This book explains how to write, install, and debug device drivers for Windows 2000. It is intended to

be a companion to the Microsoft DDK documentation and software.

Windows 2000 represents a major improvement to previous versions of Windows NT. Device drivers

for Windows 2000 may be designed for the new Windows Driver Model (WDM) architecture. If so,

the driver will be source compatible with Windows 98. This book covers the new WDM specification.

This book will also prove useful to those studying the internals of Windows 2000, particularly the I/O

subsystem and related components.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

What You Should Already Know

All instruction assumes a base knowledge level. First, the reader should be familiar with Windows

2000 administration—security and setup, for example. Since experimentation with kernel-mode code

can (and will) cause system problems, the reader should be prepared and able to restore a chaotic

OS.

Second, the reader should be competent in the C programming language and somewhat familiar

with C++. Only a little C++ is used in this book, and then only for the purpose of simplifying tedious

code.

Third, experience with Win32 user-mode programming is useful. Knowing how user-mode code

drives I/O devices is useful in designing and testing device driver code. The test code for the

examples in this book rely on the console subsystem model for Windows. To review this topic, the

reader is referred to the Win32 Programmers Reference, particularly the chapters on I/O primitives

(CreateFile, ReadFile, WriteFile, and DeviceIoControl). The bibliography lists other references for

this topic.

Finally, while no specific prior knowledge of hardware or device driver software design is assumed,

it would be useful if the reader had experience with some aspect of low-level device interfacing. For

example, knowledge of writing device drivers for a Unix system will prove quite useful when reading

this book.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

What's Covered

The focus of this book is to first explain the architecture of the hardware, environment, and device

driver, and then to explain the details of writing code.

Chapters are grouped within this book as follows:

Chapter 1, Chapter 2, Chapter 3, Chapter 4, Chapter 5:

The first five chapters of this book cover the foundation of what's needed to write a

device driver. This includes coverage of the Windows 2000 architecture, hardware

terminology and bus basics, and an in-depth view of the Windows 2000 I/O

Manager and related services.

Chapter 6, Chapter 7, Chapter 8, Chapter 9, Chapter 10, Chapter 11, Chapter

12, Chapter 13:

The next eight chapters form the nucleus of this book. The chapters cover

everything from the mechanics of building a driver to the specifics of instrumenting

a driver to log errors and other events.

Chapter 14, Chapter 15:

These two chapters deal with somewhat more advanced topics within device driver

construction. This includes the use of system threads, layering, filtering, and

utilizing driver classes.

Chapter 16, Chapter 17:

The final chapters deal with the practical but necessary details of driver installation

and debugging. The use of Windows 2000 INF files for "automatic" installation of a

plug and play device driver is covered (as well as manual installation for legacy

devices). The use of WinDbg is covered in sufficient detail so that the programmer

can actually perform interactive debugging.

Appendices:

The appendices cover reference information needed for driver development. The

mechanics of Windows 2000 symbol file installation, bugcheck codes, and so on

are listed.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

What's Not

Since the purpose of this book is to cover driver development from "the ground up," some specific

topics fall outside its scope. Specifically, the list of topics not covered includes

File system drivers: Currently, the construction of a full Windows 2000 Installable

File System requires the acquisition of the Microsoft IFS kit. The bibliography of this

book points to one source for more in- formation on this topic. Potential users of the

IFS kit will benefit greatly from this book, as the material covered is essential

prerequisite knowledge.

Device-specific driver information: The construction of NIC (Network Interface

Card), SCSI, video (including capture devices), printers, and multimedia drivers is

not specifically covered in this book. Chapter 1 discusses the architectural

implications of such drivers, but even individual chapters on each of these driver

types would seriously shortchange the requisite knowledge.

Virtual DOS device drivers: The current wave of driver development is toward the

WDM 32-bit model. Legacy 16-bit VDDs are no longer of interest.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

About the Sample Code

Most chapters in this book include one or more sample drivers. All code is included on the

accompanying CD. Samples for each chapter are in separate subdirectories on the CD, so

installation of individual projects is straightforward.

The CD also includes a device driver application wizard for Microsoft Visual C++ version 6. This

wizard configures the build environment so that code can be written, compiled, and linked within

Visual Studio.

Platform dependencies:

The sample code included with this book has been targeted and tested on Intel

platforms only. Since it appears that the last non-Intel platform (Alpha) was

dropped from the final release of Windows 2000, this should come as no surprise.

Be advised, however, that Windows 2000 is intrinsically a platform-independent

OS. It is a straightforward process to port the OS to many modern hardware sets.

Driver writers should consider designs that take advantage of the Windows 2000

abstractions that permit source compatibility with non-Intel platforms.

To build and run the examples:

Besides the Microsoft DDK (Device Driver Kit) (which is available on an MSDN

subscription or, at present, free for download from the Microsoft web site at

http://www.microsoft.com/DDK), the sample code assumes that Microsoft Visual

C++ is installed. The device driver application wizard was built for Visual Studio

version 6. Obviously, with some effort the sample code can be built using other

vendors' compilers.

Of course, an installed version of Windows 2000 (Professional, Server, or Enterprise) is required.

For interactive debugging using WinDbg, a second host platform is required.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.microsoft.com/DDK

< BACK NEXT >

[oR]

History of this Book

The first version of this book was written by Art Baker, entitled The Windows NT Device Driver

Book. By any account, the book was required reading for any NT driver author. The Microsoft driver

model is a continuously moving target. As such, recently introduced books on this subject provided

more and up-to-date information. The goal of this revision of the book is to carry forward the goals,

style, and clarity of Art's original work while updating the material with the very latest information

available from Microsoft.

If you are a previous reader of the original version of this book, I hope you will find this version just

as useful. I have attempted to provide accurate, concise, and clear information on the subject of

Windows 2000 device drivers. While I have relied heavily on Art's original work, any errors present

in this book are entirely mine.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Training and Consulting Services

The material in this book is based on training and consulting performed for various companies within

the industry.

The subject matter of this book is presented exclusively by UCI in the format of a five-day

instructor-lead lecture/lab course. The course is available as public or on site classes. UCI provides

comprehensive training in high-end programming, web development and administration, databases,

and system technologies.

For more information please visit the UCI web site at http://www.ucitraining.com or use the address

information below:

UCI Corporation

4 Constitution Way

Suite G

Woburn, MA 01801

1-800-884-1772

The revision author, Jerry Lozano, provides seminars and workshops on the topic of device drivers

and other related subjects. For more information visit the web site: http://www.StarJourney.com

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.ucitraining.com
http://www.StarJourney.com

< BACK NEXT >

[oR]

Acknowledgments

I am grateful to many people who helped me with this 2nd edition. First and foremost, I want to thank

Art Baker for his original work. The structure and content of this revision is based on his initial

efforts.

To my partner in life, Carol, who makes everything possible. I thank Carol for both her personal and

professional support. Without your encouragement, I would never have started this project. Without

your help, I would never have finished.

Thanks to Russ Hall, my development editor and friend, for making the book sound good.

Thanks to Patty Donovan and her staff at Pine Tree Composition for making the book look good.

The staff of Prentice Hall PTR, especially Mike Meehan and Anne Trowbridge, deserve considerable

credit for their patience and encouragement in leading me through the entire process.

I wish to thank Bryce Leach of Texas Instruments who tried to correct my misunderstandings of

IEEE 1394. Your comments and suggestions for Chapter 2 were invaluable.

Thanks to Ron Reeves, for several great technical comments on several chapters.

And finally, thanks to the many people who attend my seminars, workshops, and classes for asking

all those wonderful, thought-provoking questions.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 1. Introduction to Windows 2000 Drivers

CHAPTER OBJECTIVES

Overall System Architecture

Kernel-Mode I/O Components

Special Driver Architectures

Summary

Device drivers on any operating system necessarily interact intimately with the underlying

system code. This is especially true for Windows 2000. Before jumping into the world of

Windows 2000 device drivers, this chapter presents the design philosophy and overall

architecture of Windows 2000.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Overall System Architecture

Windows 2000 presents arguably the most aggressive attempt at operating system control in the history of

computers. This section tours the Windows 2000 architecture, highlighting the features of significant interest

to a device driver author.

Design Goals for Windows 2000

The original goals for Microsoft's NT ("New Technology") operating system took form in early 1989.

Interestingly, the original concept for NT did not even include a Windows operating environment. While the

NT OS has indeed come a long way since 1989, the five fundamental goals remain intact.

Compatibility.

The OS should support as much existing software and hardware as possible.

Robustness and reliability.

The OS should be resilient to inadvertent or intentional misuse. A user's application should not be

able to crash the system.

Portability.

The OS should run on as many present and future platforms as possible.

Extendibility.

Since the market requirements will change (grow) over time, the OS must make it easy to add new

features and support new hardware with minimal impact on existing code.

Performance.

The OS should provide good performance for a given capability of the hardware platform which

hosts it.

Of course, goals are not reality, and over time, serious compromise of one goal may be necessary to

achieve another. NT is an operating system and, as such, is subject to the same sorts of compromises that

affect all systems. The remainder of this section describes the delicate balance of solutions that Microsoft

OS designers chose to implement their goals.

Hardware Privilege Levels in Windows 2000

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To achieve the robustness and reliability goal, the designers of NT chose a client-server architecture for its

core implementation. A user application runs as a client of OS services.

The user application runs in a special mode of the hardware known generically as user mode. Within this

mode, code is restricted to nonharmful operations. For example, through the magic of virtual memory

mapping, code cannot touch the memory of other applications (except by mutual agreement with another

application). Hardware I/O instructions cannot be executed. Indeed, an entire class of CPU instructions

(designated privileged), such as a CPU Halt, cannot be executed. Should the application require the use of

any of these prohibited operations, it must make a request of the operating system kernel. A

hardware-provided trap mechanism is used to make these requests.

Operating system code runs in a mode of the hardware known as kernel mode. Kernel-mode code can

perform any valid CPU instruction, notably including I/O operations. Memory from any application is

exposed to kernel-mode code, providing, of course, that the application memory has not been paged out to

disk.

All modern processors implement some form of privileged vs. nonprivileged modes. Kernel-mode code

executes in this privileged context, while user-mode code executes in the nonprivileged environment. Since

different processors and platforms implement privileged modes differently, and to help achieve the goal of

portability, the OS designers provided an abstraction for user and kernel modes. OS code always uses the

abstraction to perform privileged context switches, and thus only the abstraction code itself need be ported

to a new platform. On an Intel platform, user mode is implemented using Ring 3 of the instruction set, while

kernel mode is implemented using Ring 0.

This discussion is relevant to device driver writers in that kernel-mode drivers execute in a privileged

context. As such, poorly written device driver code can and does compromise the integrity of the Windows

2000 operating system. Driver writers must take extra care in handling all boundary conditions to ensure

that the code does not bring down the entire OS.

Portability

To achieve the portability goal, NT designers chose a layered architecture for the software, as shown in

Figure 1.1.

Figure 1.1. The layers of the Windows 2000 operating system

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Hardware Abstraction Layer (HAL) isolates processor and platform dependencies from the OS and

device driver code. In general, when device driver code is ported to a new platform, only a recompile is

necessary. How can this work since device driver code is inherently device-, processor-, and

platform-specific? Clearly, the device driver code must rely on code (macros) within the HAL to reference

hardware registers and buses. In some cases, the device driver code must rely on abstraction code provided

in the I/O Manager (and elsewhere) to manipulate shared hardware resources (e.g., DMA channels).

Subsequent chapters in this book will explain the proper use of the HAL and other OS services so that

device driver code can be platform-independent.

Extendibility

Figure 1.1 also shows an important design concept of Windows 2000—the kernel is separate from a layer

known as the Executive.

The Windows 2000 kernel is primarily responsible for the scheduling of all thread activity. A thread is simply

an independent path of execution through code. To remain independent of other thread activity, a unique

thread context must be preserved for each thread. The thread context consists of the CPU register state

(including a separate stack and Program Counter), an ID (sometimes called a Thread ID or TID, internally

known as a Client ID), a priority value, storage locations local to the thread (Thread Local Storage), and

other thread-relevant information.

The scheduler's responsibility is to manage which thread should execute at any given time. In a single

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

processor environment, of course, only one thread may actually gain control of the processor at a time. In a

multiprocessor environment, different threads may be executing on the different available processors,

offering true parallel execution of code. The scheduler assigns a processor to a thread for, at most, a fixed

period of time known as the thread time quantum. Processors are assigned to threads primarily based on

the thread's priority value. Higher priority threads that become ready to run will preempt a running thread.

Since the kernel's prime role is to schedule thread activity, other OS components perform the necessary

work of memory, process, security, and I/O management. These components are collectively known as the

Executive. The Executive components have been designed (though the I/O Manager itself is a significant

exception) as modular software. Over the years, Microsoft has added, deleted, merged, and separated these

components as improvements and compromises deemed necessary. A good example would be the addition

of the Active Directory Services, which is relatively new to Windows 2000.

The notion of keeping the kernel itself small and clean, coupled with the modularization of Executive

components, provides the basis for NT's claim to extendibility. The OS has now survived about ten years of

revisions, maintenance, and significant feature improvement (a.k.a., creeping elegance).

Performance

While the layered approach to software design is often characterized by lackluster performance, attention to

fast layer interaction has been a continual effort with the NT design group. First, it should be noted that all

the layers described so far execute within the same hardware mode, kernel mode. Therefore, interlayer calls

often involve nothing more than a processor CALL instruction. Indeed, HAL usage is often implemented with

macros, thus achieving inline performance.

Second, there has been a concentrated effort to parallelize as many tasks as possible by allocating threads

to different units of work. The Executive components are all multithreaded. Helper routines seldom block or

busy-wait while performing their work. This minimizes true idle time on the processor.

The performance goals of Windows 2000 impact device driver writers. As user and system threads request

service from a device, it is vital that the driver code not block execution. If the request cannot be handled

immediately, perhaps because the device is busy or slow, the request must be queued for subsequent

handling. Fortunately, I/O Manager routines facilitate this process.

Executive Components

Since the Executive components provide the base services for the Windows 2000 operating system (other

than thread scheduling), their needs and responsibilities are fairly clear. These components are explained in

the following sections.

SYSTEM SERVICE INTERFACE

This component provides the entry point from user mode to kernel mode. This allows user-mode code to

cleanly and safely invoke services of the OS. Depending on the platform, the transition from user mode to

kernel mode may be a simple CPU instruction or an elaborate Save and Restore context switch.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

OBJECT MANAGER

Almost all services offered by the OS are modeled with an object. For example, a user-mode program that

needs thread-to-thread synchronization might request a mutex service from the OS. The OS presents the

mutex in the form of an OS-based object, referenced from user mode only through a handle. Files,

processes, Threads, Events, Memory Sections, and even Registry Keys are modeled with OS-based

objects. All objects are created and destroyed by a centralized Object Manager. This allows for uniform

access, life spans, and security with all objects.

CONFIGURATION MANAGER

The Configuration Manager of Windows 2000 models the hardware and installed software of the machine. A

database called the Registry is used to store this model. Device drivers utilize information in the Registry to

discover many aspects of the environment in which they are executed. With the introduction of Plug and

Play into Windows 2000, the role of the Registry for device drivers has been significantly reduced.

PROCESS MANAGER

A process is the environment in which threads execute in Windows 2000. Each process maintains a private

address space and security identity. In Windows 2000, it is important to note that processes do not run;

instead, threads are the unit of execution and the process is a unit of ownership. A process owns one or

more threads.

The Windows 2000 Process Manager is the Executive component that manages the process model and

exposes the environment in which process threads run. The Process Manager relies heavily on other

Executive components (e.g., the Object Manager and Virtual Memory Manager) to perform its work. As

such, it could be said that the Process Manager simply exposes a higher level of abstraction for other

lower-level system services.

Device drivers seldom interact with the Process Manager directly. Instead, drivers rely on other services of

the OS to touch the process environment. For example, a driver must ensure that a buffer residing with the

private address space of a process remains "locked down" during an I/O transfer. Routines within the OS

allow a driver to perform this locking activity.

VIRTUAL MEMORY MANAGER

Under Windows 2000, the address space of a process is a flat 4 gigabytes (4 GB) (2
32

). Only the lower 2

GB is accessible in user mode. A program's code and data must reside in this lower half of the address

space. If the program relies on shared library code (dynamic-link libraries or DLLs), the library code also

must reside in the first 2 GB of address space.

The upper 2 GB of address space of every process contains code and data accessible only in kernel-mode.

The upper 2 GB of address space is shared from process to process by kernel-mode code. Indeed, device

driver code is mapped into address space above 2 GB.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Virtual Memory Manager (VMM) performs memory management on behalf of the entire system. For

normal user-mode programs, this means allocating and managing address space and physical memory

below the 2 GB boundary. If the needed memory for a given process is not physically available, the VMM

provides an illusion of memory by virtualizing the request. Needed memory is paged onto a disk file and

retrieved into RAM when accessed by a process. In effect, RAM becomes a shared resource of all

processes, with memory moving between files on the disk and the limited RAM available on a given system.

The VMM also acts a memory allocator in that it maintains heap areas for kernel-mode code. Device drivers

can request the VMM to assign dedicated areas of pagable or nonpagable memory for its use. Further,

devices that operate using DMA (direct memory access) can assign nonpagable memory as needed to

perform data transfers between RAM and a device. Of course, these topics are covered in more detail in

subsequent chapters.

LOCAL PROCEDURE CALL FACILITY

A Local Procedure Call (LPC) is a call mechanism between processes of a single machine. Since this

interprocess call must pass between different address spaces, a kernel-mode Executive component is

provided to make the action efficient (and possible). Device driver code has no need for the LPC facility.

I/O MANAGER

The I/O Manager is an Executive component that is implemented with a series of kernel-mode routines that

present a uniform abstraction to user-mode processes for I/O operations. One goal of the I/O Manager is to

make all I/O access from user mode device-independent. It should not matter (much) to a user process

whether it is accessing a keyboard, a communication port, or a disk file.

The I/O Manager presents requests from user-mode processes to device drivers in the form of an I/O

Request Packet (IRP). The IRP represents a work order, usually synthesized by the I/O Manager, that is

presented to a device driver. It is the job of device drivers to carry out the requested work of an IRP. Much of

the remainder of this book is devoted to the proper care and processing of IRPs by device driver code.

In effect, the I/O Manager serves as an interface layer between usermode code and device drivers. It is

therefore the most important block of code that a device driver must interact with during operation.

ACTIVE DIRECTORY SERVICE

The Active Directory Service is somewhat new to Windows 2000. It provides a network-wide namespace for

system resources. Previously, the internal names used to identify system resources (disk drive names,

printer names, user names, file names) were managed within a restricted space of the OS. It was the

responsibility of other OS components (e.g., the networking services) to export names across different

protocols.

The Active Directory is now a uniform, secure, and standard way to identify system resources. It is based on

a hierarchical scheme (strictly defined by a schema) whereby entities are categorized into organization units

(OUs), trees, and forests.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

EXTENSIONS TO THE BASE OPERATING SYSTEM

Although the Executive components of Windows 2000 define and implement core services of the OS, it

might be interesting to note that these services are not directly exposed to user-mode applications. Instead,

Microsoft defines several Application Programming Interfaces (APIs) that user-mode code treats as

abstractions of OS services. These APIs form different environmental subsystems that application code live

within. Currently, the following environmental subsystems are included with Windows 2000.

The Win32 subsystem is the native-mode API of Windows 2000. All other environmental

subsystems rely upon this subsystem to perform their work. All new Windows 2000 applications

(and indeed, most ported ones as well) rely on the Win32 subsystem for their environment.

Because of its importance (and interesting implementation), this subsystem is described in more

detail in the next section.

The Virtual DOS Machine (VDM) subsystem provides a 16-bit MSDOS environment for old-style

DOS applications. Despite its promise of compatibility, many existing 16-bit DOS programs do not

operate properly. This is due to Microsoft's conservative and safe approach that emulates device

(and other system resources) access. Attempts to directly access these resources results in

intervention from the OS that provides safe, but not always faithful, results.

The Windows on Windows (WOW) subsystem supports an environment for old-style 16-bit

Windows applications (i.e., Windows 3.X programs). Interestingly, each 16-bit program runs as a

separate thread within the address space of a single WOW process. Multiple WOWs can be

spawned, but 16-bit Windows applications are then prohibited from sharing resources.

The POSIX subsystem provides API support for Unix-style applications that conform to the POSIX

1003.1 source code standard. Unfortunately, this subsystem has not proved workable for hosting

the ports of many (most) Unix-style applications. As such, most Unix applications are ported by

rewriting for the Win32 environment.

The OS/2 subsystem creates the execution environment for 16-bit OS/2 applications—at least those

that do not rely on the Presentation Manager (PM) services of OS/2. This subsystem is available

only for the Intel (x86) version of Windows 2000.

A given application is tightly coupled to exactly one environmental subsystem. Applications cannot make API

calls to other environments. Also, only the Win32 subsystem is native—other subsystems emulate their

environments and therefore experience various degrees of performance degradation compared to native

Win32. Their purpose is compatibility, not speed.

Environmental subsystems are generally implemented as separate user-mode processes. They launch as

needed to support and host user-mode processes. The environmental subsystem becomes the server for

the usermode client. Each request from a client is passed, using the Local Procedure Call Executive

component, to the appropriate server process. The server process (i.e., the environmental subsystem) either

performs the work to fulfill the request directly or it, in turn, makes a request of the appropriate Executive

component.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

THE WIN32 SUBSYSTEM

As the native API for Windows 2000, the Win32 environmental subsystem is responsible for

The Graphical User Interface (GUI) seen by users of the system. It implements and exposes

viewable windows, dialogs, controls, and an overall style for the system.

Console I/O including keyboard, mouse, and display for the entire system, including other

subsystems.

Implementation of the Win32 API, which is what applications and other subsystems use to interact

with the Executive.

Because the Win32 Subsystem holds special status within the system and because of its inherent

requirement for high performance, this subsystem is implemented differently from any of the other

subsystems. In particular, the Win32 subsystem is split into some components that execute in user mode

and some that execute in kernel mode. In general, the Win32 function can be divided into three categories.

USER functions that manage windows, menus, dialogs, and controls.

GDI functions that perform drawing operations on physical devices (e.g., screens and printers).

KERNEL functions, which manage non-GUI resources such as processes, threads, files, and

synchronization services. KERNEL functions map closely to system services of the Executive.

Since NT 4.0, USER and GDI functions have been moved to kernel mode. User processes that request GUI

services are therefore sent directly to kernel-mode using the System Service Interface, an efficient process.

Kernel-mode code that implements USER and GDI functions resides in a module called WIN32K.SYS. The

USER and GDI kernel components are illustrated in Figure 1.2.

Figure 1.2. USER and GDI kernel components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Conversely, KERNEL functions rely on a standard server process, CSRSS.exe (Client-Server Runtime

Subsystem), to respond to user process requests. In turn, CSRSS traps into Executive code to complete the

request for such functions.

INTEGRAL SUBSYSTEMS

In addition to the Environmental Subsystems, there are also key system components that are implemented

as user mode processes. These include

The Security Subsystem, which manages local and remote security using a variety of processes

and dynamic libraries. Part of the Active Directory work also resides within this logical subsystem.

The Service Control Manager (affectionately called the scum, or SCM) manages services (daemon

processes) and device drivers.

The RPC Locator and Service processes give support to applications distributed across the

network. Through the use of remote procedure calls, an application can distribute its workload

across several networked machines.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Kernel-Mode I/O Components

The purpose of this section is to describe the goals and architecture of the Windows 2000 I/O subsystem.

Since different kinds of drivers perform wildly different kinds of service, the I/O Manager's categorization of

drivers is also discussed.

Design Goals for the I/O Subsystem

The I/O subsystem of Windows 2000 added to the overall design goals of the operating system by including

Portability, platform to platform.

Configurability in terms of both hardware and software. For Windows 2000 drivers, this would

include full support for Plug and Play buses and devices.

Preemptable and interruptable. I/O code should never block and should always be written

thread-safe.

Multiprocessor-safe. The same I/O code should run on both uniprocessor and multiprocessor

configurations.

Object-based. The services provided by I/O code should be offered in encapsulated data structures

with well-defined allowable operations.

Packet-driven. Requests made of the I/O subsystem should be submitted and tracked using a

distinct "work order" format, known as an I/O Request Packet (IRP).

Asynchronous I/O support. Requests made of the I/O subsystem should be allowed to complete in

parallel with the requestor's execution. When the request ultimately completes, a mechanism must

exist to notify the caller of completion.

Besides these published goals, there is also strong emphasis placed on code reusability. This translates to

heavy structuring of I/O code (including drivers) into logical layers. For example, bus-driving code should be

layered separately from specific device code to allow for reuse of the bus code across multiple devices. In

many cases, different vendors supply code for different layers. Only through careful modularization can this

goal be achieved.

Kinds of Drivers in Windows 2000

There once was a time when a device driver author could understand the intricacies of the new hardware,

learn the OS device driver interface, scope the work, and "just write the code." For better or worse, the days

of monolithic device driver code have passed. Today, an author must understand the architectures of both

complex hardware buses and heavily layered I/O subsystems just to scope the work statement. Deciding

what kind of driver to write for Windows 2000 is itself an interesting challenge. Deciding whether to

implement or to reuse a layer is yet another challenge. The purpose of this section is to describe where

different kinds of drivers fit within the hardware world and the OS.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

At the highest level, Windows 2000 supports two kinds of drivers, user-mode and kernel-mode. User-mode

drivers, as the name implies, is system-level code running in user mode. Examples include a simulated, or

virtualized, driver for imaginary hardware or perhaps a new environmental subsystem. Since Windows 2000

user mode does not allow direct access to hardware, a virtualized driver necessarily relies upon real driver

code running in kernel mode. This book does not describe user-mode drivers. The purpose of this book is to

describe real drivers, which in Windows 2000 are known as kernel-mode drivers.

Kernel-mode drivers consist of system-level code running in kernel mode. Since kernel mode allows direct

hardware access, such drivers are used to control hardware directly. Of course, nothing prevents a

kernel-mode driver from virtualizing real hardware—the choice between user and kernel mode is largely an

implementer's choice. Again, however, the purpose of this book is to present the strategies for implementing

true kernel-mode drivers for real hardware.

Moving down a level, kernel-mode drivers can be further decomposed into two general categories, legacy

and Windows Driver Model (WDM). Legacy drivers were fully described in the first edition of this book. The

techniques needed to discover hardware and interface with the I/O subsystem are well documented.

Thankfully, most of the knowledge gained by understanding legacy Windows NT drivers is transportable to

the Windows 2000 (and Windows 98) WDM world.

WDM drivers are Plug and Play compliant. They support power management, autoconfiguration, and hot

plugability. A correctly written WDM driver is usable on both Windows 2000 and Windows 98, though at

present, Microsoft does not guarantee binary compatibility. At most, a rebuild of the driver source is

necessary using the Windows 98 DDK (Device Driver Kit).

Moving down yet another level, legacy and WDM drivers can be further decomposed into three categories,

high-level, intermediate, and low-level. As the names imply, a high-level driver depends on intermediate and

low-level drivers to complete its work. An intermediate driver depends on a low-level driver to complete its

work.

High-level drivers include file system drivers (FSDs). These drivers present a nonphysical abstraction to

requestors that, in turn, is translated into specific device requests. The need to write a high-level driver is

apparent when the underlying hardware services are already provided by lower levels—only a new

abstraction is required for presentation to requestors.

Microsoft supplies an Installable File System (IFS) kit, sold separately from MSDN or any other product. The

IFS kit requires the DDK (and other products) for successful file system development. There are numerous

restrictions on the types of file systems that can be developed using this kit. For pricing and ordering

information, you can visit the HWDEV virtual site of Microsoft's Internet site. This book does not address file

system development.

Intermediate drivers include such drivers as disk mirrors, class drivers, mini drivers, and filter drivers. These

drivers insert themselves between the higher-level abstractions and the lower-level physical support. For

example, a disk mirror receiving the request from the high-level FSD to write to a file translates such a

request into two requests of two different low-level disk drivers. Neither the higher nor lower levels need to

be aware that mirroring is, in fact, occurring.

Class drivers are an elegant attempt at code reuse within the driver model. Since many drivers of a

particular type have much in common, the common code can be placed in a generic class driver separate

from the physical, device-specific code. For example, all IDE disk drivers share considerable similarity. It is

possible to write the common code once, placing it in a generic class driver that loads as an intermediate

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

driver. Vendor and device specific IDE drivers would then be written as mini drivers that interact with the

generic class driver.

Filter drivers are intermediate drivers that intercept requests to an existing driver. They are given the

opportunity to modify requests before presentation to the existing driver.

Finally, within the WDM world, intermediate drivers can also consist of Functional Drivers. These drivers can

be either class or mini drivers, but they always act as an interface between an abstract I/O request and the

low-level physical driver code. Within the DDK documentation, the term Functional Driver is sometimes

interchanged with Class or Mini Driver. The context determines the meaning.

Low-level drivers include controllers for the hardware buses. For example, the SCSI Host Bus Adapter is

one such low-level driver. Such drivers interact with Windows 2000 HAL layer and/or the hardware directly.

In the WDM world, low-level drivers include the notion of a Physical Driver. These Physical Drivers interact

with one or more Functional Drivers.

Figure 1.3 shows the driver classifications in Windows 2000.

Figure 1.3. Driver classifications in Windows 2000.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Special Driver Architectures

Building upon the intermediate driver strategy described in the last section, Microsoft supplies driver

architectures for several types or classes of devices.

Video drivers

Printer drivers

Multimedia drivers

Network drivers

These architectures conform to the spirit, if not to the letter, of the classifications of the last section. Each

architecture is described in more detail in the following sections.

Video Drivers

Video drivers in Windows 2000 present special requirements to the I/O subsystem. Because the graphical

interface is constantly exposed to users, the apparent overall speed of the system is judged (often

incorrectly) by the performance of this component. Competition among video adaptor hardware vendors has

forced aggressive graphic accelerators to be included on high-end boards. The video driver architecture

must exploit such hardware when it exists, yet provide full compatibility and capability when it does not.

Finally, video drivers have evolved since the 16-bit world of Windows. There is a need to provide as much

compatibility as possible with legacy drivers.

The video driver architecture of Windows 2000 is shown in Figure 1. 4. The shaded components are

provided with Windows 2000. Vendors of specific display adaptors supply the display driver. Since many

display adaptors are designed using common chip sets, the chip set manufacturer supplies the video

miniport class driver for its adaptor-manufacturing customers. For example, an ET4000 Miniport driver exists

for all adaptors that utilize the ET4000 chip set. The extra hardware surrounding the chip set is driven with

adaptor-specific display driver code.

Figure 1.4. Video driver architecture.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Fundamentally, the video driver architecture differs from the standard I/O architecture in that user

applications do not communicate directly with the I/O Manager when requesting drawing services. Instead,

user-mode code interacts with a Graphics Device Interface (GDI) component of the kernel.

The GDI implements functions that allow the drawing of lines, shapes, and text in selected fonts. The GDI,

therefore, is similar to a high-level driver. In turn, the GDI relies upon the services of the display driver and

the I/O Manager to complete its work. Communication between the GDI and display driver is bidirectional.

Where speed is paramount, the GDI can invoke functions in the display driver directly, bypassing the I/O

Manager altogether. The display driver implements an interface known as the Device Driver Interface (DDI),

which consists of functions prefixed with the Drv string. Conversely, the display driver relies on common

graphics library routines implemented within the GDI. These GDI routines are known as Graphics Engine

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

calls and are prefixed within the Eng string.

For less time-critical services, the GDI relies upon the traditional layered approach of the Windows 2000 I/O

subsystem. The GDI uses the I/O Manager to invoke support routines of the video port and miniport

intermediate drivers. An example of a function that would be implemented with port and miniport drivers

would be a mode-switch command. Requests made by the I/O Manager of the video port driver are in the

standard IRP format. The video port driver converts these IRPs into Video Request Packets (VRPs), which

are then sent to and processed by the video miniport driver.

Printer Drivers

Printer drivers differ from standard Windows 2000 drivers in several ways. First, a print job may be directed

to a spooling mechanism before being sent to a physical device. Second, the physical device is often

connected to a remote machine, thus burdening the spool process with the use of RPC calls. Finally, the

different printer stream protocols used by different printer devices (e.g., Postscript and HPCL) burden printer

driver authors with yet another layer of integration.

The spooler components are shown in Figure 1.5. If spooling is enabled, an application's print job is first

directed to a file by the spooler. The spooler then dequeues jobs as a printer (perhaps in a logical queue)

becomes available. Data is passed to a print provider, which then directs the output to a local or remote

printer.

Figure 1.5. Printer spooler components.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The shaded components in Figure 1.5 are supplied with Windows 2000, as are several print providers. The

client-side spooler component, winspool.drv or Win32spl.DLL (when remote printing), is simply an

RPC-based client stub. It connects with a server-side RPC stub, spoolsv.exe. to implement a spooler API.

The server-side stub code relies on a routing service, spoolss.dll, which connects a specific print provider

based on the target printer name. Finally, the print provider acts as an abstract front-end for a specific print

server or device. A specific device's job queue is created and managed by the print provider. A single print

provider can serve the needs of an entire class of printers. Thus, the print providers supplied with Windows

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

2000 are usually sufficient to serve the needs of most applications and printers. A local, remote, and Internet

print provider are included with Windows 2000.

Different print device characteristics, or perhaps different network protocols, sometimes require that a unique

print provider be supplied. For example, Novell supplies a print provider for Windows 2000 that directs

output to a NetWare print server.

Whether or not the spooling process is involved in a print job, it is the GDI which must ultimately render an

application's drawing command into a printer-specific format. The GDI relies upon the services of the Printer

Driver. The Printer Driver components consist of a Printer Graphics DLL and a Printer Interface DLL.

The printer graphics DLL is the component responsible for rendering data for a specific device. Depending

on device capabilities, the work involved can range from intense for a bit-oriented device to high-level for a

device supporting a full graphics engine (such as Postscript.) NT 4 required that this DLL reside in kernel

mode, but the performance advantages of placing this code in the trusted category were not significant

enough to outweigh the many disadvantages. In Windows 2000, the printer graphics DLL can reside in

either user mode or kernel mode. Flexible configuration and higher system reliability result from placement

of this DLL in user mode.

Each function exported by the printer graphics DLL is prefixed with the string Drv. The functions defined are

invoked by the GDI when rendering is performed.

The printer interface DLL is responsible for configuration of device-specific parameters by providing a user

interface for each device option. For example, a printer with multiple paper trays needs a way for a user to

specify a default tray and paper size. The printer interface DLL provides user interfaces by building one or

more property sheets. These sheets are a kind of Windows dialog, with standard Windows controls allowing

selection of various options.

Multimedia Drivers

To support multimedia devices such as sound cards and TV tuners, Windows 2000 supports a new model

known as Kernel Streaming (KS). Kernel Streaming consists of both Functional and Filter Drivers.

Applications interact with a KS driver using Methods, Properties, and Events, familiar terms from the COM

(Component Object Model) world. These mechanisms apply to four different kinds of KS objects exposed to

an application: Filters, Pins, Clocks, and Allocators. Each KS object is exposed to an application as a

standard I/O file object.

A filter object (which should not be confused with a filter driver) is the top-level entity exposed to an

application performing multimedia operations. For example, an application might open a microphone filter on

a sound card.

A pin object is a subobject of a filter. It represents a node (input or output) on a device. For example, the

microphone filter might expose a single pin for input. An output pin could then be used to read, or acquire,

the digitized signal.

A clock object exposes the real-time clock of a multimedia device, if equipped. The clock object may signal

an application with an event when the clock timer expires or ticks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Allocator objects represent the direct memory interface to a multimedia card. Memory on the card can be

allocated or freed using this object.

Windows 2000 includes a generic class driver for streaming devices, Stream.sys. In most cases, it is only

necessary to write a mini driver to support a specific device such as an audio card or video camera. The

class driver implements the Windows 2000 Kernel Streaming abstraction, while the vendor-supplied mini

driver utilizes the class driver's services, including buffer and DMA support, to support device-specific

actions.

Network Drivers

Network drivers in Windows 2000 follow the Open Systems Interconnection (OSI) standard of ISO. This is a

seven-layer model, with the top layer being the application software and the bottom layer being the physical

hardware connection and topology of the network. Network Interface Cards (NIC) provide the hardware

interface on most platforms for a given network. NIC drivers are written to support a specific device and

Windows 2000 ships with popular NIC driver types. Separately, the OSI transport layer (the fourth layer up

within the model) is provided by protocol drivers. It is possible to bind different protocols to the same

physical NIC driver.

A Network Driver Interface Specification (NDIS) provides library support for NIC drivers that usually permits

a NIC vendor to supply only an NDIS miniport driver to manage hardware specifics. Higher layers of NDIS,

the NDIS intermediate driver and the NDIS protocol driver, provide media translations, filtering, and

media-specific actions when required. The layering of NDIS is shown in Figure 1.6.

Figure 1.6. Network driver interface layers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Windows 2000 includes a layer of kernel-mode software known as the Transport Driver Interface (TDI). This

layer interfaces between the NDIS layer and higher-level software abstractions such as sockets and

NetBIOS. The TDI layer makes the construction of Windows 2000 components such as the NetBIOS

redirector and server easier and more portable.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

Windows 2000 provides a rich architecture for applications to exploit. Of course, this richness comes

at a price that device driver authors (among others) will have to pay. The I/O processing scheme of

Windows 2000 is complex and the need to keep a view of the "big picture" is difficult, but necessary.

At this point, there should be a good understanding of what kinds of drivers exist (and where they fit)

in Windows 2000. The next chapter begins a discussion of the hardware that drivers must control.

An overview of the various buses that are supported by Windows 2000 is presented.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 2. The Hardware Environment

CHAPTER OBJECTIVES

Hardware Basic

Buses and Windows 2000

Hints for Working with Hardware

Summary

It is a fact of life that device drivers must interact with "real" hardware. Traditionally,

first-generation device drivers were written as unit test code by the hardware designers.

These early drivers were then passed to hardware-savvy software engineers to produce a

fully-integrated driver.

As discussed in the previous chapter, the term device driver in Windows 2000 can describe a block

of code miles away from any real hardware. Sooner or later, however, a device driver author must

understand hardware and the terms sufficient to drive it. This chapter gives a gentle overview of

hardware found on most systems.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Hardware Basics

Regardless of the type of device being driven, there are several basic items that must be known.

How to use the device's control and status registers

What causes the device to generate an interrupt

How the device transfers data

Whether the device uses any dedicated memory

How the device announces its presence when attached

How the device is configured, preferably through software

The following sections discuss each of these topics in a general way.

Device Registers

Drivers communicate with a peripheral by reading and writing registers associated with the device. Each

device register generally performs one of the following functions:

Command.

Bits in these registers control the device in some way—perhaps starting or aborting a data transfer

or configuring the device—and are typically written by the driver.

Status.

These registers are typically read by the driver to discover the current state of the device.

Data.

These registers are used to transfer data between device and driver. Output data registers are

written by the driver, while input data registers are read by the driver.

Simple devices (like the parallel port interface in Table 2.1) have only a few associated registers, while

complex hardware (like graphics adapters) have many registers. The number and purpose of the registers is

ultimately defined by the hardware designer and should be well documented in the Hardware Design

Specification. Often, however, trial and error is required on the part of the driver author to determine the real

behavior of bits in the various device registers. Further, experience shows that "reserved" bits in a register

do not necessarily mean "don't care" bits. It is usually best to mask out these bits when reading, and to force

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

them to zero when writing registers with reserved bits.

Accessing Device Registers

Once the hardware functions are known, there is still the small matter of knowing how to programmatically

reference the device's registers. To do this, two additional pieces of information are required.

The address of the device's first register

The address space where the registers live

Usually, device registers occupy consecutive locations. Therefore, the address of the first register is a

necessary clue in gaining access to all others. Unfortunately, the term address has varied meanings in a

virtual address space on different platforms, so a complete discussion of this topic will have to wait until

chapter 8. In general terms, however, device registers are accessed by the CPU in one of two ways: through

CPU-specific I/O instructions or through standard memory reference instructions. Figure 2.1 depicts the two

methods. Each of these methods is explained briefly in the following sections.

Figure 2.1. CPU access of I/O vs. memory registers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2.1. Parallel Port Interface Registers

Parallel port registers

Offset Register Access Description

0 Data R/W Data byte transferred through parallel port

1 Status R/O Current parallel port status

 Bits 0 - 1 Reserved

 Bit 2 0 - interrupt has been requested by port

 Bit 3 0 - an error has occurred

 Bit 4 1 - printer is selected

 Bit 5 1 - printer out of paper

 Bit 6 0 - acknowledge

 Bit 7 0 - printer busy

2 Control R/W Commands sent to parallel port

 Bit 0 1 - strobe data to/from parallel port

 Bit 1 1 - automatic line feed

 Bit 2 0 - initialize printer

 Bit 3 1 - select printer

 Bit 4 1 - enable interrupt

 Bits 5 - 7 Reserved

I/O SPACE REGISTERS

Some CPU architectures (notably Intel x86) reference device registers using I/O machine instructions. These

special instructions reference a specific set of pins on the CPU and therefore define a separate bus and

address space for I/O devices. Addresses on this bus are sometimes known as ports and are completely

separate from any memory address. On the Intel x86 architecture, the I/O address space is 64 KB in size

(16 bits), and the assembly language defines two instructions for reading and writing ports in this space: IN

and OUT.

Of course, as discussed in the first chapter, driver code should be platform-independent, so references to

the actual IN and OUT instructions should be avoided. Instead, one of several HAL macros listed in Table 2.

2 should be used.

MEMORY-MAPPED REGISTERS

Not all CPU architects see the need for a separate I/O address space, in which case device registers are

mapped directly into the memory space of the CPU. Motorola processors are one such example. Similarly, it

is possible (and common) to design hardware devices that interface to the memory address and data buses

of a CPU even when that CPU supports separate I/O space. In some cases, devices (e.g., a video adapter)

will touch both I/O and memory space.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Devices that expose large data buffers usually map into memory space. This allows fast and convenient

access from high-level languages such as C. The simple and familiar dereferencing of a pointer permits

direct access to a device's buffer.

As before, the HAL provides a set of macros for accessing memory-mapped device registers and these are

listed in Table 2.3. Since these macros differ from the I/O space HAL macros, a device that must be

supported on two different platforms (with different register access techniques) must be cleverly written. It is

common to write a driver-specific macro that points to one of two HAL macros, depending on the presence

of a unique compiler symbol. Techniques listed later in this book describe this process more fully.

Table 2.2. HAL Macros to Access Ports in I/O Space

HAL I/O Space Macros

Function Description

READ_PORT_XXX Read a single value from an I/O port

WRITE_PORT_XXX Write a single value to an I/O port

READ_PORT_BUFFER_XXX Read an array of values from consecutive I/O ports

WRITE_PORT_BUFFER_XXX Write an array of values to consecutive I/O ports

Table 2.3. HAL Memory-Mapped Register Macros

HAL Memory-Mapped Register Macros

Function Description

READ_REGISTER_XXX Read a single value from an I/O register

WRITE_REGISTER_XXX Write a single value to an I/O register

READ_REGISTER_BUFFER_XXX Read an array of values from consecutive I/O registers

WRITE_REGISTER_BUFFER_XXX Write an array of values to consecutive I/O registers

Device Interrupts

Since devices typically perform their hardware actions in parallel with and asynchronous to normal CPU

operation, it is common for devices to signal or generate an interrupt when CPU driver attention is required.

Different CPUs have different mechanisms for being interrupted, but there is always one (or more) pin that

can be driven or yanked by a device when service is needed. It is then the responsibility of the CPU to save

the CPU state and context of the currently running code path before jumping into a driver-supplied Interrupt

Service Routine.

Devices generate interrupts at strategic points in time, including

When the device has completed a previously requested operation and is now ready for an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

additional request.

When a buffer or FIFO of the device is almost full (during input) or almost empty (during output).

This interrupt allows the driver an opportunity to empty (input) or refill (output) the buffer to keep the

device operating without pause.

When the device encounters an error condition during an operation. This is really just a special form

of a completed operation.

Devices which do not generate interrupts can cause serious system performance degradation. Since the

CPU is shared among many running threads on Windows 2000, it is not acceptable to allow a driver to steal

precious cycles just waiting in a tight loop for a device operation to complete. Later chapters present some

techniques that can be used when working with noninterrupting devices.

With the complex world of PC hardware, buses connect to other buses through an interface, or bridge. As a

result, the source of an interrupt (e.g., a device) is often several hardware layers away from the CPU. The

techniques for prioritization and signaling are therefore distorted along the real path to the CPU.

Nevertheless, interrupts can be characterized as having several properties.

INTERRUPT PRIORITY

When several devices need attention at the same time, there needs to be a mechanism to describe which

device is serviced first. Presumably the most important device or the device that can least afford to wait is

given the highest priority. If a device can wait, it is assigned a lower interrupt priority. The assignment of an

interrupt priority to a device is a configuration option. Hopefully, this priority can be assigned by software

during device initialization.

Interrupt priority means that while the CPU is servicing a lower priority device (i.e., executing its Interrupt

Service Routine) a higher priority device can still interrupt. In such a case, the CPU has taken, or accepted,

two interrupts—the second on top of the first. Conversely, if a higher priority device is being serviced, lower

priority interrupts are held off (and presumably not lost) until the higher priority interrupt service is completed

and dismissed.

INTERRUPT VECTORS

Some devices and/or CPU architectures allow an interrupt to automatically dispatch (i.e., jump) to a

software-defined function for servicing of the interrupt. Without interrupt vector capability, a common

interrupt service routine must be supplied for all interrupt types. This common routine would then have to

poll through a list of possible interrupting devices (in priority order) to determine the actual device requiring

service. Since real systems handle tens to hundreds of interrupts per second, vectoring of interrupts can be

considerably more efficient.

SIGNALING MECHANISMS

There are two basic strategies that devices use when generating an interrupt. An older, less desirable

mechanism is known as edge-triggered or latched interrupts. Devices which generate edge-triggered

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

interrupts signal their need for service by producing a transition on a hardware line, perhaps from 1 to 0.

Once the transition has been generated, the device might release the line, restoring it to a logical 1 level. In

other words, the interrupt line is pulsed by the device and it is the responsibility of the CPU to notice the

pulse when it occurs.

Latched interrupts are subject to false signaling, since noise on the interrupt line may look like a pulse to the

CPU. Much worse, however, is the problem that occurs when two devices attempt to share a single

edge-triggered line. If the two devices signal simultaneously, the CPU recognizes only a single interrupt.

Since the pulse occurs at an instant in time, the fact that two (instead of one) devices needed service is

forever lost.

The classic example of lost edge-triggered interrupts occurred with old serial COM ports. Traditionally,

COM1 and COM3 shared a single edge-triggered x86 interrupt, IRQ4. As a result, both ports could not be

used simultaneously with interrupt-driven software. Attempts to use a mouse on COM1 with a modem on

COM3 invariably led to a frozen situation for either the mouse or modem driver, which remained waiting for

the lost interrupt to occur.

Such limitations do not occur when working with a level-sensitive, or level-triggered signaling mechanism.

Devices using this technique signal their intent to interrupt by keeping a hardware line driven until their need

is met. The CPU can detect an interrupt at any time since the line remains yanked until serviced. Thus, two

or more devices can safely share a level-sensitive interrupt. When two interrupts occur simultaneously, the

higher priority device can be safely serviced, knowing that the other device is continuing to signal its

intentions by continually driving the line.

PROCESSOR AFFINITY

When a hardware system includes more than one processor, an issue of how interrupts are handled is

raised. Is the device's interrupt line wired to only one CPU or to all? Usually, a special piece of hardware

exists to allow for a driver's configuration and distribution of the interrupt signal. If a particular CPU can

service a device's interrupt, those interrupts are said to have affinity to that CPU. Forcing interrupts to a

specific CPU might be used as an attempt to control device load balancing among several CPUs and

devices.

Data Transfer Mechanisms

There are three basic mechanisms that a device may use to move data to or from the CPU or memory.

Programmed I/O

Direct memory access (DMA)

Shared buffers

The transfer mechanism selected by a hardware designer is largely dictated by the device's speed and the

average size of data transfer. Of course, a device may choose to use more than one mechanism to transfer

its data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The following sections describe the differences between the three techniques.

PROGRAMMED I/O

Programmed I/O (PIO) devices transfer data directly through data registers of the device. Driver code must

issue an I/O instruction to read or write the data register for each byte of data. Software buffer addresses

and byte counts must be kept as state of the driver for larger transfers.

Since the actual device transfer rate is probably much slower than the time required by the CPU to write or

read a data register, a PIO device typically interrupts once for each byte (or word) of data transferred. Serial

COM ports are an example of PIO devices. Better hardware includes a FIFO in front of the real hardware,

thus allowing one interrupt for every 4 or 16 bytes transferred. Still, the ratio of interrupts to bytes transferred

remains high for PIO devices, and the technique is suitable only for slow devices.

Clever software design techniques can minimize the performance impact of PIO devices. Such techniques

are discussed in chapter 8.

DIRECT MEMORY ACCESS

Direct memory access (DMA) devices take advantage of a secondary processor called a DMA controller

(DMAC). A DMAC is a very limited auxiliary processor with just enough intelligence (and state) to transfer a

specified number of bytes between a device and memory. The DMAC operates in parallel with the main

CPU(s), and its operations typically have little effect on overall system performance.

To initiate an I/O operation, the driver must set up or program the DMAC by supplying a starting buffer

address for the transfer along with a byte transfer count. When the order to start is given by the driver, the

DMAC operates without further software intervention, moving bytes between device and system RAM.

When the DMAC completes the entire transfer, an interrupt is generated. Thus, driver code executes only at

the beginning of a transfer and at the completion of a transfer, freeing the CPU to perform other tasks.

High-speed devices that routinely need to transfer large blocks of data are well suited to utilize DMA.

Interrupt overhead and driver activity is significantly reduced as compared to PIO operation. Disks,

multimedia devices, and network cards are all examples of DMA devices.

It should be pointed out that the actual DMA transfer is not really transparent to other system operation. The

DMAC secondary processor competes for memory bandwidth with the CPU(s) of the system. If the CPU is

referencing main memory frequently, either the CPU or the DMAC must be held off while the previous

memory cycle completes. Of course, with today's large CPU cache sizes, a CPU seldom places massive

demand on memory bandwidth. A system with a large number of bus master DMA devices, however, may

find that memory bandwidth is saturated as the devices compete with each other during simultaneous

transfers.

DMA Mechanisms

Chapter 12 covers the details of DMA transfer, but to complete the overview of DMA now, there are two

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

general types of DMA operation.

SYSTEM DMA

The original PC specification by IBM (and subsequent standards) included a mainboard (a.k.a.

motherboard) with a set of community DMACs. Each DMAC is known as a DMA channel, and a given

device can be configured to utilize one (or more) of the available channels. There were originally four

channels, which expanded to seven with the introduction of the AT. System DMA is also known as slave

DMA.

The advantage of using system DMA is that the amount of hardware logic for DMA on a device is reduced.

The disadvantage is that when devices share a channel, only one at a time may actually participate in a

DMA transfer. At any given time, the DMA channel is "owned" by a single device—others attempting to

utilize the channel must wait their turn until the first device relinquishes ownership. This sharing situation

would not work well for two high-speed, busy devices. The floppy controller in most PCs is an example of

slave DMA operation.

BUS MASTER DMA

More complicated devices that do not wish to share DMAC hardware include their own customized DMA

hardware. Because the hardware to perform DMA is on-board the controller itself, ownership is always

guaranteed and transfers occur at will. SCSI controllers are often DMA bus masters.

Device-Dedicated Memory

The third type of data transfer mechanism that a device may use is shared memory. There are two general

reasons why a device may wish to borrow (or own) system memory address space.

RAM or ROM might be a resource that is device-resident. For convenient, high-speed access by the driver

code, it might make sense to map a view of the device's memory into CPU memory space. As an example,

the device might contain a ROM with startup code and data. In order for the CPU to execute this code, it first

must be mapped into the visible address space of the CPU.

The device may contain a high-speed specialized processor that relies on system memory for its buffer

needs. A video capture card, for example, might make use of system memory to record the video image

being streamed into it. Note that this second reason for borrowed address space is really a kind of DMA

operation. In this case, the secondary processor is more intelligent and capable of more operation than a

simple DMAC.

Devices generally take one of two approaches to deal with dedicated memory. Some specify a hard-coded

range of physical addresses for their use. A VGA video adapter card, for example, specifies a 128 KB range

of addresses beginning at 0xA0000 for its video buffer.

Other devices allow an initialization routine to specify the base address of the dedicated memory with

software. This latter technique is more flexible, but Windows 2000 allows for either method to work with the

operating system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Auto-recognition and Auto-configuration

Every hardware device consumes PC resources. These resources consist of an I/O address range, an IRQ,

a DMA channel, and perhaps a range of dedicated memory addresses. Since different devices are made at

different times by different vendors, the possibility for conflict of resources is high—inevitable, in fact.

The first PCs required that an intelligent owner configure each device by setting jumpers, or DIP switches, to

assign unique resources to each card within a system. The installation of a new device required knowledge

of what system resources were already assigned to existing devices. Errors in this manual configuration

process were common, with the net result being an unbootable system, a system with intermittent crashes,

or unusable devices.

New bus architectures have been introduced that deal directly with the problem of automatic recognition and

configuration. Autorecognition is necessary so new devices added to a system report their presence. This

could happen at boot/reset time, or better yet, as soon as the new hardware is inserted. Buses and

hardware that support hot plugability allow software to safely add and remove hardware without a reboot.

Auto-configuration allows software to assign available resources to software-configurable hardware. This

feature allows naive users to install new hardware without first setting jumpers. The operating system

ultimately remains in charge of assignment of resources to various devices, whether installed prior to or

post-boot.

Considerable effort is spent in subsequent chapters describing the protocol Windows 2000 uses to support

auto recognition and configuration. It should be apparent, however, that regardless of the device and bus

type, a well-behaved device must support several features.

DEVICE RESOURCE LISTS

At a minimum, a device must identify itself and provide the system with a list of resources that it consumes.

The list should include

Manufacturer ID

Device type ID

I/O space requirements

Interrupt requirements

DMA channel requirements

Device memory requirements

NO JUMPERS OR SWITCHES

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To support auto-configuration, the device must allow authorized software to dynamically set and change

port, interrupt, and DMA channel assignments. This permits Windows 2000 to arbitrate resource conflicts

among competing devices.

CHANGE NOTIFICATION

The device, in conjunction with the bus to which it attaches, must generate a notification signal whenever

the device is inserted or removed. Without this feature, it is not possible to support hot-plugability or

auto-recognition.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Buses and Windows 2000

A bus is a collection of data, address, and control signal lines that allow devices to communicate. Some

buses are wide, allowing simultaneous transmission of many bits of data and control. Others are nothing

more than a single wire, allowing devices to transmit data and control in a serial fashion. Some buses allow

any device to communicate with any other device on the bus. Others require the presence of a master

controller (e.g., a CPU or I/O controller) that is the sole recipient or sender of data.

Buses gain and lose popularity over time. Trade-offs between speed, cost, extensibility, and ease of use

change as bus technology advances. Device requirements change as new technologies are introduced into

the PC world. For example, the common use of digital video on home PCs has produced a need for a

simple, ultra-high speed bus.

The device driver architecture of Windows 2000 supports new buses easily and efficiently. Many popular

buses are supported "out of the box." The remainder of this section describes the currently supported buses

on Windows 2000. The descriptions are meant to provide an overview of the bus technology. For more

detailed information, please refer to the bibliography.

ISA: The Industry Standard Architecture

This is the bus that IBM specified for the PC/AT in the early 1980s. It supports 8-bit and 16-bit devices.

Because its origins are two decades old, ISA is neither fast nor simple. The bus clock rate is 8.33 MHz.

Since even 16-bit transfers take at least two clock cycles, the maximum transfer rate is only about 8

MB/second. Since current CPU speeds are two orders of magnitude faster, ISA is no longer a relevant bus.

Its inclusion in Windows 2000 and this book are for backward compatibility reasons only.

REGISTER ACCESS

ISA is the bus by which the need for autorecognition and autoconfiguration were defined. That is, ISA

provides the definition for bus chaos. No standards exist for register usage, so devices may grab any I/O

address. Generally, I/O addresses between 0x0000 and 0x00FF belong only to devices on the mainboard.

Territory between 0x0100 and 0x03FF is available for plug-in cards. Each card is typically assigned a

32-byte contiguous range of register addresses.

Sadly, many legacy ISA cards do not decode all 16 I/O address lines. Instead, they decode only the first 10

bits of address. Such cards respond to alias addresses in multiples of 0x400. A device at address 0x300

also responds at address 0x700. When such devices are present in a system, the 64 KB I/O address range

diminishes quickly.

INTERRUPT MECHANISMS

Interrupts on an ISA bus are traditionally handled with two Intel 8259A programmable interrupt controller

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

(PIC) chips (or an emulation thereof.) Each PIC provides eight levels of interrupt priority which, in essence,

multiplex eight lines into one. One of the eight input lines (line 2, to be precise) from the first (master) chip

routes to the output of the other (slave) PIC, which cascades the sixteen inputs from both chips into a single

output. Of course, since one input is lost to the cascade configuration, only 15 lines are left for devices to

utilize. Table 2.4 lists the ISA priority levels and their typical assignments.

The 8259A chip can be programmed to respond to either edge-triggered or level-sensitive interrupts. This

choice must be made for the entire chip, not on a line-by-line basis. Traditional BIOS code initializes both

PICs to use edge-triggered interrupts. Therefore, on typical systems, ISA cards may not share IRQ lines.

Some main boards that perform custom emulation of the 8259A do allow IRQ-by-IRQ programming for edge

vs. level triggering.

DMA CAPABILITIES

The standard implementation of ISA DMA uses a pair of Intel 8237 DMAC chips (or an emulation thereof).

Each of these chips provides four independent DMA channels. As with the PICs, the standard configuration

cascades the two chips, routing the output of the master DMAC through the first channel of the slave DMAC.

As before, the cascading technique results in the loss of one channel, leaving seven free for DMA devices.

Table 2.5 describes the channel configurations for the two DMACs.

When more than one DMA channel is in simultaneous use, the DMAC chips follow a software-selected

scheme for prioritization. Typically, highest priority is given to channel 0 and lowest to channel 7. Also note

that only the slave DMAC can be used to transfer words (16 bits). These upper channels can transfer data at

twice the rate of the lower channels, since they move two bytes per cycle.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2.4. Interrupt Priorities on ISA Systems

ISA Interrupt Priority Sequence

Priority IRQ Line Controller Use for…

Highest 0 Master System timer

 1 Master Keyboard

 2 Master (Unavailable—pass through from slave)

 8 Slave Real-time clock alarm

 9 Slave (Available)

 10 Slave (Available)

 11 Slave (Available)

 12 Slave (Available—usually the mouse)

 13 Slave Error output of numeric coprocessor

 14 Slave (Available—usually the hard disk)

 15 Slave (Available)

 3 Master 2nd serial port

 4 Master 1st serial port

 5 Master 2nd parallel port

 6 Master Floppy disk controller

Lowest 7 Master 1st parallel port

Finally, the ISA bus has only 24 address lines. This restricts DMA transfers to only the first 16 MB of system

memory. This artifact leaves Windows 2000 with a special problem when dealing with ISA DMA transfers,

and chapter 12 discusses the resolution to this complication.

Table 2.5. DMA Channel Usage on the ISA Bus

ISA DMA Channels

Channel Controller Transfer Width Max Transfer

0 - 3 Master 8 bits (bytes) 64 KB

4 Slave (Unavailable) N/A

5 - 7 Slave 16 bits (words) 128 KB

AUTOMATIC RECOGNITION AND CONFIGURATION

As already mentioned, ISA is the poster child for highlighting the need for dynamic configuration of devices.

ISA devices don't announce themselves, they don't provide a resource requirements list, and they are not

required to provide software dynamic configuration. Configuration is manual and typically performed with

jumpers or DIP switches.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Newer ISA devices attempt to correct this problem by conforming to a Plug and Play extension to the ISA

standard. These devices gained considerable popularity with the introduction of the Windows 95 operating

system. Versions of NT prior to Windows 2000 did not really support Plug and Play, so these devices relied

on a special installation program to operate properly with NT. Windows 2000, however, correctly supports

these newer ISA devices and exploits their capabilities.

EISA: The Extended Industry Standard Architecture

The EISA bus is an industry standard extension to the original ISA bus architecture. The attempt of EISA

was to remove the ISA limitations without causing undue compatibility problems with legacy ISA cards.

Of course, this compatibility requirement necessarily limits the architecture in several ways. For example,

while the data bus width was widened to 32 bits, the clock rate remains at 8 MHz. The maximum transfer

rate is only about 32 MB/sec. Also, since EISA sockets had to accept ISA cards, it was impossible to fix

some electrical noise problems caused by the layout of ISA wiring.

REGISTER ACCESS

The EISA bus contains up to 15 slots or sockets. Each slot is assigned a fixed range of 4 KB I/O addresses,

thus minimizing port resource conflict. Table 2.6 lists the I/O address ranges assigned to each socket. Since

ISA presents an aliasing problem (ISA devices respond to addresses in multiples of 0x400), only 256 bytes

of register address space is guaranteed to be unique.

INTERRUPT MECHANISMS

EISA's interrupt capabilities are a superset of the ISA scheme. While EISA interrupt controllers provide the

same 15 levels available on the ISA bus (see Table 2.4), each IRQ line can be individually programmed for

edge-triggered or level-sensitive operation. This allows both ISA and EISA cards to coexist on the same

bus.

DMA CAPABILITIES

As with ISA systems, two ganged DMAC's provide seven independent system DMA channels, numbered 0

through 7. (Channel 4 remains unavailable as it is the tie point for the two devices.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 2.6. I/O Space Used by EISA Systems

EISA I/O Address Ranges

Address Range Used by…

0x0400-0x04FF EISA system board devices

0x0800-0x08FF EISA system board devices

0x0C00 - 0x0CFF EISA system board devices

0x1000 - 0x1FFF EISA card slot 1

0x2000 - 0x2FFF EISA card slot 2

: :

0xF000 - 0xFFF EISA card slot 15

The EISA architecture extends the ISA DMA model in several ways. First, any of the seven channels can

perform 8-bit, 16-bit, or 32-bit data transfers. Thus, any device can use any channel.

EISA DMA channels can also be individually programmed to use a variety of different bus cycle formats.

This permits new devices to run faster while still maintaining compatibility with legacy ISA cards. Table 2.7

describes the EISA DMA bus cycles.

Table 2.7. The EISA DMA Bus Cycles

EISA DMA Bus Cycle Formats

Bus Cycle Transfer Size Transfer Rate Compatible with

ISA compatible 8-bit 1.0 MB/sec Any ISA

 16-bit 2.0 MB/sec Any ISA

Type A 8-bit 1.3 MB/sec Most ISA

 16-bit 2.6 MB/sec Most ISA

 32-bit 5.3 MB/sec EISA only

Type B 8-bit 2.0 MB/sec Some ISA

 16-bit 4.0 MB/sec Some ISA

 32-bit 8.0 MB/sec EISA only

Type C (Burst) 8-bit 8.2 MB/sec EISA only

 16-bit 16.5 MB/sec EISA only

 32-bit 33.0 MB/sec EISA only

Another enhancement is the EISA DMAC's 24-bit count register. For 8-bit, 16-bit, and 32-bit devices, this

register counts bytes, thus allowing a single transfer operation to move up to 16 MB. For compatibility, the

DMAC can be programmed to use this as a word counter for 16-bit transfers.

Finally, since EISA DMAC's generate full 32-bit addresses, they can access the entire 4 GB physical

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

address space of the system. There is no restriction placed on DMA transfers occurring in the first 16 MB

range as there is with ISA.

DEVICE MEMORY

The EISA bus has 32 address lines. Device-dedicated memory can live anywhere within the system's 4 GB

address range. This also applies to any onboard ROM the device might have.

AUTO RECOGNITION AND CONFIGURATION

Several components take part in the EISA configuration process. First, each card is required to implement a

4-byte ID register at location 0xn C80, where n is the EISA slot number from 1 to 0xA. This register identifies

the manufacturer, the device type, and the revision level of the card placed in that slot.

Second, designers can use the remaining 124 bytes (from 0xn C84 to 0xn CFF) to implement other registers

that configure the card. For example, there might be a configuration register for the DMA channel number

the card should use, and another for setting its IRQ level. Storing values into these registers is the

equivalent of setting DIP switches and jumpers on legacy ISA cards.

The third component is a script file that contains the card's resource list and defines the location and usage

of any device-specific configuration registers on the card. This file is written in a standard EISA scripting

language, and its name is based on the contents of the card's ID register. This script usually comes on a

floppy disk supplied by the card's manufacturer.

The final piece of the puzzle is an EISA configuration program that runs when a system boots. The program

scans the EISA slots, looking for cards in previously empty locations. If it finds one, it uses the contents of

the slot's ID register to construct the name of a configuration script and then asks the user for the floppy

containing that script. Once the disk is inserted, the configuration program assigns resources to the card. It

also copies these assignments to nonvolatile CMOS memory associated with the slot, so it won't be

necessary to ask for the script file with each boot.

Windows 2000 auto-detects many kinds of EISA cards. To gain access to EISA slots directly, the HAL

provides HalGetBusData and HalSetBusData.

PCI: The Peripheral Component Interconnect

Fast networks, full-motion video, and 24-bit pixel displays all require extremely high data transfer rates. The

PCI bus is an attempt to satisfy the needs of such demanding hardware. Although the initial design came

from Intel, PCI is relatively processor-neutral. PCI has been incorporated into Alpha (DEC) and PowerPC

(Motorola) systems. Figure 2.2 shows a typical PCI system.

By using a fast bus clock (33 MHz) and a number of clever tricks, the PCI architecture can reach 132

MB/second for sustained 32-bit transfers and twice that rate for 64-bit operations. Some things that

contribute to this zippy performance include:

The PCI protocol assumes that every transfer is going to be a burst operation. This results in higher

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

throughput rates for fast devices trying to move large amounts of data.

PCI supports multiple bus masters and permits direct device-to-device transfers (with no

intermediate stops in memory). This can result in much more overlap between I/O and CPU

operations.

A central bus arbiter reduces latency by overlapping arbitration with data transfers. This allows the

next owner to start on operation as soon as the current owner releases the bus.

An intelligent bridge between the host CPU and the PCI bus performs various caching and

read-ahead functions. This helps to reduce the amount of time the CPU spends waiting for data.

The PCI architecture allows 32 physical units (called devices) to be plugged into one bus. Each of these

physical units can contain up to eight separate functional units (called functions). After taking away one

function address for generating broadcast messages, there can be up to 255 addressable functions on a

single PCI bus. Furthermore, one system Figure 2.2 can have up to 256 separate PCI buses.

Figure 2.2. Typical PCI bus system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

REGISTER ACCESS

Although the PCI uses 32-bit addresses, I/O register space on 80x86 machines is still limited to 64 kilobytes,

so any PCI registers have to be squeezed into I/O space along with everything else. Furthermore, on

systems with an EISA or ISA bridge, designers still need to avoid any I/O addresses being used by legacy

hardware.

Along with I/O space and memory addresses, PCI defines a range of addresses known as configuration

space. The discussion of PCI autoconfiguration explains how configuration space works.

INTERRUPT MECHANISMS

The PCI bus has four equal-priority interrupt request lines (INTA-INTD) which are active-low, level-triggered,

and shareable. A single-function PCI device has to use INTA, while a multifunction device can use any

sequential combination of the four beginning with INTA. The only restriction is that each function can be

connected to only one request line.

The PCI specification is relatively neutral when it comes to interrupt priorities. Instead, it depends on an

external controller to redirect PCI interrupt requests to the proper system interrupt line. For example, on a

PC the redirector converts a given PCI function's request on INTA-INTD into a request on one of the

IRQ0-IRQ15 lines. To make this work, any PCI function that generates interrupts must implement the

following two configuration registers:

Interrupt pin register.

This read-only register identifies the PCI signal line (INTA-INTD) used by this function.

Interrupt line register.

This read-write register specifies the priority and vector that the interrupt redirector should assign to

this function. On a PC system, the values 0x00 - 0x0F correspond to IRQ0 - IRQ15.

This is a very flexible scheme because it doesn't impose any specific interrupt policies on the system

designer. This makes it easier to support processor environments other than the 80x86.

DMA CAPABILITIES

The PCI specification doesn't include the notion of slave DMA. Instead, the native PCI functions are either

bus masters doing their own DMA or they use programmed I/O. The only devices that perform slave DMA

on a PCI machine are non-PCI boards plugged into the system's EISA bridge.

In a native PCI DMA operation, the participants are referred to as agents, and there are always two of them

involved in any transaction.

Initiator.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This is a bus master that has won access to the bus and wants to set up a transfer operation.

Target.

This is the PCI function currently being addressed by the initiator with the goal of transferring data.

Because any PCI bus master can be an initiator, it is possible to transfer data directly between two PCI

devices with no intermediate stops in memory. This powerful capability lends itself well to high-speed

networking and video applications.

It's also worth mentioning that the PCI specification doesn't define the policy to be used for arbitrating

access to the bus. It only defines the timing of the arbitration signals on the bus. The method used to

determine who should go next is system-specific.

DEVICE MEMORY

Dedicated memory used by PCI functions can live anywhere within the 32-bit address space. This feature

must be enabled on a function-by-function basis, however, before the PCI device's memory can be seen by

the host CPU.

An interesting feature of PCI is that a single function can have multiple on-board ROM images, each for a

different CPU architecture. This gives vendors the ability to sell the same product in several different

markets. The PCI specification defines a standard header format for ROM blocks. Thus, the initialization

software can locate the proper chunk of ROM and load it into memory for execution.

AUTOCONFIGURATION

The PCI specification dictates that each individual function on the bus must have its own 256-byte storage

area for configuration data. This area is referred to as the PCI function's configuration space.

The first 64 bytes of any PCI function's configuration space (called the header) have a predetermined

structure, while the remaining 192 bytes belong to the card designer. System software can use the header

to identify a PCI function and assign resources to it. The header area includes

Information about the vendor, the device type, and its revision level.

A standard pair of command status registers for enabling various features and reporting errors.

A resource list that specifies the function's memory and I/O space requirements.

The interrupt pin and line registers described above.

Pointers to device-specific ROM.

At 256 bytes per function, the configuration space for a PCI system could easily grow quite large—certainly

much larger than the 64 KB I/O space available on x86 processors. Mapping it into memory is always an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

option, but that too would consume a lot of address space. Instead, PCI functions may access configuration

data using the following two registers:

Configuration address register.

This identifies the bus number, the device, the function, and the address in configuration space

accessed.

Configuration data register.

This acts as a data buffer between the CPU and configuration space. After setting the address

register, writing or reading this register transfers information to or from configuration space.

Fortunately, Windows 2000 provides HAL functions to simplify access to configuration data. The

HalGetBusData, HalSetBusData, and HalAssignSlotResources functions provide a simple way to access

this data.

USB: The Universal Serial Bus

A consortium of companies (including Intel and Microsoft) developed the Universal Serial Bus specification.

It was intended to provide a low-cost, medium-speed bus for such areas as digital imaging, PC telephony,

and multimedia games. The current USB specification is revision 1.1, and the list of member companies

which participate in the consortium continues to grow. A much higher-speed USB proposal is set forth in

revision 2.0.

Full-speed USB devices transfer data at a rate of 12 Mb/second. Low-speed devices use a slower transfer

rate of 1.5 Mb/second. USB version 2.0 should allow data transfer at the rate of 480 Mb/sec. Data is

transferred serially over a pair of data wires. Power for some devices is available via separate power and

ground wires.

Interestingly, USB devices can transfer data at about one-fifth the rate of ISA cards, but without the limitation

of needing a mainboard slot. Devices can be connected over a distance of about 5 meters, but USB hubs

are also available which extend the range and provide for multiple device connections to a single USB bus.

Up to five hubs can be chained together, providing a possible connection distance of almost 30 meters. An

example topology of USB devices and hubs is shown in Figure 2.3.

Figure 2.3. Example USB topology.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

REGISTER ACCESS

Device registers are accessed using specific USB commands, 8-bit to 64-bit streams that are used to

configure, control power, and retrieve small amounts of device data. Up to 127 USB devices can be

connected to a host, with a bus-relative address assigned dynamically as devices are added. The

transmission of command data is largely device-specific, so the number and meaning of device commands

is defined by each device.

Separately, block data is transferred using an isochronous mechanism. Up to 1023 bytes of data can be

transferred in a single USB frame. A frame occupies a fixed time interval of 1 millisecond. Command and

block data access occurs over a logical abstraction defined by USB as a pipe. The default pipe is used to

convey command data, while any number of stream and message pipes can be used to transfer data

directly to higher software layers.

INTERRUPT MECHANISMS

For USB, true interrupts do not actually exist. Instead, the host USB interface polls devices for interrupt data

at fixed intervals, usually every 16 to 32 millisecond. The device is allowed to send up to 64 bytes of data to

the host when polled.

From a driver's perspective, the interrupt and DMA capabilities of USB are in fact defined by the host

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

adapter that contains the physical USB interface. Considerable effort has been placed on the

standardization of the host interface, and two have emerged: the Open Host Controller Interface (OpenHCI)

and the Universal Host Controller Interface (UHCI). The host controller provides a conventional interrupt and

DMA transfer mechanism.

DMA CAPABILITIES

USB devices have no direct access to system memory. They are isolated from system resources by the host

USB interface. USB devices do not support DMA. Nevertheless, the USB host interface provides an illusion

of DMA for each logical pipe connected to a device. As the host interface collects data from a USB device, it

uses DMA to place the received data into system memory. Thus, it is the host interface, not the USB device

itself, which provides DMA capability. The bus type to which the host interface connects defines the DMA

rules.

AUTOMATIC RECOGNITION AND CONFIGURATION

USB was designed to support Plug and Play directly and intelligently. Each USB device attaching to a USB

port or hub signals its presence and reports manufacturer ID and device descriptor. Windows 2000 supports

Plug and Play of USB devices by detecting their presence, locating, and then installing the appropriate driver

for the device.

IEEE 1394: The Firewire TM Bus

Originally proposed and implemented by Apple Computers, the Institute of Electrical and Electronic

Engineers (IEEE) defined a high-speed, peer-to-peer serial bus to accommodate applications where the

lower speed of USB proved inadequate. IEEE 1394 (currently IEEE 1394a-2000) describes a bus standard

that supports three transfer rates, 100, 200, and 400 Mb/sec. (IEEE 1394b will support faster rates). Even at

the slowest rates, more than 10 MB/sec are transferred, faster than with the original ISA mainboard bus.

The name Firewire remains a trademark of Apple Computers. The term 1394 is typically used to describe

the bus on PC hardware. Sony and other camcorder companies are using the term "i.Link
TM

 " for their

implementation of 1394.

Each 1394 device can connect to its host using a 4.5 meter, 6- or 4-wire cable. Up to sixty-three devices can

be daisy-chained over a total distance of 72 meters. Bridges are devices that span buses and thus allow the

connection of up to 62 additional devices. Up to 1024 buses may be bridged together. The theoretical

number of devices allowed in the 1394 topology is 64 K. A 16-bit Node ID is assigned when a new device is

attached.

The 6-wire cable includes two twisted pairs for separate data transfer and clocking of data, and one pair for

device power. The entire cable is shielded and jacketed and terminates with a Nintendo Gameboy-derived

connector.

Typical uses for 1394 interfaces are found on digital cameras that must transfer large amounts of data from

device memory to a PC. Digital video editing typically requires significant bandwidth, and new equipment

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

with this capability now includes a Firewire interface.

REGISTER ACCESS

IEEE 1394 conforms to the IEEE 1212 standard of Control and Status Register (CSR) architecture. The

CSR standard defines a 64-bit fixed addressing scheme, which includes a 10-bit bus number, a 6-bit Node

ID with the remaining 48 bits left for device use. While recommendations for proper usage are given in the

1212 spec, the 256 TB (terabyte) address range for device registers is sufficient for most needs.

As with the USB scheme, device register usage is reserved for control and status and limited data transfer

(up to 64 bytes). Isochronous clocking is used when bandwidth must be guaranteed (e.g., camera data)

while asynchronous clocking is used for guaranteed arrival (e.g., hard disk data).

INTERRUPT MECHANISMS

As with USB, 1394 simulates device interrupts. A device must send a packet of data to announce its status

or state when host intervention is required. The driver for the device must respond to the data placed in the

system address space by the 1394 interface.

The 1394 family of standards includes an Open Host Controller Interface. The OHCI specification is the

standard of most significance to a driver author. It provides a conventional interrupt and DMA mechanism for

1394 devices. The 1394 Trade Association provides a convenient link to the OHCI spec and other relevant

information: http://www.1394.ta.org.

DMA CAPABILITIES

The host interface adapter uses DMA to transfer data and commands to and from system memory. The

1394 devices cannot directly access system memory. OHCI adapters provide a range of addresses that are

routed by software and the DMAC of the host interface directly into system memory. Thus, an illusion of

DMA is provided for each device.

AUTOMATIC RECOGNITION AND CONFIGURATION

The 1394 was designed to support Plug and Play directly and intelligently. Each device that attaches to the

bus signals its presence with a bus reset. The host (or other nodes) then enumerates the device's

configuration ROM to discover it.

The PC Card (PCMCIA) Bus

About ten years ago, several companies jointly developed a standard bus architecture for mobile devices.

Initially, the focus was on memory cards and the group became the Personal Computer Memory Card

International Association (PCMCIA). The mobile environment is short on size and power resources, so a

small form factor was developed with heavy emphasis on power management. Today, more than 300

companies are members of PCMCIA.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.1394.ta.org

The original PC Card standard defined a 68-pin interface with one of three card thicknesses, Type I, Type II,

and Type III. The standard defined bus speeds comparable to ISA—again, the emphasis was on power and

size, not performance.

The term PCMCIA card is often used interchangeably with PC Card. This terminology creates confusion;

PCMCIA is an organization, while PC Card defines a bus interface. Today PCMCIA defines (at least) three

bus interfaces: PC Card, DMA, and CardBus. Thus, a PCMCIA card does not signify which kind of card is

being discussed.

The original PC Card bus clocked at ISA speeds, 8 MHz, and allowed for 8-bit or 16-bit devices. Thus, the

maximum transfer rate for a 16-bit card was 16 MB/sec. The CardBus architecture allows for 32-bit devices.

It clocks at the PCI bus speed of 33 MHz, thus allowing a maximum transfer rate of more than 128 MB/sec.

REGISTER ACCESS

The PC Card standard defines a 26-bit address range for its I/O access (64 MB). Otherwise, addressing is

similar to the ISA scheme. For CardBus, a full 32-bit address range is defined, similar to the PCI bus.

INTERRUPT MECHANISMS

The PC Card and CardBus standards define a single pin for interrupts, IREQ or CINT. It is level-sensitive

and can therefore be shared with other cards on the same bus. However, multifunction PCMCIA cards must

arbitrate in software for sharing of the single interrupt wire.

DMA CAPABILITIES

The original PC Card standard did not allow for any DMA access. A newer standard released in 1995 added

DMA to a PC Card extension, aptly titled just DMA. The DMA standard allows for byte or 16-bit word

transfers in a manner similar to ISA. The standard assumes that devices will be bus slaves (of shared

DMACs) and, like ISA, bus master DMA cards are difficult to implement.

The CardBus standard allows DMA much like the PCI bus. Bus mastering is a straightforward addition to a

CardBus device, although the limited form factor requires considerable component integration. Sixteen-bit

and 32-bit data transfers are allowed up to the CardBus clock speed of 33 MHz.

AUTOMATIC RECOGNITION AND CONFIGURATION

The intended uses of the PC Card bus mandated that complete Plug and Play capabilities be included. PC

Cards continue to set the standard for hot plugability and autoconfiguration.

Software for the PC Card or CardBus standards is layered in two major pieces: Socket Services and Card

Services. The Socket Service is BIOS-level software that manages one or more sockets on a system. It is

responsible for detection and notification of device insertion or removal.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Card Service software layer manages hardware resources for a given card.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Hints for Working with Hardware

Working with new hardware can be a real challenge. Hardware engineers follow a different design

methodology than do software engineers. (Consider the user interface on a VCR.) The following

hints may help make it easier to work with a new piece of hardware.

Learn about the Hardware

Before starting a new driver, learn as much as possible about the hardware itself. Most of the

information needed should be in the hardware documentation. At the very least, ensure that

information is available for

bus architecture

control registers

error and status reporting

interrupt behavior

data transfer mechanisms

device memory

BUS ARCHITECTURE

The hardware's bus architecture will have a big impact on the design of the driver. Auto recognition

and configuration information must be clear. New drivers will be expected to participate in the Plug

and Play mechanisms offered by Windows 2000.

CONTROL REGISTERS

The size and addressing scheme of the device's registers must be known. The purpose of each

register and contents of any control, status, and data registers must be fully described. Odd

behavior must be identified. For example:

Some device registers may be read-only or write-only.

A single register address may perform different functions on a read than it does on a write.

Data or status registers may not contain valid information until some fixed time interval after

a command is issued.

Register access in a specific order may be required.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ERROR AND STATUS REPORTING

Determine any protocols used by the device for reporting hardware failures and device status.

INTERRUPT BEHAVIOR

Find out exactly what device conditions cause the hardware to generate an interrupt, and whether

the device uses more than one interrupt vector. If working with a multidevice controller, interrupts

may come from the controller itself, and there must be a mechanism to identify the actual device

that wants attention.

DATA TRANSFER MECHANISMS

Drivers for programmed I/O devices are very different from DMA drivers. Some devices are capable

of doing both kinds of I/O. In the case of a DMA device, find out if the DMA mechanism is bus

master or bus slave, and whether there are any limitations on the range of physical buffer addresses

it can use.

DEVICE MEMORY

If the device uses dedicated memory, find out how to access it. It could be mapped at a fixed

physical location or there may be a register that must be initialized, pointing to the mapped address.

Make Use of Hardware Intelligence

Some peripherals contain their own processors that perform both diagnostic and device control

functions. The processor may be running under the control of some firmware, or it may be possible

for the driver itself to download code to on-board RAM at initialization time.

When working with a smart peripheral, it makes sense to take full advantage of the device's

intelligence. Proper use of hardware features can result in significantly better driver performance

and improved diagnostic capabilities.

Test the Hardware

New hardware is seldom delivered bug-free. Hardware should be tested early and tested often.

Besides providing an opportunity to discover design errors, it also provides a discovery process for

the device author to learn about a device's behavior.

BASIC TESTS

Make sure the device and any associated cables are all compatible with the development machine.

Power up everything and try a simple boot. At a gross level, this ensures that the device isn't

interfering with anything else in the box.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

STANDALONE TESTS

If possible, write some standalone code that tests the board and any firmware it may contain. This

will usually be a program that runs without the benefit of an operating system, or perhaps under

DOS. With luck, the hardware vendor will provide some sort of exerciser for this purpose.

Finally, remember to test any on-board diagnostics by putting the hardware into an illegal state. The

on-board firmware should detect and report the problem.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

This chapter presented a cursory look at hardware issues. A driver needs to find the devices it will

be controlling and determine the system resources required. Some bus architectures make this

easy, some hard. Later chapters describe the services provided by Windows 2000 to make this job

easier.

The next chapter provides an overview of the Windows 2000 I/O process.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 3. Kernel-Mode I/O Processing

CHAPTER OBJECTIVES

How Kernel-Mode Code Executes

Use of Interrupt Priorities by Windows 2000

Deferred Procedure Calls (DPCs)

Access to User Buffers

Structure of a Kernel-Mode Driver

I/O Processing Sequence

Summary

With the hardware issues covered in the previous chapter, this chapter introduces the role of

the Windows 2000 Executive components in processing I/O requests.

This chapter covers three areas. First, in sections 3.1 through 3.4, it introduces key concepts and

techniques important to I/O processing.

Next, the chapter describes the purpose of the various routines that make up a driver. The details of

each routine are covered in subsequent chapters.

Finally, the entire life cycle of an I/O request is examined. A good understanding of the I/O flow of

control is probably the most important piece of knowledge a driver author can have.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

How Kernel-Mode Code Executes

The kernel-mode parts of Windows 2000 (including a device driver) consist of massive amounts of

code. But just what causes this code to execute? All code executes within a hardware and software

context. A context, as used here, describes the state of the system while a CPU instruction

executes. It includes the state of all CPU registers (including the stack), the processor mode (user or

kernel), and significantly, the state of the hardware page tables. This last item describes what

memory can be seen by executing code, and where within the address space that memory is

located.

Clearly, code must make assumptions about the context in which it executes. Windows 2000 defines

three execution contexts for kernel-mode execution. In other words, kernel-mode driver code

executes in one of three contexts.

Trap or Exception Context

Chapter 1 described how user-mode code can request an OS service by trapping into kernel mode.

When a kernel-mode routine executes, it may be because a user-mode application or service

caused a hardware or software exception, or trap, to occur. In this case, the context of the

kernel-mode code is largely that of the user code that caused the exception. The memory seen by

kernel-mode code includes the same view as seen by the requesting user-mode thread.

When a user-mode thread makes a direct request of the I/O Manager, the I/O Manager executes

within the context of the requester. In turn, the I/O Manager may call a dispatch routine within a

device driver. Dispatch routines of a driver therefore execute within this exception context.

Interrupt Context

When the hardware (or software) generates an acknowledged interrupt, whatever code is executing

within the system is stopped dead in its tracks. The executing context is saved and control is

promptly handed over to a service routine appropriate for the kind of interrupt that occurred.

Clearly, the context of the executing code at the time of the interrupt is irrelevant and arbitrary.

Kernel-mode code servicing the interrupt cannot make any assumptions about the state of the page

tables. User-mode buffers must be considered unavailable in this context. Code running in interrupt

context (which includes the bulk of driver routines) can make no assumptions about the current

process or thread.

Kernel-Mode Thread Context

The final possibility is that a piece of code runs in the context of a separate kernel thread. Some

drivers spawn separate threads to deal with devices that require polling or to deal with specialized

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

timeout conditions. These kernel-mode threads are not significantly different from user-mode

threads described in Win32 programming books. They execute when scheduled by the kernel's

scheduler, in accordance with the assigned thread priority.

Like the interrupt context, kernel-mode thread context can make no assumption about the current

process or thread. The state of the page tables is largely arbitrary as seen by the thread. Chapter 14

discusses the use of kernel-mode threads.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Use of Interrupt Priorities by Windows 2000

The last chapter introduced the concept of interrupt priorities as a means of arbitrating among

different I/O devices competing for CPU service. This section presents a scheme implemented by

Windows 2000 that not only takes into account hardware interrupt prioritization, but extends the

concept to include prioritization of execution context.

CPU Priority Levels

Since different CPU architectures have different ways of handling hardware interrupt priorities,

Windows 2000 presents an idealized, abstract scheme to deal with all platforms. The actual

implementation of the abstraction utilizes HAL routines that are platform-specific.

The basis for this abstract priority scheme is the interrupt request level (IRQL). The IRQL

(pronounced irk-al) is a number that defines a simple priority. Code executing at a given IRQL

cannot be interrupted by code at a lower or equal IRQL. Table 3.1 lists the IRQL levels used in the

Windows 2000 priority scheme. Regardless of the underlying CPU or bus architectures, this is how

IRQL levels appear to a driver. It is important to understand that at any given time, instructions

execute at one specific IRQL value. The IRQL level is maintained as part of the execution context of

a given thread, and thus, at any given time, the current IRQL value is known to the operating

system.

Table 3.1. IRQL Level Usage

IRQL Levels

Generated By IRQL Name Purpose

Hardware HIGHEST_LEVEL Machine checks and bus errors

 POWER_LEVEL Power-fail interrupts

 IPI_LEVEL Interprocessor doorbell for MP systems

 CLOCK2_LEVEL Interval clock 2

 CLOCK1_LEVEL Interval clock 1

 PROFILE_LEVEL Profiling timer

 DIRQLs Platform-dependent number of levels for I/O device interrupts

Software DISPATCH_LEVEL Thread schedule and deferred procedure call execution

 APC_LEVEL Asynchronous procedure call execution

 PASSIVE_LEVEL Normal thread execution level

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The actual hardware interrupt levels fall between DISPATCH_LEVEL and PROFILE-LEVEL of the

IRQL abstraction. These hardware interrupt levels are defined as the device IRQLs (DIRQLs).

Interrupt Processing Sequence

When an interrupt reaches the CPU, the processor compares the IRQL value of the requested

interrupt with the CPU's current IRQL value. If the IRQL of the request is less than or equal to the

current IRQL, the request is temporarily ignored. The request remains pending until a later time

when the IRQL level drops to a lower value.

On the other hand, if the IRQL of the request is higher than the CPU's current IRQL, the processor

performs the following tasks:

Suspends instruction execution.1.

Saves just enough state information on the stack to resume the interrupted code at a later

time.

2.

Raises the IRQL value of the CPU to match the IRQL of the request, thus preventing lower

priority interrupts from occurring.

3.

Transfers control to the appropriate interrupt service routine for the requested interrupt.4.

When finished, the service routine executes a special instruction that dismisses the interrupt. This

instruction restores the CPU state information from the stack (which includes the previous IRQL

value) and control is returned to the interrupted code.

Notice that this scheme allows higher-IRQL requests to interrupt the service routines of lower-IRQL

interrupts (an interrupt of an interrupt). Because the whole mechanism is stack-based, this doesn't

cause confusion. It does, however, raise synchronization issues addressed in chapter 5.

Software-Generated Interrupts

The lower entries in the IRQL list of Table 3.1 are tagged as being software-generated. Some

interrupt processing is initiated by kernel-mode code by the execution of a privileged instruction.

Windows 2000 uses these software interrupts to extend the interrupt prioritization scheme to include

thread scheduling. It can be used to synchronize activity among competing threads by arbitrarily

raising the IRQL of one thread to prevent interruption by the others. The next section describes the

use of software interrupts and IRQL levels to schedule medium-priority driver tasks.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Deferred Procedure Calls (DPCs)

While a piece of kernel-mode code is running at an elevated IRQL, nothing executes (on the same CPU) at

that or any lower IRQL. Of course, if too much code executes at too high an IRQL, overall system

performance will degrade. Time-critical event handling could be deferred and cause more disastrous results.

To avoid these problems, kernel-mode code must be designed to execute as much code as possible at the

lowest possible IRQL. One important part of this strategy is the Deferred Procedure Call (DPC).

Operation of a DPC

The DPC architecture allows a task to be triggered, but not executed, from a high-level IRQL. This deferral

of execution is critical when servicing hardware interrupts in a driver because there is no reason to block

lower-level IRQL code from executing if a given task can be deferred. Figure 3.1 illustrates the operation of a

DPC. Subsequent chapters present more specific information about the use of a DPC in a driver, but an

overview is presented below.

Figure 3.1. Deferred Procedure Call flow.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When some piece of code running at a high (e.g., hardware) IRQL wants to schedule some of its

work at a lower IRQL, it adds a DPC object to the end of the system's DPC dispatching queue and

requests a DPC software interrupt. Since the current IRQL is above DISPATCH_ LEVEL, the

interrupt won't be acknowledged immediately, but instead remains pending.

1.

Eventually, the processor's IRQL falls below DISPATCH_LEVEL and the previously pended

interrupt is serviced by the DPC dispatcher.

2.

The DPC dispatcher dequeues each DPC object from the system queue and calls the function

whose pointer is stored in the object. This function is called while the CPU is at DISPATCH_LEVEL.

3.

When the DPC queue is empty, the DPC dispatcher dismisses the DISPATCH_LEVEL software

interrupt.

4.

Device drivers typically schedule cleanup work with a DPC. This has the effect of reducing the amount of

time the driver spends at its DIRQL and improves overall system throughput.

Behavior of DPCs

For the most part, working with DPCs is easy because Windows 2000 includes library routines that hide

most details of the process. Nevertheless, there are two frustrating aspects of DPCs that should be

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

highlighted.

First, Windows 2000 imposes a restriction that only one instance of a DPC object may be present on the

system DPC queue at a time. Attempts to queue a DPC object that is already in the queue are rejected.

Consequently, only one call to the DPC routine occurs, even though a driver expected two. This might

happen if two back-to-back device interrupts occurred before the initial DPC could execute. The first DPC is

still on the queue when the driver services the second interrupt.

The driver must handle this possibility with a clever design. Perhaps a count of DPC requests could be

maintained or a driver might choose to implement a separate (on the side) queue of requests. When the real

DPC executes, it could examine the count or private queue to determine exactly what work to perform.

Second, there is an issue of synchronization when working with multiprocessor machines. One processor

could service the interrupt and schedule the DPC. However, before it dismisses the interrupt, another

parallel processor could respond to the queued DPC. Thus, the interrupt service code would be executing

simultaneously with the DPC code. For this reason, DPC routines must synchronize access to any

resources shared with the driver's interrupt service routine.

The DPC architecture prevents any two DPCs from executing simultaneously, even on a multiprocessor

machine. Thus, resources shared by different DPC routines do not need to worry about synchronization.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Access to User Buffers

When a user-mode thread makes an I/O request, it usually passes the address of a data buffer

located in user space. Since user-mode addresses are referenced through the lower half (< 2 GB) of

the page tables, a driver must cope with the possibility that the page tables will change before the

request can be completed. This would occur if the driver code executed at Interrupt Context or

Kernel-Mode Thread context. As previously discussed, the lower half of the page tables are

changed with each process switch. Thus, code executing with an arbitrary page table state cannot

assume that any user-mode address is valid.

Worse, the user buffer may be paged out of RAM and exist only on the system's swap file on disk.

User memory is always subject to swap-out if the system needs RAM for other processes.

In general, user memory is pagable, and by rule, pagable memory may not be accessed at

DISPATCH_LEVEL_IRQL or higher. This rule is necessary since the tasks providing page-in service

of the requested memory might need a device at a lower DIRQL than that which needed the page.

Buffer Access Mechanisms

Now that the problem is defined, a solution is needed. Fortunately, the I/O Manager provides drivers

with two different methods for accessing user buffers. When a driver initializes, it tells the I/O

Manager which strategy it plans to use. The choice depends on the nature and speed of the device.

The first strategy is to ask the I/O Manager to copy the entire user buffer into dedicated system

RAM, which remains fixed (i.e., not paged) in both the page tables and physical memory. The device

uses the copy of the buffer to perform the requested I/O operation. Upon completion, the I/O

Manager conveniently copies the system buffer back to the user buffer. Actually, only one copy

operation is performed. On I/O write requests, the user buffer is copied before presentation to the

driver. On I/O read requests, the system buffer is copied after the driver marks the request as

completed. Standard read or write requests do not require bidirectional copying.

The first technique is known as buffered I/O (BIO). It is used by slower devices that do not generally

handle large data transfers. The technique is simple for driver logic, but requires the somewhat

time-consuming job of buffer copying.

The second technique avoids the buffer copy by providing the driver with direct access to the user's

buffer in physical memory. At the beginning of the I/O operation, the I/O Manager "locks down" the

entire user buffer into memory, thus preventing the block from swap-out and causing a deadly page

fault. It then constructs a list of page table entries that are mapped into slots above 2 GB and are

thus not subject to process context switches. With the memory and page table entries locked for the

duration of the I/O request, driver code may safely reference the user buffer. (Note, however, that

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

the original user address is translated into another logical address, valid only from kernel-mode

code. The driver must use the translated address.)

This second technique is well-suited for fast devices that transfer large blocks of data. It is known as

direct I/O (DIO). DMA devices almost always use this technique and it is further discussed in chapter

12.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Structure of a Kernel-Mode Driver

A kernel-mode driver looks very different from conventional applications. In general, a driver is just a

collection of routines that are called by operating system software (usually the I/O Manager). Flow

charts don't provide much benefit when diagramming control paths of a device driver. The routines

of the driver sit passively until they are invoked by routines of the I/O Manager.

Depending on the driver, the I/O Manager might call a driver routine in any of the following

situations:

When a driver is loaded

When a driver is unloaded or the system is shutting down

When a device is inserted or removed

When a user-mode program issues an I/O system service call

When a shared hardware resource becomes available for driver use

At various points during an actual device operation

The remainder of this section briefly describes the major categories of routines that make up a

kernel-mode driver. The details of each of these kinds of driver routines are discussed in subsequent

chapters.

Driver Initialization and Cleanup Routines

When a driver loads into the system, various tasks must be performed. Similarly, drivers need to

clean up before they are unloaded. There are several routines that a driver may supply to perform

these operations.

DriverEntry ROUTINE

The I/O Manager calls this routine when a driver is first loaded, perhaps as early as boot time, but

drivers may be dynamically loaded at any time. The DriverEntry routine performs all first-time

initialization tasks, such as announcing the addresses of all other driver routines. It locates hardware

that it will control, allocates or confirms hardware resource usage (ports, interrupts, DMA), and

provides a device name visible to the rest of the system for each hardware device discovered. For

WDM drivers participating in Plug and Play, this hardware allocation step is deferred to a later time

and routine, the AddDevice function.

REINITIALIZE ROUTINE

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Some drivers may not be able to complete their initialization during DriverEntry. This could occur if

the driver was dependent on another driver that had yet to load, or if the driver needed more support

from the operating system than had booted at the time DriverEntry was initially called. These kinds

of drivers can ask that their initialization be deferred by supplying a Reinitialize routine during

DriverEntry.

UNLOAD ROUTINE

The I/O Manager calls the Unload routine of a driver when a driver is unloaded dynamically. It must

reverse every action that DriverEntry performed, leaving behind no allocated resource. This includes

removing the system-wide device name supplied during initialization for all controlled devices. For

WDM drivers, device resources (and names) are removed as each device is removed, during

RemoveDevice.

SHUTDOWN ROUTINE

Surprisingly, the Unload routine is not invoked during a system shutdown. Since the system is

"going away" anyway, a perfect cleanup is not required. Instead, the I/O Manager invokes a driver's

Shutdown routine to provide an opportunity to place hardware into a quiescent state.

BUGCHECK CALLBACK ROUTINE

If a driver needs to gain control in the event of a system crash, it can provide a Bugcheck routine.

This routine, when properly registered, is called by the kernel during an orderly "crash" process

(truly an oxymoronic phrase).

I/O System Service Dispatch Routines

When the I/O Manager receives a request from a user-mode application, the type of request (read,

write, etc.) is converted into a function code. The I/O Manager identifies the appropriate driver to

handle the request, then calls one of several Dispatch routines in the driver. There is one Dispatch

routine per function code supported by a driver.

The driver's appropriate Dispatch routine verifies the request and, if necessary, requests that the I/O

Manager queue a device request to perform the real work. It then returns to the I/O Manager,

marking the request as pending.

OPEN AND CLOSE OPERATIONS

All drivers must provide a CreateDispatch routine that handles the Win32 CreateFile request.

Drivers that must perform cleanup on the Win32 CloseHandle call must supply a CloseDispatch

routine.

DEVICE OPERATIONS

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Depending on the device, a driver may have individual Dispatch routines for handling data transfers

and control operations. The Win32 functions ReadFile, WriteFile, and DeviceIoControl are

dispatched to supplied routines in the driver by the I/O Manager. Again, a driver need only supply

routines for those operations it supports.

If a user program makes a request of an I/O device for which the driver does not supply a Dispatch

routine, the program receives an error indicating that the requested function is not supported.

Data Transfer Routines

Device operations involve a number of different driver routines, depending on the nature and

complexity of the device.

START I/O ROUTINE

The I/O Manager calls the driver's Start I/O routine each time a device should begin the start of a

data transfer. The request is generated by the I/O Manager each time an outstanding I/O request

completes and another request is waiting in the queue. In other words, the I/O Manager (by default)

queues and serializes all I/O requests, restarting the affected device only after the previous request

completes. (Complex devices capable of dealing with simultaneous requests may choose not to

utilize this serialized approach.)

The start I/O routine, supplied by the driver, allocates resources needed to process the requested

I/O and sets the device in motion.

INTERRUPT SERVICE ROUTINE (ISR)

The Kernel's interrupt dispatcher calls a driver's Interrupt Service routine each time the device

generates an interrupt. The ISR is responsible for complete servicing of the hardware interrupt. By

the time the ISR returns, the interrupt should be dismissed from a hardware perspective.

As described earlier, only the most minimal of servicing should be performed within the ISR itself. If

additional, time-consuming activities are required as a result of servicing the interrupt, a DPC should

be scheduled within the ISR. The remaining work of the ISR can then be completed at an IRQL

below DIRQL.

DPC ROUTINES

A driver can supply zero or more DPC routines that perform or complete routine device operations.

This might include the release of system resources (such as a DMA page descriptor), reporting error

conditions, marking I/O requests as complete, and starting the next device operation, as necessary.

If only one DPC is required for completion of interrupt servicing, the I/O Manager supports a

simplified mechanism called a DpcForIsr routine. However, some drivers may wish to provide many

DPCs for varied purposes. Perhaps two different DPCs, one that completes a write operation and

one that completes a read operation, is convenient. DPCs can be scheduled simply to perform work

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

at an IRQL of DISPATCH_LEVEL. A driver can have any number of custom DPC routines.

Resource Synchronization Callbacks

Recalling the design goals of Windows 2000, all kernel-mode code (including device driver code)

must be reentrant. Driver code must consider that multiple threads in one or more processes may

make simultaneous I/O requests. Contention issues between the two simultaneous requests must

be handled safely and correctly by the reentrant driver code.

The I/O Manager provides several synchronization services to deal with the issue of shared

resources among simultaneous requests. These synchronization routines operate differently than

those provided to Win32 programmers. In particular, the Win32 model assumes that if a resource is

unavailable due to its use by another thread, it is perfectly acceptable to block the execution of the

second requester. In kernel mode, it is completely unacceptable to block the execution of an

arbitrary thread. A caller must be guaranteed that a return will be prompt, even if the request must

be queued for later completion.

The technique employed to synchronize within kernel-mode code is to supply the address of a

callback routine dedicated to synchronization of a specific resource. When a driver needs access to

a shared resource, it queues a request for that resource with the assistance of the I/O Manager.

When the resource becomes available, the I/O Manager invokes the driver-supplied callback routine

associated with the request. Of course, this means that multiple requests for the resource are

serialized and that at any given time, only one thread context may "own" the resource.

There are three types of synchronization callback routines supported by the I/O Manager. These are

discussed in the following sections.

ControllerControl ROUTINE

Sometimes a single controller (card) supports more than one function. Further, the functions may

share a single set of controller registers. Thus, only one function on such cards may be in operation

at a time. Typically, the Start I/O routine requests exclusive ownership of the controller. When

granted, the ControllerControl callback routine executes. When the I/O completes, the driver

releases the controller, usually within a DpcForIsr routine.

AdapterControl ROUTINE

DMA hardware is another shared resource that must be passed from driver to driver. Before

performing DMA, the driver requests exclusive ownership of the proper DMA hardware—typically a

DMA channel. When ownership is granted, the AdapterControl callback routine executes.

SynchCritSection ROUTINES

Interrupt service occurs at a device-specific DIRQL while remaining driver code operates at

DISPATCH_LEVEL or below. If the lower IRQL sections of code ever touch resources used by the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ISR, that operation must execute inside of a SynchCritSection routine. Resources in this category

include all device control registers and any other context or state information shared with the

Interrupt Service routine.

SynchCritSection routines operate somewhat differently than other synchronization techniques.

Once the callback occurs, the IRQL level is raised to the device's DIRQL level. Thus, lower IRQL

sections of code temporarily operate at device DIRQL, preventing interruption by the ISR. When the

SynchCritSection completes, the IRQL is restored to its original value.

Other Driver Routines

In addition to the basic set of routines just described, a driver may contain any of the following

additional functions.

Timer routines.

Drivers that need to keep track of time passage can do so using either an I/O Timer

or a CustomTimerDpc routine. Chapter 11 describes both mechanisms.

I/O completion routines.

A higher-level driver within layers of drivers may wish to be notified when a request

sent to a lower-level driver completes. The higher-level driver may register an I/O

Completion routine for this purpose. Chapter 15 discusses the details of this

process.

Cancel I/O routines.

Drivers must consider the possibility that a device request may be canceled by the

requester. This could happen during a long device operation (or because an

unanticipated device error leaves the driver in a waiting state). The driver may

provide a Cancel I/O routine that is called by the I/O Manager when the requester

"gives up."

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

I/O Processing Sequence

It is important to understand the complete life cycle of an I/O request. This section describes the flow of a

request—from user-mode code to I/O Manager to device driver.

An I/O request goes through several stages during its life.

Preprocessing by the I/O Manager

Preprocessing by the device driver

Device start and interrupt service

Postprocessing by the driver

Postprocessing by the I/O Manager

The following sections describe the stages in more detail.

Preprocessing by the I/O Manager

This phase performs device-independent preparation and verification of an I/O request.

The Win32 subsystem converts the request into a native system service call. The system service

dispatcher traps into kernel mode and into the I/O Manager.

1.

The I/O Manager allocates a data structure known as an I/O Request Packet (IRP). The next

chapter describes an IRP in more detail, but an IRP can be thought of as a work order presented to

a driver and its device. The IRP is filled with necessary information, including a code which

identifies the type of I/O request.

2.

The I/O Manager performs some validation of the arguments passed with the request. This includes

verifying the file handle, checking access rights to the file object, ensuring that the device supports

the requested function, and validating the user buffer addresses.

3.

If the device requests a buffered I/O (BIO) operation, the I/O Manager allocates a nonpaged pool

buffer, and for a write request, copies data from user space into the system buffer. If the device

requests direct I/O (DIO), the user's buffer is locked down and a list of page descriptors is built for

use by the driver.

4.

The I/O Manager invokes the appropriate driver dispatch routine.5.

Preprocessing by the Device Driver

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Each driver builds a dispatch table of entry points for each supported I/O function request. The I/O Manager

uses the function code of the I/O request to index into this table and invoke the appropriate driver Dispatch

routine. The routine performs the following tasks:

It performs additional parameter validation. The device driver can detect device-specific limitations

unknown to the I/O Manager. For example, a user might request a data transfer size in violation of

the capabilities of a specific device (or driver).

1.

If the request can be handled without device activity (e.g., reading zero bytes), the Dispatch routine

simply completes the request and sends the IRP back to the I/O Manager, marked as complete.

2.

If (as is usual) device operation is required, the Dispatch routine marks the request (IRP) as

pending. The I/O Manager is instructed to queue a call to the driver's Start I/O routine as soon as

the device is free. (It is possible the device is handling a previous request.)

3.

Device Start and Interrupt Service

Data transfers and other device operations are managed by the driver's Start I/O and Interrupt Service

routines.

START I/O

When a Dispatch routine requests that the I/O Manager start a device, the I/O Manager first checks to see

whether a device is already busy. The I/O Manager detects this condition by checking whether or not there

is an IRP outstanding for the device (i.e., still marked as pending). If so, it queues the request to start the

device. Otherwise, the driver's Start I/O routine is called directly. The Start I/O routine performs the following

tasks:

It checks the IRP function (read, write, etc.) and performs any setup work specific to that type of

operation.

1.

If the device is part of a multifunction controller, a ControllerControl routine requests exclusive

ownership of the controller hardware.

2.

If the operation requires DMA, an AdapterControl routine requests exclusive ownership of the

appropriate DMA channel hardware.

3.

It uses a SynchCriticalSection routine to safely access device registers and start the device.4.

It returns control to the I/O Manager and awaits a device interrupt.5.

ISR

When an interrupt occurs, the kernel's interrupt dispatcher calls the driver's ISR. The ISR would typically

perform the following steps:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Check to see if the interrupt was expected.1.

Dismiss the hardware device interrupt.2.

If programmed I/O was in progress and the total data transfer was still incomplete, the ISR would

start another byte or word of data and await another interrupt.

3.

If DMA was in progress and more data remained to be transferred, a DPC would be scheduled to

set up the DMA hardware for the next chunk of data.

4.

If an error occurred or the data transfer was complete, a DPC would be queued to perform

postprocessing at a lower IRQL.

5.

Postprocessing by the Driver

The kernel's DPC dispatcher eventually calls the driver's DPC routine to perform the driver's postprocessing

chores. These would typically include

If a DMA operation just occurred and more data remains to be transferred, it sets up the DMA

hardware, starts the device, and waits for another interrupt. It then returns to the I/O Manager with

the IRP left as pending.

1.

If there was an error or timeout, the DPC routine might record the event and then either retry or

abort the I/O request.

2.

It releases any DMA and controller resources being held by the driver.3.

The DPC routine puts the size of the transfer and final status information into the IRP.4.

Finally, it tells the I/O Manager that the current request has completed by marking the pending IRP

as complete. This instructs the I/O Manager to restart the device (by calling Start I/O) with the next

IRP, if one is waiting.

5.

Postprocessing by the I/O Manager

Once the driver's DPC marks an IRP as complete, the I/O Manager performs cleanup operations. These

include

If this was a buffered I/O write operation, the I/O Manager releases the nonpaged pool buffer used

during the now completed transfer.

1.

If this was a direct I/O operation, it unlocks the user's buffer pages.2.

It queues a request to the original requesting thread for a kernel-mode asynchronous procedure call

(APC). This APC will execute I/O Manager code in the context of the requesting thread.

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When the kernel-mode APC runs, it copies status and transfer-size information back into user

space.

4.

If this was a buffer I/O read operation, the APC copies the contents of the nonpaged pool buffer into

the caller's original user-space buffer. It then frees the system buffer.

5.

If the original request was for a Win32 overlapped operation, the APC routine sets the associated

event and/or file object into the signaled state.

6.

If the original request included a completion routine (e.g., ReadFileEx), the APC schedules a

user-mode APC to execute the completion routine.

7.

Figure 3.2 shows a summary of the I/O processing sequence just described.

Figure 3.2. Life cycle of an I/O request.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

The quick tour of the Windows 2000 I/O subsystem is now complete. The structure of a Windows

2000 basic device driver should be clear—only the details remain.

The next chapter deals with some of these details: the data structures created and used by the I/O

Manager and the device driver.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 4. Drivers and Kernel-Mode Objects

CHAPTER OBJECTIVES

Data Objects and Windows 2000

I/O Request Packets (IRPs)

Driver Objects

Device Objects and Device Extensions

Controller Objects and Controller Extensions

Adapter Objects

Interrupt Objects

Summary

Data structures are the lifeblood of most operating systems as well as most complicated

applications, and Windows 2000 is no exception. Windows 2000 is different from most

operating systems because it uses a taste of object technology to manage its data

structures. This chapter examines the Windows 2000 approach to data structures and

objects, then introduces the major structures involved in processing I/O requests.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Data Objects and Windows 2000

Object-oriented programming (OOP) is a proven software design technique to provide overall

organization of code and high-level encapsulation of major design concepts. In this scheme, a data

structure is grouped with the code that modifies it. Together, the code and its associated data are

called objects. The data of the object remains opaque to the users of the object. Using code must

invoke methods of the object to manipulate its state. The methods of an object form a strict interface

for its use.

The overall goal of the object-orientation technique is to improve the reliability, robustness, and

reusability of software by hiding implementation details from the users of an object.

Windows 2000 and OOP

Using a strict definition of OOP, the design of Windows 2000 isn't truly object-oriented. Rather, it can

be thought of as object-based because it manages its internal data structures in an object-like way.

In particular, Windows 2000 defines not only necessary data structures, but also groups of access

functions that are allowed to manipulate those data structures. All other modules are expected to

access functions to manipulate the contents of the structures.

In practice, not all elements of all data structures are completely opaque. In fact, since kernel-mode

driver code is trusted code, there is no real way to enforce the object boundary. Additionally, the I/O

Manager treats device drivers as trusted components of itself. A driver is required to read and write

some offsets within some I/O Manager data structures directly.

Windows 2000 Objects and Win32 Objects

The Win32 API also defines kernel objects. These user-mode objects differ from internal OS objects

in two important ways. First, in almost all cases, internal objects have no external name. This is

because these objects aren't exported to user mode and, therefore, don't need to be managed by

the Object Manager.

Second, user-mode code uses handles to reference the objects it creates or opens. Internal objects

are referenced with a direct memory pointer. This pointer is routinely passed between I/O Manager

and device driver. In some cases, the driver itself will allocate and initialize memory for the object.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

I/O Request Packets (IRPs)

Almost all I/O under Windows 2000 is packet-driven. Each separate I/O transaction is described by a work

order that tells the driver what to do and tracks the progress of the request through the I/O subsystem.

These work orders take the form of a data structure called an I/O Request Packet (IRP), and this section

describes their use and purpose.

With each user-mode request for I/O, the I/O Manager allocates an IRP from nonpaged system

memory. Based on the file handle and I/O function requested by the user, the I/O Manager passes

the IRP to the appropriate driver dispatch routine.

1.

The dispatch routine checks the parameters of the request, and if valid, passes the IRP to the

driver's Start I/O routine.

2.

The Start I/O routine uses the contents of the IRP to begin a device operation.3.

When the operation is complete, the driver's DpcForIsr routine stores a final status code in the IRP

and returns it to the I/O Manager.

4.

The I/O Manager uses the information in the IRP to complete the request and send the user the

final status.

5.

The procedure just described is, in fact, a simplified model of IRP processing. It only applies in a flat driver

model. When drivers are layered, one upon the other, the procedure is more complex. A single IRP may

travel through several layers of drivers before the request is completed. Additionally, higher-level drivers can

create new IRPs and disperse them to other drivers.

Layout of an IRP

An IRP is a variable-sized structure allocated from nonpaged pool. Figure 4.1 shows that an IRP has two

sections.

Figure 4.1. Structure of an IRP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

A header area containing general bookkeeping information

One or more parameter blocks called I/O stack locations

IRP HEADER

This area of the IRP holds various pieces of information about the overall I/O request. Some parts of the

header are directly accessible to the driver, while other pieces are the exclusive property of the I/O

Manager. Table 4.1 lists the fields in the header that a driver is allowed to touch.

The IoStatus member holds the final status of the I/O operation. When a driver is ready to complete the

processing of an IRP, it sets this Status field of this block to a STATUS_XXX value. At the same time, a

driver should set the information field of the status block either to 0 (if there is an error) or to a function

code-specific value (for example, the number of bytes transferred).

The AssociatedIrp.SystemBuffer, MdlAddress, and UserBuffer fields play various roles in managing the

driver's access to data buffers. Later chapters explain how to use these fields if a driver performs either

Buffered or direct I/O.

I/O STACK LOCATIONS

The main purpose of an I/O stack location is to hold function code and parameters of an I/O request. By

examining the MajorFunction field of the stack locations, a driver can decide what operation to perform and

how to interpret the Parameters union. Table 4.2 describes some of the commonly used members of an I/O

stack location.

For requests sent directly to a lowest-level driver, the corresponding IRP has only one I/O stack location. For

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

requests sent to a higher-level driver, the I/O Manager creates an IRP with separate I/O stack locations for

each driver layer. In other words, the size of an I/O stack is really the number of I/O layers that participate in

an I/O request. Every driver in the hierarchy is allowed to touch only its own stack location. If a driver

chooses to call a lower-layer driver, it must ensure that a new stack location has been correctly created

beneath it.

Table 4.1. Externally Visible Fields of an IRP Header

IRP Header Fields

Field Description

IO_STATUS_BLOCK IoStatus Contains status of the I/O request

PVOID

AssociatedIrp.SystemBuffer
Points to a system space buffer if device per- forms buffered I/O

PMDL MdlAddress
Points to a Memory Descriptor List for a user- space buffer if device

performs direct I/O

PVOID UserBuffer User-space address of I/O buffer

BOOLEAN Cancel Indicates the IRP has been canceled

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.2. Selected Contents of IRP Stack Location

IO_STACK_LOCATION, *PIO_STACK_LOCATION

Field Contents

UCHAR MajorFunction IRP_MJ_XXX function specifying the operation

UCHAR MinorFunction Used by file system and SCSI drivers

union Parameters Typed union keyed to MajorFunction code

struct Read Parameters for IRP_MJ_READ

 • ULONG Length

 • ULONG Key

 • LARGE_INTEGER ByteOffset

struct Write Parameters for IRP_MJ_WRITE

 • ULONG Length

 • ULONG Key

 • LARGE_INTEGER ByteOffset

struct DeviceIoControl Parameters for IRP_MJ_DEVICE_CONTROL

 • ULONG OutputBufferLength

 • ULONG InputBufferLength

 • ULONG IoControlCode

 • PVOID Type3InputBuffer

struct Others Available to driver

 • PVOID Argument1-Argument4

PDEVICE_OBJECT DeviceObject Target device for this I/O request

PFILE_OBJECT FileObject File object for this request, if any

When a driver passes an IRP to a lower-level driver, the I/O Manager automatically pushes the I/O

stack-pointer so that it points at the I/O stack location belonging to the lower driver. When the lower driver

releases the IRP, the I/O stack pointer is popped so that it again points to the stack location of the higher

driver. Chapter 15 explains in detail how to work with this mechanism.

Manipulating IRPs

Some IRP access functions operate only on the IRP header. Others deal specifically with the IRP's I/O stack

locations. It is important to know whether an access function needs the pointer to the entire IRP or a pointer

to an IRP stack location. The following sections describe each group of access functions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.3. Functions that Work with the Whole IRP

IRP Access Functions

Function Description Called by...

IoStartPacket Sends IRP to Start I/O routine Dispatch

IoCompleteRequest Indicates that all processing is done DpcForIsr

IoStartNextPacket Sends next IRP to Start I/O DpcForIsr

IoCallDriver Sends IRP to another driver Dispatch

IoAllocateIrp Requests additional IRP Dispatch

IoFreeIrp Releases driver-allocated IRP I/O Completion

IRPS AS A WHOLE

The I/O Manager exports a variety of functions that work with IRPs. Table 4.3 lists the most common ones.

Later chapters explain how to use them.

IRP STACK LOCATIONS

The I/O Manager also provides several functions that drivers can use to access an IRP's stack locations.

These functions are listed in Table 4. 4.

Table 4.4. IO_STACK_LOCATION Access Functions

IO_STACK_LOCATION

Functions

Function Description
Called

by...

IoGetCurrentIrpStackLocation Gets pointer to caller's stack slot (Various)

IoMarkIrpPending Marks caller's stack slot as as needing further processing Dispatch

IoGetNextIrpStackLocation Gets pointer to stack slot for next lower driver Dispatch

IoSetNextIrpStackLocation Pushes the I/O stack pointer one location Dispatch

IoSetCompleteRoutine
Attaches I/O Completion routine to the next lower driver's

I/O stack slot
Dispatch

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Driver Objects

DriverEntry is the only driver routine with an exported name. When the I/O Manager needs to locate other

driver functions, it uses the Driver object associated with a specific device. This object is basically a catalog

that contains pointers to various driver functions. The life of a driver object is explained below.

The I/O Manager creates a driver object whenever it loads a driver. If the driver fails during

initialization, the I/O Manager deletes the object.

1.

During initialization, the DriverEntry routine loads pointers to other driver functions into the driver

object.

2.

When an IRP is sent to a specific device, the I/O Manager uses the associated driver object to find

the right Dispatch routine.

3.

If a request involves an actual device operation, the I/O Manager uses the driver object to locate the

driver's Start I/O routine.

4.

If the driver is unloaded, the I/O Manager uses the driver object to find an Unload routine. When the

Unload routine returns, the I/O Manager deletes the Driver object.

5.

Layout of a Driver Object

There is a unique driver object for each driver currently loaded in the system. Figure 4.2 illustrates the

structure of the driver object. As you can see, the driver object also contains a pointer to a linked list of

devices serviced by this driver. A driver's Unload routine can use this list to locate any devices it needs to

delete.

Figure 4.2. The driver object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.5. Externally Visible Fields of a Driver Object

Driver Object Fields

Field Description

PDRIVER_STARTIO DriverStartIo Address of driver's Start I/O routine

PDRIVER_UNLOAD DriverUnload Address of driver's Unload routine

PDRIVER_DISPATCH MajorFunction[] Table of driver's Dispatch routines, indexed by I/O operation code

PDEVICE_OBJECT DeviceObject Linked list of device objects created by this driver

Unlike other objects, there are no access functions for modifying driver objects. Instead, the DriverEntry

routine sets various fields directly. Table 4.5 lists the fields a driver is allowed to touch.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Device Objects and Device Extensions

Both the I/O Manager and a driver need to know what's going on with an I/O device at all times. Device

objects make this possible by keeping information about the device's characteristics and state. There is one

device object for each virtual, logical, and physical device on the system. The life cycle of a device object is

shown below.

The DriverEntry routine creates a device object for each of its devices. For WDM drivers, the Device

object is created by the AddDevice Plug and Play routine.

1.

The I/O Manager uses a back-pointer in the device object to locate the corresponding driver object.

There it can find driver routines to operate on I/O requests. It also maintains a queue of current and

pending IRPs attached to the device object.

2.

Various driver routines use the device object to locate the corresponding device extension. As an

I/O request is processed, the driver uses the extension to store any device-specific state

information.

3.

The driver's Unload routine deletes the device object when the driver is unloaded. The act of

deleting the device object also deletes the associated device extension. For WDM drivers,

RemoveDevice performs the task of deleting the Device object.

4.

Physical device drivers are not alone in their use of device objects. Chapter 15 describes the way

higher-level drivers use device objects.

Layout of the Device Object

Figure 4.3 illustrates the structure of the device object and its relationship to other structures. Although the

device object contains a lot of data, much of it is the exclusive property of the I/O Manager. A driver should

limit its access to only those fields listed in Table 4.6.

Figure 4.3. The device object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Manipulating Device Objects

Table 4.7 lists many of the I/O Manager functions that operate on device objects. The I/O Manager also

passes a device object pointer as an argument to most of the routines in a driver.

Table 4.6. Externally Visible Fields of a Device Object

Device Object Fields

Field Description

PVOID DeviceExtension Points to device extension structure

PDRIVER_OBJECT

DriverObject
Points to driver object for this device

ULONG Flags Specifies buffering strategy for device

 DO_BUFFERED_IO

 DO_DIRECT_IO

PDEVICE_OBJECT NextDevice Points to next device belonging to this driver

CCHAR StackSize
Minimum number of I/O stack locations needed by IRPs sent to this

device

ULONG AlignmentRequirement Memory alignment required for buffers

Table 4.7. Access Functions for a Device Object

Device Object Access

Functions

Function Description Called by...

IoCreateDevice Creates a device object
DriverEntry or

AddDevice

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IoCreateSymbolicLink Makes device object visible to Win32
DriverEntry or

AddDevice

IoAttachDevice Attaches a filter to a device object
DriverEntry or

AddDevice

IoAttachDeviceByPointer Attaches a filter to a device object
DriverEntry or

AddDevice

IoGetDeviceObjectPointer Layers one driver on top of another
DriverEntry or

AddDevice

IoCallDriver Sends request to another driver Dispatch

IoDetachDevice Disconnects from a lower driver
Unload or

RemoveDevice

IoDeleteSymbolicLink
Removes device object from the Win32

namespace

Unload or

RemoveDevice

IoDeleteDevice Removes device object from system
Unload or

RemoveDevice

Device Extensions

Connected to the device object is another important data structure, the device extension. The extension is

simply a block of nonpaged pool that the I/O Manager automatically attaches to any device object created.

The driver author specifies both the size and contents of the device extension. Typically, it is used to hold

any information associated with a particular device.

The use of global or static variables violates the requirement that a driver must be fully reentrant. By keeping

device state in the device extension, a single copy of driver code can manage multiple devices. The device

extension typically includes

A back-pointer to the device object

Any device state or driver context information

A pointer to the interrupt object and an interrupt-expected flag

A pointer to a controller object

A pointer to an adapter object and a count of mapping registers

Since the device extension is driver-specific, its structure must be defined in a driver header file. Although

the extension's exact contents depend on what a driver does, its general layout looks something like the

following:

typedef struct _DEVICE_EXTENSION {

 PDEVICE_OBJECT DeviceObject; // back pointer

 :

 // other driver-specific declarations

 :

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

The code samples throughout this book will use the device extension in many ways.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Controller Objects and Controller Extensions

Some peripheral adapters manage more than one physical device using the same set of control registers.

The floppy disk controller is one example of this architecture. This kind of hardware poses a synchronization

dilemma. If the driver tries to perform simultaneous operations on more than one of the connected devices

without first synchronizing its access to the shared register space, the control registers receive confusing

values. To help with this problem, the I/O Manager provides controller objects.

The controller object is a kind of mutex that can be owned by only one device at a time. Before accessing

any device registers, the driver asks that ownership of the controller object be given to a specific device. If

the hardware is free, ownership is granted. If not, the device's request is put on hold until the current owner

releases the hardware. By managing the controller object, the I/O Manager guarantees that multiple devices

will access the hardware in a serial fashion. The life cycle of a typical controller object is described below.

The DriverEntry (or AddDevice) routine creates the Controller object and usually stores its address

in a field of each device's Device Extension.

1.

Before it starts a device operation, the Start I/O routine asks for exclusive ownership of the

controller object on behalf of a specific device.

2.

When the controller object becomes available, the I/O Manager grants ownership and calls the

driver's ControllerControl routine. This routine sets up the device's registers and starts the I/O

operation. As long as this device owns the controller object, any further requests for ownership

block at step 2 until the object is released.

3.

When the device operation is finished, the driver's DpcForIsr routine releases the Controller object,

making it available for use by other pending requests.

4.

The driver's Unload routine deletes the controller object when the driver is unloaded.5.

Obviously, not all drivers need a controller object. If an interface card supports only one physical or virtual

device, or if multiple devices on the same card don't share any control registers, then there is no need to

create a controller object.

Layout of the Controller Object

Figure 4.4 shows the relationship of a Controller object to other system data structures. The only externally

visible field in a Controller object is the PVOID ControllerExtension field, which contains a pointer to the

extension block.

Figure 4.4. The controller object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Manipulating Controller Objects

The I/O Manager exports four functions that operate on controller objects. These functions are listed in Table

4.8.

Controller Extensions

Like device objects, controller objects contain a pointer to an extension structure that can be used to hold

any controller-specific data. The extension is also a place to store any information that's global to all the

devices attached to a controller. Finally, if the controller (rather than individual devices) is the source of

interrupts, it makes sense to store pointers to Interrupt and Adapter objects in the Controller Extension.

Table 4.8. Access Functions for a Controller Object

Controller Object Access

Functions

Function Description Called by...

IoCreateController Creates a Controller object DriverEntry or AddDevice

IoAllocateController
Requests exclusive ownership of

controller
Start I/O

IoFreeController Releases ownership of controller DpcForIsr

IoDeleteController
Removes Controller object from the

system

Unload or

RemoveDevice

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Since the controller extension is driver-specific, its structure must be defined in a driver header file. Although

the extension's exact contents depend on what a driver does, its general layout looks something like this:

typedef struct _CONTROLLER_EXTENSION {

 // back pointer

 PCONTROLLER_OBJECT ControllerObject

 :

 // other driver-specific declarations

 :

} CONTROLLER_EXTENSION, *PCONTROLLER_EXTENSION;

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Adapter Objects

Just as multiple devices on the same controller need to coordinate their hardware access, so it is that

devices that perform DMA need an orderly way to share system DMA resources. The I/O Manager

uses adapter objects to prevent arguments over DMA hardware. There is one adapter object for each

DMA data transfer channel on the system.

Like a controller object, an adapter object can be owned by only one device at a time. Before starting

a DMA transfer, the Start I/O routine asks for ownership of the adapter object. If the hardware is free,

ownership is granted. If not, the device's request is put on hold until the current owner releases the

hardware. Obviously, if the device supports only programmed I/O, it has no need for an adapter

object. The life cycle of the adapter object is described below.

The HAL creates Adapter objects for any DMA data channels detected at boot time.1.

The DriverEntry or AddDevice routine locates the adapter object for its device and stores that

pointer in the device or controller extension. Adapter objects for nonsystem (i.e., bus master)

DMA hardware may be created on the fly.

2.

The Start I/O routine requests ownership of the adapter object on behalf of a specific device.3.

When ownership is granted, the I/O Manager calls the driver's adapter Control routine. This

routine then uses the adapter object to set up a DMA transfer.

4.

The driver's DpcForIsr routine may use the adapter object to perform additional operations in

the case of a split transfer. When a transfer is finished, DpcForIsr releases the adapter

object.

5.

Another important function of the adapter object is to manage mapping registers. The HAL uses these

registers to map the standard physical pages of a user's buffer onto the contiguous range of

addresses required by most DMA hardware. The complete mechanics of DMA transfers are covered

in detail in chapter 12.

Layout of an Adapter Object

Figure 4.5 illustrates the relationship of adapter objects to other structures. As the diagram shows,

the adapter object is completely opaque and has no externally visible fields. When working with DMA

devices, the pointer to the adapter object, as well as the number of mapping registers it supports,

should be stored in the device extension or controller extension structure.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 4.5. The adapter object

Table 4.9. Access Functions for an Adapter Object

Adapter Object Access

Functions

Function Description Called by...

IoGetDmaAdapter Gets a pointer to an adapter object
DriverEntry or

AddDevice

AllocateAdapterChannel
Requests exclusive ownership of DMA

hardware
Start I/O

MapTransfer
Sets up DMA hardware for a data

transfer

Adapter

Control/DpcForIsr

FlushAdapterBuffers Flushes data after partial transfers DpcForIsr

FreeMapRegisters Releases map registers DpcForIsr

FreeAdapterChannel Releases adapter object DpcForIsr

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Manipulating Adapter Objects

Both the HAL and the I/O Manager export functions that can be used to manipulate adapter objects.

Table 4.9 lists the more common adapter functions.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Interrupt Objects

The last kernel object described in this chapter is the interrupt object. Interrupt objects simply give the

kernel's interrupt dispatcher a way to find the right service routine when an interrupt occurs. The life cycle of

an interrupt object is described below.

The DriverEntry or AddDevice routine creates an interrupt object for each interrupt vector supported

by the device or the controller.

1.

When an interrupt occurs, the kernel's interrupt dispatcher uses the Interrupt object to locate the

Interrupt Service routine.

2.

The Unload or RemoveDevice routine deletes the interrupt object after disabling interrupts from the

device.

3.

A driver does not interact with interrupt objects other than to create and delete them. A pointer to the

interrupt object is typically stored in the device extension or controller extension.

Layout of an Interrupt Object

Figure 4.6 illustrates the structure of an interrupt object. Like adapter objects, they are completely opaque

and have no externally visible fields.

Figure 4.6. The interrupt object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 4.10. Access Functions for an Interrupt Object

Interrupt Object Access

Functions

Function Description Called by...

HalGetInterruptVector
Converts bus-relative interrupt vector to

systemwide value
DriverEntry

IoConnectInterrupt
Associates Interrupt Service routine with an

interrupt vector

DriverEntry or

AddDevice

KeSynchronizeExecution
Synchronizes driver routines that run at

different IRQLs
(Various)

IoDisconnectInterrupt Removes interrupt object
Unload or

RemoveDevice

Manipulating Interrupt Objects

Several system components export functions that work with interrupt objects. Table 4.10 lists the most

common ones.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

Although it may seem as if there are a lot of objects involved in I/O processing, all are necessary

and important. With this chapter, the background material explanation is complete. The next chapter

begins the fun work of writing some actual driver code.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 5. General Development Issues

CHAPTER OBJECTIVES

Driver Design Strategies

Coding Conventions and Techniques

Driver Memory Allocation

Unicode Strings

Interrupt Synchronization

Synchronizing Multiple CPUs

Linked Lists

Summary

Writing kernel-mode code is not the same as writing an application program because the

driver is a trusted component of the system. Code must be carefully written and follow

special rules. This chapter is a short manual of good and sometimes required etiquette for

driver writers.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Driver Design Strategies

Like most software, drivers benefit from an organized approach to development. This section gives

some guidelines that may help shorten development time.

Use Formal Design Methods

Traditionally, writing a device driver implied a license to code without a design strategy. In the haste

to test brand new hardware, the unit test code became the basis for the ultimate driver. Perhaps,

too, many device drivers were written by programmers unfamiliar with the operating system. The first

driver written is really a journey of discovery as the driver author learns the overall I/O architecture

of the system.

Fortunately (or perhaps sadly, depending on one's perspective), the days of software cowboys are

over. Between complicated hardware and operating systems, there is no longer room for

design-as-you-go coding. Writing Windows 2000 drivers certainly entails a steep learning curve.

Good software engineering and practices are required for success.

A short list of design techniques, some of which are borrowed from real-time design methodology,

are listed below.

Data flow diagrams can help break a driver into discrete functional units. These diagrams

make it easier to visualize how the functional units in a driver relate to each other, and how

they transform input data into output data.

State-machine models are another good way to describe the flow of control in a

driver—especially one that manages an elaborate hardware or software protocol. In the

process of verifying the state machine, potential synchronization issues can be identified.

An analysis of expected data arrival rates or mandatory input-to- output response will give a

set of quantitative timing requirements. These are important to establish the overall

performance goals of the driver.

Another useful tool is an explicit list of external events and the driver actions that these

events should trigger. This list should include both hardware events from the device and

software I/O requests from users.

Using these techniques helps decompose a driver into well-defined functional units. In some cases,

this might mean breaking a single, monolithic driver into a pair of port and class drivers that handle

hardware-dependent and hardware-independent functions. In any event, the time spent analyzing

the design of a driver at the start of the project more than pays for itself in reduced debugging and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

maintenance.

Use Incremental Development

Once an initial analysis and design is completed, it's time to start the actual development. Following

the steps below can reduce debugging time by helping to detect problems while they're still easy to

find.

Decide which kinds of kernel-mode objects a driver needs.1.

Decide what context or state information a driver needs, and decide where it will be stored.2.

Write the DriverEntry and Unload routines first. Do not initially add Plug and Play support.

This allows for testing the driver manually using the Computer Management Console.

3.

Add driver dispatch routines that process IRP_MJ_CREATE and IRP_MJ_CLOSE

operations. These routines typically do not require device access. The driver can then be

tested with a simple Win32 program that calls CreateFile and CloseHandle.

4.

Add code that finds and allocates the driver's hardware, as well as code to deallocate the

hardware when the driver unloads. If the hardware supports Plug and Play detection, this

step tests the hardware and the driver's ability to automatically load.

5.

Add dispatch routines that process any other IRP_MJ_XXX function codes. Initially, these

dispatch routines should complete each I/O request without starting the physical device.

Again, these new code paths can be tested with a simple Win32 program that makes

ReadFile and WriteFile calls, as appropriate.

6.

Finally, implement the real Start I/O logic, the Interrupt Service routine, and the DPC

routine. Now the driver can be tested using live data and real hardware.

7.

Another useful tip: When the exact behavior of hardware is unknown, add a DeviceIoControl

function that gives direct access to the device registers. This allows a simple Win32 program to

manipulate the device registers directly. Remember to disable this function before shipping the final

version of the driver.

Examine and Use the Sample Drivers

The Windows 2000 Device Driver Kit (DDK) contains a considerable amount of sample code. There

are many ways to use this code to make driver development easier. Microsoft encourages cutting

and pasting from their sample source code. Of course, as usual, no warranty is implied or should be

assumed when using this code.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Coding Conventions and Techniques

Writing a trusted kernel-mode component is not the same as writing an application program. This

section presents some basic conventions and techniques to make it easier to code in this

environment.

General Recommendations

First of all, here are some general guidelines to follow when writing a driver.

Avoid the use of assembly language in a driver. It makes the code hard to read, nonportable, and

difficult to maintain. The C programming language is only a small step away from assembly

language, anyway. Further, the HAL macros provide the only safe mechanism to access I/O device

registers. Therefore, the use of assembly language in a driver should be extremely rare. Be sure to

isolate such code into its own module.

For platform-specific code, provide a separate module, or at the very least, bracket it with

#ifdef/#endif directives.

A driver should not be linked with the standard C runtime library. Besides being wasteful of memory

space (each of 20 drivers should not include the same C runtime library support), some library

routines are stateful or hold context information that is not thread-safe or driver-safe.

This particular guideline is perhaps the most uncomfortable aspect of writing device drivers. C

programmers who live with their runtime environment day in and day out, often do not make a clear

distinction between the C language and the C runtime library. The C runtime library requires

initialization. It attempts to initialize a heap area and, in the case of C++, invoke constructors of

global objects. All of these tasks interfere with proper driver operation.

Windows 2000 provides its own environmental support for kernel-mode code. This support includes

RtlXxx functions (RunTime Library) to provide many of the common C runtime library services.

Many of these routines are described later in this chapter.

Driver projects should be managed with source-code control. Microsoft Visual Source Safe® is a

popular choice. For large projects that span multiple platforms, ClearCase® from Rational Software

should also be considered.

Naming Conventions

All large software projects should adopt some standard naming convention for routines and data

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

defined throughout the code. Device driver projects are no exception. Naming conventions improve

the efficiency of development, debugging, testing, and maintenance of the driver.

Microsoft provides a naming convention for use with the DDK. A header file, NTDDK.h, defines all

the data types, structures, constants, and macros used by base-level kernel-mode drivers. By DDK

convention, all of these types of names are capitalized. Even native C-language data types are

provided a corresponding DDK name. For example, the C data type void* is given the name PVOID

by NTDDK.h. These definitions make future ports to 64-bit platforms easier.

Microsoft recommends that a driver-specific prefix be added to each of the standard driver routines.

For example, if writing a mouse class driver, the Start I/O routine might be named

MouseClassStartIo. Similarly a shorter two or three character prefix should be applied to internal

names. This yields a name such as MouConfiguration. This recommendation is often, but not

always, followed by driver authors.

Regardless of what convention is chosen for a driver project, it is important to establish a consistent

way of naming entities within the entire project. It pays to spend a few hours making this decision

early in the development life cycle.

Header Files

Besides including NTDDK.h or WDM.h, a driver should use private header files to hide various

hardware and platform dependencies. For example, register access macros should be provided in a

private header file. These macros should be surrounded by #ifdef compiler directives that allow for

simple platform-to-platform porting. This technique, of course, solves the issue of register access

differences between I/O space and memory space.

Even if portability were not a concern, register access macros make the driver easier to read and

maintain. The following code fragment is an example of some hardware beautification macros for a

parallel port device. The example assumes that some initialization code in the driver has put the

address of the first device register in the PortBase field of the device extension.

//

// Define device registers as relative offsets

//

#define PAR_DATA 0

#define PAR_STATUS 1

#define PAR_CONTROL 2

//

// Define access macros for registers. Each macro

// Takes a pointer to a Device Extension

// as an argument.

//

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

#deinfe ParWriteData(pDevExt, bData) \

(WRITE_PORT_UCHAR(\

 pDevExt->PortBase + PAR_DATA, bData))

#define ParReadStatus(pDevExt) \

(READ_PORT_UCHAR(\

 pDevExt->>PortBase + PAR_STATUS))

#define ParWriteControl(pDevExt, bData) \

(WRITE_PORT_UCHAR(\

 pDevExt->PortBase + PAR_CONTROL, bData))

Status Return Values

The kernel-mode portion of Windows 2000 uses 32-bit status values to describe the outcome of a

particular operation. The data type of these codes is NTSTATUS. There are three situations in which

this status code is used.

When using any of the internal Windows 2000 functions, the success or failure of the call is

reported by an NTSTATUS value.

When the I/O Manager calls a driver-supplied callback routine, that routine usually has to

return an NTSTATUS value to the system.

After completing the processing of the I/O request, a driver must mark the IRP with an

NTSTATUS value. This value ultimately is mapped onto a Win32 ERROR_XXX code. It is

worth noting that NTSTATUS values and Win32 error codes are not identical. The I/O

Manager provides a mapping between the two. A DDK topic describes how the mapping

occurs and is often not logical.

NTSTATUS.h describes symbolic names for a large number of NTSTATUS values. These names

all have the form STATUS_XXX, where XXX describes the actual status message.

STATUS_SUCCESS, STATUS_NAME_EXISTS, and STATUS_INSUFFICIENT_RESOURCES are

all examples of these names.

When a system routine that returns an NTSTATUS value is called, the DDK header file provides a

convenient macro to test for the success or failure of the call. The following code fragment illustrates

this technique:

NTSTATUS status;

:

status = IoCreateDevice (...);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

if (!NT_SUCCESS(status)) {

 // clean up and exit with failure

 :

}

Always, always, always check the return value from any system routine called. Failure to follow this

rule allows an error to propagate into other areas of the driver code and perhaps system code.

Catching errors early is a cardinal rule of software engineering. (Of course, the examples supplied

with this book are exempt from this rule for the sake of clarity.)

Windows 2000 Driver Support Routines

The I/O Manager and other kernel-mode components of Windows 2000 export a large number of

support functions that a driver can call. The reference section of the DDK documentation describes

these functions, and this book includes many examples of their use. For the moment, it's enough to

point out that the support routines fall into specific categories based on the kernel module that

exports them. Table 5.1 gives a brief overview of the kinds of support that each kernel module

provides.

The ZwXxx functions require more explanation. These are actually an internal calling interface for all

the NtXxx user-mode system services. The difference between the user and kernel-mode interfaces

is that the ZwXxx functions don't perform any argument checking. Although there are a large number

of these functions, the DDK reference material describes only a few of them. Use of undocumented

functions is always a risk because Microsoft reserves the right to change or delete any of these

functions at a future time.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 5.1. Driver Support Routine Categories

Windows 2000 Driver

Support Routines

Category Supports…
Function

names

Executive Memory allocation Interlocked queues Zones ExXxx()

 Lookaside lists System worker threads

HAL Device register access Bus access HalXxx()

I/O Manager General driver support IoXxx()

Kernel Synchronization DPC KeXxx()

Memory Manager Virtual-to-physical mapping Memory allocation MmXxx()

Object Manager Handle management ObXxx()

Process Manager System thread management PsXxx()

Runtime library

String manipulation Large integer arithmetic Registry

access Security functions Time and date functions Queue

and list support

RtlXxx()

(mostly)

Security Monitor Privilege checking Security descriptor functions SeXxx()

(Miscellaneous) Internal system services ZwXxx()

One final point to make life easier: The I/O Manager provides several convenience functions that are

nothing more than wrappers around one or more lower-level calls to other kernel modules. These

wrappers offer a simpler interface than their low-level counterparts, and should be used whenever

possible.

Discarding Initialization Routines

Some compilers support the option of declaring certain functions as discardable. Functions in this

category will disappear from memory after a driver has finished loading, making the driver smaller. If

the development environment offers this feature, it should be used.

Good candidates for discardable functions are DriverEntry and any subroutines called only by

DriverEntry. The following code fragment shows how to take advantage of discardable code in the

Microsoft C environment:

#ifdef ALLOC_PRAGMA

#pragma alloc_text(init, DriverEntry)

#pragma alloc_text(init, FuncCalledByDriverEntry)

#pragma alloc_text(init, OtherFuncCalledByDriverEntry)

:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

#endif

The alloc_text pragma must appear after the function name is declared, but before the function

itself is defined—so remember to prototype the function at the top of the code module (or better yet,

in a suitable header file). Also, functions referenced in the pragma statement must be defined in the

same compilation unit as the pragma.

Controlling Driver Paging

Nonpaged system memory is a precious resource. A driver can reduce the burden it places on

nonpaged memory by defining appropriate routines in paged memory. Any function that executes

only at PASSIVE_LEVEL IRQL can be paged. This includes Reinitialize routines, Unload and

Shutdown routines, Dispatch routines, thread functions, and any helper functions running exclusively

at PASSIVE_LEVEL IRQL. Once again, it is the alloc_text pragma that performs the declaration.

An example follows.

#ifdef ALLOC_PRAGMA

#pragma alloc_text(page, Unload)

#pragma alloc_text(page, Shutdown)

#pragma alloc_text(page, DispatchRead)

#pragma alloc_text(page, DispatchHelper)

:

#endif

Finally, if the entire driver is seldom used, it can be temporarily paged out. The system routine

MmPageEntireDriver overrides a driver's declared memory management attributes and makes the

entire module temporarily paged. This function should be called at the end of the DriverEntry routine

and from the Dispatch routine for IRP_MJ_CLOSE when there are no more open handles to any of

its devices. Be sure to call MmResetDriverPaging from the IRP_MJ_CREATE Dispatch routine to

ensure that the driver's page attributes revert to normal while the driver is in use.

When using this technique, beware of the inherent dangers. First, make sure there are no IRPs

being processed by high-IRQL portions of the driver before calling MmPageEntireDriver. Second,

be certain that no device interrupts arrive while the driver's ISR is paged.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Driver Memory Allocation

An important aspect of programming concerns the need to allocate storage. Unfortunately, drivers

don't have the luxury of making simple calls to malloc and free, or new and delete. Instead, care

must be taken to ensure that memory of the right type is allocated. Drivers must also be sure to

release any memory they allocate, since there is no automatic cleanup mechanism for kernel-mode

code. This section describes techniques a driver can use to work with temporary storage.

Memory Available to Drivers

There are three options for allocating temporary storage in a driver. The criteria used to select the

right storage type depends on factors such as duration, size, and from what IRQL level the code

which accesses it will be running. The available options are

Kernel stack.

The kernel stack provides limited amounts of nonpaged storage for local variables during

the execution of driver routines.

Paged pool.

Driver routines running below DISPATCH_LEVEL IRQL can use a heap area called paged

pool. As the name implies, memory in this area is pagable, and a page fault can occur when

it is accessed.

Nonpaged pool.

Driver routines running at elevated IRQLs need to allocate temporary storage from another

heap area called nonpaged pool. The system guarantees that the virtual memory in

nonpaged pool is always physically resident. The device and controller extensions created

by the I/O Manager come from this pool area.

Because a driver must be reentrant, global variables are almost never declared. The only exception

occurs for read-only data. Otherwise, the attempt by one thread of execution to store into the global

variable interferes with another thread's attempt to read or write the same data.

Of course, local static variables in a driver function are just as bad. State for a driver must be kept

elsewhere, such as in a device extension as just described.

Working with the Kernel Stack

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

On the x86 platform, the kernel stack is only 12 KB in size. On other platforms, the stack size is 16

KB. Therefore, the kernel stack must be considered a precious resource. Overflowing the kernel

stack will cause an exception—something to be avoided at all costs in kernel mode. To avoid kernel

stack overflowing, follow these guidelines.

Don't design a driver in such a way that internal routines are deeply nested. Keep the call

tree as flat as possible.

Avoid recursion, but where required, limit the depth of recursion. Drivers are not the place to

be calculating Fibonacci series using a recursive algorithm.

Do not use the kernel stack to build large data structures. Use one of the pool areas

instead.

Another characteristic of the kernel stack is that it lives in cached memory. Therefore, it should not

be used for DMA operations. DMA buffers should be allocated from nonpaged pool. Chapter 12

describes DMA caching issues in more detail.

Working with the Pool Areas

To allocate memory in the pool area, drivers use the kernel routines ExAllocatePool and

ExFreePool.

These functions allow the following kinds of memory to be allocated:

NonPagedPool

is memory available to driver routines running at all IRQL levels, including

DISPATCH_LEVEL IRQL.

NonPagedPoolMustSucceed

is temporary memory that is crucial to the driver's continuing operation. Use this memory for

emergencies only and release it as quickly as possible. In fact, since an exception is

generated if the requested memory is unavailable, consider never using this option.

NonPagedPoolCacheAligned

is memory that is guaranteed to be aligned on the natural boundary of the CPU data-cache

line. A driver might use this kind of memory for a permanent I/O buffer.

NonPagedPoolCacheAlignedMustS

is storage for a temporary I/O buffer that is crucial to the operation of the driver. The S at

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the end of the request name stands for succeed. As with the previous MustSucceed option,

this request should probably never be used.

PagedPool

is memory available only to driver routines running below DISPATCH_LEVEL IRQL.

Normally, this includes the driver's initialization, cleanup, and Dispatch routines and any

kernel-mode threads the driver is using.

PagedPoolCacheAligned

is I/O buffer memory used by file system drivers.

There are several things to keep in mind when working with the system memory areas. First and

foremost, the pools are a precious system resource, and their use should not be extravagant. This is

especially true of the NonPaged area.

Second, a driver must be executing at or below DISPATCH_LEVEL IRQL when allocating or freeing

nonpaged memory. A driver must be executing at or below APC_LEVEL IRQL to allocate or free

from the paged pool.

Finally, release any memory as soon as it is no longer needed. Otherwise, overall system

performance is impacted because of low memory conditions. In particular, be sure to give back pool

memory when a driver is unloaded.

System Support for Memory Suballocation

Generally, a driver should avoid constantly allocating and releasing small blocks of pool memory.

Small is defined as in a request smaller than PAGE_SIZE bytes. Such requests fragment the pool

areas and can make it impossible for other kernel-mode code to allocate memory. If such requests

are unavoidable in a driver design, consider allocating a single, large chunk of pool and provide

private suballocation routines for the driver to use.

In fact, a clever C programmer could write private versions of malloc and free that operate against a

large pool area. A C++ programmer could override the new and delete operators for such purpose.

Some drivers need to manage a collection of small, fixed-size memory blocks. A SCSI driver, for

example, must maintain a supply of SCSI request blocks (SRBs), which are used to send

commands to a SCSI device. The kernel provides two different mechanisms that can be used to

handle the details of suballocation.

ZONE BUFFERS

A zone buffer is just a chunk of driver-allocated pool. Executive routines provide management

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

services of collections of fixed-size blocks in paged or nonpaged memory.

The use of zone buffers requires careful synchronization planning. In particular, if an Interrupt

Service, DPC, and/or Dispatch routine all need access to the same zone buffer, an Executive spin

lock must be used to guarantee noninterference. If the accessing routines all operate at the same

IRQL level, a fast mutex can be used instead. Spin locks are described later in this chapter. Fast

mutexes are described in chapter 14.

To set up a zone buffer, a structure of type ZONE_HEADER must be declared. The spin lock or fast

mutex object may also need to be declared and initialized. The following steps describe the entire

process of managing a zone buffer.

Call ExAllocatePool to claim space for the zone buffer itself. Then initialize the zone buffer

with ExInitializeZone. Typically, these steps are performed in the DriverEntry routine.

1.

To allocate a block from a zone, call either ExAllocateFromZone or

ExInterlockedAllocateFromZone. The interlocked version of the function uses a spin lock

to synchronize access to the zone buffer. The noninterlocked function leaves

synchronization entirely up to the driver code.

2.

To release a block back to the zone, use either ExFreeToZone or

InterlockedFreeToZone. Again, the interlocked version of the function synchronizes

access to the zone.

3.

In the driver's Unload routine, use ExFreePool to release the memory used for the entire

zone buffer. A driver must ensure that no blocks from the zone are in use when the

deallocation occurs.

4.

A zone buffer should be no larger than necessary to keep memory usage to a minimum. A dynamic

approach to sizing the zone buffer would be to use the function MmQuerySystemSize to discover

the total amount of system memory available. Another Executive function,

MmIsThisAnNTAsSystem, checks whether the current platform is running a server version of

Windows 2000 (Server or Advanced Server). Drivers running in server environments could allocate

a larger zone buffer size to meet the expected higher I/O demands of the server.

If the request to allocate a block from a zone buffer fails, the driver could use the standard pools to

grant the requested block instead. This strategy requires a clever structure to indicate whether an

allocation came from the zone or the pool. The appropriate deallocation routine must be called to

release the block.

An existing zone buffer can be enlarged by calling ExExtendZone or ExInterlockedExtendZone,

but these routines should be used infrequently. The system does not appear to deallocate memory

from extended zones correctly. In fact, the entire zone buffer abstraction is considered obsolete.

Windows 2000 provides a more efficient mechanism, which is described in the next section.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

LOOKASIDE LISTS

A lookaside list is a linked list of fixed-size memory blocks. Unlike zone buffers, lookaside lists can

grow and shrink dynamically in response to changing system conditions. Therefore, properly sized

lookaside lists are less likely to waste memory than zone buffers.

Compared to zone buffers, the synchronization mechanism used with lookaside lists is also more

efficient. If the CPU architecture has an 8-byte compare-exchange instruction, the Executive uses it

to serialize access to the list. On platforms without such an instruction, it reverts to using a spin lock

in nonpaged pool and a fast mutex for lists in paged pool.

To use a lookaside list, a structure of type NPAGED_LOOKASIDE_LIST or

PAGED_LOOKASIDE_LIST (depending on whether the list is nonpaged or paged must be

allocated). The following steps describe the process of lookaside list management:

Use either the ExInitializeNPagedLookasideList or ExInitializePagedLookasideList

function to initialize the list header structure. Normally, the DriverEntry or AddDevice routine

performs this task.

1.

Call either ExAllocateNPagedLookasideList or ExAllocatePagedLookasideList to

allocate a block from a lookaside list. These calls are invoked throughout the life of the

driver.

2.

Call ExFreeToNPageLookasideList or ExFreeToPageLookasideList to release a block.3.

Use ExDeleteNPagedLookasideList or ExDeletePagedLookasideList to release any

resources associated with the lookaside list. Usually this is a function invoked from the

driver's Unload or RemoveDevice routine.

4.

The lookaside list initialize functions simply set up the list headers. They do not actually allocate

memory for the list. The initialization functions require that the maximum number of blocks that the

list can hold be specified. This is referred to as the depth of the list.

When using the allocation functions, the system allocates memory as needed. As blocks are freed,

they are chained to the lookaside list up to the maximum allowable depth. After that, any additional

blocks freed results in memory being released back to the system. Thus, after a while, the number

of available blocks in the lookaside list tend to remain near the depth of the list.

The depth of the lookaside list should be chosen carefully. If too shallow, the system is performing

expensive allocation and deallocation operations too often. If too deep, memory is wasted. Statistics

are maintained in the list header structure and can help determine a proper value for the depth of

the list.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Unicode Strings

All character strings in the Windows 2000 operating system are stored internally as Unicode. The

Unicode scheme uses 16 bits to represent each character and makes it easier to port applications

and the OS itself to most languages of the world. Unicode is an industry standard (incidentally, the

character coding standard for Java). More information can be found at the Web site

http://www.Unicode.org. Unless otherwise noted, any character strings a driver sends to or receives

from Windows 2000 will be Unicode. Note, however, that data transfer between a user's buffer and

the device is not necessarily Unicode. Data transfers are considered to be binary and transparent to

the I/O subsystem of Windows 2000.

Unicode String Data Types

The Unicode data type is now part of the C-language specification. To use "wide" characters in a

program, perform the following:

Table 5.2. The UNICODE_STRING Data Structure

UNICODE_STRING,

*PUNICODE_STRING

Field Contents

USHORT Length Current string length in bytes

USHORT MaximumLength Maximum string length in bytes

PWSTR Buffer
Pointer to driver-allocated buffer holding the real string

data

Prefix Unicode string constants with the letter L. For example, "some text" generates

Unicode text, while "some text" produces 8-bit ANSI.

Use the wchar_t data type for Unicode characters. The DDK header files provide a typedef,

WCHAR, for the standard wchar_t, and PWSTR, for wchar_t*.

Use the constant UNICODE_NULL to terminate a Unicode string. A UNICODE_NULL is

defined to be 16 bits of zero.

Windows 2000 system routines work with a Unicode structure, UNICODE_STRING, described in

Table 5.2. The purpose of this structure is to make it easier to pass around Unicode strings and to

help manage them. Although the standard C library provides Unicode string functions to perform

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.Unicode.org

common operations (e.g., wcscpy is equivalent to strcpy for wchar_t* data), this environment is not

available to kernel-mode driver code.

Incidentally, the DDK also defines an ANSI_STRING structure. It is identical to the

UNICODE_STRING structure except that the buffer offset is of type char*. Several Rtl conversion

routines require the data type of ANSI_STRING.

Working with Unicode

The kernel provides a number of functions for working with the ANSI and Unicode strings. These

functions replace (albeit clumsily) the standard C library routines that work with Unicode. Table 5.3

presents several of these functions. The Windows 2000 DDK provides the authoritative list and

usage of the functions and should be reviewed. Some of these functions have restrictions on the

IRQL levels from which they can be called, so care must be taken when using them. To be safe, it is

best to restrict the use of all Rtl Unicode functions to PASSIVE_LEVEL IRQL.

Working with Unicode can be frustrating primarily because the length in bytes of a Unicode string is

twice the content length. C programmers are ingrained with the belief that one character equals one

byte, but with Unicode the rule is changed. When working with Unicode, consider the following:

Table 5.3. Common Unicode Manipulation Functions

Unicode String Manipulation

Functions

Function Description

RtlInitUnicodeString
Initializes a UNICODE_STRING from a NULL-terminated

Unicode string

RtlAnsiStringToUnicodeSize
Calculates number of bytes required to hold a converted

ANSI string

RtlAnsiStringToUnicodeString Converts and ANSI string to Unicode

RtlIntegerToUnicodeString Converts an integer to Unicode text

RtlAppendUnicodeStringToString Concatenates two Unicode strings

RtlCopyUnicodeString Copies a source string to a destination

RtlUpcaseUnicodeString Converts Unicode string to uppercase

RtlCompareUnicodeString Compares two Unicode strings

RtlEqualUnicodeString Tests equality of two Unicode strings

Remember that the number of characters in a Unicode string is not the same as the number

of bytes. Be very careful about any arithmetic that calculates the length of a Unicode string.

Don't assume anything about the collating sequence of the characters or the relationship of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

uppercase and lowercase characters.

Don't assume that a table with 256 entries is large enough to hold the entire character set.

For convenience, this book provides a C++ class wrapper, CUString, for use with the

UNICODE_STRING structure. This CUString class encapsulates a UNICODE_STRING structure,

providing many constructors and conversion operators that in turn rely on the Rtl Unicode functions

of the kernel. A portion of this CUString class declaration is listed below.

// Unicode.h

//

#pragma once

class CUString {

public:

 CUString() {Init(); } // constructor relies on

 // internal Init function

 CUString(const char* pAnsiString);

 CUString(PCWSTR pWideString);

 ~CUString(); // destructor gives back

 // buffer allocation

 void Init(); // performs "real" initialization

 void Free (); // performs real destruct

 // copy constructor (required)

 CUString(const CUString& orig);

 // assignment operator overload (required)

 CUString operator=(const CUString& rop);

 // comparison operator overload

 BOOLEAN operator==(const CUString& rop) const;

 // concatenation operator

 CUString operator+(const CUString& rop) const;

 // cast operator into wchar_t*

 operator PWSTR() const;

 // cast operator into ULONG

 operator ULONG() const;

 // converter: ULONG->CUString

 CUString(ULONG value);

 // buffer access operator

 WCHAR& operator[](int idx);

 USHORT Length() {return uStr.Length/2;}

protected:

 UNICODE_STRING uStr; // W2K kernel structure for

 // Unicode string

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 enum ALLOC_TYPE {Empty, FromCode, FromPaged};

 ALLOC_TYPE aType; // where buffer is allocated

};

The disk included with this book supplies two files, Unicode.h. and Unicode.cpp, that hold the

declaration and implementation of the CUString class. The methods of this class assume that users

are at PASSIVE_LEVEL IRQL. Routines that allocate memory do so from the paged pool. The use

of the class is intended for convenience, and not for heavy-duty string manipulation. Consider

modifying the class implementation to allocate memory from a lookaside list if more intense string

manipulation is required by a driver.

Of course, at this point it might seem premature to be introducing portions of driver code. After all,

building and loading a driver is not discussed until the next chapter. However, the code included for

this chapter supplies a trivial, mock environment to test code such as the CUString class from the

Win32 environment. Rtl stub functions rely on either Win32 or C runtime library functions to perform

a reasonably faithful emulation of kernel runtime support. A simple Win32 console program is

included to demonstrate the use of the CUString class. A portion of the test program is shown

below.

#include "DDKTestEnv.h"

#include "Unicode.h"

#include "stdio.h"

int main(int argc, char* argv[])

{

 CUString strEmpty;

 CUString strOne("One");

 CUString strTwo(L"Two");

 CUString str2468("2468");

 ULONG ul2468 = str2468;

 CUString strxFF01("xFF01");

 ULONG ulxFF01 = strxFF01;

 CUString str2244(2244);

 CUString strOnePlusTwo = strOne + strTwo;

 wprintf(L"strOnePlusTwo: %s\n",

 (PWSTR) strOnePlusTwo);

 printf("Conversion of str2468 into ULONG = %d\n",

 ul2468);

 printf("Conversion of strxFF01 into ULONG = %x\n",

 ulxFF01);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 wprintf(L"Conversion of 2244 into CUString = %s\n",

 (PWSTR) str2244);

 wprintf(L"On the fly conversion of 3366 into "

 "CUString = %s\n",

 (PWSTR)(CUString)3366);

 printf("Test of buffer access operator []:\n");

 for (int i=0; i<strOnePlusTwo.Length(); i++) {

 wprintf(L"%c ", strOnePlusTwo[i]);

 strOnePlusTwo[i] = L'A' + i;

 }

 wprintf(L"\nAfter replacing buffer, "

 "strOnePlusTwo = %s\n",

 (PWSTR)strOnePlusTwo);

 ...

Two files, DDKTestEnv.h and DDKTestEnv.cpp, supply the declaration and implementation of the

emulation environment. This environment was intended to be simple and provide a testbed of some

driver logic before entering the real kernel-mode environment.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Interrupt Synchronization

Writing reentrant code that executes at multiple IRQL levels requires attention to proper synchronization.

This section examines the issues that arise in this kind of environment.

The Problem

If code executing at two different IRQLs attempts to access the same data structure simultaneously, the

structure can become corrupted. Figure 5.1 illustrates the details of this synchronization problem.

Figure 5.1. Synchronization problem with interrupting code.

To understand the exact problem, consider this sequence of events.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Suppose code executing at a low IRQL decides to modify several fields in the foo data structure.

For this example, the code executes to the point where the field foo.x is set to 1.

1.

An interrupt occurs and a higher-IRQL piece of code gets control of the processor. This code also

modifies foo, setting foo.x to 10 and foo.y to 20.

2.

When the higher-IRQL code dismisses its interrupt and control returns to the lower-IRQL routine,

the original modification of foo completes by setting foo.y to 2. The lower-IRQL code is completely

unaware that it was interrupted.

3.

The foo structure is now inconsistent, with 10 in the x field and 2 in the y field. Neither section of

code obtains the desired result.

4.

Of course, similar results occur even when only a single shared value is used with different code threads.

When one code path attempts to increment the variable, there may be a brief moment in time when the

modified value is held in a CPU register. If this thread is interrupted prior to storing the register back into the

variable, the same contention problem arises.

In the following sections, techniques that a driver can use to synchronize the work of multiple code paths is

described.

Interrupt Blocking

In the previous example, the lower-IRQL routine could have avoided synchronization problems by

preventing itself from being interrupted. To do this, it can temporarily raise the IRQL of the CPU and then

lower it back to its original level after completing the modification. This technique is called interrupt blocking.

Table 5.4 lists the kernel functions that a driver can use to manipulate the IRQL value.

Rules for Blocking Interrupts

When using interrupt blocking, there are certain rules that must be followed.

Table 5.4. Functions that control the CPU's IRQL level.

Interrupt Blocking

Function

Function Description

KeRaiseIrql
Changes the CPU IRQL to a specified value, blocking interrupts at or below

that IRQL level

KeLowerIrql Lowers the CPU IRQL value

KeGetCurrentIrql Returns the IRQL value of the CPU on which this call is made

Every piece of code touching a protected (shared) data structure must agree on the IRQL level to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

use for synchronization. The agreement requires that no code path touch the structure (read or

write) unless the IRQL has been raised to the chosen level.

If lower-IRQL level code elevates to the agreed upon IRQL level, it should remain there as briefly as

possible. Depending on the blocking level, other hardware interrupts could remain blocked for too

long unless this rule is followed.

While a driver can elevate a code's IRQL level, it should never drop the IRQL level below its original

value. Disobeying this rule compromises the entire system interrupt priority mechanism.

Synchronization Using Deferred Procedure Calls

DPCs provide another way to avoid data structure collisions. If all the kernel-mode components using a

particular data structure access it only from within a DPC routine, there will be no corruption since DPC

routines are always executed serially. The main advantage of using DPCs for synchronization is that they

run at a relatively low IRQL.

Another key advantage of DPC routines is that the kernel's DPC Dispatcher automatically handles

synchronization in a multi processor (MP) environment. The next section describes what is required to

perform manual synchronization among multiple processors.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Synchronizing Multiple CPUs

Modifying the IRQL of one CPU has no effect on other CPUs and multiprocessor systems. Consequently,

IRQLs provide only local CPU protection to share data. To prevent corruption of data structures in a

multiprocessor environment, Windows 2000 uses synchronization objects called spin locks.

How Spin Locks Work

A spin lock is simply a mutual-exclusion object that is associated with a specific group of data structures.

When a piece of kernel-mode code wants to touch any of the guarded data structures, it must first request

ownership of the associated spin lock. Since only one CPU at a time can own the spin lock, the data

structure is safe from contamination. Any CPU requesting an already-owned spin lock will busy-wait until the

spin lock becomes available. Figure 5. 2 illustrates the process.

Figure 5.2. Spin locks.

A given spin lock is always acquired and released at a specific IRQL level. This has the effect of blocking

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

dangerous interrupts on the local CPU and preventing the synchronization problems described earlier. While

a CPU is waiting for a spin lock, all activity at or below the IRQL of the spin lock is blocked on that CPU.

Both steps are essential—elevate the IRQL level and acquire the spin lock.

Using Spin Locks

There are two major kinds of spin locks provided by the kernel. They are distinguished by the IRQL level at

which they are used.

Interrupt spin locks.

These synchronize and provide access to driver data structures shared by multiple-driver routines.

Interrupt spin locks are acquired at the DIRQL associated with the device.

Executive spin locks.

These guard various operating system data structures, and their associated IRQL is

DISPATCH_LEVEL.

When a driver uses Interrupt spin locks, operation is straightforward. The function

KeSynchronizeExecution is described in chapter 8.

Executive spin locks are more complicated to work with. The following steps must be followed when using

Executive spin locks:

Decide what data items must be guarded and how many spin locks should be used. Additional spin

locks allow finer granularity of access to the data. However, the possibility of deadlock is present

whenever acquisition of more than one spin lock at a time is required.

1.

Reserve space for a data structure of type KSPIN_LOCK for each lock. Storage for the spin lock

must be in nonpaged pool. Usually, the spin lock is declared in the device or controller extension.

2.

Initialize the spin lock once by calling KeInitializeSpinLock. This function can be called from any

IRQL level, though it is most commonly used from the DriverEntry routine.

3.

Call KeAcquireSpinLock before touching any resource guarded by a spin lock. This function

raises IRQL to DISPATCH_LEVEL, acquires the spin lock, and returns the previous IRQL value.

This function must be called at or below DISPATCH_LEVEL IRQL. If the code is already at

DISPATCH_LEVEL, a more efficient call is KeAcquireSpinLockFromDpcLevel.

4.

When access to the resource is complete, use the KeReleaseSpinLock function to free the lock.

This function is called from DISPATCH_LEVEL IRQL and it restores IRQL to its original value. If the

original level was known to be DISPATCH_LEVEL, a more efficient call would be

KeReleaseSpinLockFromDpcLevel, which releases the lock without changing IRQL.

5.

Some driver support routines (like the interlock lists and queues described in the next section) use Executive

spin locks for protection. In these cases, the only requirement is that the spin lock object be initialized. The

driver support routines that manage the interlocked object will acquire and release the spin lock on the

driver's behalf.

Rules for Using Spin Locks

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Spin locks aren't terribly difficult to use, but there are a few rules that should be followed.

Be sure to release a spin lock as soon as possible because while holding it, other CPU activity may

be blocked. The official DDK recommendation is not to hold a spin lock for more than about 25

microseconds.

Don't cause any hardware or software exceptions while holding the spin lock. This is a guaranteed

system crash.

Don't access any page code or data while holding the spin lock. This may result in a page fault

exception.

Don't try to acquire a spin lock the CPU already owns. This leads to a deadlock situation since the

CPU freezes up, waiting for itself to release the spin lock.

Avoid driver designs that depend on holding multiple spin locks simultaneously. Without careful

design, this can lead to a deadly embrace condition. If multiple spin locks must be used, ensure that

all code paths agree to acquire them in a fixed order and release them in the exact reverse order.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Linked Lists

Drivers sometimes need to maintain linked list data structures. This section describes the support

available for managing singly and doubly linked lists.

Singly Linked Lists

To use singly linked lists, begin by declaring a list head of type SINGLE_ LIST_ENTRY. This

simplistic structure is also the data type of the linked pointer itself. Indeed, the

SINGLE_LIST_ENTRY structure has but one offset: Next. The list head must be manually

initialized, as demonstrated in the following code fragment.

typedef struct _DEVICE_EXTENSION {

 :

 SINGLE_LIST_ENTRY listHead; // Declare head ptr

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 :

pDevExt->listHead.Next = NULL; // init the list

To add or remove entries from the front of the list, call PushEntryList and PopEntryList.

Depending on how the list is used, the actual entries can be in either page or nonpaged memory.

Remember that the use of these functions may require synchronization.

The Windows 2000 kernel also provides convenient support for singly linked lists guarded by an

Executive spin lock. This kind of protection is important when sharing a linked list among driver

routines running at or below DISPATCH_LEVEL IRQL. To use one of these lists, set up the list head

in the usual way, and then initialize an Executive spin lock that guards the list.

typedef struct _DEVICE_EXTENSION {

 :

 SINGLE_LIST_ENTRY listHead; // head pointer

 KSPIN_LOCK listLock; // declare list lock

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 :

KeInitializeSpinLock(&pDevExt->listLock);

pDevExt->listHead.Next = NULL;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Once the list head and spin lock are declared and initialized, the functions

ExInterlockedPushEntryList and ExInterlockedPopEntryList provide convenient, protected

access to the list. Code must be running at or below DISPATCH_LEVEL IRQL to use either function.

The list entries themselves must reside in nonpaged memory, since the system will be linking and

unlinking them from DISPATCH_LEVEL IRQL.

Doubly Linked Lists

To use doubly linked lists, declare a list head of type LIST_ENTRY. This is also the data type of the

linked pointer itself. The LIST_ENTRY structure declares two offsets, Flink and Blink, for the forward

and back pointers. The list head is initialized with a helper routine, InitializeListHead, as

demonstrated in the following code fragment.

typedef struct _DEVICE_EXTENSION {

 :

LIST_ENTRY listHead; // head pointer

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 :

InitializeListHead(&pDevExt->listHead);

To add entries to the list, call InsertHeadList or InsertTailList, and to pull entries out, call

RemoveHeadList or RemoveTailList. To determine if the list is empty, use IsListEmpty. Again, the

entries can be paged or nonpaged, but these functions do not perform synchronization.

The Windows 2000 kernel also supports interlocked doubly linked lists. To use these, set up the list

head in the usual way, and then initialize an Executive spin lock that guards the list.

typedef struct _DEVICE_EXTENSION {

 :

LIST_ENTRY listHead; // head pointer

KSPIN_LOCK listLock; // the list's lock

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

 :

KeInitializeSpinLock(&pDevExt->listLock);

InitializeListHead(&pDevExt->listHead);

The spin lock is passed in calls to ExInterlockedInsertTailList, ExInterlockedInsertHeadList, and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ExInterlockedRemoveHeadList. To make these calls, code must be running at or below

DISPATCH_LEVEL IRQL. Entries for doubly linked interlock lists have to live in nonpaged memory.

Removing Blocks from a List

When a block is pulled from a list, the pop function returns a pointer to the LIST_ENTRY or

SINGLE_LIST_ENTRY structure. Since these structures are merely a part of a bigger structure, a

pointer to the containing structure must be obtained. One simple technique would be to ensure that

the LIST_ENTRY structure is the first offset of the containing structure. Then, a pointer to the

LIST_ENTRY structure is also a pointer to the containing structure. Otherwise, clever use of the

offsetof operator is required to dig out a pointer to the containing structure. Fortunately, Windows

2000 provides a macro, CONTAINING_RECORD, to make the process easier. The macro

arguments are listed in Table 5.5

Table 5.5. CONTAINING_RECORD Macro Arguments

CONTAINING_RECORD Macro

Parameter Description

Address Address returned by list "removal" function

Type Data type of the "containing structure"

Field Field within "containing structure" where Address argument points

Return value Pointer to "containing structure"

The following code fragment demonstrates the use of the CONTAINING_RECORD macro.

typedef struct _MYBLOCK {

 ULONG ulSomeThingAtTopOfBlock;

 :

 LIST_ENTRY listEntry;

 :

} MYBLOCK, *PMYBLOCK;

 :

PMYBLOCK pMyBlock;

PLIST_ENTRY pEntry;

 :

pEntry = RemoveHeadList(&pDevExt->listHead);

pMyBlock = CONTAINING_RECORD(pEntry, MYBLOCK, listEntry);

Notice that, for whatever reason, the LIST_ENTRY field could not be the first offset within the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

MYBLOCK structure. Therefore, the address returned by RemoveHeadList needed to be converted

into a pointer of the containing structure.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

In this chapter some general guidelines for designing and coding a Windows 2000 device driver

were covered. The prerequisites to coding the initial Windows 2000 device driver are now in place.

In the next chapter, an actual device driver is implemented.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 6. Initialization and Cleanup Routines

CHAPTER OBJECTIVES

Writing a DriverEntry Routine

Code Example: Driver Initialization

Writing Reinitialize Routines

Writing an Unload Routine

Code Example: Driver Unload

Writing Shutdown Routines

Testing the Driver

Summary

Everything has to start somewhere. In the case of a Windows 2000 kernel-mode driver, the

starting point is a function called DriverEntry. This chapter shows how to write a DriverEntry

routine along with various other pieces of initialization and cleanup code. At the conclusion

of this chapter, a minimal driver is produced that can actually load into the system.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a DriverEntry Routine

Every Windows 2000 kernel-mode or WDM driver, regardless of its purpose, has to expose a routine whose

name is DriverEntry. This routine initializes various driver data structures and prepares the environment for

all the other driver components.

Execution Context

The I/O Manager calls a DriverEntry routine once it loads the driver. As Table 6.1 shows, the DriverEntry

routine runs at PASSIVE_LEVEL IRQL, which means it has access to page system resources.

The DriverEntry routine receives a pointer to its own driver object, which it must initialize. It also receives a

UNICODE_STRING containing the path to the driver's service key in the Registry. WDM drivers have little

use for this registry name. Kernel-mode drivers rely on the string to extract any driver-specific parameters

stored in the system registry. The Registry String takes the form

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ DriverName.

What a DriverEntry Routine Does

Although the exact details vary based on whether a driver is WDM or kernel-mode, in general the following

steps are taken in a DriverEntry routine.

DriverEntry locates hardware that it will be controlling. That hardware is allocated—it is marked as

under the control of this driver.

1.

The driver object is initialized by announcing other driver entry points. The announcements are

accomplished by storing function pointers directly into the driver object.

2.

If the driver manages a multiunit or multifunction controller, IoCreateController is used to create a

controller object. A controller extension is then initialized.

3.

IoCreateDevice is used to create a device object for each physical or logical device under the

control of this driver. A device extension is then initialized.

4.

The created device is made visible to the Win32 subsystem by calling IoCreateSymbolicLink.5.

The device is connected to an interrupt object. If the ISR requires the use of a DPC object, it is

created and initialized in this step.

6.

Steps 4 to 6 are repeated for each physical or logical device controlled by this driver.7.

If successful, DriverEntry should return STATUS_SUCCESS to the I/O Manager.8.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 6.1. Function Prototype for DriverEntry

NTSTATUS DriverEntry IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT pDriverObject Address of driver object for this driver

IN PUNICODE_STRING pRegistryPath Registry path string for this driver's key

Return value • STATUS_SUCCESS

 • STATUS_XXX - some error code

It is important to understand that steps 1 and 3 to 6 are not performed by a WDM driver's DriverEntry

routine. They are deferred to another routine, AddDevice.

If DriverEntry should fail during initialization for any reason, it should release any system resources it may

have allocated up to the failure, and return an appropriate NTSTATUS failure code to the I/O Manager.

The following sections describe some of the steps in more detail. The process of finding and allocating

hardware is complex and heavily impacted by the device's ability to be autorecognized. Chapter 9 describes

this step in more detail. The use of an interrupt object and DPCs is deferred until chapter 8.

Announcing DriverEntry Points

The I/O Manager is able to locate the DriverEntry routine because it has a well-known name. (Actually, the

linker announces the address of DriverEntry using a command line switch. Nevertheless, the DDK

documentation mandates that this entry point be called DriverEntry.) Other driver routines don't have fixed

names, so the I/O Manager needs some other way to locate them. The linkage mechanism is the driver

object, which contains pointers to other driver functions. A DriverEntry routine is responsible for setting up

these function pointers.

These function pointers fall into two categories.

Functions with explicit slots and names in the driver object.

IRP dispatch functions that are listed in the driver object's MajorFunction array. These functions

are the subject of chapter 7.

The following code fragment shows how a DriverEntry routine initializes both kinds of function pointers.

pDO->DriverStartIo = StartIo;

pDO->DriverUnload = Unload;

//

// Initialize the MajorFunction Dispatch table

//

pDO->MajorFunction[IRP_ MJ_CREATE] = DispatchCreate;

pDO->MajorFunction[IRP_MJ_CLOSE] = DispatchClose;

:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Creating Device Objects

Once hardware is identified and allocated, the next step is to create a device object for each physical or

virtual device that is to be exposed to the rest of the system. Most of the work is done by the

IoCreateDevice function, which takes a description of the device and returns a device object, complete with

an attached device extension. IoCreateDevice also links the new device object into the list of devices

managed by this driver object. Table 6. 2 contains a description of this function.

The DeviceType parameter of IoCreateDevice is simply a 16-bit value describing the class of device being

added. Microsoft reserves the first half of this range for predefined device types. Above 32767, private

device types can be defined. Beware, though, that conflict with another vendor's device is always possible.

Currently, Microsoft predefines about 30 device types. The predefined device type values are given

symbolic names of the form FILE_DEVICE_XXX (e.g., FILE_DEVICE_DVD).

One final point about creating device objects: Although this chapter describes the use of IoCreateDevice

from DriverEntry, it is usually called from AddDevice (WDM) and occasionally from a Dispatch routine. In

such a case, it is imperative that the driver reset a bit in the Flags field of the device object once it is

created. This bit is called DO_DEVICE_INITIALIZING and is normally reset upon return from DriverEntry.

The bit is reset with code similar to the following:

pDevObject->Flags &= ~DO_DEVICE_INITIAILIZING;

Do not clear this bit until the device object is actually initialized and ready to process requests.

Table 6.2. Function Prototype for IoCreateDevice

NTSTATUS IoCreateDevice IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT pDriverObject Pointer to driver object

IN ULONG DeviceExtensionSize Requested size of DEVICE_EXTENSION

IN PUNICODE_STRING pDeviceName Internal device name (see below)

IN DEVICE_TYPE DeviceType FILE_DEVICE_XXX (see NTDDK.h)

IN ULONG DeviceCharacteristics Characteristics of mass-storage device:

 • FILE_REMOVABLE_MEDIA

 • FILE_READ_ONLY_DEVICE

 • Etc.

IN BOOLEAN Exclusive TRUE if device is not sharable

OUT PDEVICE_OBJECT *pDeviceObject Variable that receives device object pointer

Return value • STATUS_SUCCESS -or-

 • STATUS_XXX - some error code

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Choosing a Buffering Strategy

If the IoCreateDevice call succeeds, the I/O Manager must be notified of whether buffered I/O or direct I/O

will be used with the device. The choice is designated by selecting appropriate bits into the Flags field of the

new device object.

DO_BUFFERED_IO.

The I/O Manager copies data back and forth between user and system-space buffers.

DO_DIRECT_IO.

The I/O Manager locks user buffers into physical memory for the duration of an I/O request and

builds a descriptor list of the pages in the buffer.

The next chapter explains how user buffers are accessed using both techniques. If neither bit is set in the

Flags field, the I/O Manager assumes that the driver needs no further help from the I/O Manager when

accessing the user's buffer.

Device Names

Devices in Windows 2000 can have more than one name. Internally, the name specified by IoCreateDevice

is the name by which the device is known to the Windows 2000 Executive itself. This internal name is

(almost) completely hidden from Win32 user applications. In order to expose the device to the Win32

subsystem, the Win16 subsystem, or the virtual DOS environment, the new device must be given a symbolic

link name in addition to its internal name.

These two types of names live in different parts of the Object Manager's namespace. The Object Manager

maintains a directory of names for all resources managed by the operating system. Internal device names

are stored beneath the \Device section of the directory tree. Symbolic link names appear beneath the \??

tree. Figure 6.1 illustrates this relationship. When using IoCreateDevice, the entire \Device name must be

supplied. For example, "\\Device\\Minimal0" is a suitable device name string. (The double backslash (\\) is

necessary in C so that the character following the first backslash \ will not be considered a special character

sequence, like \t.)

Figure 6.1. Internal and Symbolic Link names in the Object Manager's Namespace.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Internal and symbolic link names follow different device naming conventions. Internal device names tend to

be longer, and they always end in a zero-based number (e.g., FloppyDisk0 or FloppyDisk1). Symbolic link

names follow the usual pattern of A through Z for file-system devices, and names ending in a one-based

number for other devices (e.g., LPT1 or LPT2).

To create a symbolic link name, use IoCreateSymbolicLink. This function takes an existing device name

and a new symbolic name (both passed as UNICODE_STRING data types).

Finally, it must be noted that the selection of the device name is not necessarily the option of the driver. In

the WDM world, bus drivers, class drivers, and many Plug and Play devices define their own names. Chapter

9 describes this process more fully. In the meantime, non-WDM drivers must supply their own unique names

for each device added.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: Driver Initialization

The following example shows how a basic kernel-mode device driver initializes itself. The code for

this example is in chapter 6 directory on the disk that accompanies this book.

This first minimal driver must be manually loaded. It does not touch any hardware, but instead

creates an internal device name (MINIMAL0) and a symbolic link name (MIN1). It consists of a

single source module, Driver.cpp. A header file, Driver.h, declares driver-specific information about

our nonhardware device, such as the DEVICE_EXTENSION.

DRIVERENTRY

In our first non-WDM driver example, the DriverEntry routine is small and straightforward. The

responsibilities include

Announcing other DriverEntry points. For the Minimal driver, the only other routine to

announce is the driver's Unload function.

1.

Creating the logical devices that will be managed by the Minimal driver. For initial testing

purposes, only a single device will be created.

2.

//++

// Function: DriverEntry

//

// Description:

// Initializes the driver, locating and claiming

// hardware resources. Creates the kernel objects

// needed to process I/O requests.

//

// Arguments:

// pDriverObject - Passed from I/O Manager

// pRegistryPath - UNICODE_STRING pointer to

// registry info (service key)

// for this driver

//

// Return value:

// NTSTATUS signaling success or failure

//—

NTSTATUS DriverEntry (

 IN PDRIVER_OBJECT pDriverObject,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IN PUNICODE_STRING pRegistryPath) {

 ULONG ulDeviceNumber = 0;

 NTSTATUS status;

 // If this driver controlled real hardware,

 // code would be placed here to locate it.

 // Using IoReportResourceUsage, the ports,

 // IRQs, and DMA channels would be "marked"

 // as "in use" and under the control of this driver.

 // This minimal driver has no HW, so...

 // Announce other driver entry points

 pDriverObject->DriverUnload = DriverUnload;

 // Over time, the MajorFunction array will be filled

 // For each physical or logical device detected

 // that will be under this Driver's control,

 // a new Device object must be created.

 status =

 CreateDevice(pDriverObject, ulDeviceNumber);

 // This call would be repeated until

 // all devices are created. E.g.,

 // ulDeviceNumber++;

 // status =

 // CreateDevice(pDriverObject, ulDeviceNumber);

 return status;

}

CREATEDEVICE

The work of actually creating the device object is delegated to a module-private (static) routine

called CreateDevice. Although this routine doesn't do much, modularizing this work is appropriate

as this driver evolves into a full WDM driver. Its responsibilities include

Choosing and forming an internal device name. This driver hard-codes the name passed

into the function.

1.

Creating the internal device object. The size of the DEVICE_EXTENSION is specified in the

call to IoCreateDevice.

2.

Initializing the DEVICE_EXTENSION. In the case of this Minimal driver, the

DEVICE_EXTENSION holds a back pointer to the device object and names for the device

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

and symbolic link.

Forming a symbolic link name and linking the name created.4.

The CreateDevice routine relies on the C++ class, CUString, discussed in the last chapter. The use

of CUString makes it simple to convert numbers into Unicode strings and append them onto device

names.

//++

// Function: CreateDevice

//

// Description:

// Adds a new device

//

// Arguments:

// pDriverObject - Passed from I/O Manager

// ulDeviceNumber - Logical device number (zero-based)

//

// Return value:

// None

//—

NTSTATUS CreateDevice (

 IN PDRIVER_OBJECT pDriverObject,

 IN ULONG ulDeviceNumber) {

NTSTATUS status;

PDEVICE_OBJECT pDevObj;

PDEVICE_EXTENSION pDevExt;

// Form the internal Device Name

CUString devName("\\Device\\MINIMAL"); // for "minimal" device

devName += CUString(ulDeviceNumber);

// Now create the device

status =

 IoCreateDevice(pDriverObject,

 sizeof(DEVICE_EXTENSION),

 &(UNICODE_STRING)devName,

 FILE_DEVICE_UNKNOWN,

 0, TRUE,

 &pDevObj);

if (!NT_SUCCESS(status))

 return status;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

// Initialize the Device Extension

pDevExt = (PDEVICE_EXTENSION)pDevObj->DeviceExtension;

pDevExt->pDevice = pDevObj; // back pointer

pDevExt->DeviceNumber = ulDeviceNumber;

pDevExt->ustrDeviceName = devName;

// Form the symbolic link name

CUString symLinkName("\\??\\MIN");

symLinkName += CUString(ulDeviceNumber+1); // 1 based

pDevExt->ustrSymLinkName = symLinkName;

// Now create the link name

status =

 IoCreateSymbolicLink(&(UNICODE_STRING)symLinkName,

 &(UNICODE_STRING)devName);

if (!NT_SUCCESS(status)) {

 // if it fails now, must delete Device object

 IoDeleteDevice(pDevObj);

 return status;

}

// Made it

return STATUS_SUCCESS;

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Reinitialize Routines

Intermediate-level drivers loading at system boot time may need to delay their initialization until one

or more lower-level drivers have finished loading. If the loading of the drivers is under central

control, the load sequence can be fixed by setting various Registry entries at installation. But if the

drivers are supplied by different vendors, the load order may be indeterminate. In the latter case, the

intermediate driver must register and implement a Reinitialize routine.

Execution Context

If the DriverEntry routine discovers that it can't finish its initialization because system bootstrapping

hasn't yet gone far enough, it can announce a Reinitialize routine by calling

IoRegisterDriverReinitialization. The I/O Manager calls the Reinitialize routine at some later point

during the bootstrap. As described in Table 6.3, the Reinitialize routine runs at PASSIVE_ LEVEL

IRQL, which means it has access to paged system resources. Reinitialize routines are useful only for

drivers that load automatically at system boot.

What a Reinitialize Routine Does

The Reinitialize routine can perform any driver initialization that the DriverEntry routine was unable

to complete. If the Reinitialize routine discovers that the environment still isn't suitable, it can call

IoRegisterDriverReinitialization again to reregister itself.

Table 6.3. Function Prototype for Reinitialize Routine

VOID Reinitialize IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT pDriverObject Pointer to driver object

IN PVOID Context Context block specified at registration

IN ULONG Count Zero-based count of reinitialization calls

Return value (void)

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing an Unload Routine

By default, once the driver is loaded, it remains in the system until a reboot occurs. To make a driver

unloadable, an Unload routine is necessary. The Unload routine is announced during DriverEntry.

The I/O Manager then calls this routine whenever the driver is manually or automatically unloaded.

Execution Context

The I/O Manager calls a driver's Unload routine just before removing the driver from memory. Table

6.4 shows that the Unload routine runs at PASSIVE_LEVEL IRQL, which means it has access to

paged system resources.

What an Unload Routine Does

Although the exact details vary from driver to driver, in general the following steps are performed in

an Unload routine.

Table 6.4. Function Prototype for Unload Routine

VOID Unload IRQL == PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT pDriverObject Pointer to driver object for this driver

Return value (void)

For some kinds of hardware, the state of the device should be saved in the Registry. That

way, the device can be restored to its last known state the next time DriverEntry executes.

For example, an audio card driver might save the current volume setting of the card.

1.

If interrupts have been enabled for the device, the Unload routine must disable them and

disconnect from its interrupt object. It is crucial that the device not generate any interrupt

requests once the interrupt object is deleted.

2.

Hardware belonging to the driver must be deallocated.3.

The symbolic link name must be removed from the Win32 namespace. This is

accomplished using IoDeleteSymbolicLink.

4.

The device object itself must be removed using IoDeleteDevice.5.

If managing multiunit controllers, repeat steps 4 and 5 for each device attached to the

controller. Then remove the controller object itself, using IoDeleteController.

6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Repeat steps 4 through 6 for all controllers and devices that belong to the driver.7.

Deallocate any pool memory held by the driver.8.

It is important to note that for WDM drivers, the responsibilities of Unload are performed in the

RemoveDevice routine.

One final note: A driver's Unload routine is not called at system shutdown time. Any special work

required during system shutdown must be performed inside of a separate shutdown routine.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: Driver Unload

In the Minimal driver, an Unload routine is supplied that undoes the work of DriverEntry. Its work is

straightforward, as it must delete each symbolic link and device object that has been created. To

perform this work, the Unload routine relies on the fact that the driver object points to a linked list of

device objects controlled by the driver.

The first device controlled by a driver is pointed to by the field DeviceObject within the driver object.

Each device points to the next via the field NextDevice. When examining the Unload routine,

remember that the Minimal DEVICE_EXTENSION structure maintains a back pointer to the parent

device object.

//++

// Function: DriverUnload

//

// Description:

// Stops & Deletes devices controlled by this driver.

// Stops interrupt processing (if any)

// Releases kernel resources consumed by driver

//

// Arguments:

// pDriverObject - Passed from I/O Manager

//

// Return value:

// None

//—

VOID DriverUnload (

 IN PDRIVER_OBJECT pDriverObject) {

 PDEVICE_OBJECT pNextObj;

 // Loop through each device controlled by Driver

 pNextObj = pDriverObject->DeviceObject;

 while (pNextObj != NULL) {

 // Dig out the Device Extension from the

 // Device Object

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pNextObj->DeviceExtension;

 // This will yield the symbolic link name

 UNICODE_STRING pLinkName =

 pDevExt->ustrSymLinkName;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // ... which can now be deleted

 IoDeleteSymbolicLink(&pLinkName);

 // a little trickery...

 // we need to delete the device object, BUT

 // the Device object is pointed to by pNextObj

 // If we delete the device object first,

 // we can't traverse to the next Device in the list

 // Rather than create another pointer, we can

 // use the DeviceExtension's back pointer

 // to the device.

 // So, first update the next pointer...

 pNextObj = pNextObj->NextDevice;

 // then delete the device using the Extension

 IoDeleteDevice(pDevExt->pDevice);

 }

 // Finally, hardware that was allocated in DriverEntry

 // would be released here using

 // IoReportResourceUsage

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Shutdown Routines

If a driver has special processing to do before the operating system disappears, a driver should

supply a Shutdown routine.

Execution Context

The I/O Manager calls a Shutdown routine during a system shutdown. As described in Table 6.5, the

Shutdown routine runs at PASSIVE_LEVEL IRQL, which means it has access to paged system

resources.

Table 6.5. Function Prototype for Shutdown Routine

NTSTATUS Shutdown IRQL == PASSIVE_LEVEL

Parameter Description

IN PRDRIVE_OBJECT pDriverObject Pointer to driver object for this driver

IN PIRP pIrp Pointer to shutdown IRP

Return value • STATUS_SUCCESS -or-

 • STATUS_XXX - some error code

What a Shutdown Routine Does

The main purpose of the Shutdown routine is to put the device into a quiescent state and perhaps

store some device information into the system Registry. Again, saving the current volume settings

from a sound card is a good example of something a Shutdown routine might do.

Unlike the driver's Unload routine, Shutdown routines don't have to worry about releasing driver

resources because the operating system is about to disappear anyway.

Enabling Shutdown Notification

There is no direct field in the Driver object for announcing the Shutdown routine. Instead, the event

of system shutdown is sent as a separate I/O request to a driver. It is handled with an entry inside of

the driver's MajorFunction code array.

Additionally, the I/O Manager must be notified that a driver is interested in receiving shutdown

notifications. This is done by making a call to IoRegisterShutdownNotification. The following code

fragment shows how to enable shutdown notifications in a driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

NTSTATUS DriverEntry (

 IN PDRIVER_OBJECT pDriverObject,

 IN PUNICODE_STRING pRegistryPath) {

 :

 pDriverObject->MajorFunction[IRP_MJ_SHUTDOWN] =

 Shutdown;

 IoRegisterShutdownNotification(pDriverObject);

 :

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Testing the Driver

Even though the Minimal driver is far from being useful, its operation can be verified in several ways. In

particular, it can be tested to ensure that it

Compiles and links successfully

Loads and unloads without crashing the system

Creates device objects and Win32 symbolic links

Releases any resources when it unloads

While these goals may not seem very ambitious, they are an important milestone in beginning the

construction of the rest of a truly useful driver.

Testing Procedure

While a description of the production-level installation of the device driver must be left until chapter 16, a

manual installation of the Minimal driver can be performed now. The disk accompanying this book includes a

useful tool that makes this job much easier.

Visual C++ Device Driver AppWizard

In the Tools folder of the accompanying disk, there is a file called DDAppWiz.awx. This file is the result of

building a custom AppWizard project for Visual C++. When properly installed, it allows the creation of the

new project that sets up the Visual C++ environment for Windows 2000 device driver development. For

example, it modifies the linker settings to specify the -driver switch. It supplies the correct list of DDK

libraries to the linker. It specifies the required load address of 0x10000. In short, it makes the construction of

the Windows 2000 device driver project about as simple as starting an MFC application.

To install this AppWizard, it is necessary to copy DDAppWiz.awx into the appropriate Visual Studio

directory. The exact location varies based on the installation directory chosen for Visual Studio. Typically,

the correct target directory for the AppWizard file is \Program Files\Microsoft Visual

Studio\Common\MSDev98\Template. The correct directory can be confirmed by examining a file called

Readme.txt in the target. Once the file is correctly copied, selecting File, then New, and then Project should

reveal a new option for Windows 2000 device driver development.

Indeed, a Developer Studio Project and Workspace environment is supplied in the chapter 6 folder of the

disk. The Minimal.dsw workspace can be opened directly and the build attempted. The example code listed

in this chapter is already included in this project.

The Windows 2000 DDK

The Windows 2000 Device Driver Kit must be installed on a development system in order to build device

drivers. As mentioned in chapter 1, the DDK is available for download from the Microsoft.com site. By

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

default, it installs into a folder named NTDDK. If another folder name is chosen during installation of the

DDK, the Project settings supplied by the device driver AppWizard must be modified.

The DDK allows for two different build environments, checked and free. The checked build environment is

analogous to the Debug build environment of Visual C++, while the free build environment is analogous to

the Release setting. As such, two different sets of libraries are supplied with the DDK, Libfre and Libchk. For

the initial build of the Minimal project, it is suggested that a checked build be performed. This is easily done

by selecting the Debug project target.

Results of the Driver Build

Once a driver is successfully built, a file ending with a .SYS extension is created. In the case of the Minimal

driver, the file is called Minimal.SYS. This file must be copied to the appropriate Windows directory before it

can be loaded. The target directory is typically \WINNT\System32\Drivers. The WINNT portion of the name

varies based on the name selected during the Windows 2000 installation.

The project settings supplied by the AppWizard include a post-build step, which copies the driver to the

appropriate directory. It is important to keep the results of each build in sync with the Drivers directory.

Installing a Kernel-Mode Driver Manually

Merely copying the driver file to its target directory is not enough to complete the installation of the new

device driver. For non-WDM drivers, appropriate entries must be made into the system Registry before the

driver can be loaded.

A list of available device drivers is kept in the Registry path

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services. Each driver is listed with a separate subkey

whose name must be the same as the Driver.SYS file, without the .SYS extension.

For each driver subkey, three Registry DWORD values must be supplied: ErrorControl, Start, and Type.

These entries describe when the driver is loaded (e.g., boot or on-demand), how it reports errors (e.g.,

MsgBox), and a very generic description of the type of driver (kernel-mode or file system). For the Minimal

driver, it is suggested that the values be set as follows:

ErrorControl = 1

Start = 3

Type = 1

Optionally, a DisplayName value can be set, which is the name shown in the Computer Management

Console window when using its Device Manager.

A file, Minimal.reg, sets the subkey name and values automatically. Simply double-click the filename from

Windows Explorer. A reboot of Windows 2000 is necessary after adding a new device driver using this

method. Once the Registry entries have been established, however, the driver can be replaced at will

without need of further reboots.

Loading the Driver

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Once the driver is known to the system, it may or may not start automatically when the system boots. The

Start value in the driver's Registry key specifies this behavior. A Start value of 3 specifies demand-loading

for a driver. With versions of NT prior to Windows 2000, the Control Panel could be used to start and stop

on-demand drivers. With the advance of WDM drivers, Windows 2000 has delegated this task to the

Computer Management Console—which can be activated from Control Panel.

The dynamic loading of device drivers is largely handled by a system component known as the Service

Control Manager (SCM). The SCM pro- vides many services for software components that run under

Windows 2000. For example, it starts, stops, and controls services. A service is a process that runs outside

the context of a logged-on user. It is analogous to a Unix daemon.

A Control Panel applet supplied with NT 4 was a simple front-end for the SCM. In Windows 2000 it has been

replaced with a Device Manager group of the Computer Management Console plug-in (part of the Microsoft

Management Console (MMC) initiative). The Computer Management tool provides useful information for

loaded device drivers and a (somewhat) hidden mechanism to manually load and unload kernel-mode

drivers such as Minimal.

The CD included with this book includes a simple tool, DriverControl.exe in the CD's Tools folder. This utility

registers a legacy driver with the SCM. It must be used before the Computer Management Console can

recognize the new driver. Simply type the name of the driver (e.g., Minimal) into the Driver Name box and

click Start.

Windows 2000 Computer Management Console

Once the Minimal driver has been successfully built and copied to the Drivers directory, the new Computer

Management Console can be used to verify the presence of the driver. To use the standard tool, click Start,

Settings, then Control Panel, and then choose the Computer Management option. A familiar navigation pane

is displayed on the left that includes a list of System Tools. One of these tools is the Device Manager.

Expanding its group allows the display of the list of devices currently installed for the system. To see

devices that are not Plug and Play compatible, right-click the Devices group, choose View, and select Show

hidden devices. The Minimal driver should appear in the non-WDM drivers of the right pane. See Figure 6.2

for a display showing the DisplayName for the Minimal driver.

Figure 6.2. Computer Management Console.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

By double-clicking the appropriate DisplayName and then selecting the Driver tab, the Minimal driver can be

started and stopped. See Figure 6.3.

Figure 6.3. Starting and stopping a device driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Additionally, the System Information group beneath the System Tools group can be used to display

information about the Minimal driver. Expand System Information, then select Drivers.

The WINOBJ Utility

WINOBJ is a utility that is supplied with the Win32 Platform SDK (not with the DDK). This tool allows the

user to view the internal namespace of the Windows 2000 Object Manager. For device driver authors,

WINOBJ is useful because it displays the contents of the Drivers, Devices, and ?? directories.

WINOBJ has not been a well-supported utility by Microsoft. It still contains many quirks that have been

present for many versions of Windows NT. A much-improved version of WINOBJ is supplied at the site

http://www.sysinternals.com. The improved version of WINOBJ, available at the site, works well with Windows

2000. The site also contains many useful utilities for device driver authors. A sample screen of WINOBJ with

two Minimal devices (MIN1 and MIN2) is shown in Figure 6.4.

Figure 6.4. WINOBJ from http://www.sysinternals.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.sysinternals.com
http://www.sysinternals.com

Using WINOBJ, a properly installed version of the Minimal driver should reveal the name Minimal0 under the

Device directory, the name Min1 under the ?? directory, and the driver name Minimal under the Driver

directory. When the driver is stopped, the names Minimal0 and Min1 should disappear. Do not forget to

refresh the view of these directories.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

This completes the implementation of an initial Windows 2000 device driver. Granted, this Minimal

driver is kernel-mode only. Converting it to a WDM driver must wait until chapter 9. Nevertheless,

tools to build and install a driver are now ready to go. Additionally, the beginning structure of the

kernel-mode device driver is forming.

The next chapter discusses the Dispatch routines necessary to make the driver useful. Read, Write,

and I/O Control functions are implemented. Coding shown in the next chapter builds upon the

minimal driver built in this chapter.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 7. Driver Dispatch Routines

CHAPTER OBJECTIVES

Announcing Driver Dispatch Routines

Writing Driver Dispatch Routines

Processing Read and Write Requests

Code Example: A Loopback Device

Extending the Dispatch Interface

Testing Driver Dispatch Routines

Summary

Getting a driver to load is the first step, but ultimately the job of a driver is to respond to I/O

requests—from user-mode applications or from other parts of the system. Windows 2000

drivers process these requests by implementing Dispatch routines. The I/O Manager in

response to a request calls these routines. This chapter describes the basic Dispatch

routines and explains the overall process of handling I/O requests.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Announcing Driver Dispatch Routines

Before a driver can process I/O requests, it must announce what kinds of operations it supports. This

section describes the I/O Manager's dispatching mechanism and explains how to enable receipt of

appropriate I/O function codes. It also presents guidelines for deciding which function codes should be

supported for different device types.

I/O Request Dispatching Mechanism

Windows 2000 I/O operations are packet-driven. When an I/O request is initiated, the I/O Manager first

builds an IRP work-order to keep track of the request. Among other things, it stores a function code in the

MajorField field of the IRP's I/O stack location to uniquely identify the type of request.

The MajorField code is used by the I/O Manager to index the Driver object's MajorFunction table. The

table contains a function pointer to a Dispatch routine specific to the I/O request. If a driver does not support

the requested operation, the MajorFunction table entry points to an entry within the I/O Manager,

_IopInvalidDeviceRequest, which returns an error to the original caller. Thus, it is the responsibility of the

driver author to provide Dispatch routines for each I/O function code that it supports. Figure 7.1 illustrates this

process.

Figure 7.1. Dispatch routine selection.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Enabling Specific Function Codes

To enable specific I/O function codes, a driver must first "announce" the Dispatch routine that responds to

such a request. The announcement mechanism is simply the work performed by DriverEntry that stores the

Dispatch routine function address into the appropriate slot of the MajorFunction table of the driver object.

The I/O function code is the index used for the table. The following code fragment illustrates the process of

announcement.

NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDO,

 IN PUNICODE_STRING pRegPath) {

 :

 pDO->MajorFunction[IRP_MJ_CREATE] = DispCreate;

 pDO->MajorFunction[IRP_MJ_CLOSE] = DispClose;

 pDO->MajorFunction[IRP_MJ_CLEANUP] = DispCleanup;

 pDO->MajorFunction[IRP_MJ_READ]= DispRead;

 pDO->MajorFunction[IRP_MJ_WRITE] = DispWrite;

 :

 return STATUS_SUCCESS;

}

Notice that each I/O function code (table index) is identified by a unique symbol of the form IRP_MJ_XXX,

defined by the NTDDK.h (and WDM.h) include file. Of course, these symbolic constants should always be

used in lieu of hard-coded constants.

The announcement technique also allows for a single routine to be used to handle multiple request types.

DriverEntry would place the common Dispatch routine address in multiple table slots. Since the IRP

workorder contains the requested code, the common function could dispatch internally as appropriate.

Finally, it should be noted that function codes drivers do not support should be left untouched by

DriverEntry. The I/O Manager fills the entire MajorFunction table of the Driver object with pointers to

_IopInvalidDeviceRequest before calling DriverEntry.

Deciding Which Function Codes to Support

All drivers must support the function code IRP_MJ_CREATE since this code is generated in response to the

Win32 CreateFile call. Without support for this code, Win32 applications would have no way to obtain a

handle to the device. Similarly, the IRP_MJ_CLOSE must also be supported to handle the Win32

CloseHandle call. Incidentally, the CloseHandle call is made automatically by the system for all handles left

open at the time of application termination.

The other function codes that a driver should support depend on the nature of the device it controls. Table

7.1 associates I/O function codes with the Win32 calls that generate them. When writing layered drivers, the

higher driver must support a superset of the lower driver(s) since the user request dispatches through the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

higher driver first.

Table 7.1. IRP Function Codes

IRP MajorFunction Codes

Function Code Description

IRP_MJ_CREATE Request for a handle

 •CreateFile

IRP_MJ_CLEANUP Cancel pending IRPs on handle close

 •CloseHandle

IRP_MJ_CLOSE Close the handle

 •CloseHandle

IRP_MJ_READ Get data from device

 •ReadFile

IRP_MJ_WRITE Send data to device

 •WriteFile

IRP_MJ_DEVICE_CONTROL Control operation

 •DeviceIoControl

IRP_MJ_INTERNAL_DEVICE_CONTROL
Control operation available only to kernel-mode clients (no

Win32 call)

IRP_MJ_QUERY_INFORMATION Get length of file

 •GetFileSize

IRP_MJ_SET_INFORMATION Set length of file

 •SetFileSize

IRP_MJ_FLUSH_BUFFERS Write or discard buffers

 •FlushFileBuffers

 •FlushConsoleInputBuffer

 •PurgeComm

IRP_MJ_SHUTDOWN System shutting down

 •InitiateSystemShutdown

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Driver Dispatch Routines

Depending on the complexity of the device operation and the kind of I/O request, driver Dispatch

routines range from trivial to quite difficult to implement. This section explains how to code these

routines.

Execution Context

All Dispatch routines share the same function signature. (A function signature includes the number

and type of parameters, and its calling convention.) Table 7.2 shows the prototype for all Dispatch

routines. Like the driver's initialization and unload routines, Dispatch routines run at

PASSIVE_LEVEL IRQL, which means they can access paged system resources.

The I/O Manager invokes Dispatch routines in response to user-mode or kernel-mode requests.

Before calling, the I/O Manager builds and fills the IRP with valid data. This includes the pointer to

the user's buffer. The user buffer is validated by the I/O Manager to ensure that each page address

spanned by the buffer is readable or writeable within the context of the requestor. If the request is for

Buffered I/O, the I/O Manager first allocates a nonpaged pool buffer and, if a write request, copies

data from the user buffer into the pool. If the request is for Direct I/O, the I/O Manager faults the

entire user buffer into physical memory and locks it down.

A Dispatch routine can usually track the state of an I/O request using only the IRP. If a Dispatch

routine uses any data structures outside the IRP, the driver must ensure that proper synchronization

steps are taken. This would mean using a spin lock to coordinate with other driver routines running

at DISPATCH_LEVEL or below IRQL, and KeSynchronizeExecution to synchronize with Interrupt

Service code.

The IRP is shared data, albeit serially, with the I/O Manager. In particular, the I/O Manager uses

fields of the Parameters union to complete the I/O request. For example, after a Buffered I/O

request, it needs to copy data from the nonpaged pool into the user buffer. It must then deallocate

the pool buffer. A field within the Parameters union points to this buffer. Therefore, changing the

value of this buffer pointer would lead to disastrous results.

In general, if a Dispatch routine needs to modify an IRP field, it should make working copies on the

stack or in the device extension.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 7.2. Function Prototype for Dispatch Routines

NTSTATUS Dispatch IRQL==PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDevObject Pointer to target device for this request

IN PRIP pIrp Pointer to IRP describing this request

Return value •STATUS_SUCCESS - request complete

 •STATUS_PENDING - request pending

 •STATUS_XXX - appropriate error code

What Dispatch Routines Do

The exact behavior of a Dispatch routine will depend on the function it supports. However, the

general responsibilities of these routines include the following.

Call IoGetCurrentIrpStackLocation to get a pointer to the IRP stack location belonging to

this driver.

1.

Perform any additional parameter validation specific to this request and device.2.

For an intermediate-level driver, consideration must be given to the limitations of the

underlying physical device (for example, its maximum transfer size). The Dispatch routine

may need to split the caller's request into multiple requests for the lower-level driver.

3.

Continue processing the IRP until the request is complete or an error condition prevents

further processing.

4.

Exiting the Dispatch Routine

When a Dispatch routine processes an IRP, there are only three possible outcomes.

The request's parameters do not pass the driver's validation tests and the request is

rejected.

The request can be handled entirely within the Dispatch routine without need for any device

operation. An example of such a request would be a Read of zero bytes.

The device must be started in order to complete the request.

Each of these possible outcomes is described in more detail in the following sections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SIGNALING AN ERROR

If a Dispatch routine uncovers a problem with the IRP, it needs to reject the request and notify the

caller. The following steps describe how to reject an IRP.

Store an appropriate error code in the Status field of the IRP's IoStatus block and clear the

Information field.

1.

Call IoCompleteRequest to release the IRP with no priority increment. (Priority increment

is discussed in a later section.)

2.

The Dispatch routine should return the same error code placed in the Status field of the

IRP.

3.

The code fragment below shows how a Dispatch routine rejects an I/O request.

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 :

 // If the request is not supported by this device

 // report it and reject the request

 pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;

 // report that no bytes were transferred

 pIrp->IoStatus.Information = 0;

 // Mark the IRP as "complete", no priority increment

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_NOT_SUPPORTED;

}

Note that after marking the IRP as complete, the I/O Manager is free to release the IRP memory

storage from nonpaged pool. As such, it would be incorrect to

return pIrp->IoStatus.Status;

since the memory pointed to by pIrp has already been released.

COMPLETING A REQUEST

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Some I/O requests can be handled without performing any actual device operations. Opening a

handle to a device or returning information stored in the device object are examples of these kinds

of requests. To complete such a request in the Dispatch routine, do the following:

Put a successful completion code in the Status field of the IRP's IoStatus block, and set the

Information field to some appropriate value.

1.

Call IoCompleteRequest to release the IRP with no priority increment.2.

Exit the Dispatch routine with a value of STATUS_SUCCESS.3.

The code fragment below shows how a Dispatch routine completes a request.

NTSTATUS DispatchClose(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 :

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 // Indicate that zero bytes of data were transferred

 pIrp->IoStatus.Information = 0;

 // "Mark" the IRP as complete - no further processing

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;

}

SCHEDULING A DEVICE OPERATION

The last action a Dispatch routine might take is the most likely—that it will need to interact with the

actual device to fulfill the request. Examples include a data transfer, a control function, or an

informational query. In this case, the Dispatch routine must queue the IRP for ultimate processing by

the driver's Start I/O routine and then promptly return to the I/O Manager stating that the request is

pending. To schedule (queue) a device operation, do the following:

Call IoMarkIrpPending to inform the I/O Manager that the request is still in progress.1.

Call IoStartPacket to queue the IRP for the Start I/O routine. A driver can also provide its

own custom queuing mechanism in lieu of using the I/O Manager's routine.

2.

Exit the Dispatch routine with a value of STATUS_PENDING. This allows the original

requestor to continue its other operations in parallel with the device's operation.

3.

The following code fragment shows how a Dispatch routine schedules a device operation.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

NTSTATUS DispatchWrite(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 :

 // Mark the IRP as "in progress"

 IoMarkIrpPending(pIrp);

 // Now queue (schedule) the IRP for eventual passage

 // to the driver's Start I/O routine.

 // Third parameter allows insertion into the queue

 // other than at the tail

 // Fourth parameter allows specification of a

 // Cancel routine

 IoStartPacket(pDO, pIrp, 0, NULL);

 return STATUS_PENDING;

}

It is a little-known fact that the I/O Manager automatically completes any IRP that isn't marked

pending as soon as the Dispatch routine returns. Unfortunately, this automatic mechanism does not

call I/O Completion routines attached to the IRP by higher-level drivers. Consequently, it is important

that a driver either calls IoCompleteRequest or IoMarkIrpPending to explicitly set the status of the

IRP.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Processing Read and Write Requests

The most basic of I/O requests is to exchange data between a user buffer and a device. The I/O

Manager presents a traditional read/write abstraction to requestors for such data transfers. The

requests are presented to a driver in the form of an IRP with major function code of either

IRP_MJ_READ or IRP_MJ_WRITE. Another field within the IRP specifies the address of the

requestor's buffer. Whether the buffer address is a direct virtual address or an intermediate

nonpaged pool buffer allocated and maintained by the I/O Manager is determined by the device

object's Flags field. Regardless, it is the responsibility of the read and write Dispatch routines to

transfer data between the buffer and the actual device for the requested number of bytes.

User Buffer Access

As discussed in chapter 6, a driver can specify DO_DIRECT_IO or DO_BUFFERED_IO on a

per-device basis (via the Flags field of the device object.) The exact behavior of the I/O Manager as

well as the subsequent responsibilities of the Dispatch routine is discussed in the following sections.

BUFFERED I/O

At the start of either a read or write operation, the I/O Manager validates that all virtual memory

pages spanned by the user's buffer are valid. For buffered I/O, it then allocates a nonpaged pool

buffer of a size sufficient to hold the user's request. The address of this temporary buffer is place in

the IRP field AssociatedIrp.SystemBuffer. This address remains valid for the duration of the

transfer (i.e., until the IRP is marked as complete).

For read operations, the I/O Manager remembers the address of the original user buffer in the

UserBuffer field of the IRP. It then uses this retained address upon completion of the request to

copy data from the nonpaged pool into user memory.

For write operations, the I/O Manager copies the user buffer into the nonpaged buffer before

invoking the write Dispatch routine. It then sets the UserBuffer field of the IRP to NULL, since there

is no additional need to retain this state.

DIRECT I/O

At the start of the operation, the I/O Manager validates the page table entries spanned by the user's

buffer. It then builds a data structure known as a Memory Descriptor List (MDL) and stores the

address of the MDL in the IRP's MdlAddress field. Both the AssociatedIrp. SystemBuffer and

UserBuffer fields are set to NULL.

For DMA operations, the MDL structure is used directly with an adapter object to perform the data

transfer. Chapter 12 will discuss this process in detail. For programmed I/O devices, the MDL can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

be used with the function MmGetSystemAddressForMdl to get a system-address view of the user

buffer. Using this technique, the user's buffer is locked down into physical memory (i.e., forced to be

nonpagable) and is made accessible to driver code via an address above 0x80000000. (User-mode

code must still access the same physical memory with its original address below 0x7FFFFFFF.)

When the I/O request is ultimately completed, the user buffer is unlocked and unmapped from

system address space.

NEITHER METHOD

There are two bits within the Flags field of the device object which specify either

DO_BUFFERED_IO or DO_DIRECT_IO. If neither bit is set for a device, the I/O Manager performs

neither action specified above. Instead, it simply places the user-space address of the requestor's

buffer into the IRP's UserBuffer field. The AssociatedIrp.SystemBuffer and MdlAddress fields

are set to NULL.

A simple user-mode address is not terribly useful. Most routines within a driver cannot be assured

that at the time of their execution the original requestor's page tables are mapped. Thus, the user

buffer address is usually worthless. There is one exception: At the time a Dispatch routine of a

highest-level driver is invoked, execution occurs using the original requestor's thread. As such, the

user-space address is mapped and valid. An intermediate driver or any DPC or Interrupt Service

Routine (ISR) can never rely upon a user-space buffer being valid.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Loopback Device

An interesting (albeit simplistic) example to consider is a loopback device. The driver processes

write requests by reserving a paged pool buffer and copying user data into this temporary buffer.

The buffer is retained until such time as a read request is issued. The data returned by the read

request is the contents of the temporary buffer, which is then released. The example demonstrates

the implementation of read and write Dispatch routines as well as user buffer access.

NTSTATUS DispatchWrite(INPDEVICE_OBJECT pDO

 IN PIRP pIrp) {

 NTSTATUS status = STATUS_SUCCESS;

 PDEVICE_EXTENSION pDE;

 PVOID userBuffer;

 ULONG xferSize;

 // The stack location contains the user buffer info

 PIO_STACK_LOCATION pIrpStack;

 pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

 // The example assumes the device is using BUFFERED_IO

 userBuffer = pIrp->AssociatedIrp.SystemBuffer;

 xferSize = pIrpStack->Parameters.Write.Length;

 // The temporary buffer pointer is kept

 // in the DEVICE_EXTENSION (obtained from Device obj)

 pDE = (PDEVICE_EXTENSION) pDO —> DeviceExtension;

 // If there is already a buffer, free it...

 if (pDE->deviceBuffer != NULL) {

 ExFreePool(pDE->deviceBuffer);

 PDE->deviceBuffer = NULL;

 xferSize = 0;

 }

 pDE->deviceBuffer =

 ExAllocatePool(PagedPool, xferSize);

 if (pDE->deviceBuffer == NULL) {

 // buffer didn't allocate???

 status = STATUS_INSUFFICIENT_RESOURCES;

 xferSize = 0;

 } else {

 // copy the buffer

 pDE->deviceBufferSize = xferSize;

 RtlCopyMemory(pDE->deviceBuffer, userBuffer,

 xferSize);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Now complete the IRP no device operation needed

 pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information = xferSize;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return status;

 }

NTSTATUS DispatchRead(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 NTSTATUS status = STATUS_SUCCESS;

 PDEVICE_EXTENSION pDE;

 PVOID userBuffer;

 ULONG xferSize;

 // The stack location contains the user buffer info

 PIO_STACK_LOCATION pIrpStack;

 pIrpStck = IoGetCurrentIrpStackLocation(pIrp);

 userBuffer = pIrp->AssociatedIrp.SystemBuffer;

 xferSize = pIrpStack->Parameters.Read.Length;

 // The temporary buffer pointer is kept

 // in the DEVICE_EXTENSION (obtained from Device obj)

 pDE = (PDEVICE_EXTENSION) pDO —> DeviceExtension;

 // Don't transfer more than the user's request

 xferSize = (xferSize < pDE->deviceBufferSize) ?

 xferSize : pDE->deviceBufferSize;

 // Now copy the temporary buffer into user space

 RtlCopyMemory(userBuffer, pDE->deviceBuffer,

 xferSize);

 // Free the temporary paged pool buffer

 ExFreePool(pDE->deviceBuffer);

 pDE->deviceBuffer = NULL;

 pDE->deviceBufferSize = 0;

 // and complete the I/O request...

 pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information = xferSize;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return status;

}

This code example shows only the Dispatch routines for read and write. While they do very little,

create and close Dispatch routines must be provided to make this a usable driver. A complete

working version of this loopback driver, including a Win32 console test program, is included on the

accompanying disk for chapter 7. The driver requires manual installation, as was demonstrated in

the last chapter.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Extending the Dispatch Interface

Much of the I/O Manager operation supports a standard Read/Write abstraction. The requestor supplies a

buffer and transfer length, and data is transferred from or to the device. Not all devices or their operations

always fit this abstraction. For example, a disk format or repartition are requests that are not well-suited to a

normal Read or Write operation. Such kinds of requests are handled with one of two extensible I/O function

request codes. These codes allow any number of driver-specific operations, without the restrictions of the

Read/Write abstraction.

IRP_MJ_DEVICE_CONTROL allows for extended requests from user-mode clients through the

Win32 DeviceIoControl call. The I/O Manager constructs an IRP with this MajorFunction code

and an IoControlCode value (subcode) as specified by the caller of DeviceIoControl.

IRP_MJ_INTERNAL_DEVICE_CONTROL allows for extended requests from kernel-mode code.

No access to these operations is provided for user-mode requests. This facility is primarily used by

other drivers in a layered stack to communicate special requests. Otherwise, the internal version of

the device control operation is identical to the standard version. An IoControlCode value is placed

into the IRP by the requestor.

As should be apparent, the implementation of either of these Dispatch routines requires a secondary

dispatch based on the value of IoControlCode in the IRP. This value is also known as the IOCTL device

control code. Since the secondary dispatch mechanism is completely contained within the driver's private

routine(s), the interpretation of the IOCTL value is driver-specific. The remainder of this section describes

the details of the device control interface.

Defining Private IOCTL Values

The IOCTL values passed to a driver follow a specific structure. Figure 7.2 illustrates the fields of this 32-bit

structure. The DDK includes a macro, CTL_CODE, that offers a convenient mechanism to generate IOCTL

values. Table 7.3 describes the arguments to this macro.

Figure 7.2. Layout of the IOCTL code structure.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IOCTL Argument-Passing Method

The extended functions defined with an IOCTL value within a driver often require an input or output buffer.

For example, a driver might report performance data using an IOCTL value. The data reported would be

transferred through a buffer supplied by the user. Indeed, the Win32 DeviceIoControl function defines

parameters for two buffers, one for input, one for output. The buffer transfer mechanism provided by the I/O

Manager is defined within the IOCTOL value itself. It can be either buffered or direct I/O. As described

previously, with buffered I/O, the I/O Manager copies the user buffer (into or out of) nonpaged system

memory, where driver code can then conveniently operate. With direct I/O, the driver is given direct access

to the user buffer.

Interestingly, the driver's overall strategy for buffer handling (defined during DriverEntry) is not enforced for

IOCTL transfers. Instead, the buffer transfer mechanism is defined with each IOCTL value specification and

is a field within the IOCTL structure. This provides maximum flexibility when performing DeviceIoControl

operations.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 7.3. The CTL_CODE Macro Arguments

CTL_CODE Macro

Parameter Description

DeviceType FILE_DEVICE_XXX value supplied to IoCreateDevice

 •0x0000 to 0x7FFF - reserved for Microsoft

 •0x8000 to 0xFFFF - customer defined

ControlCode Driver-defined IOCTL code

 •0x000 to 0x7FF - reserved for Microsoft (public)

 •0x800 to 0xFFF - customer (private) defined

TransferType Buffer passing mechanism for this control code

 •METHOD_BUFFERED

 •METHOD_IN_DIRECT

 •METHOD_OUT_DIRECT

 •METHOD_NEITHER

RequiredAccess Requestor access requirement

 •FILE_ANY_ACCESS

 •FILE_READ_DATA

 •FILE_WRITE_DATA

 •FILE_READ_DATA | FILE_WRITE_DATA

The TransferType field of the IOCTL field is two-bits wide and defines one of the following:

METHOD_BUFFERED.

The I/O Manager copies the user buffer to and from an intermediate nonpaged pool buffer on behalf

of the driver.

METHOD_IN_DIRECT.

The I/O Manager provides a list of pages that encompass the user buffer. The driver uses this list to

provide direct I/O (using DMA or programmed I/O) from the device into user space (i.e., like a Read

operation).

METHOD_OUT_DIRECT.

The I/O Manager provides a list of pages that encompass the user buffer. The driver uses this list to

provide direct I/O from user space into the device (i.e., like a Write operation).

METHOD_NEITHER.

The I/O Manager does not assist with the buffer transfer. The user's original buffer address

(presumably from paged memory) is provided to the driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Since the TransferType field is a part of the IOCTL code itself, the public codes defined by Microsoft specify

the I/O transfer mechanism. For private IOCTL values (driver defined), any appropriate transfer mechanism

can be defined. For small, slower transfer, buffered I/O is appropriate. For faster, larger transfers, direct I/O

is most suitable.

Writing IOCTL Header Files

Since both the driver project itself and all the clients of the driver need symbolic definitions for the IOCTL

codes, it is customary for the driver author to provide a separate header file with device control-code

definitions. This header file should also contain any structure definitions that describe the buffer contents of

specific control operations. A Win32 program needs to include WINIOCTL.h before including the driver's

IOCTL header. A driver project needs to include DEVIOCTL.h before including the driver-specific IOCTL

header. These files define the CTL_CODE macro, among other things. The following is an example of an

IOCTL header file:

#define IOCTL_MISSLEDEVICE_AIM CTL_CODE(\

 FILE_DEVICE_UNKNOWN,

 0x801, \

 METHOD_BUFFERED, \

 FILE_ACCESS_ANY)

// Structures used by IOCTL_MISSLEDEVICE_AIM

typedef struct _AIM_IN_BUFFER {

 ULONG Longitude;

 ULONG Latitude;

} AIM_IN_BUFFER, *PAIM_IN_BUFFER;

typedef struct _AIM_OUT_BUFFER {

 ULONG ExtendedStatus;

} AIM_OUT_BUFFER, *PAIM_OUT_BUFFER;

#define IOCTL_MISSLEDEVICE_LAUNCH CTL_CODE(\

 FILE_DEVICE_UNKNOWN, \

 0x802, \

 METHOD_NEITHER, \

 FILE_ACCESS_ANY)

Processing IOCTL Requests

Once a driver has announced Dispatch routines for either IRP_MJ_DEVICE_CONTROL or

IRP_MJ_INTERNAL_DEVICE_CONTROL function codes, the I/O Manager starts passing IRPs directly to

driver code. The interpretation of the IOCTL Device Control code is strictly the responsibility of the driver.

Not even the various fields of the IOCTL code itself are verified by the I/O Manager prior to invocation of the

driver's Dispatch routine. Any random number passed by the requestor as an IOCTL code finds its way to

the driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Therefore, the typical structure of a device control Dispatch routine is a large switch statement. The

following is an example of such a routine:

NTSTATUS DispatchIoControl(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 NTSTATUS status = STATUS_SUCCESS;

 PDEVICE_EXTENSION pDE;

 PVOID userBuffer;

 ULONG inSize;

 ULONG outSize;

 ULONG controlCode; // will be the IOCTL request

 // The stack location contains the user buffer info

 PIO_STACK_LOCATION pIrpStack;

 pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

 // Dig out the IOCTL request

 controlCode = pIrpStack->

 Parameters.DeviceIoControl.IoControlCode;

 // and the requested transfer sizes

 inSize = pIrpStack->

 Parameters.DeviceIoControl.InputBufferLength;

 OutSize = pIrpStack->

 Parameters.DeivceIoControl.OutputBufferLength;

 //

 // Now perform the secondary dispatch

 switch (controlCode) {

 case IOCTL_MISSLEDEVICEAIM:

 // Always validate parameters for each case...

 if (inSize < sizeof(AIM_IN_BUFFER) ||

 (outSize < sizeof(AIM_OUT_BUFFER)) {

 status = STATUS_INVALID_BUFFER_SIZE;

 break;

 }

 // Valid IRP values - start the device

 IoMarkIrpPending(pIrp);

 IoStartPacket(pDO, pIrp, 0, NULL);

 return STATUS_PENDING;

 case IOCTL_DEVICE_LAUNCH:

 if (inSize > 0 || outSize > 0) {

 // Is it really an error to pass buffers

 // to a function that doesn't use them?

 // Maybe not, but the caller is now forced

 // to re-think the purpose of the call.

 status = STATUS_INVALID_PARAMETER;

 break;

 }

 // Same kind of processing start the device

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // :

 return STATUS_PENDING;

 default:

 // Driver received unrecognized control code

 status = STATUS_INVALID_DEVICE_REQUEST;

 break;

 }

 // Valid control code cases returned above.

 // Execution here means an error occurred.

 // Fail the IRP request...pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information = 0; // no data xfered

 IoCompleteRequest(pIrp, IO_NO_INCREMENT)

 return status;

}

Managing IOCTL Buffers

IOCTL requests can specify both an input and an output buffer in the same call. As a result, they present a

read-after-write abstraction to the caller. IOCTL requests differ in user buffer access in two ways.

The buffer transfer mechanism is specified with the IOCTL control-code definition, independent of

the overall device object strategy.

There are two buffers involved, one for input, one for output.

The following sections describe how the different buffer strategies work with IOCTL control codes.

METHOD_BUFFERED

The I/O Manager allocates a single temporary buffer from nonpaged pool, large enough to hold the larger of

the caller's input or output buffer. The address of this pool buffer is placed in the IRP's AssociatedIrp.

SystemBuffer field. It then copies the requestor's input buffer into the pool buffer and sets the UserBuffer

field of the IRP to the user-space output buffer address.

Upon completion of the IOCTL request, the I/O Manager copies the contents of the system buffer into the

requestor's user-space buffer. Notice that only a single internal buffer is presented to the driver code, even

though the user has specified independent input and output buffers. The driver code must take care to

extract all necessary information from the requestor's input before performing writes into the output buffer.

METHOD_IN_DIRECT

The I/O Manager checks the accessibility of the requester's input buffer and locks it into physical memory. It

then builds an MDL for the input buffer and stores a pointer to the MDL in the MdlAddress field of the IRP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

It also allocates a temporary output buffer from nonpaged pool and stores the address of this buffer in the

IRP's AssociatedIrp.SystemBuffer field. The IRP's UserBuffer field is set to the original caller's output

buffer address. When the IOCTL IRP is completed, the contents of the system buffer are copied into the

caller's original output buffer.

METHOD_OUT_DIRECT

The I/O Manager checks the accessibility of the caller's output buffer and locks it down in physical memory.

It then builds an MDL for the output buffer and stores a pointer to the MDL in the MdlAddress field of the

IRP.

The I/O Manager also allocates a temporary input buffer from non-paged pool and stores its address in the

IRP's AssociatedIrp. SystemBuffer field. It copies the contents of the caller's original input buffer into the

system buffer and sets the IRP's UserBuffer field to NULL.

METHOD_NEITHER

The I/O Manager puts the address of the caller's input buffer in the

Parameters.DeviceIoControl.Type3InputBuffer field of the IRP's current I/O stack location. It stores the

address of the output buffer in the IRP's UserBuffer field. Both of these are user-space addresses.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Testing Driver Dispatch Routines

Even though a driver may be far from complete when only the DriverEntry, Unload, and Dispatch

routines are present, significant code paths can be tested at this point. In particular, all of the

following can be verified with a simple Win32 console program:

Opens and closes a handle to the device.

Supports Win32 I/O function calls that return successfully, even if zero byte transfers are

specified.

Manages requests from multiple callers.

While the successful completion of these tests is hardly earth-shattering, it does form a

tried-and-true recipe for driver authoring: Build a driver framework that is proven before adding

hardware interaction.

Testing Procedure

The following procedure checks all the code paths through a driver's Dispatch routines:

Write IRP_MJ_CREATE and IRP_MJ_CLOSE Dispatch routines for the driver.1.

Test the driver with a simple Win32 console program that gets a handle to the device under

test and then closes the handle.

2.

Write other Dispatch routines but ensure that all call IoCompeteRequest rather than

starting any device operations.

3.

Enhance the Win32 test program to make ReadFile, WriteFile, and DeviceIoControl calls

that exercise each driver's Dispatch routine. Alternatively, the test program can request

zero-byte transfers.

4.

If a device is sharable, run several copies of the test program at once to be sure the driver

works with multiple open handles.

5.

If a driver supports multiple physical devices, repeat the test with each device unit.6.

Sample Test Program

This is an example of a Win32 console test program that can be used to verify code paths through a

driver's Dispatch routines.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

#include <windows.h>

#include <stdio.h>

void main() {

 HANDLE hDevice;

 BOOL status;

 hDevice = CreateFile("\\\\.\\LBK1" ...);

 :

 status = ReadFile(hDevice, ...);

 :

 status = WriteFile(hDevice, ...);

 :

 status = DeviceIoControl(hDevice, ...);

 :

 status = CloseHandle(hDevice);

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

Dispatch routines form the basic interface between a requestor and a driver. This chapter presented

the framework for these functions and discussed the details for accessing the user's buffers and

other parameters. Read, Write, and DeviceIoControl requests can now be presented to the driver.

The next chapter begins the interface with the real device. The path from starting the device to

register data transfer to interrupt handling is discussed.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 8. Interrupt-Driven I/O

CHAPTER OBJECTIVES

How Programmed I/O Works

Driver Initialization and Cleanup

Writing a Start I/O Routine

Writing an Interrupt Service Routine (ISR)

Writing a DpcForIsr Routine

The Parallel Port

Parallel Port Loopback Driver

Testing the Parallel Port Loopback Driver

Summary

Some devices transfer data through registers, requiring continual CPU interaction. Such

devices usually move small amounts of data at relatively infrequent intervals. For example,

the mouse and keyboard transfer just a few bytes sporadically. Such devices remain idle for

minutes (or hours) at a time and so are given the ability to interrupt the processor whenever

data is available. This chapter explains how to write the data transfer routines for drivers of

this kind of hardware.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

How Programmed I/O Works

This section describes the events that occur during a programmed I/O operation as well as the

actions that a driver must take in response to these events.

What Happens During Programmed I/O

In a programmed I/O operation, the CPU transfers each unit of data to or from the device in

response to an interrupt. The following sequence of events occurs.

An IRP request (typically an IRP_MJ_READ or IRP_MJ_WRITE) determines that device

interaction is required to complete the request. The Dispatch routine queues the IRP for

eventual delivery to the driver's Start I/O routine.

1.

The Start I/O routine performs any necessary preprocessing and setup based on the IRP's

function code. It then starts the device, typically by writing or reading the first word of device

data.

2.

Eventually, the device generates an interrupt, which the kernel passes to the driver's

Interrupt Service Routine (ISR).

3.

If there is additional data for the driver to download, the ISR starts the next transfer. Steps 3

and 4 repeat until the entire data transfer specified in the request is complete.

4.

When the entire transfer is complete, the ISR queues a request to fire the driver's DpcForIsr

routine. As described in chapter 3, DPC routines run at a lower IRQL level than the ISR.

5.

The I/O Manager's DPC dispatcher eventually runs the DpcForIsr routine scheduled by the

ISR. The DpcForIsr routine marks the IRP as complete and informs the I/O Manager that

another waiting IRP can now be presented to the Start I/O routine, repeating the entire

cycle.

6.

Synchronizing Driver Routines

As is apparent from the programmed I/O process just described, there are at least four separate

code paths executing at three different IRQL levels.

The original I/O request is handled by a Dispatch routine running at PASSIVE_LEVEL

IRQL.

The driver's Start I/O routine runs at DISPATCH_LEVEL IRQL.

The driver's ISR runs at the device's DIRQL level.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The driver's DpcForIsr routine runs at DISPATCH_LEVEL IRQL.

If any of these code paths share registers or memory areas, synchronization is required. Without

such protection, an interrupt might arrive while a lower-level IRQL routine is using the shared

resource, and an inconsistent state could result. The solution to this problem is to place code that

touches shared resources in a SynchCritSection routine. Table 8.1 shows the prototype for one of

these routines.

This technique for synchronization requires that the code which touches the shared resource be

placed in an appropriate SynchCritSection routine. When the shared resource is required, a code

path invokes KeSynchronizeExecution (see Table 8.2), which takes the function address of the

SynchCritSection as an argument. This kernel function raises the IRQL level of the calling code path

to the DIRQL level of the device's interrupt object, acquires the object's spin lock, and then calls the

supplied SynchCritSection routine.

Table 8.1. Function Prototype for a SynchCritSection Routine

BOOLEAN SynchCritSection IRQL == DIRQL

Parameter Description

IN PVOID pContext Context passed to KeSynchronizeExecution

Return value • TRUE—success

 • FALSE—something failed

While the SynchCritSection is running, it cannot be interrupted by any code running at DIRQL or

below (which includes the device's ISR) and is thus guaranteed temporary exclusive access to the

resource. When the SynchCritSection routine returns, KeSynchronizeExecution releases the spin

lock, drops IRQL back to its original level, and then returns to the caller.

Notice that the call to KeSynchronizeExecution receives avoid* argument, pContext. This single

argument is passed to the subsequent call to the SynchCritSection routine. It allows passing of

instance data to the callback routine and is typically a pointer to the device or controller extension.

Table 8.2. Function Prototype for KeSynchronizeExecution

BOOLEAN KeSynchronizeExecution IRQL < DIRQL

Parameter Description

IN PKINTERRUPT pInterruptObj Pointer to interrupt object

IN PKSYNCHRONIZE_ROUTINE pRoutine SynchCritSection callback routine

IN PVOID pContext Argument passed to SynchCritSection

Return value Value returned by SynchCritSection

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Driver Initialization and Cleanup

Programmed I/O device drivers must perform extra initialization during DriverEntry (or AddDevice for

WDM drivers). Similarly, the driver's Unload routine must be extended to remove the additional

resources allocated.

Initializing the Start I/O Entry Point

If a driver has a Start I/O routine, it must be announced during DriverEntry. This is done by storing

the address of the Start I/O routine into the DriverStartIo field of the driver object, as in the following

code fragment.

NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObject,

 IN PUNICODE_STRING pRegistryPath) {

 :

 // Export other driver entry points

 //

 pDriverObject->DriverStartIo = StartIo;

 pDriverObject->DriverUnload = DriverUnload;

 pDriverObject->MajorFunction[IRP_MJ_CREATE] =

 DispatchOpenClose;

 :

}

An unitialized DriverStartIo field within the driver object results in an access violation (and blue

screen crash) when the Dispatch routines invoke IoStartPacket.

Initializing a DpcForIsr Routine

The I/O Manager provides a simplified version of the DPC mechanism for use with standard

interrupt processing. One special DPC object may be associated with each device object,

DpcForIsr. To utilize this mechanism, a driver must call IoInitializeDpcRequest to associate the

DpcForIsr routine with the Device object (typically from DriverEntry or AddDevice). During the actual

interrupt service (ISR), the driver schedules the DPC by invoking IoRequestDpc.

Of course, this simplified mechanism is quite restrictive. Some drivers require multiple DPCs for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

different circumstances. A subsequent chapter explains the process of creating custom DPCs for

multiple purposes.

Connecting to an Interrupt Source

All interrupts are initially handled by the kernel of Windows 2000. As explained in chapter 1, this is

done so that portability to multiple platforms can be easily achieved. The kernel dispatches

interrupts to a driver's ISR by creation of and then connection to an interrupt object. These steps are

accomplished by the I/O Manger's IoConnectInterrupt function, described in Table 8.3. The driver's

ISR address is passed (along with nine other input parameters) to this function so that the kernel

associates a specific hardware interrupt with it.

IoConnectInterrupt returns a pointer to an interrupt object (via the first argument). This pointer

should be saved in the Device or Controller Extension since it will be needed to ultimately

disconnect from the interrupt source or to execute any SynchCritSection routines.

Table 8.3. Function Prototype for IoConnectInterrupt

NTSTATUS IoConnectInterrupt IRQL == PASSIVE_LEVEL

Parameter Description

OUT PKINTERRUPT *pInterruptObject Address of pointer to receive pointer to interrupt object

IN PKSERVICE_ROUTINE

ServiceRoutine
ISR that handles the interrupt

IN PVOID pServiceContext
Context argument passed to ISR; usually the device

extension

IN PKSPIN_LOCK pSpinLock Initialized spin lock (see below)

IN ULONG Vector Translated interrupt vector value

IN KIRQL Irql DIRQL value for device

IN KIRQL SynchronizeIrql Usually same as DIRQL (see below)

IN KINTERRUPT_MODE InterruptMode • LevelSensitive

 • Latched

IN BOOLEAN ShareVector If TRUE, interrupt vector is sharable

IN KAFFINITY ProcessorEnableMask Set of CPUs which can take interrupt

IN BOOLEAN FloatingSave If TRUE, save the state of the FPU during an interrupt

Return Value • STATUS_SUCCESS

 • STATUS_INVALID_PARAMETER

 • STATUS_INSUFFICIENT_ RESOURCES

The use of interrupt objects requires care in several areas. First, if an ISR handles more than one

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

interrupt vector, or if a driver has more than one ISR, a spin lock must be supplied to prevent

collisions over the ISR's ServiceContext.

Second, if the ISR manages more than one interrupt vector, or a driver has more than one ISR,

ensure that the value specified for SynchronizeIrql is the highest DIRQL value of any of the vectors

used.

Finally, a driver's Interrupt Service routine must be ready to run as soon as IoConnectInterrupt is

called. Clearly, interrupts at the IRQL specified may preempt any additional initialization attempted

by a driver, and the ISR must be able to handle these interrupts correctly. In general, the following

sequence should be used:

Call IoInitializeDpcRequest to initialize the device object's DPC and perform any

initialization needed to make the DpcForIsr routine execute properly.

1.

Disable interrupts from the device by setting appropriate bits and the device's control

registers.

2.

Perform any driver initialization required by the ISR in order for it to run properly.3.

Call IoConnectInterrupt to attach the ISR to an interrupt source and store the address of

the Interrupt object in the Device Extension.

4.

Use a SyncCritSection routine to put the device into a known initial state and to enable

device interrupts.

5.

Disconnecting from an Interrupt Source

If a driver is capable of being unloaded, it needs to detach its Interrupt Service routine from the

kernel's list of interrupt handlers before the driver is removed from memory. If the device generates

an interrupt after the driver is unloaded, the kernel will try to call the address in nonpaged pool

where the ISR used to live. This results in a system crash.

Disconnecting from an interrupt is a two-step procedure. First, use KeSyncrhonizeExecution and a

SynchCritSection routine to disable the device and prevent it from generating any further interrupts.

Second, remove the ISR from the kernel's list of handlers by passing the device's interrupt object to

IoDisconnectInterrupt.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a Start I/O Routine

The remainder of this chapter discusses the development of a programmed I/O driver for a parallel

port. For simplicity, this driver ignores many of the details that would have to be considered if writing

a commercial driver.

Execution Context

The I/O manager calls the driver's Start I/O routine (described in Table 8.4) either when a Dispatch

routine calls IoStartPacket (if the device was idle), or when some other part of the driver calls

IoStartNextPacket. In either case, Start I/O runs at DISPATCH_LEVEL IRQL, so it must not do

anything that causes a page fault.

What the Start I/O Routine Does

A driver's Start I/O routine is responsible for doing any function code-specific processing needed by

the current IRP and then starting the actual device operation. In general terms, a Start I/O routine

will do the following:

Table 8.4. Function Prototype for a Start I/O Routine

VOID StartIo IRQL == DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDevObj Target device for this request

IN PIRP pIrp IRP describing this request

Return value Void

Call IoGetCurrentStackLocation to get a pointer to the IRP's stack location.1.

If a device supports more than one IRP_MJ_XXX function code, examine the I/O stack

location's MajorFunction field to determine the operation.

2.

Make working copies of the system buffer pointer and byte counts stored in the IRP. The

Device Extension is the best place to keep these items.

3.

Set a flag in the Device Extension, indicating that an interrupt is expected.4.

Begin the actual device operation.5.

To guarantee proper synchronization, any of these steps that access data shared with the ISR

should be performed inside the SynchCritSection routine rather than in Start I/O itself.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing an Interrupt Service Routine (ISR)

Once the device operation begins, the actual data transfer is driven by the arrival of hardware

interrupts. When an interrupt arrives, the driver's Interrupt Service routine acknowledges the request

and either transfers the next piece of data or invokes a DPC routine.

Execution Context

When the kernel receives a device interrupt, it uses its collection of interrupt objects to locate an ISR

willing to service the event. It does this by running through all the interrupt objects attached to the

DIRQL of the interrupt and calling ISRs until one of them claims the interrupt.

The kernel interrupt dispatcher calls an ISR at the synchronization IRQL specified in the call to

IoConnectInterrupt. Usually this is the DIRQL level of the device. The kernel dispatcher also

acquires and releases the device spin lock.

Running at such a high IRQL, there are several things an ISR isn't allowed to do. In addition to the

usual warning about page faults, an ISR shouldn't try to allocate or free various system resources

(like memory). If system support routines must be called from an ISR, check for restrictions on the

level of which they can be run. Such calls might require delegation to a DPC routine.

As shown in Table 8.5, the kernel passes a pointer to whatever context information was identified in

the original call to IoConnectInterrupt. Most often, this is a pointer to the Device or Controller

Extension.

What the Interrupt Service Routine Does

The Interrupt Service routine is the real workhorse in a programmed I/O driver. In general, one of

these routines does the following:

Determine if the interrupt belongs to this driver. If not, immediately return a value of FALSE.1.

Perform any operations needed by the device to acknowledge the interrupt.2.

Determine if any more data remains to be transferred. If so, start the next device operation.

This eventually results in another interrupt.

3.

If all the data has been transferred (or if a device error occurred), queue up a DPC request

by calling IoRequestDpc.

4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Return a value of TRUE.5.

Always code an ISR for speed. Any work that isn't absolutely essential should go in a DPC routine. It

is especially important that an ISR determine whether or not it will handle an interrupt immediately.

There may be a number of other ISRs waiting in line for a given interrupt, and nonessential

preprocessing blocks their proper operation.

Table 8.5. Function Prototype for an Interrupt Service Routine

BOOLEAN ISR IRQL == DIRQL

Parameter Description

IN PKINTERRUPT pInterruptObj Interrupt object generating interrupt

IN PVOID pServiceContext Context area passed to IoConnectInterrupt

Return value •TRUE-interrupt was serviced by ISR

 •FALSE-interrupt not serviced

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a DpcForIsr Routine

A driver's DpcForIsr routine is responsible for determining a final status for the current request,

completing the IRP, and starting the next one.

Execution Context

In response to the ISR's call to IoRequestDpc, a driver's DpcForIsr routine (described in Table 8.6)

is added to the DPC dispatch queue. When the CPU's IRQL value drops below DISPATCH_LEVEL,

the DPC dispatcher calls the DpcForIsr routine. A DpcForIsr routine runs at DISPATCH_LEVEL

IRQL, which means it has no access to pagable addresses.

The I/O Manager ignores multiple calls to IoRequestDpc for a given device until the DpcForIsr

routine executes. This is normal behavior for all DPC objects. If a driver design is such that it might

issue overlapping DPC requests for the same device, then the driver must perform custom queuing

of the DPC requests.

What the DpcForIsr Routine Does

Since most of the work happens during interrupt processing, the DpcForIsr routine in a programmed

I/O driver doesn't have a lot to do. In particular, this routine should

Set the IRP's I/O status block. Put an appropriate STATUS_XXX code in the Status field

and the actual number of bytes transferred in the Information field.

1.

Call IoCompleteRequest to complete the IRP with an appropriate priority boost. Once

called, the IRP must not be touched again.

2.

Call IoStartNextPacket to send the next IRP to Start I/O.3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 8.6. Function Prototype for a DpcForIsr Routine

VOID DpcForIsr IRQL == DISPATCH_LEVEL

Parameter Description

IN PKDPC pDpc DPC object for this call

IN PDEVICE_OBJECT pDevObj Target device for I/O request

IN PIRP pIrp IRP describing this request

IN PVOID pContext Context passed by IoRequestDpc

Return value Void

Priority Increments

The Windows 2000 thread scheduler uses a priority boosting strategy to keep the CPU and I/O

devices as busy as possible. As can be seen from the boost values listed in Table 8.7, priority

increments are weighted in favor of threads working with interactive devices like the mouse and

keyboard.

As part of this strategy, a driver should compensate any thread that waits for an actual device

operation by giving a priority boost. Choose an appropriate increment from the table and specify it

as an argument to IoCompleteRequest.

Table 8.7. Priority Increment Values

Priority Increment Values

Symbol Boost Use when completing

IO_NO_INCREMENT 0 No device I/O

IO_CD_ROM_INCREMENT 1 CDROM I/O

IO_DISK_INCREMENT 1 Disk I/O

IO_PARALLEL_INCREMENT 1 Parallel port I/O

IO_VIDEO_INCREMENT 1 Video output

IO_MAILSLOT_INCREMENT 2 Mailslot I/O

IO_NAMED_PIPE_INCREMENT 2 Named pipe I/O

IO_NETWORK_INCREMENT 2 Network I/O

IO_SERIAL_INCREMENT 2 Serial port I/O

IO_MOUSE_INCREMENT 6 Pointing device input

IO_KEYBOARD_INCREMENT 6 Keyboard input

IO_SOUND_INCREMENT 8 Sound board I/O

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Some Hardware: The Parallel Port

Before walking through an example of a programmed I/O driver, it is helpful to look at some actual

hardware. This serves the dual purpose of showing what kinds of devices tend to perform

programmed I/O and providing a hardware example for the minimal driver to control.

How the Parallel Port Works

The parallel interface found on most PCs is based on an ancient standard from the Centronics

Company. Although its original purpose was to communicate with printers, clever people have found

many ways of attaching everything from disks to optical scanners to the parallel port. The DB-25

connector on this port carries a number of signals, the most important ones being

RESET.

The CPU sends a pulse down this line when it wants to initialize the printer.

DATA.

The CPU uses these eight lines to send one byte of data to the printer. On systems with

extended parallel interfaces, these lines can also be used for input.

STROBE#.

The CPU pulses this line to let the printer know that valid information is available on the

data lines. (The sharp character signifies an inverted signal. A valid pulse is sent by

transitioning the line from a logical 1 to 0.)

BUSY.

The printer uses this line to let the CPU know that it can't accept any data.

ACK#.

The printer sends a single pulse down this line when it is no longer busy.

Errors.

The printer can use several lines to indicate a variety of not-ready and error conditions to

the CPU.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The following sequence of events occurs during a data transfer from the CPU to a printer attached

to the parallel port:

The CPU places a byte on the eight data lines and lets the data settle for at least half a

microsecond.

1.

The CPU grounds the STROBE# line for at least half a microsecond and then raises it

again. This is the signal to the printer that it should latch the byte on the data lines.

2.

In response to the new data, the printer raises the BUSY line and starts to process the byte.

This usually means moving the byte to an internal buffer.

3.

After it processes the character (which may take microseconds or seconds, depending on

how full the printer's buffer is), the printer lowers the BUSY line and pulses the ACK# line.

4.

As is apparent from this description, the parallel port offers a very low-level interface to the outside

world. Most of the signaling protocol involved in a data transfer has to be implemented by the CPU

itself. A driver for a legacy parallel port must be designed for this primitive operation.

Device Registers

The software interface to the parallel port is through a set of three registers, described in Table 8.8.

Since the parallel port is one of the things detected by autoconfiguration (even on an ISA system),

the driver is able to use the Configuration Manager to find the base address of the data register.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 8.8. Parallel Port Register Usage

Parallel Port Registers

Offset Register Access Description

0 Data R/W Data bits

1 Status R Port status

 Bits 0-1 Reserved

 Bit 2 0—Interrupt requested

 Bit 3 0—Error occurred

 Bit 4 1—Printer selected

 Bit 5 1—Out of paper

 Bit 6 0—Acknowledge

 Bit 7 0—Printer busy

2 Control R/W Commands to port

 Bit 0 1—Strobe data

 Bit 1 1—Auto linefeed

 Bit 2 0—Reset printer

 Bit 3 1—Select printer

 Bit 4 1—Enable interrupts

 Bit 5 1—Read data from port

 Bits 6-7 Reserved; must be 1

Interrupt Behavior

Traditionally, the parallel port designated as LPT1 is assigned IRQ 7, and LPT2 is assigned IRQ 5.

A device connected to a parallel port generates an interrupt by momentarily forcing the ACK# to

zero. Real printers force an interrupt for any of the following reasons:

The printer has finished initializing.

The printer has processed one character and is now ready for another.

Power to the printer has been switched off.

The printer has gone offline or has run out of paper.

Driving real printers requires considerable experimentation with the real device. In fact, it is not the

purpose of the driver example in this chapter to drive a real peripheral device. Instead, the example

is intended to demonstrate the use of interrupts and programmed I/O in a generic way.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A Loopback Connector for the Parallel Port

For the purposes of this example driver, it is suggested that a special loopback cable be created or

purchased for the parallel port. The loopback connector precludes the need to connect to a real

printer, and therefore eliminates the need to adjust the example code to the idiosyncrasies of

different printers.

The example code assumes a parallel port loopback connector wired according to the TouchStone

CheckIt specification. The loopback connector wiring is shown in Table 8.9.

Table 8.9. Parallel Port Loopback Connector

Parallel Port Loopback Connector

Signal Out DB-25 Pin Connects To Signal In To Write To Read

Strobe# 1 13 Select Control-0 Status-4

Data 0 2 15 Error Data-0 Status-3

Autofeed 14 12 Paper Out Control-1 Status-5

Reset 16 10 Acknowledge Control-2 Status-6

Select 17 11 Busy Control-3 Status-7

The loopback connector can be purchased directly from Touchstone or can be self-made from a

simple DB-25 connector.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: Parallel Port Loopback Driver

This example shows how to write a basic programmed I/O driver for the parallel port. The code for

this example is in the Chap8 directory on the disk that accompanies this book. Several code

fragments follow.

Purpose of Driver

The purpose of this driver is to allow a test program to output nibbles (4-bit quantities) to the parallel

port with the loopback connector attached. The data returned by the connector is stored in a

temporary pool buffer within the driver. Thus, subsequent reads to the device should return the

same nibble data that was output. Just to keep things interesting, the driver returns the nibble data

shifted left by four bits.

Since the loopback connector is wired in a non-straightforward manner, the driver code must

assemble the nibble data from various data and status bits.

Driver.H

The main header file for this driver builds on the two seen in previous chapters. Changes were

made to the DEVICE_EXTENSION structure to support the parallel port hardware and

driver-specific functionality.

typedef struct _DEVICE_EXTENSION {

 PDEVICE_OBJECT pDevice;

 ULONG DeviceNumber;

 CUString ustrDeviceName; // internal name

 CUString ustrSymLinkName; // external name

 PUCHAR deviceBuffer; // temporary pool buffer

 ULONG deviceBufferSize;

 ULONG xferCount; // current transfer count

 ULONG maxXferCount; // requested xfer count

 ULONG portBase; // I/O register address

 ULONG Irq; // Irq for parallel port

 PKINTERRUPT pIntObj; // the interrupt object

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Additionally, macros were added to the file for convenience in reading the parallel port device

registers.

#define PPORT_REG_LENGTH 4

#define DATA_REG 0

#define STATUS_REG 1

#define CONTROL_REG 2

//

// Define access macros for registers. Each macro takes

// a pointer to a Device Extension as an argument

//

#define ReadStatus(pDevExt) \

(READ_PORT_UCHAR((PUCHAR) \

 pDevExt->portBase + STATUS_REG))

#define ReadControl(pDevExt) \

(READ_PORT_UCHAR((PUCHAR) \

 pDevExt->PortBase + CONTROL_REG))

#define WriteControl(pDevExt, bData) \

(WRITE_PORT_UCHAR((PUCHAR) \

 pDevExt->portBase + CONTROL_REG, bData))

#define WriteData(pDevExt, bData) \

(WRITE_PORT_UCHAR((PUCHAR) \

 pDevExt->portBase + DATA_REG, bData))

Driver.cpp

The basis for the code in this module is the same as from the last chapter. Noteworthy changes

follow.

CREATEDEVICE

This code excerpt demonstrates a necessary technique for device detection prior to Plug and Play.

A device resource is claimed directly and forcibly through use of a helper function, ClaimResources.

This function accepts as arguments the I/O port base address and IRQ level. The port address and

IRQL are converted to system-wide port and interrupt numbers through use of an obsolete function,

HalGetInterruptVector. This function and overall technique is replaced in the next chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

// Since this driver controlls real hardware,

// the hardware controlled must be discovered.

// Chapter 9 will discuss auto-detection,

// but for now we will hard-code the hardware

// resource for the common printer port.

// We use IoReportResourceForDetection to mark

// PORTs and IRQs as "in use."

// This call will fail if another driver

// (such as the standard parallel driver(s))

// already control the hardware

status =

 ClaimHardware(pDriverObject,

 pDevObj,

 0x378, // fixed port address

 PPORT_REG_LENGTH,

 0x7); // fixed irq

if (!NT_SUCCESS(status)) {

 // if it fails now, must delete Device object

 IoDeleteDevice(pDevObj);

 return status;

}

// We need a DpcForIsr registration

IoInitializeDpcRequest(

 pDevObj,

 DpcForIsr);

// Create & connect to an Interrupt object

// To make interrupts real, we must

translate irq into

// a HAL irq and vector (with processor affinity)

KIRQL kIrql;

KAFFINITY kAffinity;

ULONG kVector =

 HalGetInterruptVector(Internal, 0, pDevExt->Irq, 0,

 &kIrql, &kAffinity);

status =

 IoConnectInterrupt(

 &pDevExt->pIntObj, // the Interrupt object

 Isr, // our ISR

 pDevExt, // Service Context

 NULL, // no spin lock

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 kVector, // vector

 kIrql, // DIRQL

 kIrql, // DIRQL

 LevelSensitive, // Latched or Level

 TRUE, // Shared?

 -1, // processors in an MP set

 FALSE); // save FP registers?

if (!NT_SUCCESS(status)) {

 // if it fails now, must delete Device object

 IoDeleteDevice(pDevObj);

 return status;

}

DISPATCHWRITE

This function was cut down considerably since its main purpose is no longer to perform the I/O

transfer. Instead, it simply queues the IRP for the Start I/O routine.

// Start the I/O

IoMarkIrpPending(pIrp);

IoStartPacket(pDevObj, pIrp, 0, NULL);

return STATUS_PENDING;

DISPATCHREAD

This function was not touched since it returns the device's pool buffer contents (now containing

nibble data) to the user buffer.

STARTIO

This new routine is called by the I/O Manager each time an IRP is dequeued. The routine completes

the work initiated by DispatchWrite. It transmits the first character from the user's output buffer by a

call to a helper function, TransmitByte. The helper function constructs the output nibble and sends

it to the physical device.

VOID StartIo(

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp

) {

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

PUCHAR userBuffer;

ULONG xferSize;

switch(pIrpStack->MajorFunction) {

// Use a SynchCritSection routine to

 // start the write operation...

 case IRP_MJ_WRITE:

 // Set up counts and byte pointer

 pDevExt->maxXferCount =

 pIrpStack->Parameters.Write.Length;

 pDevExt->xferCount = 0;

// Since we processing a new Write request,

// free up any old buffer

if (pDevExt->deviceBuffer != NULL) {

 ExFreePool(pDevExt->deviceBuffer);

 pDevExt->deviceBuffer = NULL;

 pDevExt->deviceBufferSize = 0;

}

// Determine the length of the request

xferSize =

 pIrpStack->Parameters.Write.Length;

// Obtain user buffer pointer

userBuffer = (PUCHAR)

 pIrp->AssociatedIrp.SystemBuffer;

// Allocate the new buffer

pDevExt->deviceBuffer = (PUCHAR)

 ExAllocatePool(PagedPool, xferSize);

if (pDevExt->deviceBuffer == NULL) {

 // buffer didn't allocate???

 // fail the IRP

 pIrp->IoStatus.Status =

 STATUS_INSUFFICIENT_RESOURCES;

 pIrp->IoStatus.Information = 0;

 IoCompleteRequest(pIrp,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IO_NO_INCREMENT);

 IoStartNextPacket(pDevObj, FALSE);

}

pDevExt->deviceBufferSize = xferSize;

//

// Try to send the first byte of data.

//

TransmitByte(pDevExt);

break;

ISR

The interrupt service routine for this driver is quite simple. It relies on a DpcForIsr routine to mark a

completed IRP when the last byte of the user's output buffer has been sent to the printer port.

BOOLEAN Isr (

 IN PKINTERRUPT pIntObj,

 IN PVOID pServiceContext) {

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pServiceContext;

PDEVICE_OBJECT pDevObj = pDevExt->pDevice;

PIRP pIrp = pDevObj->CurrentIrp;

UCHAR status = ReadStatus(pDevExt);

if (!(status & STS_NOT_IRQ))

 return FALSE;

// its our interrupt, deal with it

// transmit another character

if (!TransmitByte(pDevExt))

 // if no more bytes, complete the request

 IoRequestDpc(pDevObj, pIrp, (PVOID)pDevExt);

return TRUE;

}

DPCFORISR

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The final interesting routine for this driver completes an I/O request when so ordered by the ISR.

VOID

DpcForIsr(

 IN PKDPC pDpc,

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext

)

{

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pContext;

 pIrp->IoStatus.Information =

 pDevExt->xferCount;

// This loopback device always works

pIrp->IoStatus.Status =

 STATUS_SUCCESS;

//

// If we're being called directly

from Start I/O,

// don't give the user any priority boost.

//

if(pDpc == NULL)

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

else

 IoCompleteRequest(pIrp, IO_PARALLEL_INCREMENT);

//

// This one's done. Begin working on

the next

IoStartNextPacket(pDevObj, FALSE);

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Testing the Parallel Port Loopback Driver

At this point, a real driver is working, touching real hardware. A tester routine is included with this

driver to demonstrate correct functionality and use. It verifies that the driver

Sends IRPs from its Dispatch routine to its StartI/O routine.

Responds to device interrupts.

Transfers data successfully.

Completes requests.

Manages requests from multiple callers.

On the other hand, this driver is far from complete. It assumes that all data transfer requests

complete without error. Simply removing the parallel port loopback connector before starting the test

demonstrates this problem—a hung system. Subsequent chapters correct this problem as well as

explain and demonstrate the correct way to locate hardware.

Testing Procedure

When testing programmed to I/O device drivers, it is advisable to follow a fixed procedure.

Write a minimal Start I/O routine that simply completes each IRP as soon as it arrives. This

allows the test of the linkage between the driver's Dispatch and Start I/O routines.

1.

Write the real Start I/O routine, the ISR, and the DpcForIsr routine. If the driver supports

both read and write operations, implement and test each path separately.

2.

Exercise all the data transfer paths through the driver with a simple Win32 program that

makes ReadFile, WriteFile, and DeviceIoControl calls.

3.

Stress test the driver with a program that generates large numbers of I/O requests as

quickly as possible. Run this test on a busy system.

4.

If the device is sharable, run several copies of the test program at once to be sure the driver

works with multiple open handles.

5.

If the driver supports multiple physical devices, repeat the test with each device unit.6.

If possible, repeat steps 4 to 6 on a multiprocessor system to verify SMP synchronization.7.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

At this point, the basic components of the working driver are in place. The Start I/O routine is

initiating each request and the ISR is servicing interrupts. The DpcForIsr routine is correctly

completing IRPs below the DIRQL level of the device.

In the next chapter, the detection of Plug and Play devices is covered.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 9. Hardware Initialization

CHAPTER OBJECTIVES

The Plug & Play Architecture: A Brief History

The Role of the Registry for Legacy Drivers

Detecting Devices with Plug and Play

The Role of Driver Layers in Plug and Play

The New WDM IRP Dispatch Functions

Device Enumeration

Device Interfaces

Code Example: A Simple Plug and Play Driver

Summary

At the end of the last chapter, the sample parallel loopback driver was unrealistic in one

critical area: the configuration of the parallel hardware was presumed. Hard-coded driver

logic assumed that port hardware could be found at a fixed I/O address with a fixed IRQ level.

Clearly, real driver code cannot be presumptuous. This chapter covers the subject of driver

and device initialization.

First, in sections 9.1 and 9.2 the challenges of initialization are discussed from a historical

perspective. The role of the Windows 2000 Registry in tracking installed devices is covered.

Next, the current Plug and Play architecture of Windows 2000 is discussed, including the use of

layered drivers used in this implementation. The specifics of new IRP Dispatch functions are shown.

Finally, the driver presented in the last chapter is "corrected" to use the Plug and Play architecture.

The parallel port hardware is automatically detected and its real configuration is used.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The Plug and Play Architecture: A Brief History

It is apparent that the revolution of the PC within the industry occurred because everyone could afford and

use computers. Yet more than a decade went by during which naive users were expected to understand the

hardware details of each device inserted into their systems. Knowledge of I/O port, interrupt level, and DMA

channel usage of every existing device within a system was prerequisite when installing a new device.

Further, the design of operating systems assumed a very static hardware configuration. The installation or

removal of a device required, at a minimum, a full reboot of the OS.

With the advent of Windows 95 (and some hardware prerequisites), a concerted effort to automate the

configuration of new and removed devices was implemented. This attempt greatly enhanced the acceptance

of and migration to Windows 95, which in turn accelerated the migration to 32-bit OS PC environments such

as NT. With Windows 2000, Microsoft has enhanced and implemented a complete Plug and Play

architecture for the I/O subsystem.

Goals of Plug and Play

The overall goal of the Plug and Play (PnP) architecture is to provide automated support for the installation

and removal of system devices. To support this overall goal, several features are necessary.

Automatic detection of installed and removed hardware. The device and the bus in which it inserts

must notify controlling software that a particular device configuration has changed.

Devices must allow for software configuration. The port, IRQ, and DMA resources used by a device

must be capable of assignment by controlling software. (In other words, configuration of a board

can no longer come from DIP switches or jumpers.)

Necessary drivers for new hardware must be automatically loaded as needed by the operating

system.

When devices and their interfacing buses permit, the system should support hot plugging of the

device. That is, it should be possible to insert or remove the device into or from a "live" system

without disturbing operation.

While necessary, these goals are aggressive and invasive, and they require support from all levels of

hardware and software.

Components of Plug and Play

The Windows 2000 operating system implements PnP with numerous software components. These

components are depicted in Figure 9.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 9.1. PnP components.

PLUG AND PLAY MANAGER

The PnP Manager consists of two parts, kernel-mode and user-mode. The kernel-mode part interacts with

hardware and other kernel-mode components to manage proper detection and configuration of hardware.

The user-mode part interacts with user interface components to allow inter- active programs to query and

alter the configuration of installed PnP software.

POWER MANAGER

The Power Manager facilitates the management of power to devices. Depending upon its nature, it may be

possible to temporarily remove power from a device that is not being used over a prolonged period of time.

This component recognizes and routes power events to appropriate drivers.

REGISTRY

The Windows 2000 Registry maintains a database of installed hardware and software of PnP devices. The

contents of the Registry assist drivers and other components in identifying and locating the resources used

by a device.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

INF FILES

Each device must be fully described by a file used during installation of the controlling driver. Each

device/driver combination must supply a properly formatted INF file.

PLUG AND PLAY DRIVERS

Drivers for PnP devices fall into two categories, WDM and NT drivers. NT PnP drivers are legacy drivers

that rely upon some aspects of the PnP architecture but do not otherwise fully conform to the WDM model.

For example, they might rely upon the services of the PnP Manager to obtain configuration information, but

do respond to PnP IRP messages. WDM drivers are, by definition, fully PnP compliant.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The Role of the Registry for Legacy Drivers

In recent history, it was common for hardware to remain dormant until software somehow magically

became aware of its existence and began to stimulate it. The techniques used by drivers and the NT

operating system fell into one of three categories:

A driver would maintain a list of potential hardware resources (i.e., port address, DMA

channels, and interrupt levels) for each device that it might encounter. By probing each

potential resource during DriverEntry, a driver would create an appropriate Device object

(IoCreateDevice).

A driver would rely upon an installation program to specify (either by probing or by user

specification) the resources and devices that the driver would manage. This list of devices

and associated resources would then be conveniently stored in the system registry.

The NT operating system, as part of a preboot process, would probe for conventional

devices and resources. For example, COM serial ports are routinely present at 0x3F8 or

0x2F8 (et. al.) and are therefore probed during the boot process. The discovery of devices

was reported and maintained within the system Registry.

As system designers recognized the need for a more orderly hardware configuration process, new

buses and protocols were specified that automatically reported the presence (or removal) of

hardware. Generally, any bus type other than ISA supports some form of autodetection.

As an intermediate step to take advantage of autodetecting buses and hardware, earlier versions of

NT augmented the preboot process to include autodetected hardware within the system Registry.

Thus, an initializing driver (DriverEntry) would have the ability to see the list of autodetected

hardware that was present during the boot process and create appropriate devices.

Regardless of which technique the OS or driver utilized, it was still imperative to force the loading of

a driver manually. That is, appropriate entries within the system registry allowed a driver to load

(either at system boot or later), which in turn would control discovered devices. Indeed, the

examples given in previous chapters rely upon a manual installation of the driver. Because a driver

would first load and then begin to control devices, the technique is sometimes referred to as

driver-centric.

With the advent of Windows 95, and subsequently Windows 98 and Windows 2000, the model has

been reversed. Devices that announce themselves, either during boot or by subsequent insertion

(hot plug), force the loading of an appropriate registered driver. The new technique is said to be

device-centric.

While the original Windows 95 driver model supported Plug and Play, it differed significantly from

the NT driver model. Microsoft, recognizing the need for a compatible driver environment, extended

the NT model to support Plug and Play and incorporated this technique in Windows 2000 and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Windows 98. The new common model is designated the Windows Driver Model (WDM).

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Detecting Devices with Plug and Play

The WDM model is an extension of the NT driver model. DriverEntry still serves as the driver's initial

entry point, but its responsibilities are reduced. In particular, the role of DriverEntry is limited to the

announcement of other driver functions. Specifically, DriverEntry does not create device objects for

hardware it is capable of controlling.

A new driver function, AddDevice, is announced within (interestingly) the Driver Extension. The

prototype for the AddDevice function is shown in Table 9.1 and is announced with code typical of the

following:

NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObject,

 IN PUNICODE_STRING pRegistryPath) {

 :

 // Export other driver entry points...

 // for example...

 pDriverObject->DriverUnload = DriverUnload;

 pDriverObject->DriverExtension->AddDevice =

 AddDevice;

 :

}

Table 9.1. Function Prototype for an AddDevice Routine

NTSTATUS AddDevice IRQL ==9 PASSIVE_LEVEL

Parameter Description

IN PDRIVER_OBJECT pDriverObject Pointer to driver object

IN PDEVICE_OBJECT pdo Pointer to physical device object

Return value Success or failure code

The prime responsibility of the AddDevice function is to create a device object using

IoCreateDevice in the same manner described in chapter 6.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The Role of Driver Layers in Plug and Play

The WDM model of drivers is built upon structured layers of Physical Device Objects (PDOs) and Functional

Device Objects (FDOs). Generally, a PDO exists for each physical piece of hardware attached to a bus and

assumes the responsibility for low-level device control common to multiple functions realized by the

hardware. An FDO exists for each logical or abstract function presented to higher-level software.

As an example, consider a physical disk drive and driver. It can be represented by a PDO that implements

bus adapter functions (e.g., adapting an IDE disk bus to a PCI bus). Once the PDO for the disk bus adapter

is realized, an FDO assumes responsibility for the functional operations of the disk itself. The FDO may

choose to handle a particular disk I/O request directly (e.g., reading a disk sector). It may choose to pass

down other requests to its physical device partner (e.g., a power down request).

In reality, the role of a PDO can quickly become complicated and recursive. For example, a USB host

adapter starts life as a physical device of the bus it adapts (e.g., PCI). The host adapter then takes on the

role of a new bus driver, enumerating each USB device it discovers as its collection of PDOs. Each PDO

then controls its FDO.

The technique is further complicated by allowing FDOs to be surrounded by filter device objects. These

upper- and lower-level filter objects may exist in any number to modify or enhance the way that I/O

Requests are handled by the resulting stack of device objects.

In order to distinguish between those FDOs which implement hardware buses and those that do not, the

terms bus FDO and nonbus FDO are used within the DDK. A bus FDO implements the bus driver's

responsibility of enumerating the devices attached to a bus. The bus FDO then creates a PDO for each

attached device.

It is also worth noting that there is only a conceptual difference between a nonbus FDO and a filter device

object. From the PnP Manager's perspective, all Device objects position themselves within the device stack,

and the fact that some devices choose to consider themselves more than a filter is inconsequential.

The arrangement of a device stack is shown in Figure 9.2. The distinction between a bus FDO and a nonbus

FDO is depicted in Figure 9.3.

Figure 9.2. The device stack.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 9.3. Bus FDOs and nonbus FDOs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Understanding the device stack is important in order to describe when the AddDevice function is called for a

specific device. The overall algorithm used by Windows 2000 to load drivers and invoke the driver's

AddDevice function is described by the following:

During the installation of the operating system, Windows 2000 discovers and enumerates all buses

in the system registry. The topology and interconnect of the buses is also discovered and

registered.

1.

During the boot process, a bus driver for each known bus is loaded. Typically, Microsoft supplies all

bus drivers but specialized drivers can also be supplied for proprietary buses.

2.

One of the prime responsibilities of a bus driver is to enumerate all devices attached to the bus. A

PDO is created for each device found.

3.

For each device discovered, a class of device is located within the system registry that defines

lower and upper filters, if any, as well as the driver for the FDO.

4.

If the filter or FDO driver is not yet loaded, the system performs the load and invokes DriverEntry.5.

AddDevice is called for each FDO, which in turn invokes IoCreateDevice and

IoAttachDeviceToDeviceStack, building the device stack.

6.

The function IoAttachDeviceToDeviceStack is made from AddDevice to place the FDO at the (current) top

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

of the device stack. Its prototype is shown in Table 9.2.

For convenience, it is advisable to maintain a relationship of the device stack elements within the Device

extension structures of each PDO, FDO, and filter drivers. This is best done by reserving space for a

pLowerDevice and pUpperDevice pointer within each Device extension. Unfortunately, while the

pLowerDevice pointer initialization is straightforward, the upward pointer can only be initialized safely if the

lower device type (filter or function) is known. This is because the return value from

IoAttachDeviceToDeviceStack is simply a DEVICE_OBJECT. The extension, extracted from the returned

Device object, needs to be explicitly cast so that the pUpperDevice offset is accurate. In a generalized

device stack, no driver could be certain, a priori, of its lower device type. Fortunately, the upward pointer is

generally unnecessary, so only the lower pointer is routinely maintained.

Table 9.2. Prototype for IoAttachDeviceToDeviceStack

PDEVICE_OBJECT IoAttachDeviceToDeviceStack IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT pThisDevice Pointer to new top of stack device object

IN PDEVICE_OBJECT pdo Pointer to PDO for this stack

Return value Pointer to previous "top of stack" device

The final task of the AddDevice function is to create a symbolic link name, if any, for the newly created and

enabled device. This technique is exactly as described in chapter 6. A completed AddDevice function might

be

//++

// Function: AddDevice

//

// Description:

// Called by the PNP Manager when a new device is

// detected on a bus. The responsibilities include

// creating an FDO, device name, and symbolic link.

//

// Arguments:

// pDriverObject - Passed from PNP Manager

// pdo - pointer to Physcial Device Object

// passed from PNP Manager

//

// Return value:

// NTSTATUS signaling success or failure

//--

NTSTATUS AddDevice (

IN PDRIVER_OBJECT pDriverObject,

IN PDEVICE_OBJECT pdo) {

NTSTATUS status;

PDEVICE_OBJECT pfdo;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

PDEVICE_EXTENSION pDevExt;

// Form the internal Device Name

CUString devName("\\Device\\MINPNP"); // for "minimal" dev

UlDeviceNumber++;

devName += CUString(ulDeviceNumber);

// Now create the device

status =

 IoCreateDevice(pDriverObject,

 sizeof(DEVICE_EXTENSION),

 &(UNICODE_STRING)devName,

 FILE_DEVICE_UNKNOWN,

 0, TRUE,

 &pfdo);

if (!NT_SUCCESS(status))

 return status;

// Initialize the Device Extension

pDevExt = (PDEVICE_EXTENSION)pfdo->DeviceExtension;

pDevExt->pDevice = pfdo; // back pointer

pDevExt->DeviceNumber = ulDeviceNumber;

pDevExt->ustrDeviceName = devName;

// Pile this new fdo on top of the existing lower stack

pDevExt->pLowerDevice = // downward pointer

 IoAttachDeviceToDeviceStack(pfdo, pdo);

// This is where the upper pointer would be initialized.

// Notice how the cast of the lower device's extension

// must be known in order to find the offset pUpperDevice.

// PLOWER_DEVEXT pLowerDevExt = (PLOWER_DEVEXT)

// pDevExt->pLowerDevice->DeviceExtension;

// pLowerDevExt->pUpperDevice = pfdo;

// Form the symbolic link name

CUString symLinkName("\\??\\MPNP");

symLinkName += CUString(ulDeviceNumber+1); // 1 based

pDevExt->ustrSymLinkName = symLinkName;

// Now create the link name

status =

 IoCreateSymbolicLink(&(UNICODE_STRING)symLinkName,

 &(UNICODE_STRING)devName);

if (!NT_SUCCESS(status)) {

 // if it fails now, must delete Device object

 IoDeleteDevice(pfdo);

 return status;

}

// Made it

return STATUS_SUCCESS;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The device stack (multilayered) approach to Plug and Play drivers is more flexible during the hardware

discovery process and better models the actual implementation of hardware (i.e., devices "layer" on a bus).

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The New WDM IRP Dispatch Functions

The AddDevice function, called by the PnP Manager, merely initializes the device (and its extension) object.

It is apparent from the AddDevice code that hardware is not yet touched. In fact, two general responsibilities

remain for a driver.

Reserve and configure hardware resource requirements for the device

Initialize the hardware to prepare it for use

Both tasks are performed by a driver upon receipt of a special IRP function (and subfunction) code that is

new for WDM drivers: IRP_MJ_PNP. PnP IRP codes are sent by the PnP Manager when a variety of events

occur, including

Device initialization (perhaps due to insertion)

Device shutdown (perhaps due to removal)

Configuration queries

As described in chapter 6, IRP major function codes, such as Read and Write requests, are handled by an

indexed table of Dispatch routines. Since an entire category of IRP_MJ_PNP messages are routed through

this single Dispatch routine, it is the responsibility of this handler to perform a secondary dispatch using the

minor subcode contained within the IRP. For PnP, the minor subcodes take the symbolic form

IRP_MN_XXX, where XXX is a specific Plug and Play action requested by the PnP Manager.

An example of the initialization of the major function dispatch is shown below.

...

pDriverObject->MajorFunction[IRP_MJ_PNP] =

 DispPnP;

The code to perform the secondary dispatch based upon the minor subcode of the IRP is shown below.

NTSTATUS DispPnp(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 // Obtain current IRP stack location

 PIO_STACK_LOCATION pIrpStack;

 pIrpStack = IoGetCurrentIrpStackLocation(pIrp);

 switch (pIrpStack->MinorFunction) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 case IRP_MN_START_DEVICE:

 ...

 case IRP_MN_STOP_DEVICE:

 ...

 default:

 // if not supported here, just pass it down

 return PassDownPnP(pDO, pIrp);

 }

 // all paths from the switch statement will "return"

 // the results of the handler invoked

}

Required Plug and Play IRPs

In order to be WDM compliant, drivers must support specific PnP IRPs, depending upon the type of device

object—nonbus FDO, bus FDO, and PDO. Table 9.3 lists the subcodes that must be supported for all device

object types.

Table 9.3. PnP IRP Minor Codes Supported by All WDM Drivers

PnP IRP Minor Code Meaning

IRP_MN_START_DEVICE (Re)Initialize device with specified resources

IRP_MN_QUERY_STOP_DEVICE May device be stopped now for possible resource reassignment?

IRP_MN_STOP_DEVICE Stop device, await potential restart or removal

IRP_MN_CANCEL_STOP_DEVICE Notifies that previous QUERY_STOP will not be enacted

IRP_MN_QUERY_REMOVE_DEVICE May device be safely removed now?

IRP_MN_REMOVE_DEVICE Undoes work of AddDevice

IRP_MN_CANCEL_REMOVE_DEVICE Notifies that previous QUERY_REMOVE will not be enacted

IRP_MN_SURPRISE_REMOVAL Notifies that device has been removed without prior warning

From an examination of Table 9.3, it should be apparent that PnP devices exist in one of many states and,

indeed, the DDK provides a state diagram depicting transitions based on PnP IRPs processed by a driver.

The states can be divided into two categories: the states traversed by a device while it is being inserted (i.e.,

the prestart states) and the states encountered after the device is started. A state diagram for the prestart

states is shown in Figure 9. 4. The only responsibility of a driver during these state transitions is to correctly

implement DriverEntry and AddDevice.

Figure 9.4. Prestart device states.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Once a device has entered the "Started" state, PnP IRPs direct all subsequent transitions. The possibilities

are depicted in Figure 9.5. Drivers maintain post-start state within the device extension.

Figure 9.5. Post-start device states.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

PDO Plug and Play IRPs

In addition to the PnP IRPs that must be handled by all WDM drivers, PDOs typically implement handlers for

other minor subcodes of IRPs, as shown in Table 9.4. These IRP requests permit a driver to implement

additional features such as device eject and reassignment of hardware resources. The closer a driver is to

the hardware (i.e., the physical device or PDO), the more likely it is that a driver should support one or more

of these codes.

Table 9.4. PnP IRP Minor Codes Supported by PDO Drivers

PnP IRP Minor Code Meaning

IRP_MN_QUERY_CAPABILITIES
What features does device support? (e.g., lock, eject, surprise

removal)

IRP_MN_QUERY_DEVICE_RELATIONS
Request for information about related device objects (FDOs,

PDOs, or filter DOs)

IRP_MN_ QUERY_INTERFACE Request for support of a specific interface

IRP_MN_ EJECT Request to eject device from slot

IRP_MN_ SET_LOCK Request to lock device

Passing Down Plug and Play Requests

All PnP requests are initiated by the PnP Manager. The PnP Manager always routes these requests to the

highest driver in a device stack.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Regardless of which PnP minor codes are handled by a driver, those that are not must be passed down the

device stack to lower drivers, which may implement their own handler. Indeed, it is typical for a functional

driver (controlling an FDO) to rely upon the physical driver (controlling a PDO) to implement many PnP

requests. In turn, the physical driver relies upon the bus driver (i.e., a bus FDO) to implement many PnP

requests.

Passing a PnP request down the device stack is necessary for several reasons. Some drivers within the

stack must "add value" to the request, and no one driver may assume that the complete response can be

compiled from that level. In other cases, many levels of the stack benefit from a PnP notification. For

example, a stopped device notice is critical to all layers.

To pass down a PnP request, a driver taking action on the request must mark the IRP as complete

(described in chapter 7) by setting the IoStatus.Status and IoStatus.Information fields of the IRP as

appropriate. It then invokes IoCopyCurrentStackLocationToNext and IoCallDriver on the lower device.

The lower device is known from the AddDevice call to IoAttachDeviceToDeviceStack, the result of which

was saved in the device extension. An example of this technique is shown below.

...

IoCopyCurrentStackLocationToNext(pIrp);

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDO->DeviceExtension;

IoCallDriver(pDevExt->pLowerDevice, pIrp);

...

If a driver has no need to await the completion of lower drivers handling the passed down request, a more

efficient mechanism for skipping the current IRP stack location can be utilized. The function

IoSkipCurrentIrpStackLocation simply removes the current IRP stack location from participation in the IRP

processing. Indeed, this is the suggested mechanism for handling PnP requests that are not handled by a

driver and merely passed to the next lower driver:

NTSTATUS PassDownPnP(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 IoSkipCurrentIrpStackLocation(pIrp);

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDO->DeviceExtension;

 return IoCallDriver(pDevExt->pLowerDevice, pIrp);

}

Sometimes a driver passes down a PnP request before it can complete its own work on the request. For

example, in response to a start request, IRP_MN_START_DEVICE, a driver typically needs to wait until

lower-level drivers have started before starting its own hardware. The bus and any lower-level hardware

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

initializes before individual devices start. Thus, a higher-level driver must first pass down the request and

then await lower-level processing before continuing. This is best handled with a completion routine tied to

the IRP by the higher-level driver.

I/O Completion Routines

An I/O Completion routine is an I/O Manager callback that lets a driver layer recapture an IRP after a

lower-level driver has completed it. I/O Completion routines are registered by a higher-level driver with

IoSetCompletionRoutine described in Table 9.5. When a lower-level driver ultimately calls

IoCompleteRequest, the I/O Completion routine executes as the IRP bubbles its way back to the top of the

driver hierarchy.

Except for the driver on the bottom, each driver in the hierarchy can attach its own I/O Completion routine to

an IRP. The I/O Completion routines execute in the driver-stacking order, from bottom to top.

Table 9.5. Function Prototype for IoSetCompletionRoutine

VOID IoSetCompletionRoutine IRQL <=DISPATCH_LEVEL

Parameter Description

IN PIRP pIrp Pointer to IRP being tracked

IN PIO_COMPLETION_ROUTINE CompletionRoutine Function to receive control when IRP completes

IN PVOID pContext Argument ultimately passed to completion routine

IN BOOLEAN bInvokeOnSuccess Call completion routine if IRP succeeds

IN BOOLEAN bInvokeOnError Call completion routine if IRP fails

IN BOOLEAN bInvokeOnCancel Call completion routine if IRP cancels

Return value - void -

The three Boolean arguments passed to IoSetCompletionRoutine determine when and if the Completion

routine ultimately runs. As an IRP returns "up the device stack," the field IoStatus.Status is used in

conjunction with the three arguments to determine whether or not to invoke the registered routine.

The prototype for an I/O Completion routine is described in Table 9.6. An example of the use of an I/O

Completion routine to regain control of a PnP IRP after handling by a lower-level driver follows:

...

IoCopyCurrentStackLocationToNext(pIrp);

// Register the presence of a completion routine.

// The completion routine is called when the IRP

// is "completed" by the lower level.

IoSetCompletionRoutine(pIrp, OnIoComplete, NULL,

 TRUE, TRUE, TRUE);

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDO->DeviceExtension;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IoCallDriver(pDevExt->pLowerDevice, pIrp);

...

NTSTATUS OnIoComplete(PDEVICE_OBJECT pDO, PIRP pIrp,

 PVOID pContext) {

 // Perform post processing for IRP request here

 // At what IRQL level does this code run?

 // (see text below for explanation)

 ...

 return pIrp->IoStatus.Status;

}

Unfortunately, it is difficult to predict at what IRQL level a completion routine executes. If the lower-level

driver calls IoCompleteRequest from PASSIVE_LEVEL IRQL, then higher-level I/O Completion routines

execute at PASSIVE_LEVEL. If the lower-level driver completes the IRP request from DISPATCH_LEVEL

(for example, from a DPC routine), then the higher-level Completion routines execute at

DISPATCH_LEVEL.

Table 9.6. Function Prototype for an I/O Completion Routine

NTSTATUS OnIoCompletion IRQL == ??? (see text)

Parameter Description

IN PDEVICE_OBJECT pDevObj Pointer to Device object

IN PIRP pIrp Pointer to IRP just completed

IN PVOID pContext Argument passed from IoSetCompletionRoutine

Return value • STATUS_MORE_PROCESSING_REQUIRED

 • STATUS_SUCCESS

Since PnP IRP requests sent by the PnP Manager execute at PASSIVE_LEVEL, no special design is

necessary to ensure that a returned (completed from a lower level) PnP IRP continues to execute at

PASSIVE_LEVEL. Code executing at DISPATCH_LEVEL is restricted in the kernel calls it may use and, as

described in chapter 3, must ensure it does not reference paged memory. To ensure that PnP handlers

execute at PASSIVE_LEVEL, a kernel Event object is used.

A kernel Event object is a synchronization mechanism that is analogous to a flag. A thread of execution

patiently waits for the Event flag to be raised (set) without consuming CPU resource. Once the Event flag is

raised, the blocked (waiting) thread is scheduled for resumed operation. A full description of the use of

kernel Events is contained in chapter 14.

For now, however, it is sufficient to note that the Event flag could be used as a signal between an I/O

Completion routine and a PASSIVE_LEVEL thread within a higher-level driver. To use a kernel event,

storage must be reserved by the programmer in nonpaged memory. The full technique is shown below.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

...

IoCopyCurrentStackLocationToNext(pIrp);

// Reserve space for a kernel Event object

KEVENT event;

// And initialize it, flag DOWN

KeInitializeEvent(&event, NotificationEvent, FALSE);

// Register the presence of a completion routine.

// Pass the Event object to the Completion routine.

IoSetCompletionRoutine(pIrp, OnIoComplete,

 (PVOID)&event,

 TRUE, TRUE, TRUE);

// Call the lower level(s)

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDO->DeviceExtension;

IoCallDriver(pDevExt->pLowerDevice, pIrp);

// Wait for lower level(s) to complete

KeWaitForSingleObject(&event, Executive, KernelMode,

 FALSE, NULL);

// Perform post-processing functions here...

// On return from Wait, PASSIVE_LEVEL IRQL guaranteed

...

NTSTATUS OnIoComplete(PDEVICE_OBJECT pDO, PIRP pIrp,

 PVOID pContext) {

 // cast the pContext arg into what it really is:

 // an Event pointer.

 PEVENT pEvent = (PEVENT) pContext;

 // Raise the Event flag to signal waiting thread

 KeSetEvent(pEvent, 0, FALSE);

 // Hold off further higher level processing

 // until this level completes:

 return STATUS_MORE_PROCESSING_REQUIRED;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 9.7. PnP IRP Minor Codes Supported by Bus Drivers

PnP IRP Minor Code Meaning

IRP_MN_QUERY_RESOURCES Requests boot configuration resources

IRP_MN_

QUERY_RESOURCE_REQUIREMENTS
Requests resource information for a device

IRP_MN_QUERY_ID Request for device instance ID

IRP_MN_ QUERY_DEVICE_TEXT Request for device description and/or location

IRP_MN_QUERY_BUS_INFORMATION Request parent bus instance and ID

IRP_MN_ READ_CONFIG
Request to read configuration space of bus slot

occupied by device

IRP_MN_ WRITE_CONFIG Request to write configuration space

Bus Driver Plug and Play Requests

In the unusual circumstance where a bus driver or filter must be written, it should be noted that some PnP

IRP requests must be handled by such a driver. These minor code handlers are additional requirements

above and beyond those already listed and are described in Table 9.7.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Device Enumeration

As briefly described earlier in this chapter, the PnP Configuration Manager is responsible for enumerating

the hardware discovered on a system. Starting at system boot, or as devices are inserted or removed, a bus

driver is responsible for identifying and listing (i.e., enumerating) attached hardware. The hardware

resources assigned to a device are supplied to the driver when the PnP Start Message subcode

(IRP_MN_START_DEVICE) is sent.

The technique used to assign unique hardware resources to a device is bus-and driver-dependent. For

example, it is possible that two devices installed in a system have conflicting resource requirements at boot

time. Both devices might default to the same I/O port address. The PnP Configuration Manager is

responsible for sorting out any such conflicts. Further, an individual driver (FDO) might choose not to utilize

a resource at all. For example, printer drivers do not always use an interrupt line even though the hardware

allows it. An unused printer IRQL can be safely assigned to other devices. In other words, the assignment of

hardware resources is a dynamic and iterative process involving the bus and device hardware, the PnP

Manager, and the device driver.

Hardware Resource Descriptors

When a driver receives the PnP subcode IRP_MN_START_DEVICE, two fields within the IRP stack list the

assigned hardware resources: Parameters.StartDevice.AllocatedResourcesTranslated and

Parameters.StartDevice.AllocatedResources.

The structure used to describe these resources is of the type CM_RESOURCE_LIST, which is a counted

array. The first offset within the structure, Count, signifies the number of array elements which follow. Each

array element is of the type CM_FULL_RESOURCE_DESCRIPTOR. The array element contains a bus type

and number (e.g., ISA bus 0) as well as a CM_PARTIAL_RESOURCE_LIST, which is another counted

array. Each element of the inner array is of the type CM_PARTIAL_RESOUCE_DESCRIPTOR, which finally

(and thankfully) describes the resources assigned to the device. Figure 9.6 depicts this four-level structure.

Figure 9.6. Resource list data structures.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The structure of interest is within the fourth level and is a union, u. The four significant united types are Port,

Interrupt, Memory, and Dma. The fields of each of these types are copied into the device extension and

are used by an FDO driver for the duration. For example, when the time comes to perform an actual DMA

operation, the Channel and Port offsets of the Dma structure are required.

Example code that would retrieve the i
th

 element within the PARTIAL_RESOUCE_LIST follows.

PCM_RESOURCE_LIST pResourceList;

PCM_FULL_RESOURCE_DESCRIPTOR pFullDescriptor;

PCM_PARTIAL_RESOURCE_LIST pPartialList;

PCM_PARTIAL_RESOURCE_DESCRIPTOR pPartialDescriptor;

int i;

pResourceList =

 &Parameters.StartDevice.AllocatedResourcesTranslated;

pFullDescriptor =

 pResourceList->List;

pPartialList =

 pFullDescriptor->PartialResourceList;

for (i=0; i<pPartialList->Count; i++) {

 pPartialDescriptor =

 &pPartialList->PartialDescriptors[i];

 switch (pPartialDescriptor->Type) {

case Interrupt:

 pDevExt->IRQL =

 pPartialDescriptor->u.Interrupt.Level;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDevExt->Vector =

 pPartialDescriptor->u.Interrupt.Vector;

 pDevExt->Affinity =

 pPartialDescriptor->u.Interrupt.Affinity;

 IoConnectInterrupt(...);

 break;

case Dma:

 pDevExt->Channel =

 pPartialDescriptor->u.Dma.Channel;

 pDevExt->Port =

 pPartialDescriptor->u.Dma.Port;

 break;

case Port:

 pDevExt->PortBase =

 pPartialDescriptor->u.Port.Start;

 pDevExt->PortLength =

 pPartialDescriptor->u.Port.Length;

 ...

case Memory:

 ...

 MmMapIoSpace(...);

...

}

Using Hardware Resources Within the Driver

There are two sets of hardware resources supplied by the fields of the IRP when the

IRP_MN_START_DEVICE subcode is received—raw and translated—and they serve different purposes

throughout the life of the driver. (The Parameters.StartDevice.AllocatedResources field describes raw

resources.)

Raw resources describe bus-relative addresses (ports, IRQLs, and DMA channels) that formerly would have

been passed to routines such as HalTranslateBusAddress. Such functions are now obsolete since a PnP

driver receives the translated resource list at the same time it receives the raw list. There should be a

one-to-one correspondence between each raw resource and its translated counterpart.

Since the HAL macros (READ_PORT_XXX, WRITE_PORT_XXX, etc.) assume translated resources, there

is little value (other than trace purposes) to keep track of raw resources.

Finally, it should be noted that devices are presented with their resource list. A driver that wishes to minimize

the resources it consumes must implement a PnP handler for the

IRP_MN_FILTER_RESOURCE_REQUIREMENTS subcode. The PnP Configuration Manager submits this

request (opportunity) to a device stack after devices start. The PnP Manager supplies the current list of

device resources and allows a driver to modify (usually by deletion) the set of resources it consumes. In this

way, a printer driver, for example, could announce that the IRQL resource will not be serviced.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Device Interfaces

In chapter 7, a primitive mechanism for extending the Dispatch interface is described. It relies upon

a single user-mode call, DeviceIoControl, which allows specification of a control code that is

generally device-specific. The remaining arguments of the Win32 API call specify separate input and

output buffers. Of course, the structure and meaning of the buffers is code-dependent and relies

upon a specification outside the scope of the I/O Manager or any other system component.

Interface Definition

With the introduction of Plug and Play for Windows 2000, Microsoft allows device drivers to extend a

generic interface to user-mode code. An interface is a specification, or contract, between caller and

implementer that is nothing more than a group of (hopefully) related function calls (methods). A

single driver can support many interfaces, and interfaces can be reimplemented by many drivers.

Thus, the functionality of a driver (using interfaces) is merely the mix and match conglomeration of

the interfaces it implements.

An interface should be immutable. Once formally published (or distributed), an interface should not

be changed. Once multiple drivers implement the same interface, it realistically cannot be changed.

This includes additions as well as deletions. The immutability requirement allows client code to be

certain that if a driver supports an interface, its meaning is completely unambiguous.

Interfaces are identified by a unique number, or interface type (ID). To avoid inter-vendor collisions,

the ID space is somewhat large, consisting of 128 bits. Microsoft has chosen to conform to the Open

Software Foundation (OSF) Distributed Computing Environment (DCE) specification for the

generation of these Universally Unique Identifiers (UUID). To generate a statistically unique UUID,

Microsoft supplies two tools, GUIDGEN (Windows based) and UUIDGEN (console based).

Although a direct call interface is available only for kernel-mode code, user-mode code can also

benefit. The interfaces supported by a driver can be enumerated by an application, and if

recognized, offer a level of assurance as to driver functionality.

Interface Construction

Once a suitable ID is generated, the interface is constructed with a structure that includes a function

pointer for each method of the specification. All device interfaces are based on the following

structure:

typedef VOID (*PINTERFACE_REFERENCE)(PVOID pContext);

typedef VOID (*PINTERFACE_DEREFERENCE)(PVOID pContext);

typedef struct _INTERFACE {

 USHORT Size;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 USHORT Version;

 PVOID Context;

 PINTERFACE_REFERENCE InterfaceReference;

 PINTERFACE_DEREFERENCE InterfaceDereference;

 // interface-specific entries go here

} INTERFACE, *PINTERFACE;

If using C++, it is acceptable to define the new interface using inheritance (structs support

inheritance as well as classes in C++). For example, to define an interface used to launch a missile,

typedef struct _COORDINATES {

 LONG latitude;

 LONG longitude;

} COORDINATES, *PCOORDINATES;

typedef BOOLEAN

 (*PLAUNCH_INTERFACE_LAUNCH)(COORDINATES coords);

typedef BOOLEAN (*PLAUNCH_INTERFACE_DESTROY)(VOID);

// Derive the new struct from the generic struct

typedef struct _LAUNCH_INTERFACE : INTERFACE {

 // only need to define interface-specific entries

 PLAUNCH_INTERFACE_LAUNCH Launch;

 // the next function cancels a missile launch

 // we wouldn't want this function to be optional

 PLAUNCH_INTERFACE_DESTROY Destroy;

} LAUNCH_INTERFACE, *PLAUNCH_INTERFACE;

Interface Reference Counting

Notice that the custom functions of the interface are provided as function pointers within the struct.

Also, the base interface includes two standard functions, InterfaceReference and

InterfaceDereference. These functions provide a counting mechanism that determine the lifetime of

the interface. Each "user" or client of an interface must increment the interface's reference count by

invoking InterfaceReference. As each user finishes its use of the interface, the reference count is

decremented with InterfaceDereference. Typically, InterfaceReference is used whenever one

function passes an interface to another function. Each function is independently responsible for

decrementing the count when the function ultimately completes. This usage is analogous to COM's

cAddRef and Release functionality.

As to whether an interface would actually care to know if it is being "used" or not largely depends on

the nature of the interface. An interface that allocates significant resources could use the interface

count to determine when to deallocate its usage.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Registering and Enabling an Interface

Once constructed, an interface is registered by a device driver during its AddDevice routine using

IoRegisterDeviceInterface. The prototype for this function is shown in Table 9.8.

Table 9.8. Function Prototype for IoRegisterDeviceInterface

NTSTATUS

IoRegisterDeviceInterface
IRQL = PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT pdo Pointer to physical device object

IN CONST GUID *pInterfaceClassGuid Pointer to Interface ID

IN PUNICODE_STRING refString
Additional modifying string to differentiate conflicting

Interface Ids (optional)

OUT PUNICODE_STRING by

symbolicLinkName
Name for referring to interface driver and user-mode code

Return value • STATUS_SUCCESS

 • STATUS_INVALID_DEVICE_REQUEST

The symbolic link name generated by the system after the very first call to IoRegisterDeviceInterface

is persisted in the system registry. Future calls return the original name. Drivers should save the

created symbolic link name in the device extension. The symbolic link name is also the name by

which user-mode code can refer to the device.

Once registered, a driver must still enable the interface, typically during receipt of the PnP subcode

IRP_MN_START_DEVICE. To enable or disable an interface, the function

IoSetDeviceInterfaceState is used and is described in Table 9.9.

Once registered and enabled, the interface is available to kernel-mode code via a PnP subcode

request, IRP_MN_QUERY_INTERFACE. The IRP of the request contains a field,

Parameters.QueryInterface.Interface that points to a caller-allocated structure of the size dictated

by the interface specification. The implementing driver is responsible for filling in the function

pointers (or data, for that matter) that actually implement the interface. By convention, a driver

should increment the reference count on the interface when initialized in this manner.

Table 9.9. Function Prototype for IoSetDeviceInterfaceState

NTSTATUS

IoSetDeviceInterfaceState
IRQL = PASSIVE_LEVEL

Parameter Description

IN PUNICODE_STRING

symbolicLinkName

Reference name returned by previous call to

IoRegisterDeviceInterface

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IN BOOLEAN bEnableInterface TRUE - Enable the interface

 FALSE - Disable the interface

Return value • STATUS_SUCCESS

 • STATUS_OBJECT_NAME_NOT_FOUND

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Simple Plug and Play Driver

A complete, albeit simple, Plug and Play driver for the parallel port is included on the CD which

accompanies this book and on the companion Web site, http://www.W2KDriverBook.com.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.W2KDriverBook.com

< BACK NEXT >

[oR]

Summary

The conversion of a legacy driver into a simple WDM driver is relatively straightforward, as

demonstrated with the previous example. Nevertheless, the number of details requiring mastery and

understanding is formidable. It pays to have a base understanding of Windows 2000 drivers before

attempting to add Plug and Play support.

The next chapter deals with the "full blown" WDM and PnP models, examining and demonstrating

power management and hot plug issues.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 10. Power Management

CHAPTER OBJECTIVES

Hot Plug Devices

OnNow Initiative

Wake Requests

Power Management Issues

Summary

The WDM model is ideal for enumerating and arbitrating discovered hardware. Additionally,

the model supports the frugal management of power to those devices.

Devices that consume power only when used are hardly a new concept. After all, household

appliances normally remain off until used. Yet within legacy computers, every device consumes

power even during significant idle periods. The fact that a device might be burning just a few watts or

less encourages the thought that the waste is unworthy of concern.

The need to manage power to installed devices is obvious in mobile and portable environments

where the source of energy is limited. Even in desktop and server environments, however, the

reduction of unnecessary power expenditure lowers heat production, increases component

reliability, and lowers electric consumption and cost.

This chapter starts by describing the goals of and problems associated with power management.

Then the mechanics of power management with a device driver is presented. This involves

gracefully powering down a device through various levels of power consumption and reversing the

process when new device requests arrive.

Finally, an example driver with power management handling incorporated is presented.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Hot Plug Devices

In order to manage power within a computer system, three major categories require cooperative

design.

System and bus hardware

Devices

Operating system and device driver software

Windows 2000 and Windows 98 support the WDM driver model, which incorporates sophisticated

power management for bus and device hardware. Since the remainder of this chapter discusses the

software support for power management, it is appropriate to first review the hardware requirements

for the feature.

Bus Considerations

First and foremost, before a device can be powered down, the bus into which it plugs must

electrically provide for such a state. For example, many bus drivers require power to guarantee an

on-bus or off-bus state. Without power to the electrical bus-driver chip itself, the driver and its effect

on the rest of the bus is indeterminate. Clearly, the hardware bus specification must allow for

powered down bus drivers in order to support robust power management.

In some cases, the bus design must meet physical constraints. Especially in mobile systems,

devices are routinely inserted and ejected. If the device installation and removal is allowed on a "hot"

system, the physical bus characteristics must be carefully designed. Besides the obvious

requirement that each device be physically separate (i.e., one device cannot scrape another as it is

inserted or removed) there is the less obvious concern for which bus signals will "break" first.

Typically, the ground pins for such buses are physically longer than the power pins, ensuring that

ground makes first and breaks last during insertion and removal.

Such trivia aside, all modern buses support power management and incorporate necessary

electrical and physical specifications to meet the stated requirements of the bus. PCI, PCMCIA (PC

Card), USB, and IEEE 1394 are all designed for the feature. All but PCI allow "hot plug" of devices.

Device Considerations

Besides meeting the requirements for a given bus, individual devices can allow for remarkably

clever management of power. For example, a modem card might allow for power down of the UART

and bus circuitry, while still powering a ring detection circuit that triggers an awaken sequence.

Indeed, when considering the possible segregation of power to a device's subsections, it becomes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

clear a device can have multiple states for describing its power condition. Between the extremes of

"completely on" and "completely off," a device can implement decreasing power states

corresponding to decreasing capability. The transition from state to state can be directed by system

or user request, or simply after an extended idle time.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

OnNow Initiative

In an attempt to standardize (read: abstract) the various approaches to power management, Microsoft

developed the OnNow Initiative. This specification builds on the capabilities of the hardware, providing a

common platform for the various Microsoft operating systems to exploit.

The OnNow initiative abstracts the power management capabilities of the system (mainboard) and devices.

While individual devices may incorporate many clever powering schemes, the OnNow model describes

distinct power states that a device or system can occupy at any given time.

Power States

A system exists in one of six power states, designated S0 through S5. The meanings are described in Table

10.1. The overall state of the system largely restricts the maximum power state of individual devices.

Devices, meanwhile, occupy one of four power states, D0 through D3. The meanings are described in Table

10.2. Device power state primarily determines whether or not the hardware is capable of retaining its internal

context at the designated Dx level.

Table 10.1. System Power States Defined by OnNow

System Power State Meaning

S0 CPU fully on Devices may occupy any power state

S1 CPU halted; RAM refreshed

S2 CPU without power; RAM refreshed

S3 CPU without power; RAM in slow refresh mode Power supply output reduced

S4 System off; RAM saved to disk

S5 System off and shutdown; full reboot necessary to restore operation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 10.2. Device Power States Defined by OnNow

Device Power State Meaning

D0 Device fully on

D1 Device in low-power mode

 Device context probably retained

D2 Device in low-power mode

 Device context probably not valid

D3 Device is without power; context lost

A confusing terminology point arises from the power state designations. As the system or device moves to a

lower power state, its power state designation increases. For example, a device that moves from fully on to

fully off has its power state increase from D0 to D3. The problem is compounded by the fact that the header

file defining the enumeration of the states (wdm.h) specifies increasing enumeration values for the

decreasing power-consuming states. For example, D0, enumerated symbolically as PowerDeviceD0, has

the ordinal value 1. PowerDeviceD3 has the ordinal value 4. Thus, ordinal comparisons of power states are

confusing. For example, a test of newState < oldState is a check to see if the new state consumes more

power than the old state.

To further confuse the issue, PowerDeviceMaxium is defined to be the maximum power consumption state

of a device. As currently defined within <wdm.h>, its ordinal value is 5.

Power Policies

Devices of the same class share a common power policy. The policy is owned by a single driver, typically a

high-level driver common to all device stacks of the class (e.g., a class driver). The policy owner makes

power decisions for the entire class of devices and is responsible for communicating with the operating

system to confirm or reject power state changes.

Once the policy owner decides on a power state change, it issues IRP requests to individual devices or

stacks to enact the decision. Such an IRP might pass between many drivers (down to the bus driver, up to

the PDO, back to filters and FDO) before the entire request is realized.

Regardless of which driver assumes the role of policy owner, each device stack driver is responsible for

acting on individual power requests. This means that each FDO is responsible for the device-specific power

manipulation, while the PDO bus drivers take responsibility for manipulating power to the bus slot.

Power State Matrix

The system power states (S0-S5) dictate a maximum power state for devices (D0-D3). Since this maximum

power state varies from system to system and device to device, a dynamic configuration occurs each time a

driver is loaded. The results of this configuration are maintained within a device structure,

DEVICE_CAPABILITIES, primarily within an array substructure, DEVICE_POWER_STATE (offset:

DeviceState). Each element of the array corresponds to a system power state, Sx, and contains the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

maximum device power state, Dx, that is allowed.

On a given system, the collection of all DeviceState arrays forms a power state matrix that governs device

power state transitions as the system power state changes.

The DeviceState array is filled using the following algorithm:

After a WDM AddDevice function is called, the PnP Manager issues a request,

IRP_MN_QUERY_CAPABILITIES, to each created device stack.

1.

The FDO (and any intervening filters) forward the request to the bus driver (PDO).2.

Using whatever means the bus allows, the bus driver fills in the DeviceState array. It also fills in

"wake" fields that specify the minimum system and device states at which a device can still issue a

wake event. (DeviceWake and SystemWake)

3.

The IRP is returned to the higher levels. The FDO is permitted to degrade the bus determinations

(e.g., stating that at S1, the device cannot support D1) and then complete the IRP.

4.

The primary consumer of the power state matrix is a policy owner, which issues a PnP request,

IRP_MN_SET_POWER, to a device stack to alter a device's power state. A policy owner should not violate

the constraints of the power matrix and, therefore, must issue its own PnP request,

IRP_MN_QUERY_CAPABILITIES, to obtain the relevant array entries.

Power State Changes

When a system power state change is requested, all power policy owners are notified with an

IRP_MN_SET_POWER PnP request. The policy owner invokes the PnP Manager call PoRequestPowerIrp,

described in Table 10.3, to construct a new PnP IRP request. The new IRP is sent to the device stack

specified by the target FDO (or PDO).

An FDO, upon receiving the request to change power states, alters its power state using whatever

device-specific means are available to it. It then issues the PnP Manager call PoSetPowerState to

acknowledge accomplishment of the state change request. PoSetPowerState is described in Table 10.4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 10.3. Function Prototype for PoRequestPowerIrp

NTSTATUS PoRequestPowerIrp IRQL <=DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDeviceObject Pointer to target FDO or PDO

IN UCHAR MinorFunction • IRP_MN_QUERY_POWER

 • IRP_MN_SET_POWER

 • IRP_MN_WAIT_WAKE

IN POWER_STATE PowerState New device or system power state request

IN PREQUEST_POWER_COMPLETE Function called when new IRP has completed CompletionRoutine

IN PVOID pContext Argument passed to Completion routine

OUT PIRP *pIrp Optional pointer to newly allocated IRP

Return value • STATUS_PENDING

 • STATUS_INSUFFICIENT_RESOURCES

 • STATUS_INVALID_PARAMETER_2

The power state change request must also be forwarded to lower-level devices in the stack, especially to the

bus driver. If the device power state is being increased (i.e., moving to a lower consumption state), the

device should act first on the request, then forward the request to the bus driver. If the device power state is

being lowered (i.e., moving toward the "fully on" condition), the device should forward the request first to the

bus driver, await completion, and then act on the request. The order of acting vs. forwarding varies because

the bus needs to power up a slot before the device can act. Conversely, the device must enter a quiescent

state before the slot is powered down.

Table 10.4. Function Prototype for PoSetPowerState

POWER_STATE PoSet PowerState IRQL <= DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDeviceObject Pointer to target FDO or PDO

IN POWER_STATE_TYPE Type Must be DevicePowerState for FDOs

IN POWER_STATE PowerState New device power state being entered PowerDeviceDn (n = 0 to 3)

Return value Previous power state (Windows 2000 only)

Table 10.5. Function Prototype for PoStartNextPowerIrp

VOID PoStartNextPowerIrp IRQL <= DISPATCH_LEVEL

Parameter Description

IN PRIP pIrp Pointer to current IRP

Return value - void -

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Forwarding a PnP Power Request IRP to lower-layer drivers is different from forwarding other PnP IRPs.

Two special functions, PoStartNextPowerIrp and PoCallDriver, are provided for this purpose.

PoStartNextPowerIrp, described in Table 10.5, alerts the requestor that the current device stack level has

completed work on the power IRP and is ready for another. This function must be called from every device

driver within the device stack. PoCallDriver, described in Table 10.6, then forwards the current IRP to the

lower-level driver.

The action of forwarding Power IRPs when increasing or decreasing power states is shown in Figure 10.1.

An example of handling PnP Power IRP requests is shown below (along with the requisite Completion

routine when awaiting lower levels to complete first).

Figure 10.1. Forwarding Power IRP requests.

Table 10.6. Function Prototype for PoCallDriver

NTSTATUS PoCallDriver IRQL <= PASSIVE_LEVEL (in some cases, DISPATCH_LEVEL is OK)

Parameter Description

IN PDEVICE_OBJECT pDevObj Pointer to next lower-level device object (i.e., next recipient)

IN OUT PRIP pIrp Pointer to current IRP

Return value • STATUS_SUCCESS

 • STATUS_PENDING

NTSTATUS OnPowerIrp(PDEVICE_OBJECT pDevObj, PIRP pIrp) {

 NTSTATUS status;

 PIO_STACK_LOCATION stack =

 IoGetCurrentIrpStackLocation(pIrp);

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDevObj -> DeviceExtension;

 ULONG subCode = stack->MinorFunction;

 switch (subCode) {

 ...

 case IRP_MN_SET_POWER:

 POWER_STATE_TYPE type =

 stack->Parameters.Power.Type;

 if (type != DevicePowerState)

 // System power state change notification

 // Driver can prepare for eventual device

 // power change - sent later

 ForwardPowerIrp(pDevObj, pIrp);

 DEVICE_POWER_STATE newState =

 stack->Parameters.Power.State;

 if (newState < pDevExt->currentPowerState) {

 // Request to raise power - tell PDO first.

 // Set a completion routine so that we can

 // regain control after lower-level finishes

 IoCopyCurrentIrpStackLocationToNext(pIrp);

 IoSetCompletionRoutine(pIrp, PowerUpFinish,

 NULL, TRUE, TRUE, TRUE);

 PoCallDriver(pDevExt->LowerDriver, pIrp);

 Return STATUS_PENDING;

 } else {

 // request to reduce power - do it first.

 // Perform device-specific power-up ops.

 // Tell Power Mgr device has changed state

 PoSetPowerState(pDevObj, type, newState);

 // Tell Power Mgr OK to send this level

 // another Power IRP

 PoStartNextPowerIrp(pIrp);

 // And pass the Power IRP down...

 return

 PoCallDriver(pDevExt->LowerDriver, pIrp);

 }

 break;

 ...

NTSTATUS PowerUpFinish(PDEVICE_OBJECT pDevObj,

 PIRP pIrp, PVOID pContext) {

 PIO_STACK_LOCATION stack =

 IoGetCurrentIrpStackLocation(pIrp);

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj -> DeviceExtension;

 DEVICE_POWER_STATE newState =

 stack->Parameters.Power.State;

 // Perform device-specific power-up now that the bus

 // has supplied the device with power

 // Inform the Power Mgr of the state change

 PoSetPowerState(pDevObj, DevicePowerState, newState);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // And signal an OK for more Power IRPs

 PoStartNextPowerIrp(pIrp);

 return STATUS_SUCCESS;

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Wake Requests

To understand the Windows 2000 architecture for handling wake requests, it is important to first understand

the hardware operation. A device that is armed for wake detection appears to have the capability to force a

sleeping system back to life. In fact, since the device is a slave of the bus, it really has only the capability to

signal its intent to the bus. It is the bus hardware that in turn forces the system out of its sleep.

The significance of this is that the software that drives the hardware is ultimately centered at the bus driver.

The arming process starts at the top of the device stack, but the actual waiting occurs at the bottom bus

driver. Thus, the overall process for the wake process is

A power policy owner (usually a bus driver) initiates a request to arm or disarm the wake

mechanism for a device using PoRequestPowerIrp, subcode IRP_MN_WAIT_WAKE. (A callback

routine, fired when the IRP eventually finishes, is set.)

1.

A driver of wake-capable hardware handles requests to arm and disarm the trigger mechanism.2.

Wake-aware drivers pass down the arm/disarm request to lower-level drivers. The request will pend

(perhaps for hours) at the bus driver.

3.

The system enters sleep mode.4.

The wake hardware (obviously without suspended software support) tickles the bus and awakens

the system CPU.

5.

The bus driver (now executing) completes the original IRP_MN_WAIT_ WAKE IRP.6.

Any higher-level driver with a registered I/O Completion routine will be notified as the IRP works its

way back up the device stack. A function driver might need to reset the wake trigger mechanism.

7.

The original creator of the arming request is notified that the (multihour) process is complete.

Presumably, the creator re-arms the wake trigger mechanism for the next (multihour) cycle.

8.

This process is depicted in Figure 10.2.

Figure 10.2. The wake process.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There are several noteworthy points concerning the process. First, a device stack is allowed, at most, one

outstanding WAIT_WAKE IRP at a time. Therefore, a single pointer within the FDO device extension is

appropriate to hold the WAIT_WAKE IRP pointer if established.

Second, the policy owner that issues the arm or disarm request must do so only when the device is at full

power, state D0. Additionally, neither the device nor the system may be in a power state transition at the

time the arm or disarm request is made. This last rule appears a bit restrictive in that it might make sense to

decide to arm the wake device just before the device enters a reduced power mode. Instead, the decision to

arm must be made a priori, with the device stack left enabled for a potential sleep-wake cycle.

Canceling the Wake-Armed IRP

Once issued, an IRP_MN_WAKE_WAIT IRP remains outstanding indefinitely. The bus driver holds this

request in a pended state, long before the system even enters the sleep state.

To disarm the wake capability, the IRP must be canceled by the original requestor, the power policy owner.

To cancel the request, the policy owner invokes the I/O Manager function IoCancelIrp, described in Table

10.7. A typical need to cancel the power IRP occurs when an armed device is stopped or ejected from the

system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 10.7. Function Prototype for IoCancelIrp

BOOLEAN IoCancelIrp IRQL <= DISPATCH_LEVEL

Parameter Description

IN PRIP pIrp Pointer to IRP to cancel

Return value • TRUE - IRP cancellation succeeded

 • FALSE - IRP could not be canceled

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Power Management Issues

As part of the OnNow initiative, Microsoft, working with hardware system developers, established

the Advanced Configuration and Power Interface (ACPI) BIOS. ACPI replaces the outdated

Advanced Power Management (APM) BIOS interface for power management. Proper operation of

Windows 2000 power management features depend upon BIOS support of ACPI. When installed on

non-ACPI-compliant platforms, Windows 2000 degrades to the capability extended by

APM-compliant BIOS.

To fully exercise WDM driver power management code, a system with ACPI BIOS enabled must be

used. Further, Windows 2000 should be installed with ACPI enabled (typically a BIOS setup screen

option).

While APM-only support is suitable for gross-level power management, the full blown ACPI feature

set is required to gain the full range of device power management supported by Windows 2000.

APM support is sufficient for battery management in mobile devices.

Idle Management

Since the most obvious form of power savings that occurs is the power down of idle devices (i.e.,

devices that remain unused for an extended period of time), Windows 2000 provides a convenient

mechanism for device drivers to request a power IRP IRP_MN_SET_POWER after a specified

timeout period. The Power Manager function PoRegisterDeviceForIdleDetection, described in Table

10.8, provides this functionality.

The return value from PoRegisterDeviceForIdleDetection is a pointer to an idle counter that is

incremented each second. When and if the counter reaches the timeout value specified (argument

two or three), the Power Manager sends an IRP_MN_SET_POWER request of the power state

specified in argument four.

The timer/counter must be manually reset by driver code, as appropriate, by calling

PoSetDeviceBusy, described in Table 10.9. Of course, setting too short a timeout interval burdens a

driver with frequent calls to PoSetDeviceBusy, so conservative timeout values would seem

appropriate.

Table 10.8. Function Prototype for PoRegisterDeviceForIdleDetection

PULONG PoRegisterDevice

ForIdleDetection IRQL < DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDevObj Pointer to device object to receive power IRP

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IN ULONG ConservationIdleTime
Timeout value (seconds) when system is running with

scarce power (battery-driven)

IN ULONG PerformanceIdleTime
Timeout value (seconds) when system is running with

abundant power (docked)

IN DEVICE_POWER_STATE State Power state requested when timeout exceeded

Return value • Pointer to "idle counter"

 • NULL - Idle timeout could not be enabled

Table 10.9. Function Prototype for PoSetDeviceBusy

VOID PoSetDeviceBusy IRQL < DISPATCH_LEVEL

Parameter Description

IN PULONG pIdleCounter Pointer to "idle counter"

Return value - void -

User Interface for Power Management

The suggested user interface for Power Management is the Control Panel applet of Windows 2000,

Power Options. To extend the Power Options applet with a driver-customized property sheet

requires the use of Microsoft's COM object model and registration of the property sheet. An example

of providing such an extension is provided on the companion Web site of this book,

www.W2KdriverBook.com

Some knowledge of ATL (Active Template Library) is required to understand the example.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

Power Management within the Windows 2000 WDM model is somewhat complex. The nature of

power management with multiple device power states contributes to the complexity. Partly, the

child-parent, device-bus relationship is also to blame. And of course, the handling of wake requests

from otherwise sleeping devices adds more code to the driver.

Nevertheless, a properly written power-managed WDM driver contributes greatly to the elegant

operation of the overall system. Power consumption, heat, and reliability benefit from the

incorporation of this feature.

The next chapter deals with the handling of a practical device problem: timeouts. What if a hardware

request does not complete within a reasonable period of time?

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 11. Timers

CHAPTER OBJECTIVES

Handling Device Timeouts

Code Example: Catching Device Timeouts

Managing Devices without Interrupts

Code Example: A Timer-Based Driver

Summary

Software developers have known about it from the beginning. Hardware does not always

behave the way it should. For example, error conditions may prevent a device from

generating an interrupt when one is expected. Even worse, some devices don't use

interrupts to signal interesting state changes. Handling these situations requires some kind

of timer or polling mechanism, and this chapter describes just such a process.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Handling Device Timeouts

A driver can never assume that an expected device interrupt will arrive. The device might be offline;

it might be waiting for some kind of operator intervention; or, perhaps it's just broken. This section

explains how to use I/O Timer routines to detect unresponsive devices.

How I/O Timer Routines Work

An I/O Timer routine is a (somewhat) optional piece of driver code that an AddDevice routine

attaches to a specific Device object. After the timer is started, the I/O Manager begins calling the I/O

Timer routine once every second. These calls continue until the timer is explicitly stopped. Table

11.1 lists the functions available for working with I/O timers.

Table 11.2 shows the prototype for the I/O Timer routine itself. When this callback executes, it

receives a pointer to the associated Device object and the context argument that was specified in

the call to IoInitializeTimer. As always, the address of the Device Extension is a good choice for

context.

How to Catch Device Timeout Conditions

In general terms, a driver that wants to catch device timeouts should do the following:

In AddDevice, call IoInitializeTimer to associate an I/O Timer routine with a specific device.1.

When a handle is associated with the device (e.g., when a user-mode program calls

CreateFile), the driver's Dispatch routine for IRP_MJ_ CREATE calls IoStartTimer. As long

as the device handle remains open, the device receives I/O Timer calls.

2.

If the driver needs a longer timeout than one second (and it probably does), a separate

counter value must bemaintained. This counter is initialized in the Start I/O routine to the

maximum number of seconds the driver is willing to wait for an interrupt.

3.

The ISR resets or cancels the timer, depending on whether additional device interrupts are

expected.

4.

Each time the driver's I/O Timer routine is called, the timer counter is decremented and

checked. If the counter reaches zero before an interrupt arrives, the I/O Timer routine stops

the device, clears the timeout counter, and processes the request as a timed-out operation.

5.

When the user-mode program calls CloseHandle, the Dispatch routine for IRP_MJ_CLOSE
6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

calls IoStopTimer, which disables I/O timer callbacks for the device.

Notice that the Start I/O and I/O Timer routines (running at DISPATCH_ LEVEL IRQL), and the ISR

(running at DIRQL) all have access to the timeout counter in the Device Extension. These

independent code paths must synchronize their access to the timeout counter. The code example

that appears later in this chapter demonstrates such synchronization.

Table 11.1. I/O Timer Routineys

Function Purpose IRQLM

IoInitializeTimer Attach a timer to a device PASSIVE_LEVEL

IoStartTimer Start receiving callbacks <= DISPATCH_LEVEL

IoStopTimer Stop receiving callbacks <= DISPATCH_LEVEL

Table 11.2. Function Prototype for IoTimer Callback

VOID IoTimer IRQL == DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDeviceObject Pointer to device object whose timer just fired

IN PVOID pContext Context argument passed with IoInitializeTimer

Return value - void -

Of course, a driver can choose to use IoStartTimer and IoStopTimer outside of Dispatch routines.

Since the timer callback interval is one second, disregarding unneeded callbacks does not incur

significant overhead. For example, a driver could call IoStartTimer in AddDevice and just let the

routine continually fire.

Once it is determined that a device operation has timed out, a driver may do any of the following:

Retry the device operation a fixed number of times before failing the IRP that generated it.

Fail the IRP by calling IoCompleteRequest with an appropriate final status value. Do not

use STATUS_IO_TIMEOUT as the final status for the failed IRP. This status code maps

onto the ERROR_ SEM_TIMEOUT Win32 error message, signifying a semaphore timeout.

Log a timeout error for the device in the system event log. This can help system

administrators track down failing hardware.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: Catching Device Timeouts

This example shows the addition of timeout support to the simple parallel port driver developed in

previous chapters.

Device Extension Additions

The Device Extension is modified to include the timeout counter. A counter value of -1 signifies that

timeouts are to be ignored.

typedef struct _DEVICE_EXTENSION {

 ...

 LONG timeRemaining; // timeout counter - seconds

 ...

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

AddDevice Additions

AddDevice is changed to initialize the I/O Timer for the device. The counter value does not need to

be initialized until the timer is actually started.

NTSTATUS AddDevice(IN PDRIVER_OBJECT pDriverObject,

 IN PDEVICE_OBJECT pdo) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

...

// Near the end of the function, after IoCreateDevice

// has been called....

//

// Create the I/O Timer

 IoInitializeTimer(pdo, IoTimer, pDevExt);

...

}

Create Dispatch Routine Changes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When the device is "opened" from user-mode (via the Win32 CreateFile call), the I/O Timer is

started. It continues to tick so long as the handle remains open. Since the time is ticking, the timeout

counter must be initialized to show that at present the ticks should be ignored.

NTSTATUS DispatchCreate(IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 ...

 // Near the end of the function, the timeout

 // counter is initialized and the I/O Timer

 // is started.

 pDevExt->timeRemaining = -1;

 IoStartTimer(pDevObj);

 ...

}

StartIo Changes

Each time the physical device is started and an interrupt becomes expected, the maximum number

of seconds to wait for the interrupt must be set into the timeout counter. An operational counter must

be synchronized with all code paths to ensure it does not become corrupted. The ISR and I/O Timer

callback routines, running as interrupting code paths, also read and write the counter.

The use of InterlockedExchange assures that the 32-bit timeout counter is stored atomically.

VOID StartIo(IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 ...

 // Before physically starting the device, the

 // timeout counter must be set. Remember to

 // account for all forms of device latency,

 // including device power/spin-up, etc.

 InterlockedExchange(pDevExt->timeRemaining,

 INTERRUPT_TIMEOUT);

 //

 // Now start the device:

 CallTransmitBytes(pDevObj, pIrp);

 ...

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ISR Changes

The Interupt Service Routine is modified so that each time an expected interrupt arrives, the I/O

Timeout wait period is either canceled or reset. If the ISR starts another device operation, a fresh

timeout period is established. If there are no more pending transfer operations, the timeout is

canceled (set to -1).

BOOLEAN Isr(IN PKINTERRUPT pInterruptObj,

 IN PVOID pServiceContext) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pServiceContext;

 ...

 // If there are more bytes to send,

 // reset the timeout counter to a fresh start

 if (TransmitBytes(pDevExt)

 InterlockedExchange(&pDevExt->timeRemaining,

 INTERRUPT_TIMEOUT);

 // If no more bytes to send, clear the timeout

 else

 InterlockedExchange(&pDevExt->timeRemaining,

 -1);

 ...

I/O Timer Callback Routine

Finally, the Timer Callback routine itself is presented. If the routine detects that the timeout has

expired, it uses the driver's DprForIsr routine to fail the IRP.

VOID IoTimer(IN PDEVICE_OBJECT pDevObj,

 IN PVOID pContext) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pContext;

 // Check the timeout value

 if (InterlockedCompareExchange(

 &pDevExt->timeRemaining, -1, -1) < 0)

 return; // timer not active

 // Since the timer is active, decrement it

 if (InterlockedDecrement(&devExt->timeRemaining)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 == 0) {

 // timeout has expired - fail the IRP

 InterlockedExchange(&pDevExt->timeRemaining,

 -1);

 DpcForIsr(NULL, pDevObj,

 pDevObj->CurrentIrp, pDevExt);

 }

 return;

}

There is a small window of interest between the check to see if the timer is active and the

decrementing of the timer. Between the two calls, the ISR could execute, setting the (formerly)

active timer counter to -1. When theIoTimer routine regains control, it decrements the -1 to -2. The

code accounts for this window by comparing the timeRemaining value to any negative value.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Managing Devices without Interrupts

Some devices don't generate interrupts with every significant state change. Even when the device

does generate interrupts, a case can be made to drive an infrequently used, relatively slow device

with a polled technique. Printer drivers are a common example of this technique. Since the printer

device buffer is large in comparison to the physical print rate, a device driver has a considerable

window in which it can occasionally check for the need to refill the buffer.

Working with Polled Devices

Once a device is started, it is generally unacceptable for driver code to hang in a tight loop waiting

for the device to finish. In a multiprocessing and multitasking operating system such as Windows

2000, there are always useful chores that can or must occur in parallel with the device's operation.

By Microsoft edict, a driver is not allowed to stall in a tight polling loop for more than 50

microseconds. With today's extraordinary processor speeds, 50 microseconds is an eternity—a

period in which hundreds of instructions could have executed.

When polling is required, drivers can utilize one of four techniques based on the amount of required

poll time and the context in which the stall occurs.

Driver code running at PASSIVE_LEVEL IRQL can call KeDelayExecutionThread,

described in Table 11.3, to suspend a thread's execution for a specified interval. The thread

is removed from the "ready to run" queue of threads and thus does not interfere with other

"good to go" threads.

This technique is available only to kernel-mode threads started by other driver code or

during the device's initialization or cleanup code.

Driver code can "busy wait" the processor using KeStallExecutionProcessor, described in

Table 11.4. The function call is equivalent to code hanging in a tight countdown loop, except

that the time stalled is processor speed-independent. Threads should not stall the

processor for more than 50 microseconds.

Synchonization objects, such as kernel events and mutexes, can be utilized. The "stalling"

code then waits on the synchronization object to enter the signaled state—an act for which

another nonstalled code path must take responsibility.

A driver can utilize CustomTimerDpc routines to gain the benefit of I/O Timer functionality

with controllable timing granularity.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If a device needs to be polled repeatedly, and the delay interval between each polling operation is

more than 50 microseconds, the driver design should incorporate system threads (discussed in

Chapter 14).

Table 11.3. Function Prototype for KeDelayExecution Thread

NSTATUS

KeDelayExecutionThread IRQL == PASSIVE_LEVEL

Parameter Description

IN KPROCESSOR_MODE waitMode
KernelMode

UserMode

IN BOOLEAN bAlertable
TRUE - if wait is canceled upon receipt of Async Procedure

Call

 FALSE - in kernel mode

IN PLARGE_INTEGER interval Wait interval in 100 nanosecond units

Return value Success or failure code

Table 11.4. Function Prototype for KeStallExecutionProcessor

VOID KeStallExecutionProcessor IRQL == Any Level

Parameter Description

IN ULONG interval Wait interval in microseconds

Return value - void -

How CustomTimerDpc Routines Work

A CustomTimerDpc routine is just a DPC routine that is associated with a kernel Timer object. The

CustomTimerDpc routine runs after the timer's timeout value expires. The Kernel automatically

queues the DPC routine for execution. When the Kernel's DPC dispatcher pulls the request from the

queue, the CustomTimerDpc routine finally executes. Of course, there could be some delay between

the moment the Timer object expires and the actual execution of the DPC routine.

Kernel Timer objects can be programmed to fire once or repeatedly. Thus, CustomTimerDpc

routines can be scheduled to run at regular intervals. Like all other DPC routines, a

CustomTimerDpc runs at DISPATCH_LEVEL IRQL. Table 11.5 shows the prototype for one of these

routines. Notice the CustomTimerDpc routine always receives two reserved arguments from the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

system. The contents of these two system arguments are undefined. With CustomTimerDpc

routines, there is a single context argument that is permanently associated with the DPC object.

CustomTimerDpc routines differ from I/O Timer routines in several ways.

Unlike I/O Timer routines, a CustomTimerDpc is not associated with any particular Device

object. There can be one CustomTimerDpc for many device objects or many

CustomTimerDpc's for one device object.

Table 11.5. Function Prototype for a CustomTimerDpc Routine

VOID CustomTimerDpc IRQL == Any Level

Parameter Description

IN PKDPC pDpc DPC object generating the request

IN PVOID pContext Context passed when DPC initialized

IN PVOID SystemArg1 Reserved

IN PVOID SystemArg2 Reserved

Return value - void -

The minimum resolution of an I/O Timer is one second; the expiration time of a

CustomTimerDpc is specified in units of 100 nanoseconds. In reality, the resolution is

limited to about 10 milliseconds.

The I/O Timer always uses a one-second interval. The expiration interval for a

CustomTimerDpc can be specified differently with each firing.

The storage for an I/O Timer object is automatically part of the Device object. To use a

CustomTimerDpc, both a KDPC and a KTIMER object must be manually declared in

nonpaged storage.

How to Set Up a CustomTimerDpc Routine

Working with CustomTimerDpc routines is very straightforward. A driver simply needs to follow

these steps.

Allocate nonpaged storage (usually in a device or controller extension) for both a KDPC and

a KTIMER object.

1.

AddDevice calls KeInitializeDpc (Table 11.6) to associate a DPC routine and a context

item with the DPC object. This context item is passed to the CustomTimerDpc routine when

it fires. The address of the device or controller extension is a good choice for the context

item.

2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

AddDevice also calls KeInitializeTimer (Table 11.7) just once to set up the timer object.3.

To start a one-shot timer, call KeSetTimer (Table 11.8); to set up a repeating timer, use

KeSetTimerEx instead. If these functions are used on a timer object that is currently active,

the previous request is canceled and the new expiration time replaces the old one.

4.

Table 11.6. Function Prototype for KeInitializeDpc

VOID KeInitializeDpc IRQL == PASSIVE_LEVEL

Parameter Description

IN PKDPC pDpc
Pointer to a DPC object for which the caller provides the

storage

IN PKDEFERRED_ROUTINE

DeferredRoutine

Specifies the entry point for a routine to be called when the

DPC object is removed from the DPC queue

IN PVOID pContext
Pointer to a caller-supplied context to be passed to the

DeferredRoutine when it is called

Return value - void -

Table 11.7. Function Prototype for KeInitializeTimer

VOID KeInitializeTimer RQL == PASSIVE_LEVEL

Parameter Description

IN PKTIMER Timer Pointer to a timer object for which the caller provides the storage

Return value - void -

Table 11.8. Function Prototype for KeSetTimer

BOOLEAN KeSetTimer IRQL <= DISPATCH_LEVEL

Parameter Description

IN PKTIMER Timer Pointer to timer object to set

IN LARGE_INTEGER DueTime
Specifies the absolute or relative time at which the timer is to

expire

IN PKDPC Dpc Pointer to a DPC object that was initialized by KeInitializeDpc

Return value
TRUE - Timer was armed before call

FALSE - Timer is freshly armed

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To keep a timer from firing, call KeCancelTimer (Table 11.9) before the Timer object expires. This

also cancels a repeating Timer. To find out whether a Timer has already expired, call

KeReadStateTimer (Table 11.10).

To initialize the DPC and timer objects, code must be executing at PASSIVE_LEVEL IRQL. To set,

cancel, or read the state of the timer, code must be running at or below DISPATCH_LEVEL IRQL. In

general, the function KeInsertQueueDpc should be avoided with the DPC object used for

CustomTimerDpc routine. It can lead to race conditions within the driver.

How to Specify Expiration Times

Internally, Windows 2000 maintains the current system time by counting the number of

100-nanosecond intervals since January 1, 1601. This being a very big number, 64 bits are required

to hold it in a structure tagged LARGE_ INTEGER. Table 11.11 lists the functions drivers can use to

work with time values.

Table 11.9. Function Prototype for KeCancelTimer

BOOLEAN KeCancelTimer IRQL <= DISPATCH_LEVEL

Parameter Description

IN PKTIMER Timer Pointer to timer object to cancel

Return value

TRUE - Timer was armed before call

FALSE - Timer was not armed

Table 11.10. Function Prototype for KeReadStateTimer

BOOLEAN KeReadStateTimer IRQL <= DISPATCH_LEVEL

Parameter Description

IN PKTIMER Timer Pointer to the timer object to query

Return value
TRUE - Timer has expired

FALSE - Timer still armed

When using KeSetTimer to on a timer object, the expiration time can be specified in one of two

ways.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A positive LARGE_INTEGER value represents an absolute system time at which the timer

will expire. Absolute times correspond to some exact moment in the future, like December

28, 2020 at 6:42 PM.

A negative LARGE_INTEGER value represents the length of an interval measured from the

current moment, like "10 seconds from now." Clearly, relative time intervals are more useful

within driver work.

This fragment of code shows how to set a Timer object to expire after an interval of 75

microseconds. It assumes that pDevExt holds a pointer to a device extension, and that the

Extension contains initialized Timer and DPC objects.

LARGE_INTEGER timeDue;

timeDue = RtlConvertLongToLargeInteger(-75 * 10);

KeSetTimer(&pDevExt->Timer, timeDue, &pDevExt->DPC);

Table 11.11. Functions That Operate on System Time Values

Time Functions

Function Description

KeQuerySystemTime Return 64-bit absolute system time

RtlTimeToTimeFields Break 64-bit time into date and time fields

RtlTimeFieldsToTime Convert date and time into 64-bit system time

KeQueryTickCount Return number of clock interrupts since boot

KeQueryTimeIncrement
Return number of 100-nanosecond units added to system time for

each clock interrupt

RtlConvertLongToLargeInteger Create a signed LARGE_INTEGER

RtlConvertUlongToLargeInteger Create a positive LARGE_INTEGER

RtlLargeIntegerXxx
Perform various arithmetic and logical operations on

LARGE_INTEGERs

Since the value passed to KeSetTimer is negative, the system interprets it as a relative time value.

Scaling the number by 10 is necessary because the basic unit of system time for the call is 100

nanoseconds, one-tenth of a microsecond.

Other Uses for CustomTimerDpc Routines

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In the next section, an example of a driver that performs data transfers using the CustomTimerDpc

is presented. Typically, this technique is used to manage devices that do not generate interrupts.

However, a CustomTimerDpc can also be used in specialized device timeout situations.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Timer-Based Driver

This modified version of the parallel port driver disables interrupts and uses a CustomTimerDpc

routine to transfer data at fixed intervals. The code for this example is included on the companion

CD and on the companion Web site, http://www.W2KDriverBook.com.

Device Extension Additions

The Device Extension is modified to include the DPC and Timer objects, plus a polling interval

value, stored in microseconds.

typedef struct _DEVICE_EXTENSION {

 ...

 KDPC pollingDPC; // reserve custom DPC object

 KTIMER pollingTimer; // and the Timer object

 LARGE_INTEGER pollingInterval; // timeout counter

 // in us

 ...

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

// Define the interval between polls of device in us

// 100 us

#define POLLING_INTERVAL 100

AddDevice Modifications

AddDevice is changed in that IoConnectInterrupt is no longer called for this polling driver. The

polling timer and DPC are initialized.

NTSTATUS AddDevice(IN PDRIVER_OBJECT pDriverObject,

 IN PDEVICE_OBJECT pdo) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

...

// Near the end of the function, after IoCreateDevice

// has been called...

//

// Calculate the polling interval in microseconds

// and keep as relative time (negative value)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www/W2KDriverBook.com

 pDevExt->pollingInterval =

 RtlConvertLongToLargeInteger(

 POLLING_INTERVAL * -10);

//

// Prepare the polling timer and DPC

 KeInitializeTimer(&pDevExt->pollingTimer);

// Notice that the DPC routine receives the fdo

 KeInitializeDpc(&pDevExt->pollingDPC,

 PollingTimerDpc,

 (PVOID) pfdo);

...

}

TransmitBytes Changes

Each time a transfer is started using the TransmitBytes routine, the timer is initialized so that the

polling timer DPC runs when the polling interval expires. Too large a polling interval does not keep

the printer busy; too small an interval needlessly wastes CPU time.

BOOLEAN TransmitBytes(IN PDEVICE_EXTENSION pDevExt) {

 // Do all the work necessary to transfer bytes

 // to the physical device, as usual

 ...

 // Then start the polling timer

 KeSetTimer(&pDevExt->pollingTimer,

 pDevExt->pollingInterval,

 &pDevExt->pollingDPC);

 return TRUE;

}

PollingTimerDpc Routine

Finally, the DPC routine itself is presented. The DPC routine executes each time the timer object

expires. The DPC has the responsibility for checking on the device—if more room is available in the

printer buffer, more data is sent. If the IRP's requested transfer is complete (or if the transfer

encountered an error from the device), the IRP is completed.

VOID PollingTimerDpc(IN PKDPC pDpc,

 IN PVOID pContext,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IN PVOID SysArg1,

 IN PVOID SysArg2) {

 PDEVICE_OBJECT pDevObj = (PDEVICE_OBJECT)

 pContext;

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 // Try to send more data

 if (!TransmitBytes(pDevExt)) {

 // Transfer complete (normal or error)

 // Complete the IRP appropriately

 PIRP pIrp = pDevObj->CurrentIrp;

 pIrp->IoStatus.Information =

 pDevExt->xferCount;

 // Figure out what the final status should be

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 // Based on HW error status bit, change Status

 ...

 // Now complete the IRP

 IoCompleteRequest(pIrp, IO_PARALLEL_INCREMENT

);

 // And request another IRP

 IoStartNextPacket(pDevObj, FALSE);

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

This chapter presented two distinct methods of dealing with time within a driver. Typically, a driver

needs to keep track of time either to ensure the device is working normally or to poll for further

device interaction.

The I/O Timer mechanism is simple but crude, generating callbacks at fixed one-second intervals.

CustomTimerDpc routines are used primarily for efficient polling of devices in lieu of device

interrupts.

The next chapter deals with DMA operations within the device and its associated driver.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 12. DMA Drivers

CHAPTER OBJECTIVES

How DMA Works under Windows 2000

Working with Adapter Objects

Writing a Packet-Based Slave DMA Driver

Code Example: A Packet-Based Slave DMA Driver

Writing a Packet-Based Bus Master DMA Driver

Writing a Common Buffer Slave DMA Driver

Writing a Common Buffer Bus Master DMA Driver

Summary

Not all devices can depend on the CPU to move data between memory and the peripherals.

While this technique is fine for slower hardware, fast devices that transfer large amounts of

data incur too much overhead. Such devices are usually capable of directly accessing

system memory and transferring data without the CPU's intervention. This chapter explains

how to write drivers for these kinds of devices.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

How DMA Works under Windows 2000

Just as the Windows 2000 operating system abstracts all other pieces of system hardware, DMA operations

also follow a strict abstract model. Drivers that perform DMA within the framework of this abstraction can

ignore many of the hardware-specific aspects of the system platform. This section presents the major

features of the Windows 2000 DMA framework.

Hiding DMA Hardware Variations with Adapter Objects

The purpose of using DMA is to minimize the CPU's involvement in data transfer operations. To do this,

DMA devices use an auxiliary processor, called a DMA controller, to move data between memory and a

peripheral device. This allows the CPU to continue doing other useful work in parallel with the I/O operation.

Although the exact details vary, most DMA controllers have a very similar architecture. In its simplest form,

this consists of an address register for the starting address of the DMA buffer and a count register for the

number of bytes or words to transfer. When these registers are properly programmed and the device

started, the DMA controller begins moving data on its own. With each transfer, it increments the memory

address register and decrements the count register. When the count register reaches zero, the DMA

controller generates an interrupt, and the device is ready for another transfer.

Unfortunately, the needs of real-world hardware design complicate the simple picture. Consider the DMA

implementation on ISA-based machines, described in chapter 2. These systems use a pair of Intel 8237

controller chips cascaded to provide four primary and three secondary DMA data channels. The primary

channels (identified as zero through three) can perform single-byte transfers, while the secondary channels

(five through seven) always transfer two bytes at a time. Since the 8237 uses a 16-bit transfer counter, the

primary and secondary channels can handle only 64 KB and 128 KB per operation, respectively. Due to

limitations of the ISA architecture, the DMA buffer must be located in the first 16 megabytes of physical

memory.

Contrast this with the DMA architecture used by EISA systems. The Intel 82357 EISA I/O controller extends

ISA capabilities by supporting one-, two-, and four-byte transfers on any DMA channel, as well as allowing

DMA buffers to be located anywhere in the 32-bit address space. In addition, EISA introduces three new

DMA bus-cycle formats (known as types A, B, and C) to give peripheral designers the ability to work with

faster devices.

Even on the same ISA or EISA bus, different devices can use different DMA techniques. For example, slave

DMA devices compete for shareable system DMA hardware on the motherboard, while bus masters avoid

bottlenecks by using their own built-in DMA controllers.

The problem with all this variety is that it tends to make DMA drivers very platform-dependent. To avoid this

trap, Windows 2000 drivers don't manipulate DMA hardware directly. Instead, they work with an abstract

representation of the hardware in the form of an Adapter object. Chapter 4 briefly introduced these objects

and said they help with orderly sharing of system DMA resources. It turns out that Adapter objects also

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

simplify the task of writing platform-independent drivers by hiding many of the details of setting up the DMA

hardware. The rest of this section explains more about what Adapter objects do and how to use them in a

driver.

The Scatter/Gather Problem

Although virtual memory simplifies the lives of application developers, it introduces two major complications

for DMA-based drivers. The first problem is that the buffer address passed to the I/O Manager is a virtual

address. Since the DMA controller works with physical addresses, DMA drivers need some way to

determine the physical pages making up a virtual buffer. The next section explains how Memory Descriptor

Lists perform this translation.

The other problem (illustrated in Figure 12.1) is that a process doesn't necessarily occupy consecutive pages

of physical memory, and what appears to be a contiguous buffer in virtual space is probably scattered

throughout physical memory. The Windows 2000 Virtual Memory Manager uses the platform's address

translation hardware (represented by a generic page table in the diagram) to give the process the illusion of

a single, unbroken virtual address space. Unfortunately, the DMA controller doesn't participate in this

illusion.

Figure 12.1. Address spaces involved in DMA operations.

Since most DMA controllers can only generate sequential physical addresses, buffers that span virtual page

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

boundaries present a serious challenge. Consider what happens if a DMA controller starts at the top of a

multipage buffer and simply increments its way through successive pages of physical memory. It's unlikely

that any page after the first actually corresponds to one of the caller's virtual buffer pages. In fact, the pages

touched by the DMA controller probably won't even belong to the process issuing the I/O request.

All virtual memory systems have to deal with the problem of scattering and gathering physical buffer pages

during a DMA operation. Support for scatter/gather capabilities can come either from system DMA hardware

or from hardware built into a smart bus master device. Once again, Windows 2000 tries to simplify the

process by presenting drivers with a unified, abstract view of whatever scatter/gather hardware happens to

exist on the system. This model consists of a contiguous range of addresses, called logical space, used by

the DMA hardware and a set of mapping registers to translate logical space addresses into physical space

addresses.

Referring to Figure 12.1, each mapping register corresponds to one page of DMA logical space, and a group

of consecutively numbered registers represents a contiguous range of logical addresses. To perform a DMA

transfer, a driver first allocates enough contiguous mapping registers to account for all the pages in the

caller's buffer. It then loads consecutive mapping registers with the physical addresses of the caller's buffer

pages. This has the effect of mapping the physically noncontiguous user buffer into a contiguous area of

logical space. Finally, the driver loads the DMA controller with the starting address of the buffer in logical

space and starts the device. While the operation is in progress, the DMA controller generates sequential,

logical addresses that the scatter/gather hardware maps to appropriate physical page references.

While the conceptual model of mapping registers is nothing more than page tables for DMA devices, the

actual implementation depends on the platform, the bus, and the I/O device. To minimize the driver's

awareness of these details, Windows 2000 includes the mapping registers with the Adapter object and

provides a set of routines for their management.

Memory Descriptor Lists

As described, loading physical addresses into mapping registers is an important part of setting up a DMA

transfer. To make this process easier, the I/O Manager uses a structure called a Memory Descriptor List

(MDL). An MDL keeps track of physical pages associated with a virtual buffer. The buffer described by an

MDL can be in either user- or system-address space.

Direct I/O operations require the use of MDLs. If a Device object has the DO_DIRECT_IO bit set in its Flags

field, the I/O Manager automatically builds an MDL describing the caller's buffer each time an I/O request is

sent to the device. It stores the address of this MDL in the IRP's MdlAddress field, and a driver uses it to

prepare the DMA hardware for a transfer.

As seen in Figure 12.2, the MDL consists of a header describing the virtual buffer followed by an array that

lists the physical pages associated with the buffer. Given a virtual address within the buffer, the MDL data

describes the corresponding physical page. Some of the fields in the header help clarify the use of an MDL.

Figure 12.2. Structure of a Memory Descriptor List (MDL).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

StartVa and ByteOffset.

The StartVa field contains the address of the buffer described by the MDL, rounded down

to the nearest virtual page boundary. Since the buffer doesn't necessarily start on a page

boundary, the ByteOffset field specifies the distance from this page boundary to the actual

beginning of the buffer. Keep in mind that if the buffer is in user space, a driver can use the

StartVa field to calculate indexes into the MDL, but not as an actual address pointer.

MappedSystemVa.

If the buffer described by the MDL is in user space and its contents must be accessed, the

buffer must first be mapped into system space with MmGetSystemAddressForMdl. This

field of the MDL is used to hold the system-space address where the user-space buffer has

been mapped.

ByteCount and Size.

These fields contain the number of bytes in the buffer described by the MDL and the size

of the MDL itself, respectively.

Process.

If the buffer lives in user space, the Process field points to the process object that owns

the buffer. The I/O Manager uses this information when it cleans up the I/O operation.

Keep in mind that MDLs are opaque data objects defined by the Virtual Memory Manager. Their actual

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

contents may vary from platform to platform, and they might also change in future versions of the operating

system. Consequently, access to an MDL should be performed using system support functions. Any other

approach could lead to future (if not present) disaster. Table 12.1 lists the common MDL functions that a

driver is most likely to use. Some of the functions in this table are implemented as macros.

Table 12.1. Functions That Operate on Memory Descriptor Lists

MDL Access Functions

Function Description

IoAllocateMdl Allocates an empty MDL

IoFreeMdl Releases MDL allocation by IoAllocateMdl

MmBuildMdlForNonPagedPool Builds MDL for an existing nonpaged pool buffer

MmGetSystemAddressForMdl
Returns a nonpaged system space address for the buffer described by an

MDL

IoBuildPartialMdl Builds an MDL describing part of a buffer

MmGetMdlByteCount Returns count of bytes in buffer described by MDL

MmGetMdlByteOffset Returns page-offset of buffer described by MDL

MmGetMdlVirtualAddress Returns starting VA of buffer described by MDL

MDLs give drivers a convenient, platform-independent way of describing buffers located either in user- or

system-address space. For drivers that perform DMA operations, MDLs are important because they make it

easier to set up an Adapter object's mapping registers. Later parts of this chapter show the use of MDLs to

set up DMA transfers.

Maintaining Cache Coherency

The final consideration is the impact of various caches on DMA operations. During a DMA transfer, data

may be cached in various places, and if everything isn't coordinated properly, a device or CPU might end up

with stale data. Figure 12.3 demonstrates the concern.

Figure 12.3. Caches involved in DMA processing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

CPU DATA CACHE

Modern CPUs support both on-chip and external caches for holding copies of recently used data. When the

CPU wants something from physical memory, it first looks for the data in the cache. If the CPU finds what it

wants, it doesn't have to make the long, slow trip down the system memory bus. For write operations, data

moves from the CPU to the cache, where (depending on the cache and policy) it may stay for a while before

making its way out to main memory.

The problem is that on some architectures, the CPU's cache controller and the DMA hardware are unaware

of each other. This lack of awareness can lead to incoherent views of memory. For instance, if the CPU

cache is holding part of the buffer, and that buffer is overwritten in physical memory by a DMA input, the

CPU cache will contain stale data. Similarly, if modified data hasn't been flushed from the CPU cache when

a DMA output begins, the DMA controller will be sending stale data from physical memory out to the device.

One way of handling this problem is to make sure that any portion of the DMA buffer residing in the CPU's

data cache is flushed before a DMA operation begins. A driver can do this by calling KeFlushIoBuffers and

giving it the MDL describing the DMA buffer. This function flushes any pages in the MDL from the data

cache of every processor on the system.

Of course, the casual use of KeFlushIoBuffers can seriously impact system performance. Since many

platforms automatically maintain cache coherency between CPU and DMA hardware, the call to

KeFlushIoBuffers is not always necessary. On such systems, the call is defined to be a no-op. To ensure

platform independence, drivers should always include the call.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ADAPTER OBJECT CACHE

The Adapter object is another place where data may be cached during a DMA transfer. Unlike the CPU

cache, which is always a real piece of hardware, the Adapter object cache is an abstraction representing

platform-dependent hardware or software. It might be an actual cache in a system DMA controller or a

software buffer maintained by the I/O Manager. In fact, for some combinations of hardware, there might not

even be a cache, but a driver still needs to use the Adapter object in order to guarantee portability.

Another benefit of using the Adapter object is that problems presented by certain buses are transparently

handled for the driver. For example, the DMA controller for an ISA bus can access only the first 16

megabytes of physical memory. If any pages of a user buffer are outside this range, the I/O Manager

allocates another buffer in low memory when the driver sets up the DMA mapping registers of the Adapter

object. For output operation, the I/O Manager also copies the contents of the user buffer pages into this

Adapter object buffer.

The Adapter object cache must be explicitly flushed after an input operation, or to notify the I/O Manager

that it can release the memory in the adapter buffer. The function that performs the flush and release is

FlushAdapterBuffers, a method of the Adapter object.

Packet-Based and Common Buffer DMA

The Windows 2000 DMA model divides drivers into two categories, based on the location of the DMA buffer

itself: packet-based DMA and common buffer DMA.

In packet-based DMA, data moves directly between the device and the locked-down pages of a user-space

buffer. This is the type of DMA associated with direct I/O operations. The significant point is that each new

I/O request will probably use a different set of physical pages for its buffer. This impacts the kind of setup

and cleanup steps the driver has to take for each I/O.

In common buffer DMA, the device uses a single nonpaged buffer from system space and all DMA transfers

occur through this buffer.

Packet-based and common buffer DMA are not mutually exclusive categories. Some complex devices

perform both kinds of DMA. One example is the Adaptec Ultra160 family of SCSI host adapters. It uses

packet-based DMA to transfer data between SCSI devices and user buffers. The same controller exchanges

command and status information with its driver using a set of mailboxes kept in a common buffer area.

Although all DMA drivers have similar characteristics, certain implementation details depend on whether

packet-based or common buffer DMA is utilized. Later sections of this chapter present the specifics of

writing each kind of driver.

Limitations of the Windows 2000 DMA Architecture

While the use of the Windows 2000 DMA abstraction simplifies driver construction, it does impose some

restrictions. For one, the model is somewhat biased toward slave DMA devices. A driver is burdened with

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

additional work to force the Adapter object model to fit a master DMA device.

More significantly, the Windows 2000 DMA model does not support device-to-device data transfers. Since

modern buses such as PCI promote the concept of peer-to-peer relationships between devices, it is

unfortunate that the Adapter model does not extend to nonsystem-hosted DMA.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Working with Adapter Objects

Although the specific details vary with the nature of the device and the architecture of the driver,

DMA drivers generally have to perform several kinds of operations on Adapter objects.

Locate the Adapter object associated with the specific device.

Acquire and release ownership of Adapter objects and their mapping registers.

Load the Adapter object's mapping registers at the start of a transfer.

Flush the Adapter object's cache after a transfer completes.

The following sections discuss these topics in general terms. Later sections of this chapter add more

detail.

Finding the Right Adapter Object

All DMA drivers need to locate an Adapter object before they can perform any I/O operations. To

find the right one, a driver's initialization code needs to call the IoGetDmaAdapter function

described in Table 12.2.

Given a description of some DMA hardware, IoGetDmaAdapter returns a pointer to a structure of

function pointers that manipulate the corresponding Adapter object. It also reports a count of the

maximum number of mapping registers available for a single transfer. The driver needs to save both

these items in nonpaged storage (usually the Device or Controller Extension) for later use.

Table 12.2. Function Prototype for IoGetDmaAdapter

PDMA_ADAPTER IoGetDmaAdapter IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT pdo Points to the physical device object for the device

IN PDEVICE_DESCRIPTION

pDeviceDescription
Points to a DEVICE_DESCRIPTION structure

IN OUT PULONG Input: number of map registers requested.

NumberOfMapRegisters
Output: maximum number of map registers that the driver

can allocate for any DMA transfer operation.

Return value Pointer to DMA_ADAPTER

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

By returning a structure of function pointers, the Adapter object is truly an encapsulated object—it

can only be manipulated through its interface.

The main input to IoGetDmaAdapter is the DEVICE_DESCRIPTION block listed in Table 12.3.

Unused entries of this input structure must be zero. Some fields of this structure deserve comment.

ScatterGather.

For bus master devices, this field signifies that the hardware supports transfer of data to and from

noncontiguous ranges of physical memory. For slave devices, this field indicates that the device can

be paused between page transfers, allowing the I/O Manager to repoint the DMA channel's address

register to a new page of physical memory.

DemandMode.

DMA demand mode is a transfer protocol that allows a device to hold off the (slave) DMA controller.

In normal mode (DemandMode==FALSE), the DMA controller does not allow the device to delay its

request to transfer another block of data.

Autoinitialization.

DMA autoinitialization mode allows system DMA channels to restart themselves after a completed

transfer. Specified address and count values are automatically reset into the DMA hardware and

another operation is "good to go."

IgnoreCount.

Some DMA hardware maintains an improper count of bytes transferred. This can occur because the

hardware counts words instead of bytes. If this field is set to TRUE, the HAL manually maintains the

transfer count on behalf of the device.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 12.3. The DEVICE_DESCRIPTION Structure for IoGetDmaAdapter

DEVICE_DESCRIPTION,

*PDEVICE_DESCRIPTION

Field Contents

ULONG Version • DEVICE_DESCRIPTION_VERSION

 • DEVICE_DESCRIPTION_VERSION1

BOOLEAN Master TRUE - Bus master device

 FALSE - Slave device

BOOLEAN ScatterGather TRUE - Device supports scatter/gather

BOOLEAN DemandMode Slave device uses demand mode

BOOLEAN AutoInitialize Slave device uses autoinitialize mode

BOOLEAN Dma32BitAddresses DMA addressing uses 32 bits

BOOLEAN IgnoreCount
TRUE - Device's transfer count not maintained

accurately

BOOLEAN Reserved1 Must be FALSE

BOOLEAN Dma64BitAddresses DMA addressing uses 64 bits

ULONG BusNumber
System-assigned bus number (unused by WDM

drivers)

ULONG DmaChannel Slave device DMA channel number

INTERFACE_TYPE InterfaceType • Internal

 • Isa

 • Eisa

 • MicroChannel

 • PCIBus

DMA_WIDTH DmaWidth • Width8Bits

 • Width16Bits

 • Width32Bits

DMA_SPEED DmaSpeed • Compatible

 • TypeA

 • TypeB

 • TypeC

ULONG MaximumLength Largest transfer size (in bytes) device can perform

ULONG DmaPort Microchannel-type bus port number (obsolete)

Acquiring and Releasing the Adapter Object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There is no guarantee that the DMA resources needed for a device transfer will be free when a

driver's Start I/O routine runs. For example, a slave device DMA channel may already be in use by

another device, or there may not be enough mapping registers to handle the request. Consequently,

all packet-based DMA drivers and drivers for common buffer slave devices have to request

ownership of the Adapter object before starting a data transfer.

Since the Start I/O routine runs at DISPATCH_LEVEL IRQL, there is no way it can stop and wait for

the Adapter object. Instead, it calls the Allocate-AdapterChannel method of the Adapter object

(see Table 12.4) and then returns control to the I/O Manager.

When the requested DMA resources become available, the I/O Manager notifies the driver by calling

its Adapter Control routine. It's important to keep in mind that this is an asynchronous callback. It

may happen as soon as Start I/O calls AllocateAdapterChannel, or it may not occur until some

other driver releases the Adapter resources.

Notice that the caller of AllocateAdapterChannel must be at DISPATCH_LEVEL IRQL. Since the

function is normally called from the Start I/O routine, this poses no problem. However, if it is called

from another driver routine from PASSIVE_LEVEL, make sure to use KeRaiseIrql and

KeLower-Irql before and after the call to AllocateAdapterChannel.

Table 12.4. Function Prototype for AllocateAdapterChannel

NTSTATUS

AllocateAdapterChannel
IRQL == DISPATCH_LEVEL

Parameter Description

IN PDMA_ADAPTER

pDmaAdapter

Points to the DMA_ADAPTER structure returned by

IoGetDmaAdapter

IN PDEVICE_OBJECT

pDeviceObject
Points to the target DMA device object

IN ULONG

NumberOfMapRegisters
Specifies the number of map registers to be used in the transfer

IN PDRIVER_CONTROL

ExecutionRoutine

Points to a driver-supplied AdapterControl routine to be called as

soon the system DMA controller or bus master adapter is available

IN PVOID pContext
Points to the driver-determined context to be passed to the

AdapterControl routine

Return value STATUS_SUCCESS or STATUS_INSUFFICIENT_RESOURCES

The Adapter Control routine in a DMA driver is responsible for calling MapTransfer to set up the

DMA hardware and starting the actual device operation. Table 12.5 contains a prototype of the

Adapter Control callback.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 12.5. Function Prototype for an Adapter Control Routine

IO_ALLOCATION_ACTION AdapterControl IRQL == DISPATCH_LEVEL

Parameter Description

IN_PDEVICE_OBJECT pDeviceObject Target device for DMA operation

IN PIRP pIrp IRP describing this operation

IN PVOID MapRegisterBase Handle to a group of mapping registers

IN PVOID pContext Driver-determined context

Return value
l DeallocateObjectKeepRegisters

l KeepObject

The MapRegisterBase argument is an opaque value that identifies the mapping registers assigned

to the I/O request. It is really a kind of handle to a specific group of registers. This handle is used to

set up the DMA hardware for the transfer. Normally, this handle value is saved in the Device or

Controller extension because it is needed in later parts of the DMA operation.

The pIrp argument passed to the Adapter Control callback is valid only when

AllocateAdapterChannel is called from the Start I/O routine. If it is called from some other context,

the pIrp pointer will be NULL. In such a case, another mechanism must be used to pass the IRP

(and its associated MDL address) to the Adapter Control routine. The context pointer argument can

possibly be used for this purpose.

After it programs the DMA controller and starts the data transfer, the Adapter Control routine gives

control back to the I/O Manager. Drivers of slave devices should return a value of KeepObject from

this function so that the Adapter object remains the exclusive property of this request. Bus master

drivers return DeallocateObjectKeepRegisters.

When the DpcForIsr routine in a DMA driver completes an I/O request, it needs to release any

Adapter resources it owns. Drivers of DMA devices do this by calling FreeAdapterChannel.

Setting Up the DMA Hardware

All packet-based drivers, as well as common buffer drivers for slave devices, have to program the

DMA hardware at the beginning of each data transfer. Using the abstract DMA model of Windows

2000, this means loading the Adapter object's mapping registers with physical page addresses

taken from the MDL. This setup work is done by the MapTransfer method of the Adapter object,

described in Table 12.6.

MapTransfer uses the CurrentVa and Length arguments to figure out what physical page

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

addresses to put into the mapping registers. These values must fall somewhere within the range of

addresses described by the MDL.

Keep in mind that MapTransfer may actually move the contents of the DMA output buffer from one

place to another in memory. For example, on an ISA machine, if the pages in the MDL are outside

the 16-megabyte DMA limit, calling this function results in data being copied to a buffer in low

physical memory. Similarly, if the DMA input buffer is out of range, MapTransfer allocates a buffer

in low memory for the transfer. On buses that support 32-bit DMA addresses, no copying or

duplicate buffers are required.

Drivers of bus master devices also need to call MapTransfer. In this case, however, the function

behaves differently, since it doesn't know how to program the bus master's control registers.

Instead, MapTransfer simply returns address and length values that the driver again loads into the

device's registers. For bus masters with built-in scatter/gather support, this same mechanism allows

the driver to create a scatter/gather list for the device. Later sections of this chapter explain how this

works.

Flushing the Adapter Object Cache

At the end of a data transfer, all packet-based DMA drivers and drivers for common buffer slave

devices have to call FlushAdapterBuffers, a method of the Adapter object (see Table 12.7). For

devices using the system DMA controller, this function flushes any hardware caches associated with

the Adapter object.

Table 12.6. Function Prototype for MapTransfer

PHYSICAL_ADDRESS

MapTransfer IRQL <= DISPATCH_LEVEL

Parameter Description

IN PDMA_ADAPTER pDmaAdapter
Points to the DMA adapter object returned by

IoGetDmaAdapter

IN PMDL pMdl Memory Descriptor List for DMA buffer

IN PVOID MapRegisterBase Handle to a group of mapping registers

IN PVOID CurrentVA Virtual address of buffer within the MDL

IN OUT PULONG Length • IN - count of bytes to be mapped

 • OUT - actual count of bytes mapped

IN BOOLEAN bWriteToDevice • TRUE - send data to device

 • FALSE - read data from device

Return value DMA logical address of the mapped region

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 12.7. Function Prototype for FlushAdapterBuffers

BOOLEAN FlushAdapterBuffers IRQL <= DISPATCH_LEVEL

Parameter Description

IN PDMA_ADAPTER

pDmaAdapter

Points to the DMA adapter object returned by

IoGetDmaAdapter

IN PMDL pMdl MDL describing the buffer

IN PVOID MapRegisterBase Handle passed to AdapterControl

IN PVOID CurrentVA Starting virtual address of buffer

IN ULONG Length Length of the buffer

IN BOOLEAN WriteToDevice • TRUE - operation was an output

 • FALSE - operation was an input

Return value • TRUE - Adapter buffers flushed

 • FALSE - an error occurred

In the case of ISA devices doing packet-based DMA, this call releases any low memory used for

auxiliary buffers. For input operations, it also copies data back to the physical pages of the caller's

input buffer. Refer back to the section on cache coherency for a discussion of this process.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a Packet-Based Slave DMA Driver

In packet-based slave DMA, the device transfers data to or from the locked down pages of the

caller's buffer using a shared DMA controller on the mainboard. The system is also responsible for

providing scatter/gather support.

How Packet-Based Slave DMA Works

Although the specifics depend on the nature of the device, most packet-based slave DMA drivers

conform to a very similar pattern. The following subsections describe the routines of these drivers.

IRP_MN_START_DEVICE Handler

Along with its usual duties, this PnP handler performs the following DMA preparation tasks:

Locates the DMA channel used by the device. The DMA resources would normally be sent

with the requesting IRP in the stack's

Parameters.StartDevice.AllocatedResourcesTranslated field.

1.

The DEVICE_DESCRIPTION structure is built. IoGetDmaAdapter is invoked to identify the

Adapter object associated with the device.

2.

The DMA_OBJECT pointer returned from IoGetDmaAdapter is saved in the Device

Extension.

3.

The DO_DIRECT_IO bit in the Flags field of the Device object is set, causing the I/O

Manager to lock user buffers in memory and create MDLs for them.

4.

START I/O ROUTINE

Unlike its counterpart in a programmed I/O driver, the DMA Start I/O routine doesn't actually start

the device. Instead, it requests ownership of the Adapter object and leaves the remainder of the

work to the Adapter Control callback routine. Specifically, the Start I/O routine does the following:

It calls KeFlushIoBuffers to flush data from the CPU cache out to main memory (RAM).1.

Start I/O decides how many mapping registers to request. Initially, it calculates the number

of registers needed to cover the entire user buffer. If this number turns out to be more

mapping registers than the Adapter object has available, it will ask for the maximum

available.

2.

Based on the number of mapping registers and the size of the user buffer, Start I/O

calculates the number of bytes to transfer in the first device operation. This may be the

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

entire buffer or it may be only the first portion of a split transfer.

Next, Start I/O calls MmGetMdlVirtualAddress to recover the virtual address of the user

buffer from the MDL. It stores this address in the Device Extension. Subsequent parts of the

driver use this address as an offset in the MDL to set up the actual DMA transfer.

4.

Start I/O then calls AllocateAdapterChannel to request ownership of the Adapter object. If

this function succeeds, the rest of the setup work is performed by the Adapter Control

routine, so Start I/O simply returns control to the I/O Manager.

5.

If AllocateAdapterChannel returns an error, Start I/O fails the requesting IRP, calls

IoCompleteRequest, and starts processing the next IRP.

6.

ADAPTER CONTROL ROUTINE

The I/O Manager calls back the Adapter Control routine when the necessary Adapter resources

become available. Its job is to initialize the DMA controller for the transfer and start the device itself.

In essence, it is the second half of Start I/O that occurs with the Adapter object in hand. This routine

does the following:

It stores the value of the MapRegisterBase argument it receives in the Device Extension for

subsequent use.

1.

The Adapter Control routine then calls MapTransfer to load the Adapter object's mapping

registers. To make this call, it uses the buffer's virtual address and the transfer size

calculated by the Start I/O routine.

2.

Next, it sends appropriate commands to the device to begin the transfer operation.3.

Finally, the Adapter Control routine returns the value KeepObject to retain ownership of the

Adapter object.

4.

At this point, the transfer is in progress, and other code is executing in parallel until an interrupt

arrives from the device.

INTERRUPT SERVICE ROUTINE

Compared to a programmed I/O driver, the ISR in a packet-based DMA driver is not very

complicated. Unless hardware limitations force the driver to split a large transfer request across

several device operations, there is only a single interrupt service when the whole transfer completes.

When this interrupt arrives, the ISR does the following:

It issues commands as necessary to acknowledge the device and prevent it from generating

additional interrupts.

1.

The ISR then stores device status (and any relevant error information) in the Device

Extension.

2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

It calls IoRequestDpc to continue processing the request in the driver's DpcForIsr routine.3.

The ISR returns the value of TRUE to indicate that it serviced the interrupt.4.

DpcForIsr ROUTINE

The DpcForIsr routine is triggered by the ISR at the end of each partial data transfer operation. Its

job is to start the next partial transfer (if there is one) or to complete the current request. Specifically,

the DpcForIsr routine in a packet-based DMA driver does the following:

It calls FlushAdapterBuffers, a method of the Adapter object, to force any remaining data

from the Adapter object's cache.

1.

The DpcForIsr routine checks the Device Extension to see if there were any errors during

the operation. If so, it completes the request with an appropriate status code and length,

and starts the next request.

2.

Otherwise, it decrements the count of bytes remaining by the size of the last transfer. If the

whole buffer has been processed, it completes the current request and starts the next.

3.

If more data remains, the DpcForIsr routine increments the user-buffer address pointer

(stored in the Device Extension) by the size of the last operation. It then calculates the

number of bytes transferred in the next device operation, calls MapTransfer to reset the

mapping registers, and starts the device.

4.

If the DpcForIsr routine started another partial transfer, the I/O Manager will return control to the

driver when the device generates an interrupt.

Splitting DMA Transfers

When a packet-based DMA driver receives a buffer, it may not be able to transfer all the data in a

single device operation. It could be that the Adapter object doesn't have enough mapping registers

to handle the whole request at once, or there could be limitations on the device itself. In any event,

the driver has to be prepared to split the request across multiple data transfer operations.

There are two solutions to this problem. One is to have the driver reject any requests that it can't

handle in a single I/O. With this approach, any user of the driver is responsible for breaking the

request into chunks small enough to process. Of course, the driver will have to provide some

mechanism for letting its clients know the maximum allowable buffer size (an IOCTL, for example).

For this approach, it might make sense to write a higher-level driver that sits on top of the DMA

device driver and splits the requests. This has the advantage of shielding application programs from

the details of splitting the request.

Another approach is to write a single, monolithic driver that accepts requests of any size and splits

them into several I/O operations. This is the strategy used by the sample driver in the next section of

this chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This second method requires maintenance of a pointer that tracks position within the user buffer as

successive chunks of data are transferred. There may also be a need to maintain a count of the

number of bytes left to process. The following sections explain how to initialize and update these

data items during an I/O request.

FIRST TRANSFER

The Start I/O routine normally sets things up for the first transfer. Initially, it tries to grab enough

mapping registers to do everything in one I/O. If the Adapter object doesn't have enough mapping

registers for this to work, Start I/O asks for as many as it can get and sets up the current transfer

accordingly. The following code fragment shows how this is done:

pDevExt->transferVA = (PUCHAR)

 MmGetMdlVirtualAddress(pIrp->MdlAddress);

pDevExt->bytesRemaining =

 MmGetMdlByteCount(pIrp->MdlAddress);

pDevExt->transferSize =

 pDevExt->bytesRemaining;

mapRegsNeeded = ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDevExt->transferVA,

 pDevExt->transferSize);

if (mapRegsNeeded > pDevExt->mapRegsAvailable) {

 mapRegsNeeded = pDevExt->mapRegsAvailable;

 pDevExt->transferSize =

 mapRegsNeeded * PAGE_SIZE -

 MmGetMdlByteOffset(pIrp->MdlAddress);

}

// Note the use of the Adapter object - the DmaAdapter

// pointer returned by IoGetDmaAdapter contains

// function pointers for Adapter operations.

pDevExt->pDmaAdapter->DmaOperations->

 AllocateAdapterChannel(pDevExt->pDmaAdapter,

 pDevObj,

 mapRegsNeeded,

 AdapterControl,

 pDevExt);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ADDITIONAL TRANSFERS

After each interrupt, the DpcForIsr checks to see if there is any data left to process. If there is, it

calculates the number of mapping registers needed to transfer all the remaining bytes in a single I/O

operation. If there are not enough mapping registers available, it sets up another partial transfer.

The following code fragment illustrates the procedure:

pDevExt->bytesRemaining -= pDevExt->transferSize;

if (pDevExt->bytesRemaining > 0) {

 pDevExt->transferVA += pDevExt->transferSize;

 pDevExt->transferSize = pDevExt->bytesRemaining;

 mapRegsNeeded = ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDevExt->transferVA,

 pDevExt->transferSize);

 if (mapRegsNeeded > pDevExt->mapRegsAvailable) {

 mapRegsNeeded = pDevExt->mapRegsAvailable;

 pDevExt->transferSize =

 mapRegsNeeded * PAGE_SIZE -

 BYTE_OFFSET(pDevExt->transferVA);

}

pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 transferSize,

 pDevExt->bWriting);

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Packet-Based Slave DMA Driver

This example is a skeleton of a packet-based driver for a generic slave DMA device. Although it

doesn't actually manage a specific kind of hard-ware, it may help in understanding how these drivers

work. The completecode for this example is included on the CD that accompanies this book and on

the companion website www.W2KDriverBook.com.

DRIVER.H

This excerpt from the driver-specific header file shows the changes that need to be made to the

Device Extension structure.

typedef struct _DEVICE_EXTENSION {

...

PDMA_ADAPTER pDmaAdapter;

ULONG mapRegisterCount;

ULONG dmaChannel;

// This is the "handle" assigned to the map registers

// when the AdapterControl routine is called back

PVOID mapRegisterBase;

ULONG bytesRequested;

ULONG bytesRemaining;

ULONG transferSize;

PUCHAR transferVA;

// This flag is TRUE if writing, FALSE if reading

BOOLEAN bWriting;

...

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

#define MAX_DMA_LENGTH 4096

GetDmaInfo Routine

The GetDmaInfo helper routine is responsible for making the call to IoGetDmaAdapter. Primarily,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

this is an example of setting up the DEVICE_ DESCRIPTION structure.

NTSTATUS GetDmaInfo(IN INTERFACE_TYPE busType,

 IN PDEVICE_OBJECT pDevObj) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 DEVICE_DESCRIPTION dd;

 // Zero out the entire structure

 RtlZeroMemory(&dd, sizeof(dd));

 dd.Version = DEVICE_DESCRIPTION_VERSION1;

 dd.Master = FALSE; // this is a slave device

 dd.ScatterGather = FALSE;

 dd.DemandMode = FALSE;

 dd.AutoInitialize = FALSE;

 dd.Dma32BitAddresses = FALSE;

 dd.InterfaceType = busType; // as passed in

 dd.DmaChannel = pDevExt->dmaChannel;

 dd.MaximumLength = MAX_DMA_LENGTH;

 dd.DmaWidth = Width16Bits;

 dd.DmaSpeed = Compatible;

 // Compute the maximum number of mapping regs

 // this device could possibly need. Since the

 // transfer may not be paged aligned, add one

 // to allow the max xfer size to span a page.

 pDevExt->mapRegisterCount =

 (MAX_DMA_LENGTH / PAGE_SIZE) + 1;

 pDevExt->pDmaAdapter =

 IoGetDmaAdapter(pDevObj,

 &dd,

 &pDevExt->mapRegisterCount);

 // If the Adapter object can't be assigned, fail

 if (pDevExt->pDmaAdapter == NULL)

 return STATUS_INSUFFICIENT_RESOURCES;

 else

 return STATUS_SUCCESS;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Start I/O Changes

Start I/O no longer starts the device. Instead, it sets up the DMA operation and defers to the Adapter

Control routine, called back when the Adapter Channel can be allocated. Nevertheless, the DMA

setup is significant work.

VOID StartIo(IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

PIO_STACK_LOCATION pStack =

 IoGetCurrentIrpStackLocation(pIrp);

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

// The IRP holds the MDL structure, already set up by

// the I/O Manager because DO_DIRECT_IO flag is set

PMDL pMdl = pIrp->MdlAddress;

ULONG mapRegsNeeded;

NTSTATUS status;

pDevExt->bWriting = FALSE; // assume read operation

switch (pStack->MajorFunction) {

case IRP_MJ_WRITE:

 pDevExt->bWriting = TRUE; // bad assumption

case IRP_MJ_READ:

 pDevExt->bytesRequested =

 MmGetMdlByteCount(pMdl);

 pDevExt->transferVA = (PUCHAR)

 MmGetMdlVirtualAddress(pMdl);

 pDevExt->bytesRemaining =

 pDevExt->transferSize =

 pDevExt->bytesRequested;

 mapRegsNeeded =

 ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDevExt->transferVA,

 pDevExt->transferSize);

 if (mapRegsNeeded > pDevExt->mapRegisterCount) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 mapRegsNeeded = pDevExt->mapRegisterCount;

 pDevExt->transferSize =

 mapRegsNeeded * PAGE_SIZE -

 MmGetMdlByteOffset(pMdl);

}

 status = pDevExt->pDmaAdapter->DmaOperations->

 AllocateAdapterChannel(

 pDevExt->pDmaAdapter,

 pDevObj,

 mapRegsNeeded,

 AdapterControl,

 pDevExt);

 if (!NT_SUCCESS(status)) {

 // fail the IRP & don't continue with it

 pIrp->IoStatus.Status = status;

 // Show no bytes transferred

 pIrp->IoStatus.Information = 0;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 IoStartNextPacket(pDevObj, FALSE);

 }

 break; // nice job - AdapterControl takes it

 // from here on

 default:

 // Shouldn't be here - ditch this strange IRP

 pIrp->IoStatus.Status = STATUS_NOT_SUPPORTED;

 pIrp->IoStatus.Information = 0;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 IoStartNextPacket(pDevObj, FALSE);

 }

 }

AdapterControl Routine

This callback routine completes the work started with Start I/O. It programs the DMA hardware and

starts the device itself. It is called by the I/O Manager after the Adapter object is assigned to the

device and sufficient mapping registers are available to handle the request.

IO_ALLOCATION_ACTION AdapterControl(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IN PVOID MapRegisterBase,

 IN PVOID pContext) {

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pContext;

// Save the handle to the mapping register set

pDevExt->mapRegisterBase = MapRegisterBase;

// Flush the CPU cache(s),

// if necessary on this platform...

KeFlushIoBuffers(pIrp->MdlAddress,

 !pDevExt->bWriting, // inverted

 TRUE); // yes DMA

pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pIrp->MdlAddress,

 MapRegisterBase,

 pDevExt->transferVA,

 &pDevExt->transferSize,

 pDevExt->bWriting);

// Start the device

StartTransfer(pDevExt);

return KeepObject;

}

DpcForIsr Routine

The Interrupt Service Routine for a DMA device is usually straightforward. An interrupt is generated

at the end of each partial transfer, or when a transfer error occurs. As usual, the ISR schedules a

DPC, using IoRequestDpc. The DPC fires the registered routine, DpcForIsr.

DpcForIsr sets up the next partial transfer. If the entire transfer has completed, it marks the IRP for

completion and starts the next.

VOID DpcForIsr(IN PKDPC pDpc,

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pContext;

ULONG mapRegsNeeded;

PMDL pMdl = pIrp->MdlAddress;

// Flush the Apapter buffer to system RAM or device.

pDevExt->pDmaAdapter->DmaOperations->

FlushAdapterBuffers(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 pDevExt->transferSize,

 pDevExt->bWriting);

// If the device is reporting errors, fail the IRP

if (DEVICE_FAIL(pDevExt)) {

 // An error occurred, the DMA channel is now free

 pDevExt->pDmaAdapter->DmaOperations->

 FreeAdapterChannel(pDevExt->pDmaAdapter);

 pIrp->IoStatus.Status = STATUS_DEVICE_DATA_ERROR;

 pIrp->IoStatus.Information =

 pDevExt->bytesRequested -

 pDevExt->bytesRemaining;

 IoCompleteRequest(pIrp, IO_NO_INCRMENT);

 IoStartNextPacket(pDevObj, FALSE);

}

// Device had no errors, see if another partial needed

pDevExt->bytesRemaining -= pDevExt->transferSize;

if (pDevExt->bytesRemaining > 0) {

 // Another partial transfer needed

 // Update the transferVA and try to finish it

 pDevExt->transferVA += pDevExt->transferSize;

 pDevExt->transferSize = pDevExt->bytesRemaining;

 mapRegsNeeded =

 ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDevExt->transferVA,

 pDevExt->transferSize);

 // If it still doesn't fit in one swipe,

 // cut back the expectation

 if (mapRegsNeeded > pDevExt->mapRegisterCount) {

 mapRegsNeeded = pDevExt->mapRegisterCount;

 pDevExt->transferSize =

 mapRegsNeeded * PAGE_SIZE -

 BYTE_OFFSET(pDevExt->transferVA);

 }

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Now set up the mapping registers for another

 pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 &pDevExt->transferSize,

 pDevExt->bWriting);

 // And start the device

 StartTransfer(pDevExt);

} else {

 // Entire transfer has now completed -

 // Free the DMA channel for another device

 pDevExt->pDmaAdapter->DmaOperations->

 FreeAdapterChannel(pDevExt->pDmaAdapter);

 // And complete the IRP in glory

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 pIrp->IoStatus.Information =

 pDevExt->bytesRequested;

 // Choose a priority boost appropriate for device

 IoCompleteRequest(pIrp, IO_DISK_INCREMENT);

 IoStartNextPacket(pDevObj, FALSE);

}

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a Packet-Based Bus Master DMA Driver

In packet-based bus master DMA, the device transfers data to or from the locked down pages of the caller's

buffer, using DMA hardware that is part of the device itself. Depending on the capabilities of the device, it

might be providing its own scatter/gather support as well.

The architecture of a packet-based bus master driver is almost identical to that of a driver for a slave device.

The only difference is the way the driver sets up the bus master hardware. The following sections describe

these differences.

Setting Up Bus Master Hardware

A bus master device is more complicated to program because Windows 2000 doesn't know how to program

the device's onboard DMA controller. The most the I/O Manager can do is provide the driver with two pieces

of information.

An address in DMA logical space, where a contiguous segment of the buffer begins

A count indicating the number of bytes in that segment

It then becomes the driver's responsibility to load this information into the address and length registers of the

device and start the transfer.

The function that performs this work is familiar—MapTransfer. If the DEVICE_DESCRIPTION supplied in

the call to IoGetDmaAdapter described a bus mastering device, then MapTransfer returns a physical

address that can be used to program the device's DMA address register. The physical address corresponds

to the MDL and CurrentVa arguments of the call.

There is little chance that the user buffer, if it spans more than a page, resides in contiguous physical RAM.

Therefore, MapTransfer returns the physical starting address and the length of the "first" block that can be

transferred contiguously. In all likelihood, the length returned by MapTransfer is the length of a page—no

part of the user buffer is likely to be contiguous. Should two or more pages of the user buffer happen to be

contiguous, then MapTransfer correctly reports such a length.

After the device transfers what it can from the contiguous buffer, it must be reprogrammed to transfer the

next part of the buffer from another contiguous block. Figure 12.4 shows how this process needs to work,

with the somewhat optimistic case of some pages of the user buffer actually residing in contiguous memory.

Figure 12.4. MapTransfer points to contiguous buffer segments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Supporting bus master devices requires some changes to the driver's AdapterControl and DpcForIsr

routines. The following sections contain fragments of these routines. Compare them with the corresponding

routines in the packet-based slave DMA driver in the previous section of this chapter.

AdapterControl ROUTINE

Being optimistic, the AdapterControl routine asks MapTransfer to map the entire buffer at the start of the

first transfer. MapTransfer reports to the driver how much contiguous memory is actually available in the

first segment of the buffer.

PHYSICAL_ADDRESS DmaAddress;

PMDL pMdl = pIrp->MdlAddress;

pDevExt->transferVA = (PUCHAR)

 MmGetMdlVirtualAddress(pMdl);

PDevExt->transferSize =

pDevExt->bytesRemaining =

 MmGetMdlByteCount(pMdl);

DmaAddress =

 pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 &pDevExt->transferSize,

 pDevExt->bWriting);

// transferSize has been reset to the maximum

// contiguous length for the first segment

// WriteDmaAddress is a device-specific routine that

// programs the device's DMA address register

WriteDmaAddress(pDevExt, DmaAddress.LowPart);

// Similarly, WriteDmaCount is device-specific

WriteDmaCount(pDevExt, pDevExt->transferSize);

// Now the device is started

StartDevice(pDevExt);

// must return indicating bus master at work

return DeallocateObjectKeepRegisters;

DpcForIsr ROUTINE

After each partial transfer, the DpcForIsr routine increments the CurrentVa pointer by the previously

returned Length value. It then calls MapTransfer again with this updated pointer and asks to map all the

bytes remaining in the buffer. MapTransfer returns another logical address and a new Length value

indicating the size of the next contiguous buffer segment. This process continues until the whole buffer has

been processed.

PHYSICAL_ADDRESS DmaAddress;

PMDL pMdl = pIrp->MdlAddress;

// Clear out the adapter object buffer (if any)

pDevExt->pDmaAdapter->DmaOperations->

 FlushAdapterBuffers(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 pDevExt->transferSize,

 pDevExt->bWriting);

pDevExt->bytesRemaining -= pDevExt->transferSize;

if (pDevExt->bytesRemaining > 0) {

 pDevExt->transferVA += pDevExt->transferSize;

 pDevExt->transferSize = pDevExt->bytesRemaining;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 DmaAddress =

 pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 &pDevExt->transferSize,

 pDevExt->bWriting);

 WriteDmaAddress(pDevExt, DmaAddress.LowPart);

 WriteDmaCount(pDevExt, pDevExt->transferSize);

 // Now the device is re-started

 StartDevice(pDevExt);

}

Hardware with Scatter/Gather Support

Some bus master devices contain multiple pairs of address and length registers, each one describing a

single contiguous buffer segment. This allows the device to perform I/O using buffers that are scattered

throughout DMA address space. These multiple address and count registers are often referred to as a

scatter/gather list, but they can be considered devices with their own built-in mapping registers. Yet another

way to consider scatter/gather is as a device with its own private page table hardware. Figure 12.5 shows a

bus master device with scatter/gather hardware.

Figure 12.5. Bus master device with scatter/gather hardware.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Before each transfer, the driver loads as many pairs of the address and count registers as there are

segments in the buffer. When the device is started, it walks through the scatter/gather list entries in

sequence, reading or writing each segment of the buffer and then moving on to the next. When all the list

entries have been processed, the device generates an interrupt.

Building Scatter/Gather Lists with MapTransfer

Once again, MapTransfer is used to find contiguous segments of the DMA buffer. In this case, however, the

driver calls it several times before each data transfer operation—once for each entry in the hardware

scatter/gather list. These fragments of an AdapterControl and DpcForIsr routine demonstrate the process.

AdapterControl Routine

Before the first transfer operation, the AdapterControl routine loads the hardware scatter/gather list and

starts the device. The remainder of the buffer is handled by the ISR and DpcForIsr routines.

For scatter/gather devices, the state of each address/counter pair may need to be persisted somewhere,

perhaps in the device extension. An array or linked list would be appropriate structures.

PHYSICAL_ADDRESS DmaAddress;

ULONG bytesLeftInBuffer;

ULONG segmentSize;

ULONG mapRegisterIndex;

PUCHAR segmentVA;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

PMDL pMdl = pIrp->MdlAddress;

pDevExt->transferVA =

 MmGetMdlVirtualAddress(pMdl);

pDevExt->bytesRemaining =

 MmGetMdlByteCount(pMdl);

pDevExt->transferSize = 0;

bytesLeftInBuffer = pDevExt->bytesRemaining;

segmentVA = pDevExt->transferVA;

mapRegisterIndex = 0;

while (mapRegisterIndex > pDevExt->mapRegisterCount &&

 bytesLeftInBuffer > 0) {

 // Try for the whole enchilada

 segmentSize = bytesLeftInBuffer;

 DmaAddress =

 pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 segmentVA, &segmentSize,

 pDevExt->bWriting);

 // WriteMapRegister is a device-specific method.

 // It programs one pair of scatter/gather regs.

 WriteMapRegister(pDevExt, mapRegisterIndex,

 DmaAddress.LowPart,

 segmentSize);

 mapRegisterIndex++;

 // Move on the next scatter/gather pair

 pDevExt->transferSize += segmentSize;

 segmentVA += segmentSize;

 bytesLeftInBuffer -= segmentSize;

}

// Now start the device

StartDevice(pDevExt);

// And indicate that scatter/gather regs are in use

return DeallocateObjectKeepRegisters;

DpcForIsr ROUTINE

After each transfer is finished, the ISR issues a DPC request. The DpcForIsr routine flushes the previous

request, and if there are more bytes left to transfer, it rebuilds the scatter/gather list.

PHYSICAL_ADDRESS DmaAddress;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ULONG bytesLeftInBuffer;

ULONG segmentSize;

ULONG mapRegisterIndex;

PUCHAR segmentVA;

PMDL pMdl = pIrp->MdlAddress;

// Clear out the adapter object buffer (if any)

pDevExt->pDmaAdapter->DmaOperations->

 FlushAdapterBuffers(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 pDevExt->transferVA,

 pDevExt->transferSize,

 pDevExt->bWriting);

pDevExt->bytesRemaining -= pDevExt->transferSize;

if (pDevExt->bytesRemaining > 0) {

 pDevExt->transferVA += pDevExt->transferSize;

 pDevExt->transferSize = 0;

 bytesLeftInBuffer = pDevExt->bytesRemaining;

 segmentVA = pDevExt->transferVA;

 mapRegisterIndex = 0;

 while (mapRegisterIndex >

 pDevExt->mapRegisterCount &&

 bytesLeftInBuffer > 0) {

 segmentSize = bytesLeftInBuffer;

 DmaAddress =

 pDevExt->pDmaAdapter->DmaOperations->

 MapTransfer(pDevExt->pDmaAdapter,

 pMdl,

 pDevExt->mapRegisterBase,

 segmentVA,

 &segmentSize,

 pDevExt->bWriting);

 WriteMapRegister(pDevExt, mapRegisterIndex,

 DmaAddress.LowPart,

 segmentSize);

 mapRegisterIndex++;

 // Move on the next scatter/gather pair

 pDevExt->transferSize += segmentSize;

 segmentVA += segmentSize;

 bytesLeftInBuffer -= segmentSize;

 }

 // Then re-start the device

 StartDevice(pDevExt);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

} else {

 // Last device operation completed transfer

 // Free up the mapping registers:

 pDevExt->pDmaAdapter->DmaOperations->

 FreeMapRegisters(...);

 // And complete the IRP

 IoCompleteRequest(...);

 IoStartNextPacket(...);

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a Common Buffer Slave DMA Driver

In common buffer slave DMA, the device transfers data to or from a contiguous buffer in nonpaged pool,

using a system DMA channel. Although originally intended for devices that use the system DMA controller's

autoinitialize mode, common buffers can also improve throughput for some types of ISA-based slave

devices.

Allocating a Common Buffer

Memory for a common buffer must be physically contiguous and visible in the DMA logical space of a

specific device. To guarantee that both these conditions are met, the function AllocateCommonBuffer, a

method of the Adapter object, is used. It is described in Table 12.8.

The CacheEnabled argument for this function is normally set to FALSE. Using noncached memory for the

common buffer eliminates the need to call KeFlushIoBuffers. On some platforms, this can significantly

improve the performance of both the driver and the system.

Table 12.8. Function Prototype for AllocateCommonBuffer

PVOID AllocateCommonBuffer IRQL == PASSIVE_LEVEL

Parameter Description

IN PDMA_ADAPTER pDmaAdapter
Points to the DMA_ADAPTER structure returned by

IoGetDmaAdapter

IN ULONG Length Requested size of buffer in bytes

OUT PPHYSICAL_ADDRESS

LogicalAdress

Address of the common buffer in the DMA controller's logical

space

IN BOOLEAN CacheEnabled • TRUE - memory is cacheable

 • FALSE - memory is not cached

Return value • Non-NULL - VA of common buffer

 • FALSE - error

Besides allocating the common buffer, AllocateCommonBuffer also allocates map registers (if required)

and sets up a translation for the device, loading map registers as necessary. Thus, the buffer is available for

immediate and continuous use. The buffer remains usable until FreeCommonBuffer is explicitly invoked,

typically in the handler routine for IRP_MN_ STOP_DEVICE.

Using Common Buffer Slave DMA to Maintain Throughput

Common buffer slave DMA is useful if the driver can't afford to set up mapping registers for each data

transfer that it performs. The overhead of setting up mapping registers using MapTransfer can be

significant, especially for ISA buses. There is always the possibility that MapTransfer will be forced to copy

the transfer buffer into the lowest 16 MB of RAM—clearly an expensive proposition. Since common buffers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

are guaranteed to be accessible by their associated DMA devices, there is never a need to move data from

one place to another.

For example, drivers of some ISA-based tape drives need to maintain very high throughput if they want to

keep the tape streaming. They may not be able to do this if the buffer copy must occur during a call to

MapTransfer. To prevent this, the driver can use a ring of common buffers for the actual DMA operation.

Other, less time-critical portions of the driver move data between these common buffers and the actual user

buffers.

Consider the operation of the driver for a hypothetical ISA output device. To maintain a high DMA data rate,

it uses a series of common buffers that are shared between the driver's Dispatch and DpcForIsr routines.

The Dispatch routine copies user-output data into an available common buffer and attaches the buffer to a

queue of pending DMA requests. Once a DMA is in progress, the DpcForIsr removes buffers from the

queue and processes them as fast as it can. Figure 12.6 shows the organization of this driver, and the

various driver routines are described in the sections that follow.

Figure 12.6. Using common buffers to improve I/O throughput.

AddDevice ROUTINE

Besides creating the device object, this routine should set the DO_ BUFFERED_IO bit in the Flags field.

Even though DMA is used for the actual device transfer, the user buffers are initially copied into system

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

space.

IRP_MN_START_DEVICE HANDLER

Besides the usual responsibilities of initializing the physical device, the handler must now perform the

following:

Two queues should be initialized in the device extension. One holds a list of free common buffers.

The other is for work requests in progress.

1.

Two spin locks should be created to guard each queue. The spin lock for the work list also protects

a flag in the device extension called DmaInProgress.

2.

IoGetDmaAdapter is used to find the adapter object associated with the device. Using the count of

mapping registers returned by this function is helpful to determine the size of the common buffers.

3.

Individual common buffers should be allocated, using AllocateCommonBuffer once for each

buffer. Initially they should be placed in the free list of the device extension.

4.

Finally, the Start handler initializes a semaphore object and sets its initial count to the number of

common buffers it has just created.

5.

DISPATCH ROUTINE

The Dispatch routine of this driver is somewhat uncommon. The Dispatch routine is responsible for queuing

and starting each request. This is what the Dispatch routine does to process an output request:

It calls KeWaitForSingleObject to wait for the Semaphore object associated with the driver's list of

free buffers. The thread issuing the call will suspend until there is at least one buffer in the queue.

(Chapter 14 explains the details of Semaphore use.)

1.

The Dispatch routine removes an available common buffer from the free list and uses

RtlMoveMemory to fill it with data from the user's buffer.

2.

It prevents the I/O Manager from completing the request by calling IoMarkIrpPending.3.

Next, it acquires the spin lock associated with the queue of active requests. As a side-effect,

acquiring the spin lock raises IRQL up to DISPATCH_LEVEL. After it owns the spin lock, the

Dispatch routine adds the new request to the list of buffers to be output.

4.

Still holding the spin lock, the Dispatch routine checks an internal DmaInProgress flag to see if

other parts of the driver are already performing an output operation. If the flag is TRUE, it simply

releases the spin lock. If the flag is FALSE, the Dispatch routine sets it to TRUE and starts the

device. It then releases the spin lock.

5.

Finally, it returns a value of STATUS_PENDING.6.

At this point, the work request for this buffer has been either started or queued. The next phase of the

transfer occurs within the Start I/O routine.

START I/O ROUTINE

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If the device is idle, the Start I/O function is called to start it. It performs the following tasks:

It removes the first request from the work queue and saves its address in the Device Extension as

the current request.

1.

It programs the device's DMA registers to point to the dequeued buffer.2.

The device is started and DMA transfer begins.3.

INTERRUPT SERVICE ROUTINE

As with packet-based DMA, the ISR in a common buffer driver for a slave device merely saves hardware

status in the Device Extension. It then calls IoRequestDpc to request the DpcForIsr routine.

DpcForIsr ROUTINE

In this driver, the DpcForIsr routine sets up each additional work request after the first.

It calls FlushAdapterBuffers to flush any data from the system DMA controller's hardware cache.1.

It attempts to dequeue the next I/O request from the work queue. If there is another request, the

driver makes it the new current request and restarts the device. Otherwise, it clears the

DmaInProgress flag in the Device Extension.

2.

Next, it moves the just-completed work buffer back in the free queue. KeReleaseSemaphore is

used to signal an increase in the number of available free buffers.

3.

Finally, the IRP is marked as complete.4.

Each completed DMA operation causes another interrupt that brings the driver back through the DpcForIsr

routine. This loop continues until all the requests in the work queue have been processed.

IRP_MN_STOP_DEVICE HANDLER

When the device is stopped, the driver should ensure that the device will no longer attempt use of the

common buffer. Once the device is quiescent, the Stophandler calls FreeCommonBuffer to release the

memory associated with the ring of buffers.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing a Common Buffer Bus Master DMA Driver

In common-buffer bus master DMA, the device transfers data to or from a contiguous nonpaged pool buffer,

using a DMA controller that is part of the device itself. Frequently, this kind of hardware treats the common

buffer as a mailbox for exchanging control and status messages with the driver.

How Common-Buffer Bus Master DMA Works

The exact operation of a common-buffer bus master driver will depend on the physical device. The

description that follows is based on the typical architecture. It assumes the device uses one mailbox for

commands and another to return status information. Figure 12.7 illustrates this arrangement.

Figure 12.7. Common buffer implementation of message exchange

IRP_MN_START_DEVICE HANDLER

This handler must now perform the following tasks:

Invoke IoGetDmaAdapter to locate the Adapter object associated with the device.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Use AllocateCommonBuffer to get a block of contiguous, nonpaged memory that both the driver

and the device can access.

2.

Store the virtual address of the common buffer in the Device Extension for subsequent use.3.

START I/O ROUTINE

To send a command to the device, the Start I/O routine performs the following:

Builds a command structure in the common buffer, using the virtual address stored in the Device

Extension.

1.

If needed (CacheEnabled parameter set to TRUE), KeFlushIoBuffers is invoked to force data from

the CPU's cache out to physical memory.

2.

Finally, Start I/O sets a bit in the device control register to notify the device that there is a command

waiting for it. In essence, this is equivalent to starting the device.

3.

In response to the notification bit being set, the device begins processing the command in the common

buffer.

INTERRUPT SERVICE ROUTINE

When the device has finished processing the command in the common buffer, it puts a message in the

status mailbox and generates an interrupt. In response to this interrupt, the driver's Interrupt Service Routine

does the following:

Copies the contents of the status mailbox into various fields of the Device Extension.1.

If necessary, the ISR sets another bit in the device control register to acknowledge that it has read

the status message.

2.

Calls IoRequestDpc to continue processing the request at a lower IRQL.3.

IRP_MN_STOP_DEVICE HANDLER

When the device is stopped, a driver should quiet the device. The Stop handler calls FreeCommonBuffer

to release the memory associated with the buffer.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

Without a doubt, drivers for DMA devices are more complicated than drivers for programmed I/O

hardware. In return for this added complexity, the system achieves greater throughput by

overlapping CPU activity with data transfers. The I/O Manager tries to simplify the process by

providing a generic framework in which to perform DMA. This chapter has presented the details of

the Windows 2000 abstract DMA model and discussed the various styles of DMA.

The next chapter begins the discussion of how devices report and log their operational status to the

operating system.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 13. Windows Management and Instrumentation

CHAPTER OBJECTIVES

WMI: The Industry Picture

The WMI Architecture

WMI Summary

Conventional Driver Event Logging

Summary

Device drivers can be written to report their performance and reliability statistics. For

example, it is useful for a network driver to track the number of corrupted packets received.

Devices that start to perform erratically should be identified before they fail completely.

Overall device and driver performance rates are vital pieces of information to analyze and improve

system performance. Tracking and reporting such instrumentation data begins at the driver level.

Another separate but common requirement is that devices and drivers need a mechanism for

dynamic configuration. Traditionally, drivers use Control Panel applets and private IOCTLs to

provide this facility.

The WDM driver model includes the capability for standardizing the collection, storage, and

reporting of instrumentation data—the Windows Management and Instrumentation (WMI) interface.

Drivers that choose to participate in the WMI scheme can collect performance and reliability data in

a standardized way for applications to obtain.

The facility also provides a standardized way that clients can use to set a driver state for the

purpose of device configuration. A driver can export specialized methods that client applications can

invoke (almost) directly.

This chapter starts by describing the relationship of WMI to industry standards for similar

functionality. The steps necessary to incorporate WMI into a driver are then presented along with an

example of a WMI-enabled driver. Finally, the chapter covers the conventional mechanism of

sending event messages to the Windows 2000 event log.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

WMI: The Industry Picture

The need for system instrumentation and configuration is not unique to device drivers, Windows 2000, or

Microsoft. The Open Software Foundation (OSF) includes a task group, the Desktop Management

Taskforce (DMTF), that has published an initiative for unified system management compatible with Internet

standards, Web-Based Enterprise Management (WBEM).

WBEM defines an interface for the purpose of unified management and instrumentation: the Common

Information Model (CIM). CIM is designed to encapsulate and accommodate other industry initiatives such

as the Simple Network Management Protocol (SNMP) and the Desktop Management Interface (DMI).

CIM is a very general-purpose way of describing properties, methods, and events that clients can use to

efficiently obtain system-supplied data. WMI is Microsoft's implementation of WBEM. Therefore, it is based

on CIM and extends itself to components within Windows 2000 to provide a functional environment for

management and instrumentation.

CIM defines a new language (actually an extension of C) called MOF (Managed Object Format). MOF is

loosely based on the Interface Definition Language (IDL) familiar to users of Remote Procedure Calls

(RPCs) and Microsoft COM (Component Object Model).

A diagram that describes the relationship between WBEM and WMI is shown in Figure 13.1.

Figure 13.1. WBEM and WMI relationship.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Acronym overload aside, MOF is the language by which the provider and the consumer can precisely

communicate and exchange data. For example, a data definition within the MOF file to describe the total

packet count transferred by a driver might appear as follows:

[read, WmiDataId(1),

 Description("Total Packet Count")]

 uint64 PacketsTransferred;

A client application, having been built with knowledge of the MOF contents, is now aware that the packet

count is available from the provider as a 64-bit unsigned integer.

The advantage of conformance with industry standards for system management and instrumentation is

obvious: heterogeneous system integration. With sufficient industry acceptance and conformance,

Microsoft-based, Linux, and mainframe systems can cooperate in a peer-to-peer configuration,

management, and reporting environment.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The WMI Architecture

The WMI architecture consists of five layers:

A source of WMI data (e.g., a device driver) designated the data provider

A central repository of WMI data that implements a CIM-compliant data store, based on the CIM

object model (CIMOM)

A WMI provider (e.g., the WDM WMI provider) that provides the necessary linkage between a WMI

data source and the data store

A consumer (or client) of the WMI data

A protocol (e.g., COM) that presents the data store to a consumer

The WMI provider for WDM consists of two parts:

A user-mode Win32 DLL that provides linkage between a user-mode client

A set of kernel-mode services that invoke and respond to driver code. An IRP,

IRP_MJ_SYSTEM_CONTROL, is the mechanism by which these services make requests of the

driver for WMI data.

A diagram of the WMI architecture is shown in Figure 13.2.

Figure 13.2. WMI architecture.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Providing WMI Support in a WDM Driver

In order to supply WMI data, a driver must perform the following steps:

Provide a MOF description of the data, methods, and events that will be provided and generated by

the driver.

1.

Compile the MOF source file (.MOF) using the mofcomp.exe tool provided with the DDK. This tool

produces a platform-independent binary file (.BMF) for the next step.

2.

Include the compiled MOF data within the resource section of the driver binary.3.

Provide an IRP_MJ_SYSTEM_CONTROL dispatch routine within the driver code. When received,

the minor subcode field of the IRP specifies the exact kind of WMI request.

4.

Register as a provider of WMI data using IoWmiRegistrationControl.5.

Process the IRP_MJ_SYSTEM_CONTROL IRP with minor subcode IRM_MN_REGINFO. The IRP

for such a request contains an action code (in Parameters.WMI.DataPath) that is either

WMIREGISTER or WMIUPDATE. The action code forms a third dispatch level for such an IRP.

6.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

(Major, minor, and action code form the three dispatch levels.)

Process the action code WMIREGISTER by providing information about the data and event blocks

defined within the MOF description.

7.

Process the action code WMIUPDATE by invoking helper functions declared with WMILIB.h.8.

Each of these eight steps is described in more detail below.

MOF Syntax

MOF syntax follows the standard structure of RPC interface definitions described by the Interface Definition

Language (IDL). The basic form is

[ATTRIUBUTES and QUALIFIERS]

ENTITY TYPE and NAME

{

 [DATA ITEM QUALIFIERS] DATA TYPE and NAME;

 ...

};

The definitions can be nested, much as a structure is defined within a structure. The entity type can consist

of such keywords as class, string, or boolean. The basic MOF description starts with a class name, which is

case insensitive and must be unique within the entire WMI namespace. Classes can inherit the definitions of

a base class, just as in C++.

[// Class qualifiers]

class HiResCamera : Camera

{

// Data definitions added by HiResCamera

};

A derived class name is uniquely qualified by its base class name and thus the name "HiResCamera" need

only be unique beneath the base class of Camera.

Class qualifiers are listed in Table 13.1 and three of these attributes are required for a WMI-compliant driver:

Provider, WMI, and Guid.

Each data definition constitutes an item within the class, complete with its own set of item qualifiers, listed in

Table 13. 2. The list of MOF-legal data types is described in Table 13.3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The MOF syntax requires two items within a class definition: Instance-Name and Active. These two items

are managed internally by WMI and, therefore, should not be considered data that is part of the driver itself.

The data types of InstanceName and Active are string and boolean, respectively.

Table 13.1. Class Qualifiers for WMI MOF Definition

Class Qualifier Description

Dynamic Data for the MOF block is supplied at runtime on a per instance basis of the class.

Static Data for the MOF block is included as part of the WMI database.

Provider("WmiProv") Required. Indicates that the provider of this class is WMI-compliant.

WMI Required. Indicates WMI class.

Description("text") Documentation or comment which can be made available to clients of the class.

Guid("guid") The unique 128-bit number identifying the class.

Locale("MS\lcid") The locale (language) ID for which the Description text is supplied.

WmiExpense(cost) The collection cost in CPU cycles for data described and collected by the class.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.2. MOF Data Item Qualifiers

Data Item Qualifier Description

key This data item uniquely identifies class instance.

read WMI client can read the item.

write WMI client can write the item.

BitMap

List of string names representing "bit names" corresponding to bit positions

within BitValues. The string list is enclosed within braces ({,}) immediately

after the BitMap keyword.

BitValues
Bit positions corresponding to the names specified by BitMap. The bit list is

enclosed within braces immediately after the BitValues keyword.

ValueMap

List of string names representing the enumerated values within Values.

The string list is enclosed within braces immediately after the ValueMap

keyword.

Values
List of values corresponding to the names specified by ValueMap. The

value list is enclosed within braces immediately after the Values keyword.

WmiDataId(ItemId)
Required. Specifies the location of the data item within the MOF data block.

The first item has ID of 1, the fourth has ID of 4.

WmiSizeIs("ItemName")
Specifies another "ItemName" that indicates the number of elements for

this array item (valid only for array data items).

WmiScale(ScaleFactor)
Specifies the magnitude (base 10) for the report of this data item. For

example, with ScaleFactor = 3, a data item of value 7 would indicate 7000.

WmiTimeStamp
Indicates the 64-bit item value is a 100 nanosecond tick count since

01/01/1601.

WmiComplexity("Level")
A comment potentially used by clients in deciding whether to expose this

item. Possible values are "Novice," "Advanced," "Expert," "Wizard."

WmiVolatility(Interval)
Specifies the interval in milliseconds for the frequency of updates to the

item.

WmiEventTrigger("ItemName")
For an event block, specifies another ItemName that defines the value at

which this event item triggers.

WmiEventRate("ItemName")
For an event block, specifies another ItemName that defines the frequency

at which this event item fires.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.3. MOF Data Types

Data Type Description sizeof

string Counted Unicode string 12

boolean TRUE or FALSE (zero or nonzero) 1

sint8 Signed 8-bit integer 1

uint8 Unsigned 8-bit integer 1

sint16 Signed 16-bit integer 2

uint16 Unsigned 16-bit integer 2

sint32 Signed 32-bit integer 4

uint32

Unsigned
32-bit integer 4

sint64 Signed 64-bit integer 8

uint64 Unsigned 64-bit integer 8

datetime
Unicode string holding date & time: "yyyymmddhhmmss:µµµµµµ±utc" where µµµµµµµ

= microseconds utc = GMT (UTC) minute offset

Example MOF Class Definition

The following is a simple example of a completed MOF class definition:

[WMI, guid("12345678-1234-5678-9ABC-123456789ABC"),

 Dynamic, Provider("WMIProv"),

 WmiExpense(1),

 Locale("MS\\0x409"),

 Description("Example class")]

class W2KDriverBook_Missile {

// Required item definitions - unused by driver

 [key, read] string InstanceName;

 [read] boolean Active;

// Property: Total Launches

 [read,

 WmiDataId(1),

 WmiScale(0),

 Description("Total Missile Launches")]

 uint32 TotalLaunches;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

//The number of silos in the SiloStatus array

 [read,

 WmiDataId(2)]

 uint32 SiloCount;

//SiloStatus Array

 [read,

 WmiDataId(3),

 WmiSizeIs("SiloCount")]

 uint8 SiloStatus[];

};

Compiling the MOF Source

To compile the MOF source, the tool mofcomp.EXE, located in the system32 directory, is used. Two

switches are needed for WDM driver development.

-B:filename.bmf

-WMI

The -B switch instructs the MOF compiler to place the binary results into the specified filename, which is

then inserted into the driver's resource area. The -WMI switch forces a second pass on the MOF input to

validate compliance with WMI. For the example MOF file listed above, the command line

mofcomp -B:Example.bmf -WMI Example.MOF

successfully compiles the definitions.

Once the binary MOF (.bmf) file is created, the driver must include a source resource file (.RC) into the

project (makefile) with the following line:

MofResource MOFDATA Example.bmf

When the driver loads into system memory, its resource section is placed into RAM and is accessible to the

driver. The resource name, specified by the .bmf filename, is announced in response to the WMI IRP

request WMIREGISTER.

Handling WMI IRP Requests

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The first step a driver must take to handle WMI requests is to register itself with the I/O Manager as a WMI

participant. This is performed with the IoWMIRegistrationControl function, described in Table 13.4. Initially,

a driver should perform the Action of WMIREG_ACTION_REGISTER, presumably during the AddDevice

routine. Similarly, during RemoveDevice, the Action WMIREG_ACTION_DEREGISTER is performed.

Once registered for WMI action, a driver must respond to the IRP Dispatch function for the major code

IRP_MJ_SYSTEM_CONTROL. This IRP request supplies one of several minor subcodes, listed in Table

13.5. The IRP stack's Parameters' union contains a WMI structure, defined in Table 13.6. This WMI structure

supplies data for the request (input and output).

Table 13.4. IoWMIRegistrationControl Function Prototype

NTSTATUS IoWMIRegistrationControl IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDeviceObject Pointer to Device object

IN ULONG Action • WMIREG_ACTION_REGISTER

 • WMIREG_ACTION_DEREGISTER

 • WMIREG_ACTION_REREGISTER

 • WMIREG_ACTION_UPDATE_GUIDS

 • WMIREG_ACTION_BLOCK_IRPS

Return value Success or failure code

Table 13.5. IRP_MJ_SYSTEM_CONTROL Minor Functions

IRP_MJ_SYSTEM_CONTROL

Minor Function Subcodes Description

IRP_MN_QUERY_ALL_DATA Request for all instances of a data block

IRP_MN_QUERY_SINGLE_INSTANCE Request for a specific instance

IRP_MN_CHANGE_SINGLE_INSTANCE Request to modify all data of a specific instance

IRP_MN_CHANGE_SINGLE_ITEM Request to modify one datum

IRP_MN_ENABLE_EVENTS
Informs driver that a data consumer has requested event

notification

IRP_MN_DISABLE_EVENTS Data consumer no longer wishes notification of events

IRP_MN_ENABLE_COLLECTION Request to begin collection of "expensive" instrument data

IRP_MN_DISABLE_COLLECTION Request to stop collecting

IRP_MN_REGINFO Query or modify a driver's registration information

IRP_MN_EXECUTE_METHOD Invokes a method defined in the MOF data block

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Classes and Instances

A data block described as a class within the MOF syntax declares a class data block. No instances of the

class exist (i.e., no data space is reserved) until such time as the driver registers the data block, typically

performed within the DpWmiQueryReginfo function, described below.

While typically only one instance of a class is appropriate, some circumstances suggest the existence of an

array of instances to best model the data being collected. For example, suppose the Missile driver collects

data for each of the three engines powering the rocket. The fuel used by one engine may be separate data

from that used by another. If each missile engine is described by a separate instance of a MOF

Missile_Engine class, each query or update of data requires an additional instance index to fully qualify the

request.

Table 13.6. Parameters. WMI Structure Definition

struct WMI

Field Description

ProviderId Pointer to target Device object

DataPath GUID of MOF data block

BufferSize Size of the Buffer

Buffer Buffer whose contents are minor function code specific

Of course, the fuel level of each engine could also be kept as an array of values within a single instance.

Thus, the decision to use multiple instances of data blocks is dictated by whether or not all the entries within

the block should be stacked, one per instance.

WMILIB

Responding to WMI IRP requests is facilitated by a kernel-mode DLL, WMILIB. The heart of this library

support is a routine, WmiSystemControl, described in Table 13.7. The function receives as input a data

structure of type WMILIB_CONTEXT, described in Table 13.8, which is primarily a list of function pointers

that get, set, or otherwise control MOF items. The functions are provided by the driver, and if not supplied,

should be set to NULL.

The GuidList member of the WMILIB_CONTEXT structure is an array of structures of type

WMIGUIDREGINFO, one array element for each MOF data block class exposed by the driver. The

WMIGUIDREGINFO structure is described in Table 13.9.

WmiSystemControl returns a disposition status that describes how the IRP was handled.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.7. WmiSystemControl Function Prototype

NTSTATUS WmiSystemControl IRQL == PASSIVE_LEVEL

Parameter Description

IN PWMILIB_CONTEXT WmiLibInfo
Pointer to WMILIB_CONTEXT structure, provided and initialized by

driver

IN PDEVICE_OBJECT

pDeviceObject
Driver's Device Object

IN PIRP pIrp Pointer to IRP of request

OUT PSYSCTL_IRP_DISPOSITION • IrpProcessed

pIrpDisposition • IrpNotCompleted

 • IrpNotWmi

 • IrpForward

Return value Success or failure code

Table 13.8. WMILIB_CONTEXT Structure Definition

struct WMILIB_CONTEXT

Field Description

ULONG GuidCount Number of MOF data blocks registered by driver

PWMIGUIDREGINFO GuidList Array of GUIDs and instance counts

PWMI_QUERY_REGINFO

QueryWmiRegInfo

Function pointer to driver-supplied routine,

DpWmiQueryReginfo

PWMI_QUERY_DATABLOCK

QueryWmiDataBlock

Function pointer to driver-supplied routine,

DpWmiQueryDataBlock

PWMI_SET_DATABLOCK

SetWmiDataBlock

Function pointer to driver-supplied routine,

DpWmiSetDataBlock (may be NULL)

PWMI_SET_DATAITEM SetWmiDataItem
Function pointer to driver-supplied routine,

DpWmiSetDataItem (may be NULL)

PWMI_EXECUTE_METHOD

ExecuteWmiMethod

Function pointer to driver-supplied routine,

DpWmiExecuteMethod (may be NULL)

PWMI_FUNCTION_CONTROL

WmiFunctionControl

Function pointer to driver-supplied routine,

DpWmiFunctionControl (may be NULL)

On the surface, WmiSystemControl does little more than dispatch the minor subcode of

IRP_MJ_SYSTEM_CONTROL to the appropriate driver-supplied DpWmiXxx routine. The real advantage of

WMILIB is that it handles the complete WMI protocol, leaving the driver with only the necessary task of MOF

data-specific handling.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.9. WMIGUIDREGINFO Structure Definition

struct WMIGUIDREGINFO

Field Description

LPCGUID Guid Pointer to GUID that identifies block

ULONG InstanceCount Number of instances to create

ULONG Flags Characteristics of block:

 • WMIREG_FLAG_INSTANCE_PDO

 • WMIREG_FLAG_EVENT_ONLY_GUID

 • WMIREG_FLAG_EXPENSIVE

 • WMIREG_FLAG_REMOVE_GUID

Each dispatch function pointed to by an entry within WMILIB_CONTEXT is a unique function signature

(prototype) with various responsibilities. These DpWmi functions are described in further detail below.

With the exception of DpWmiQueryReginfo, each of these routines completes its normal work by invoking

WmiCompleteRequest, described in Table 13.10. This WMILIB function marks the IRP as "complete" and

finishes the WMI protocol sequence.

DpWmiQueryReginfo

The DpWmiQueryReginfo function, supplied by the driver, is described in Table 13.11. It is invoked by

WMILIB when the requesting IRP contains the minor subcode IRP_MN_REGINFO with action code

(Parameters.WMI.DataPath) equal to WMIREGISTER or WMIUPDATE. The prime purpose of this driver

routine is to register one or more instances of data class.

The implementation of this function should include code to implement the driver's strategy for the naming of

data block instances. The RegFlags parameter includes a bit, WMIREG_FLAG_INSTANCE_BASENAME,

which allows WMI to automatically append an instance counter number to the base name specified by

InstanceName. Otherwise, the driver can implement its own naming strategy. It is noteworthy that these

instance names are persistent (sticky) across boots of the OS. The names are registered in the CIMOM

store.

Yet another driver strategy is to use the PDO name for the instance base name. To utilize this strategy, a

driver sets the RegFlags' bit WMI_FLAG_ INSTANCE_PDO.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.10. WmiCompleteRequest Function Prototype

NTSTATUS

WmiCompleteRequest
IRQL <= DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of request

IN NTSTATUS Status Final status to return in IRP

IN ULONG BufferUsed
If buffer was too small for request, this value holds what was required;

otherwise, holds bytes used.

IN CCHAR PriorityBoost Same as IoCompleteRequest Priority- Boost, usually a fixed value

Table 13.11. DpWmiQueryRegInfo Function Prototype

NTSTATUS

DpWmiQueryReginfo
IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

OUT PULONG pRegFlags Registration flags set by driver for all registered MOF data blocks

OUT PUNICODE_STRING

InstanceName

When RegFlags has bit WMIREG_FLAG_INSTANCE_ BASENAME set,

InstanceName is used as base with instance counter appended. WMI frees

this string with a call to ExFreePool.

OUT PUNICODE_STRING

*pRegistryPath
Same string passed to driver's DriverEntry

OUT PUNICODE_STRING

MofResourceName
String containing name of MOF .bmf file

OUT PDEVICE_OBJECT

*pPDO

PDO to use for generation of physical device instance names (only if

RegFlags WMIREG_FLAG_ INSTANCE_PDO set)

Return value STATUS_SUCCESS

DpWmiQueryDataBlock

The DpWmiQueryDataBlock function is described in Table 13.12. It is invoked by WMILIB when the

requesting IRP contains the minor subcode IRP_MN_QUERY_DATA_BLOCK or

IRP_MN_QUERY_ALL_DATA. The purpose of this driver routine is to return the instance(s) data requested.

DpWmiSetDataBlock

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The DpWmiSetDataBlock function is described in Table 13.13. It is invoked by WMILIB when the requesting

IRP contains the minor subcode IRP_MN_CHANGE_SINGLE_INSTANCE. The purpose of this driver

routine is to modify the specified instance data. As defined, only one instance can be changed at one time,

but when multiple instances exist, the InstanceIndex value of zero remains undefined.

DpWmiSetDataItem

The DpWmiSetDataItem function is described in Table 13.14. It is invoked by WMILIB when the requesting

IRP contains the minor subcode IRP_MN_ CHANGE_SINGLE_ITEM. The purpose of this driver routine is to

modify the specified data item within the specified instance data.

Table 13.12. DpWmiQueryDataBlock Function Prototype

NTSTATUS DpWmiQueryDataBlock IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of WMI request

IN ULONG GuidIndex
Index into WMILIB_CONTEXT structure's GuidList, identifying data

block

IN ULONG InstanceIndex
Specific data instance being queried (0 if all instances being

queried)

IN ULONG InstanceCount Number of instances being queried

IN OUT PULONG

InstanceLengthArray
Array of ULONGs specifying length of each instance being returned

IN ULONG BufferAvail Size of Buffer

OUT PUCHAR Buffer Buffer to receive instance data

Return value • STATUS_SUCCESS

 • STATUS_BUFFER_TOO_SMALL

 • STATUS_WMI_GUID_NOT_FOUND

 • STATUS_WMI_INSTANCE_NOT_ FOUND

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.13. DpWmiSetDataBlock Function Prototype

NTSTATUS

DpWmiSetDataBlock
IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of WMI request

IN ULONG GuidIndex
Index into WMILIB_CONTEXT structure's GuidList, identifying data

block to modify

IN ULONG InstanceIndex Specific data instance being modified

IN ULONG BufferSize Size of Buffer

IN PUCHAR Buffer Buffer supplying new instance data

Return value • STATUS_SUCCESS

 • STATUS_PENDING

 • STATUS_WMI_READ_ONLY

 • STATUS_WMI_SET_FAILURE

 • STATUS_WMI_GUID_NOT_FOUND

 • STATUS_WMI_INSTANCE_NOT_ FOUND

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.14. DpWmiSetDataItem Function Prototype

NTSTATUS DpWmiSetDataItem IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of WMI request

IN ULONG GuidIndex
Index into WMILIB_CONTEXT structure's GuidList, identifying data

block

IN ULONG InstanceIndex Specific data instance being modified

IN ULONG DataItemId ID of data item being modified

IN ULONG BufferSize Size of Buffer

IN PUCHAR Buffer Buffer supplying new instance data

Return value • STATUS_SUCCESS

 • STATUS_PENDING

 • STATUS_WMI_READ_ONLY

 • STATUS_WMI_SET_FAILURE

 • STATUS_WMI_GUID_NOT_FOUND

 • STATUS_WMI_INSTANCE_NOT_ FOUND

DpWmiExecuteMethod

The DpWmiExecuteMethod function is described in Table 13.15. It is invoked by WMILIB when the

requesting IRP contains the minor subcode IRP_MN_EXECUTE_METHOD. The purpose of this driver

routine is to dispatch execution to the specified method.

In many ways, this is a "direct call" interface from WMI clients into driver code. The interface is marshaled by

the DpWmiExecuteMethod routine, which has the ability to validate and convert parameters before

presentation to the requested method. Separately, the output buffer can be marshaled before it is returned

to the client. The passing of addresses within the input or output buffer is problematic and should probably

be avoided.

DpWmiFunctionControl

The DpWmiFunctionControl function is described in Table 13.16. It is invoked by WMILIB when the

requesting IRP contains the minor subcode IRP_MN_ENABLE_COLLECTION,

IRP_MN_DISABLE_COLLECTION, IRP_MN_ ENABLE_EVENTS, or IRP_MN_DISABLE_EVENTS. The

purpose of this driver routine is to start or stop the collection of data (i.e., data that is marked as "expensive"

with the bit WMIREG_FLAG_EXPENSIVE at registration) or to start or stop the generation of events.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.15. DpWmiExecuteMethod Function Prototype

NTSTATUS DpWmiExecuteMethod IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of WMI request

IN ULONG GuidIndex
Index into WMILIB_CONTEXT structure's GuidList, identifying data

block

IN ULONG InstanceIndex Specific instance with method to execute

IN ULONG MethodId ID of method to execute

IN ULONG InBufferSize Number of bytes passed in Buffer to method

IN ULONG OutBufferSize Size of Buffer

IN OUT PUCHAR Buffer Input and output buffer for executing method

Return value • STATUS_SUCCESS

 • STATUS_BUFFER_TOO_SMALL

 • STATUS_INVALID_DEVICE_REQUEST

 STATUS_WMI_INSTANCE_NOT_FOUND

 STATUS_WMI_ITEM_ID_NOT_FOUND

Table 13.16. DpWmiFunctionControl Function Prototype

NTSTATUS DpWmiFunctionControl IRQL == PASSIVE_LEVEL

Parameter Description

IN PDEVICE_OBJECT

pDeviceObject
Pointer to driver's device object

IN PIRP pIrp Pointer to IRP of WMI request

IN ULONG GuidIndex
Index into WMILIB_CONTEXT structure's GuidList, identifying data

block

IN WMIENABLEDISABLECONTROL WmiEventControl: control event generation

Function WmiDataBlockControl: control collection

IN BOOLEAN bEnable TRUE - Enable event or collection

 • FALSE - Disable event or collection

Return value • STATUS_SUCCESS

 • STATUS_WMI_GUID_NOT_FOUND

 • STATUS_INVALID_DEVICE_REQUEST

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

WMI Summary

Clearly, the implementation of WMI can be involved. At this point in the evolution of WBEM and

WMI, the payback is minimal. The addition of WMI support to a driver is a plan for the future. The

ultimate acceptance of WMI (and WBEM in general) remains to be seen.

A WDM driver is not required to support WMI. It can use the conventional method of logging system

events for notification messages, which is described in the next section. For data collection

(instrumentation), the registry or custom IOCTLs can be utilized.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Conventional Driver Event Logging

The original Windows NT architecture includes a mechanism that allows software components to keep a

record of noteworthy events. This event-logging capability can help monitor the behavior of software that is

under development or in production.

How Event Logging Works

The developers of Windows NT had several goals for the event-logging architecture. The first was to provide

subsystems with the unified framework for recording information. This framework includes a simple yet

flexible standard for the binary format of event-logging entries.

Another goal was to give system administrators an easy and consistent way to view these messages. As

part of this goal, viewer utilities must be able to display event messages in the currently selected national

language. Figure 13.3 shows the event-logging architecture.

Figure 13.3. Event-logging architecture.

The overall process for the generation and display of event messages is described by the following:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

All event messages take the form of packets in Windows 2000. When a kernel-mode driver wants to

log an event, it first calls the I/O Manager to allocate a message packet from nonpaged pool.

1.

The driver fills this packet with various pieces of descriptive information. One of the key items is a

32-bit message code number that identifies the text to be displayed for this packet. Once the packet

is ready, the driver returns it to the I/O Manager.

2.

The I/O Manager takes the message packet and sends it to the system event-logging thread. This

thread accumulates packets and periodically writes them to the proper event-log file.

3.

The Event Viewer utility reads binary packets from the log files. To translate a packet's 32-bit

message code into text, the Viewer goes to the Registry. There it finds the path names of one or

more message files associated with the packet. These message files contain the actual message

text (possibly in multiple languages), which the Viewer displays.

4.

Working with Messages

As just described, a driver does not include the actual text for its messages in an event-log entry. Instead, it

identifies messages using code numbers. The text associated with these code numbers takes the form of a

message resource stored somewhere on disk. This section describes how these message code numbers

work and explains how to generate custom message resources.

The code number identifying a specific message is a 32-bit value consisting of several fields. Figure 13.4

shows the layout of a message code.

Figure 13.4. Layout of a message-code number.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Severity field of a message code is a 2-bit field which signifies success (0), warning (2), error (3), or

informational (1) status. The I/O Manager provides a number of standard messages that a driver can use.

The header file, NTIOLOGC.h, defines symbolic names for these message codes, all of which begin with

IO_ERR_. The file can be browsed for a complete list of standard messages.

To use standard messages, a driver must be included in the list of event-logging system components within

the Registry. The actual text file for these shared messages must also be supplied (IOLOGMSG.dll). The

procedure for performing this registration is described later in this chapter.

A driver can also supply custom message text. To do this, the following steps should be followed:

Write a message definition file that associates the message code with a specific text string.1.

Compile this file using the message compiler (MC) utility.2.

Incorporate the message resources generated by MC into the driver.3.

Register the driver as an event-logging system component and identify the driver executable as the

file containing the text for these private messages.

4.

Writing Message Definition Files

To use the MC utility, a definition file describing all the driver messages must be written. This definition file is

divided into two major sections.

Header section.

Keywords in the header define names for values that are used in the actual message

definitions. Table 13.17 contains the keywords that can be used in the header section of a

message definition file.

Message section.

This portion of the message definition file contains the actual text of the messages. Each

message begins with the keywords listed in Table 13.18.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.17. Keywords Used in Header Section of Message Definition File

Header section keywords

Keyword Description

MessageIdTypedef = DataType Typecast applied to all message codes

SeverityNames = (name=number[:name]) Up to four severity values used in the message section

FacilityNames = (name=number[:name]) Facility names used in the message section

LanguageNames =(name=number[:filename]) Language names used in the message section

Table 13.18. Keywords Used in Message Section of Message Definition File

Message section keywords

Keyword Description

MessageID = [number | +number] 16-bit value assigned to this message

Severity = Severity name Severity level of the message

Facility = Facility name Facility generating the message

SymbolicName = SymbolicName Name of message code in generated header file

Language = LanguageName Language ID associated with the message

The message text itself begins after the last keyword. The text of a message can occupy several lines. A

message is ended with a line containing only a single period character.

The message compiler ignores any white space or carriage returns in a message definition. Various escape

sequences (listed in Table 13.19) can be included in the body of the message.

The %1-%99 escape codes represent Unicode strings (embedded in the event log packet) that are inserted

in the message when the Event Viewer displays it. If a kernel-mode driver associates an event packet with

its device object, %1 will automatically contain the OS name of the device; if the driver associates the packet

with its driver object, %1 is blank. In either case, the first real insertion string is %2, the second %3, and so

on.

A Simple Example

Here is the message definition file for a simple example.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.19. Escape Codes Used Within Message Text

Message formatting escape codes

If you use... THEN it is replaced with...

%b A single space character

%t A single tab character

%r%n Carriage return and linefeed

%1-%99 An insertion string

HEADER SECTION

The first part of the message definition file contains header information.

MessageIdTypedef = NTSTATUS

SeverityNames = (

 Success = 0x0:STATUS_SEVERITY_SUCCESS

 Informational = 0x1:STATUS_SEVERITY_INFORMATIONAL

 Warning = 0x2:STATUS_SEVERITY_WARNING

 Error = 0x3:STATUS_SEVERITY_ERROR

)

FacilityNames = (

 System = 0x0

 RpcRuntime = 0x2:FACILITY_RPC_RUNTIME

 RpcStubs = 0x3:FACILITY_RPC_STUBS

 Io = 0x4:FACILITY_IO_ERROR_CODE

 MyDriver = 0x7:FACILITY_MY_ERROR_CODE

)

MESSAGE SECTION

This section contains message text and identifiers. It defines the actual text to be associated with a message

code number.

MessageId=0x0001

Facility=MyDriver

Severity=Informational

SymbolicName=MSG_LOGGING_ENABLED

Language=English

Event logging enabled for MyDriver.

.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

MessageId=+1

Facility=MyDriver

Severity=Informational

SymbolicName=MSG_DRIVER_STARTING

Language=English

MyDriver has successfully initialized.

.

Compiling a Message Definition File

Once written, the message definition file must be compiled using the MC tool supplied with the Platform SDK

and the DDK. Table 13.20 shows the syntax of the MC command.

After a successful message definition file is compiled, the following files are generated:

filename.RC.

This is a resource control script that identifies all the languages used in the message definition file.

For each language, it also identifies the binary message file containing the message text.

filename.H

This header file contains #define statements for all the message code numbers in the MC input file.

The compiler also puts inline commentary in the header, including the text of the corresponding

message.

MSGnnnnn.BIN.

This binary file holds all the text for messages for one language. MC generates separate files for

each national language used in the message definition file.

Table 13.20. Syntax of the MC Command

MC [-?cdosvw] [-herx argument] [-uU]

filename.MC

Parameter Description

-c Set Customer bit in all message codes.

-d
Use decimal definitions of facility and severity codes in

header.

-o Generate OLE2 header file.

-s Insert symbolic name as first line of each message.

-v Generate verbose output.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

-h pathname
Location of generated header file. (Default is current

directory.)

-e extension
One-character to three-character extension for header

file.

-r pathname Location of generated RC and binary message files.

-x pathname Location of generated debug file.

-u Input file is Unicode.

-U
Message text in binary; output binary file should be

Unicode.

filename Name of the message definition file to compile.

Adding Message Resources to a Driver

In most cases, the output from the MC compilation is included in the driver executable itself. Simply

including the name of the .RC script file within the driver project (makefile) is sufficient.

Registering a Driver as an Event Source

The system Registry serves as the linkage between an event source and the message files needed to

translate any message codes appearing in its log entries. To register a driver as an event source, the

following changes must be made to the Registry under

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\EventLog\System:

Add the name of the driver's executable (without the .SYS extension) to a REG_MULTI_SZ value

called Sources.

1.

Add a key with the same name as the driver.2.

In this new key, create a REG_EXPAND_SZ value named EventMessageFile. It should contain

the full path names of the message files used by the driver, separated with semicolons (;). If

standard messages from NTIOLOGC.h are used, IOLOGMSGodll must also appear in the list.

3.

In the same key, create a REG_DWORD value named TypesSupported. A value of 0x7 indicates

that all message types may be generated.

4.

Generating Log Entries

Code to actually generate a message is relatively straightforward. It involves allocating an event message

packet, filling it, and sending it to the system logging thread.

It is common practice to trigger the verbosity of driver event generation based on a driver-specific registry

value. For example, under the Parameters subkey of the driver's service key, a value called

EventLogLevel might determine the number and extent of actual messages generated. Thus, during

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

debugging or during a production incident, full event logging could be enabled.

Allocating an Error-Log Packet

When a driver uncovers an event that needs reporting, it must prepare an error-log packet. There are three

sections to an error-log packet.

A standard header

An array of driver-defined ULONGs (referred to as dump data)

One or more NULL-terminated Unicode insertion strings. These strings are not the counted

UNICODE_STRING data structures used elsewhere.

Both the dump-data and insertion strings are variable in length and are optional. Figure 13.5 shows the

structure of an error-log packet.

Figure 13.5. Layoout of an error-log packet.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Before an error-log packet can be allocated, its size must be determined. Sufficient space must be allocated

for any dump-data and insertion strings. The size of the packet can be calculated using a variation of the

following piece of code:

PacketSize =

 sizeof(IO_ERROR_LOG_PACKET) +

 (sizeof(ULONG) * (DumpDataCount-1)) +

 sizeof(InsertionStrings);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The requested size of the packet cannot exceed ERROR_LOG_MAXIMUM_SIZE.

The IoAllocateErrorLogEntry, described in Table 13.21, is used to allocate the packet. As seen, the packet

can be associated either with the Driver object or with a specific Device object. The choice determines how

the Event Viewer utility displays the message. Initialization and shutdown messages are typically Driver-level

messages, while problems involving specific IRPs or hardware should be associated with a Device object.

Notice that the use of IoAllocateErrorLogEntry requires a thread context at or below DISPATCH_LEVEL

IRQL. Therefore, if an ISR needs to log an error (a common occurrence), a CustomDpc routine must be

used to perform the actual work.

Table 13.21. IoAllocateErrorLogEntry Function Prototype

PVOID IoAllocateErrorLogEntry IRQL <= DISPATCH_LEVEL

Parameter Description

IN PVOID IoObject Address of a Device object generating an error

 • Address of a Driver object reporting an error

IN UCHAR EntrySize Size in bytes of packet to be allocated

Return value • PIO_ERROR_LOG_PACKET: success

 • NULL: allocation failure

Logging the Error

Once the packet is allocated, all the relevant fields must be filled. In addition to the fields listed in Table

13.22, any driver-specific data and strings must be added.

When the packet is ready, use IoWriteErrorLogEntry to send it to the system logging thread. The packet is

no longer owned by the driver once this function is called, so the driver must not be touched again. As with

packet allocation, this function can only be used at or below DISPATCH_LEVEL IRQL.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 13.22. Layout of an IO_ERROR_LOG_PACKET

IO_ERROR_LOG_PACKET,

*PIO_ERROR_LOG_PACKET

Field Description

UCHAR MajorFunctionCode IRP_MJ_XXX code of current IRP

UCHAR RetryCount Zero-based count of consecutive retries

USHORT DumpDataSize Bytes of driver-specific data

USHORT NumberOfStrings Number of insertion strings

USHORT StringOffset Byte offset of first insertion string

USHORT EventCategory Event category from driver's message file

NTSTATUS ErrorCode IO_ERR_XXX (see NTIOLOGC.H)

ULONG UniqueErrorValue
Indicates where in the driver the error

occurred

NTSTATUS FinalStatus STATUS_XXX value from the IRP

ULONG SequenceNumber Driver-assigned number for current IRP

ULONG IoControlCode
IOCTL_XXX if this is a DeviceIoControl

request

LARGE_INTEGER DeviceOffset Device offset where error occurred, or zero

ULONG DumpData [1] Driver-specific data if DumpDataSize is zero

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

The incorporation of WMI and event logging into a driver is tedious, but it is inconceivable that a

production driver can be supplied without some system reporting mechanism. The ability to trace

back through events after a failure report is essential to discover true faults.

Code examples are included on the CD that accompanies this book and on the book's Web site:

www.W2kDriveBook.com; they demonstrate the use of WMI and event logging.

The next chapter deals with system threads and their appropriate use. The next chapter deals with

system threads and their appropriate use.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 14. System Threads

CHAPTER OBJECTIVES

Definition and Use of System Threads

Thread Synchronization

Using Dispatcher Objects

Code Example: A Thread-Base Driver

Summary

The work that must be performed within a driver cannot always be done in response to a

request—at least, not at the very moment of the request. Some work must be performed

asynchronous to a caller, perhaps at a different priority to other driver activity. Windows

2000 allows the creation of separate threads of execution, each following a code path that is

independent of others. The threads perform units of work at their own pace, triggered by

appropriate events.

This chapter explains the process of creating a kernel-mode thread. It also explains the

synchronization techniques provided by the kernel between different threads.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Definition and Use of System Threads

A thread is a unit of execution. Each thread maintains an independent program counter and

hardware context that includes a private set of CPU registers. Each thread maintains a priority value

that determines when it gains control of the system processor(s). In general, the higher a thread's

priority, the more likely it is to receive control.

Threads can operate in user mode or kernel mode. A system thread is one that runs exclusively in

kernel mode. It has no user-mode context and cannot access user address space. Just like a Win32

thread, a system thread executes at or below APC_LEVEL IRQL and it competes for use of the

CPU based on its scheduling priority.

When To Use Threads

There are several reasons to use threads in a driver. One example is working with hardware that

has the following characteristics:

The device is slow and infrequently accessed.

It takes a long time (more than 50 microseconds) for the device to make a state transition,

and the driver must wait for the transition to occur.

The device needs to make several state transitions in order to complete a single operation.

The device does not generate interrupts for some state transitions, and the driver must poll

the device for an extended period.

Such a device could be managed using a CustomTimerDpc routine. Depending on the amount of

device activity, however, this approach could saturate the DPC queues and slow down other drivers.

Threads, on the other hand, run at PASSIVE_LEVEL and do not interfere with DPC routines.

Fortunately, most modern hardware is designed to operate in a way that allows good system

performance. (Granted, there are many contradictions to this statement.) Legacy hardware,

however, is legendary in forcing drivers to poll (and retry) for state transitions, thus burdening the

driver with considerable and messy design. The most notable examples are floppy disks and other

devices attached to floppy controllers.

Another need for threads occurs with devices that take excessive time to initialize. The driver must

monitor the initialization process, polling the state transitions throughout. A separate thread is

needed because the Service Control Manager gives drivers only about 30 seconds to execute their

DriverEntry routine. Otherwise, the Service Control Manager forcibly unloads the driver. The only

solution is to put the long-running device start-up code in a separate thread and return promptly

from the DriverEntry routine with STATUS_SUCCESS.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Finally, there may be some operations that can be performed only at PASSIVE_LEVEL IRQL. For

example, if a driver has to access the registry on a regular basis, or perform file operations, a

multi-thread design should be considered.

Creating and Terminating System Threads

To create a system thread, a driver uses PsCreateSystemThread, described in Table 14.1. Since

this function can only be called at PASSIVE_LEVEL IRQL, threads are usually created in the

DriverEntry or AddDevice routines.

When a driver unloads, it must ensure that any system thread it may have created has terminated.

System threads must terminate themselves, using PsTerminateSystemThread, described in Table

14.2. Unlike Win32 user-mode threads, there is no way to forcibly terminate a system thread. This

means that some kind of signaling mechanism needs to be set up to let a thread know it should exit.

As discussed later in this chapter, Event objects provide a convenient mechanism for this.

Table 14.1. PsCreateSystemThread Function Prototype

NTSTATUS PsCreateSystemThread IRQL == PASSIVE_LEVEL

Parameter Description

OUT PHANDLE ThreadHandle Handle of new thread

IN ULONG DesiredAccess 0 for a driver-created thread

IN POBJECT_ATTRIBUTES Attrib NULL for a driver-created thread

IN HANDLE ProcessHandle NULL for a driver-created thread

OUT PCLIENT_ID ClientId NULL for a driver-created thread

IN PKSTART_ROUTINE StartAddr Entry point for thread

IN PVOID Context Argument passed to thread routine

Return value • STATUS_SUCCESS: thread was created

 • STATUS_XXX: an error code

Table 14.2. PsTerminateSystemThread Function Prototype

NTSTATUS PsTerminateSystemThread IRQL == PASSIVE_LEVEL

Parameter Description

IN NTSTATUS ExitStatus Exit code signifying reason for termination

Return value • STATUS_SUCCESS: thread was killed

Managing Thread Priority

In general, system threads running in a driver should have priorities near the low end of the real-time

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

range. The following code fragment demonstrates this:

VOID ThreadStartRoutine(PVOID pContext) {

 ...

 KeSetPriorityThread(

 KeGetCurrentThread(),

 LOW_REALTIME_PRIORITY);

 ...

}

Be aware that real-time threads have no quantum timeout value. This means that the CPU is

relinquished only when the thread voluntarily enters a wait state, or when preempted by a thread of

higher priority. Therefore, drivers cannot depend upon round-robin scheduling.

System Worker Threads

For occasional, quick operations at PASSIVE_LEVEL IRQL, creating and terminating a separate

thread may not be very efficient. The alternative is to have one of the kernel's system worker threads

perform the task. These threads use a callback mechanism to do work on behalf of any driver.

It is not difficult to use system worker threads. First, allocate storage for a WORK_QUEUE_ITEM

structure. The system will use this block to keep track of the work request. Next, call

ExInitializeWorkItem to associate a callback function in the driver with the WORK_QUEUE_ITEM.

Later, when a system thread is needed to execute the callback function, call ExQueueWorkItem to

insert the request block into one of the system work queues. The request can be executed either by

a worker thread with a real-time priority or by one with a variable priority.

Keep in mind that all drivers are sharing the same group of system worker threads. Requests that

take a very long time to complete may delay the execution of requests from other drivers. Tasks

involving lengthy operations or long time delays should utilize a private driver thread rather than the

system work queues.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Thread Synchronization

Like user-mode threads in a Win32 application, system threads may need to suspend their

execution until some other condition has been satisfied. This section describes the basic

synchronization techniques available to system threads.

Time Synchronization

The simplest kind of synchronization involves stopping a thread's execution until a specific time

interval elapses. Although Timer objects, described later in this chapter, can be used, the kernel

provides a convenient function, KeDelayExecutionThread (illustrated in Table 14.3) that is easier to

use.

Table 14.3. KeDelayExecutionThread Function Prototype

NTSTATUS KeDelayExecutionThread IRQL == PASSIVE_LEVEL

Parameter Description

IN KPROCESSOR_MODE WaitMode KernelMode for drivers

IN BOOLEAN bAlertable FALSE for drivers

IN PLARGE_INTEGER Interval Absolute or relative due time

Return value STATUS_SUCCESS: wait completed

General Synchronization

System threads can synchronize their activities in more general ways by waiting for dispatcher

objects. Thread synchronization depends on the fact that a dispatcher object is always in either the

signaled or nonsignaled state. When a thread asks to wait for a nonsignaled dispatcher object, the

thread's execution stops until the object becomes signaled. (Waiting for a dispatcher object that is

already Signaled is a no-op.) There are two different functions that can be used to wait for a

dispatcher object.

KeWaitForSingleObject

This function, described in Table 14.4, puts the calling thread into a wait state until a specific

dispatcher object is set to the signaled state.

Table 14.4. KeWaitForSingleObject Function Prototype

NTSTATUS KeWaitForSingleObject

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Parameter Description

IN PVOID Object Pointer to an initialized dispatcher object

IN KWAIT_REASON Reason Executive for drivers

IN KPROCESSOR_MODE WaitMode KernelMode for drivers

IN BOOLEAN Alertable False for drivers

IN PLARGE_INTEGER Timeout • Absolute or relative timeout value

 • NULL for an infinite wait

Return value • STATUS_SUCCESS

 • STATUS_ALERTED

 • STATUS TIMEOUT

Optionally, a timeout value may be specified that causes the thread to awaken even if the dispatcher

object is nonsignaled. If the timeout argument is NULL, KeWaitForSingleObject waits indefinitely.

KeWaitForMultipleObjects

This function, described in Table 14.5, puts the calling thread into a wait state until any or all of a

group of dispatcher objects are set to the signaled state. Again, a timeout value for the wait may be

specified.

Table 14.5. KeWaitForMultipleObjects Function Prototype

NTSTATUS KeWaitForMultipleObjects

Parameter Description

IN ULONG Count Number of objects to wait for

IN PVOID Object [] Array of pointers to dispatcher objects

IN WAIT_TYPE WaitType • WaitAll: wait until all are signaled

 • WaitAny: wait until one is signaled

IN KWAIT_REASON Reason Executive for drivers

IN KPROCESSOR_MODE WaitMode KernelMode for drivers

IN BOOLEAN Alertable FALSE for drivers

IN PLARGE_INTEGER Timeout • Absolute or relative timeout value

 • NULL for an infinite wait

IN PKWAIT_BLOCK WaitBlocks [] Array of wait blocks for this operation

Return value • STATUS_SUCCESS

 • STATUS_ALERTED

 • STATUS_TIMEOUT

Be aware that there are limits on how many objects the thread can wait for at one time. Each thread

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

has a built-in array of Wait blocks that it uses for concurrent wait operations. The thread can use this

array to wait for up to THREAD_WAIT_OBJECTS number of objects. If the number

THREAD_WAIT_ OBJECTS is insufficient, a driver-supplied array of Wait blocks must be included

in the call to KeWaitForMultipleObjects. Regardless, the number of objects waited upon cannot

exceed MAXIMUM_WAIT_OBJECTS.

The KeWaitForXxx functions may be called from either PASSIVE_ LEVEL or DISPATCH_LEVEL

IRQL. However, from DISPATCH_LEVEL IRQL, a zero timeout value must be specified. At

DISPATCH_LEVEL IRQL, the calls are effectively used as a polling mechanism for Signaled

objects.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Using Dispatcher Objects

Except for Thread objects themselves, the driver must allocate storage for any dispatcher objects that are

used. The objects must be permanently resident and are, therefore, usually allocated within the Device or

Controller Extension. In any case, they must be in nonpaged memory.

Also, the dispatch object must be initialized once with the proper KeInitializeXxx function before it is used.

Since the initialization functions can only be called at PASSIVE_LEVEL IRQL, dispatcher objects are usually

prepared in the DriverEntry or AddDevice routine.

The following sections describe each category of dispatcher objects in greater detail.

Event Objects

An event is a dispatcher object that must be explicitly set to the signaled or nonsignaled state. An event is

analogous to a binary flag, allowing one thread to signal other threads of a specific occurrence by raising

(set to signaled) the flag. This behavior can be seen in Figure 14.1, where thread A awakens B, C, and D by

setting an event object.

Figure 14.1. Event objects synchronize system threads.

These objects actually come in two different flavors: notification events and synchronization events. The

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

type is chosen when the object is initialized. These two types of events exhibit different behavior when put

into the signaled state. As long as a notification event remains signaled, all threads waiting for the event

come out of their wait state. A notification event must be explicitly reset to put it into the nonsignaled state.

These events exhibit behavior like user-mode (Win32) manual-reset events.

When a synchronization event is placed into the signaled state, it remains set only long enough for one call

to KeWaitForXxx. It then resets itself to the nonsignaled state automatically. In other words, the gate stays

open until exactly one thread passes through, and then it shuts. This is equivalent to a user-mode auto-reset

event.

To use an event, storage is first allocated for an item of type KEVENT, and then functions listed in Table 14.6

are called.

Notice that either of two functions put an event object into the nonsignaled state. The difference is that

KeResetEvent returns the state of the event before it became nonsignaled, and KeClearEvent does not.

KeClearEvent is somewhat faster, so it should be used unless the previous state must be determined.

The sample driver at the end of this chapter provides an example of using events. It has a worker thread

that needs to pause until an interrupt arrives, so the thread waits for an event object. The driver's DpcForIsr

routine sets the event into the signaled state, waking up the worker thread.

Table 14.6. Functions that Operate on Event Objects

How to use event objects

If you want to THEN call IRQL

Create an event KeInitializeEvent PASSIVE_LEVEL

Create a named event IoCreateSynchronizationEvent PASSIVE_LEVEL

 IoCreateNotificationEvent

Modify event state KeSetEvent <= DISPATCH LEVEL

 KeClearEvent

 KeResetEvent

Wait for a timer KeWaitForSingleObject PASSIVE_LEVEL

 KeWaitForMultipleObjects

Interrogate an event KeReadStateEvent <= DISPATCH_LEVEL

Sharing Events Between Drivers

It is difficult for two unrelated drivers to share an Event object created with KeInitializeEvent. The event

object is referenced only by pointer, and without some kind of explicit agreement (for example, an internal

IOCTL), there is no simple way to pass a pointer from one driver to another. Even then, there is the issue of

ensuring that the driver creating the Event stays loaded while another driver uses the object.

The IoCreateSynchronizationEvent and IoCreateNotificationEvent functions allow the creation of named

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Event objects. As long as two drivers use the same Event name, they can each obtain pointers to the same

Event object. Both functions behave like the Win32 CreateEvent system call. In other words, the first driver

to make a call with a specific Event name causes the Event object to be created. Subsequent calls

attempting to create a duplicate Event object simply return a handle to the existing Event object.

There are two notable behaviors of the IoCreateXxxEvent functions. First, memory for the KEVENT object

is not allocated by the driver. Storage is supplied by the system. When the last user of the Event releases it,

the system deletes the object automatically.

Second, the IoCreateXxxEvent calls return a handle to the event object, not a memory pointer. To use the

Event object in calls to the KeXxx functions listed in Table 14.6, a pointer is required. To convert a handle

into an object pointer, the following steps must be performed:

Call ObReferenceObjectByHandle. This function obtains a pointer to the Event object itself and

increments the object's pointer reference count.

1.

When the handle itself is no longer needed (and it is usually not needed at all), call ZwClose to

release it. This function decrements the object's handle reference count.

2.

When the Event object is no longer needed, call ObDereferenceObject to decrement the Event

object's pointer reference count and possibly delete the Event object.

3.

These functions can be called only from PASSIVE_LEVEL IRQL, which limits where a driver can use them.

Mutex Objects

A Mutex (short for mutual exclusion) is a dispatcher object that can be owned by only one thread at a time.

The object becomes nonsignaled when a thread owns it and signaled when it is available (unowned).

Mutexes provide an easy mechanism for coordinating mutually exclusive access to some shared resource,

usually memory.

Figure 14.2 shows threads B, C, and D waiting for a Mutex owned by thread A. When A releases the Mutex,

one of the waiting threads wakes up and becomes its new owner.

Figure 14.2. Mutex objects synchronize system threads.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To use a Mutex, nonpaged storage for an item of type KMUTEX must be reserved. Functions listed in Table

14.7 can then be used. Be aware that when a Mutex is initialized, it is always set to the signaled state.

Table 14.7. Functions that Operate on Mutex Objects

How to use mutex objects

If you want to… THEN call… IRQL

Create a Mutex KeIntializeMutex PASSIVE_LEVEL

Request Mutex ownership KeWaitForSingleObject PASSIVE_LEVEL

 KeWaitForMultipleObjects

Give up Mutex ownership KeReleaseMutex PASSIVE_LEVEL

Interrogate Mutex KeReadStateMutex <= DISPATCH_LEVEL

If a thread calls KeWaitForXxx on a Mutex it already owns, the thread never waits. Instead, the Mutex

increments an internal counter to record the fact that this thread is making recursive ownership requests.

When the thread wants to free the Mutex, it has to call KeReleaseMutex as many times as it requested

ownership. Only then will the Mutex go into the signaled state. This is the same behavior exhibited by Win32

Mutex objects.

It is also crucial that a driver release any Mutexes it might be holding before it makes a transition back into

user mode. The kernel will bug-check if any driver threads attempt to return control to the I/O Manager while

owning a Mutex. For example, a DriverEntry or Dispatch routine is not allowed to acquire a Mutex that would

later be released by some other Dispatch routine or by a system thread.

Semaphore Objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A Semaphore is a dispatcher object that maintains a count. The object remains signaled as long as its count

is greater than zero, and nonsignaled when the count is 0. In other words, a Semaphore is a counting

Mutex.

Figure 14.3 shows the operation of the Semaphore. Threads B, C, and D are all waiting for a Semaphore

whose current count is 0. When thread A calls KeReleaseSemaphore twice, the count increments to 2, and

two of the waiting threads are allowed to resume execution. Waking up two threads also causes the

Semaphore to decrement back to zero.

Figure 14.3. Semaphore objects synchronize system threads.

Again, the sample driver at the end of this chapter provides a good example. Its Dispatch routine increments

a Semaphore each time it adds an IRP to an internal work queue. As a worker thread removes IRPs from

the queue, it decrements the Semaphore and finally goes into a wait state when the queue is empty.

To use the Semaphore, storage must be allocated for an item of type KSEMAPHORE. Then the functions

listed in Table 14.8 can be used.

Table 14.8. Functions that Operate on Semaphore Objects

How to use semaphore objects

If you want to… THEN call… IRQL

Create a semaphore KeIntializeSemaphore PASSIVE_LEVEL

Decrement semaphore KeWaitForSingleObject PASSIVE_LEVEL

 KeWaitForMultipleObjects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Increment semaphore KeReleaseSemaphore <= DISPATCH_LEVEL

Interrogate semaphore KeReadStateSemaphore Any

Timer Objects

A Timer is a dispatcher object with a timeout value. When a Timer is started, it goes into the nonsignaled

state until its timeout value expires. At that point, it becomes signaled. In chapter 10, a Timer object is used

to force a CustomTimerDpc routine to execute. Since they are just kernel dispatcher objects, they can also

be used in calls to KeWaitForXxx.

Figure 14.4 illustrates the operation of the Timer object. Thread A starts the Timer and then calls

KeWaitForSingleObject. The thread blocks until the Timer expires. At that point, the timer goes into the

signaled state and the thread wakes up.

Figure 14.4. Timer Objects synchronize system threads.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Timer objects actually come in two different flavors: Notification Timers and Synchronization Timers. The

type is chosen when the object is initialized. Although both types of Timers go into the signaled state when

their timeout value expires, the period that the object remains signaled differs.

When a Notification Timer times out, it remains in the signaled state until it is explicitly reset. While the Timer

is signaled, all threads waiting for the Timer are awakened.

When a Synchronization Timer expires, it remains in the Signaled state only long enough to satisfy a single

KeWaitForXxx request. At that point, the Timer becomes nonsignaled automatically.

To use a Timer, storage must be allocated for an item of type KTIMER and then the functions listed in Table

14.9 can be used.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 14.9. Functions that Operate on Timer Objects

How to use timer objects

If you want to… THEN call… IRQL

Create a Timer KeIntializeTimerX PASSIVE_LEVEL

Start a one-shot Timer KeSetTimer <= DISPATCH_LEVEL

Start a repeating Timer KeSetTimerEx <= DISPATCH_LEVEL

Stop a Timer KeCancelTimer <= DISPATCH_LEVEL

Wait for a Timer KeWaitForSingleObject PASSIVE_LEVEL

 KeWaitForMultipleObjects

Interrogate a Timer KeReadTimerState <= DISPATCH_LEVEL

Thread Objects

System threads are also dispatcher objects, which means they have a signaled state. When a system thread

terminates, its Thread object changes from the nonsignaled to the signaled state. This allows a driver to

synchronize its cleanup operations by waiting for the Thread object.

Notably, when PsCreateSystemThread is called, it returns a handle to the Thread object. To use a Thread

object in a call to KeWaitForXxx, a pointer to the object is required rather than a handle. To convert a

handle into an object pointer, the following steps must be performed:

Call ObReferenceObjectByHandle. This function provides a pointer to the Thread object itself and

increments the object's pointer reference count.

1.

When the handle itself is no longer needed (and it is usually not needed at all), call ZwClose to

release it. This decrements the object's handle reference count.

2.

After the thread terminates, call ObDereferenceObject to decrement the Thread object's pointer

reference count and possibly delete the Thread object.

3.

These functions can be called only from PASSIVE_LEVEL IRQL, which limits the places in a driver where

they can be used.

Variations on the Mutex

The Windows 2000 Executive supports two variations on Mutex objects. The following sections describe

them briefly. In general, using these objects instead of kernel Mutexes can result in better driver

performance. See the NT DDK documentation for more complete information.

Fast Mutexes

A Fast Mutex is a synchronization object that acts like a kernel Mutex, except that it does not allow recursive

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ownership requests. By removing this feature, the Fast Mutex does not have to do as much work, and its

speed improves.

The Fast Mutex itself is an object of type FAST_MUTEX that is associated with one or more data items

needing protection. Any code touching the data items must acquire ownership of the corresponding

FAST_MUTEX first. Use the functions listed in Table 14.10 to work with Fast Mutexes. Notice that these

objects have their own functions for requesting ownership. The KeWaitForXxx functions cannot be used to

acquire Fast Mutexes.

Table 14.10. Functions that Operate on Fast Mutexes

How to use Fast Mutexes

If you want to… THEN call… IRQL

Create a Fast Mutex ExInitializeFastMutex <= DISPATCH_LEVEL

Request Fast Mutex ownership ExAcquireFastMutex < DISPATCH_LEVEL

Give up Fast Mutex ownership ExReleaseFastMutex < DISPATCH_LEVEL

Executive Resources

Another synchronization object that behaves very much like a kernel Mutex is an Executive resource. The

main difference is the resource can either be owned exclusively by a single thread, or shared by multiple

threads for read access. Since it is common (in the real world) for multiple readers to request simultaneous

access to a resource, Executive Resource objects provide better throughput than standard kernel Mutexes.

The Executive Resource itself is just an object of type ERESOURCE that is associated with one or more

data items needing protection. Any code planning to touch the data items has to acquire ownership of the

corresponding ERESOURCE first. Table 14.11 lists the functions that work with Executive Resources. Notice

that these objects have their own functions for requesting ownership. The KeWaitForXxx functions cannot

be used to acquire Executive Resources.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 14.11. Functions that Operate on Executive Resources

How to use Executive resources

If you want to… THEN call… IRQL

Create ExInitializeResourceLite <= DISPATCH_LEVEL

Acquire ExAcquireResourceExclusiveLite < DISPATCH_LEVEL

 ExAcquirResourceSharedLite < DISPATCH_LEVEL

 ExTryToAcquireResourceExclusiveLite < DISPATCH_LEVEL

 ExConvertExclusiveToSharedLite < DISPATCH_LEVEL

Release ExReleaseResourceforThreadLite <= DISPATCH_LEVEL

Interrogate ExIsResourceAcquiredSharedLite <=DISPATCH_LEVEL

 ExIsResourceAcquiredExclusiveLite <= DISPATCH_LEVEL

Delete ExDeleteResourceLite <=DISPATCH_LEVEL

Synchronization Deadlocks

Deadlock situations can occur whenever multiple threads compete for simultaneous ownership of multiple

resources. Figure 14.5 shows the simplest form of this problem:

Figure 14.5. Deadlock scenario.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Thread A acquires resource X.1.

Thread B acquires resource Y.2.

Thread A requests ownership of resource Y and goes into a wait state until B releases Y.3.

Thread B then requests ownership of resource X. This causes B to go into a wait state until A

releases X. The result is a deadlock, or deadly embrace.

4.

A deadlock can occur using Events, Mutexes, or Semaphores. Even Thread objects can deadlock waiting

for each other to terminate. There are two general approaches to solving deadlock problems.

Use the Timeout arguments of the KeWaitForXxx functions to limit the time of the wait. While this

technique may help detect a deadlock, it does not really correct the underlying problem.

Force all the threads using a given set of resources to acquire them in the same order. In the

previous example, if A and B had both gone after resource X first and then Y second, there would

have been no deadlock.

Mutex objects provide some protection against the deadlocks through the use of level numbers. When a

Mutex is initialized, a level number is assigned. Later, when a thread attempts to acquire the Mutex, the

kernel will not grant ownership if that thread is holding any Mutex with a lower level number. By enforcing

this policy, the kernel avoids deadlocks involving multiple Mutexes.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Thread-Based Driver

This section presents a modified version for the packet-based slave DMA driver introduced in Chapter 12.

What is different about this driver is that it uses a system thread to do most of the I/O processing. As a

result, it spends very little time at DISPATCH_LEVEL IRQL and does not interfere as much with other

system components. Code examples can be found on the CD that accompanies this book or on the book's

Web site: http://www.W2KDriverBook.com.

How the Driver Works

Figure 14.6 gives a high-level view of the sample driver architecture. One of the first things to notice is that

the driver has no Start I/O routine. When a user-mode I/O request arrives, one of the driver's Dispatch

routines simply adds the IRP to a work queue associated with the Device object. Then the Dispatch routine

calls KeReleaseSemaphore to increment a Semaphore object that keeps track of the number of IRPs in the

work queue. A nonzero Semaphore count indicates the number of IRPs within the work queue yet to be

processed.

Figure 14.6. Architecture of a thread-based DMA driver.

Each Device object has its own system thread that processes these I/O requests. This thread is in an

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.W2KDriverBook.com

endless loop that begins with a call to KeWaitForSingleObject on the Semaphore. If the Semaphore object

has a nonzero count, the thread removes an IRP from the work queue and performs the I/O operation. On

the other hand, if the count is zero the thread goes into a wait state until the Dispatch routine inserts another

IRP in the queue.

When the thread needs to perform a data transfer, it starts the device and then uses

KeWaitForSingleObject to wait for an Event object. The driver's DpcForIsr routine sets this Event into the

signaled state after an interrupt arrives. The Event object effectively synchronizes the interrupt service code

(actually the DPC) with the worker thread that dequeues IRPs.

When the driver's RemoveDevice routine needs to kill the system thread, it sets a flag in the Device

Extension and increments the Semaphore object. If the thread was asleep waiting for the Semaphore object,

it wakes up, sees the flag, and terminates itself. If it is in the middle of an I/O operation, it won't see the flag

until it completes the current IRP.

The DEVICE_EXTENSION Structure

This file contains all the usual driver-defined data structures. The following excerpt shows only additional

fields that the driver needs in order to manage the system thread and its work queue. Other fields are

identical to those in the packet-based slave DMA example of chapter 12.

typedef struct _DEVICE_EXTENSION {

 ...

 // Pointer to worker thread object

 PETHREAD pThreadObj;

 // Flag set to TRUE when worker thread should quit

 BOOLEAN bThreadShouldStop;

 // Event object signaling Adapter is now owned

 KEVENT evAdapterObjectIsAcquired;

 // Event signaling last operation now completed

 KEVENT evDeviceOperationComplete;

 // The work queue of IRPs is managed by this

 // semaphore and spin lock

 KSEMAPHORE semIrpQueue;

 KSPIN_LOCK lkIrpQueue;

 LIST_ENTRY IrpQueueListHead;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

The AddDevice Function

This portion of the example shows the initialization code for the Thread object, the work queue, and the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

various synchronization objects used to process an I/O request. Remember that AddDevice is called once

for each Device object.

NTSTATUS AddDevice(IN PDRIVER_OBJECT pDriverObj,

 IN PDEVICE_OBJECT pdo) {

 ...

 // Initialize the work queue lock

 KeInitializeSpinLock(&pDevExt->lkIrpQueue);

 // Initialize the work queue itself

 InitializeListHead(&pDevExt->IrpQueueListHead);

 // Initialize the work queue semaphore

 KeInitializeSemaphore(&pDevExt->semIrpQueue,

 0, MAXLONG);

 // Initialize the event for the Adapter object

 KeInitializeEvent(

 &pDevExt-> evAdapterObjectIsAcquired,

 SynchronizationEvent, FALSE);

 // Intialize the event for the operation complete

 KeInitializeEvent(

 &pDevExt->evDeviceOperationComplete,

 SynchronizationEvent, FALSE);

 // Initially the worker thread runs

 pDevExt->bThreadShouldStop = FALSE;

 // Start the worker thread

 HANDLE hThread = NULL;

 status =

 PsCreateSystemThread(&hThread,

 (ACCESS_MASK)0,

 NULL,

 (HANDLE)0,

 NULL,

 WorkerThreadMain,

 pDevExt); // arg

 if (!NT_SUCCESS(status)) {

 IoDeleteSymbolicLink(&linkName);

 IoDeleteDevice(pfdo);

 return status;

 }

 // Obtain real pointer to Thread object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 ObReferenceObjectByHandle(

 hThread,

 THREAD_ALL_ACCESS,

 NULL,

 KernelMode,

 (PVOID*)&pDevExt->pThreadObj,

 NULL);

 ZwClose(hThread); // don't need handle at all

 ...

}

The DispatchReadWrite Function

This routine responds to user requests to read or write the device. After checking for a zero-length transfer,

it puts the IRP into the pending state and inserts it into the work queue attached to the target Device object.

It then increments the count in the work queue's Semaphore object. Notice that there are no calls to

IoStartPakcet because there is no Start I/O routine.

NTSTATUS DispatchReadWrite(IN PDEVICE_OBJECT pDO,

 IN PIRP pIrp) {

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PDEVICE_EXTENSION pDE = pDO->DeviceExtension;

 // Check for zero-length transfers

 if(pIrpStack->Parameters.Read.Length == 0)

 {

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 pIrp->IoStatus.Information = 0;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;

 }

// Start device operation

 IoMarkIrpPending(pIrp);

 // Add the IRP to the thread's work queue

 ExInterlockedInsertTailList(

 &pDE->IrpQueueListHead,

 &pIrp->Tail.Overlay.ListEntry,

 &pDE->lkIrpQueue);

 KeReleaseSemaphore(

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 &pDE->semIrpQueue,

 0, // No priority boost

 1, // Increment semaphore by 1

 FALSE); // No WaitForXxx after this call

 return STATUS_PENDING;

}

Thread.cpp

This module contains the main thread function and the routines needed to manage the thread.

WorkerThreadMain

This is the IRP-processing engine itself. Its job is to pull I/O requests from the work queue in the Device

Extension and perform the data transfer operation. This function continues to wait for new IRPs until the

RemoveDevice routine tells it to shut down.

VOID WorkerThreadMain(IN PVOID pContext) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pContext;

 PDEVICE_OBJECT pDeviceObj =

 pDevExt->pDevice;

 PLIST_ENTRY ListEntry;

 PIRP pIrp;

 CCHAR PriorityBoost;

 // Worker thread runs at higher priority than

 // user threads - it sets its own priority

 KeSetPriorityThread(

 KeGetCurrentThread(),

 LOW_REALTIME_PRIORITY);

 // Now enter the main IRP-processing loop

 while(TRUE)

 {

 // Wait indefinitely for an IRP to appear in

 // the work queue or for the RemoveDevice

 // routine to stop the thread.

 KeWaitForSingleObject(

 &pDevExt->semIrpQueue,

 Executive,

 KernelMode,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 FALSE,

 NULL);

 // See if thread was awakened because

 // device is being removed

 if(pDevExt->bThreadShouldStop)

 PsTerminateSystemThread(STATUS_SUCCESS);

 // It must be a real request. Get an IRP

 ListEntry =

 ExInterlockedRemoveHeadList(

 &pDevExt->IrpQueueListHead,

 &pDevExt->lkIrpQueue);

 pIrp = CONTAINING_RECORD(

 ListEntry,

 IRP,

 Tail.Overlay.ListEntry);

 // Process the IRP. This is a synchronous

 // operation, so this function doesn't return

 // until it's time to get rid of the IRP.

 PriorityBoost =

 PerformDataTransfer(

 pDeviceObj,

 pIrp);

 // Release the IRP and go back to the

 // top of the loop to see if there's

 // another request waiting.

 IoCompleteRequest(pIrp, PriorityBoost);

 } // end of while-loop

}

KillThread

This function notifies the thread associated with a particular Device object that it's time to quit. For simplicity,

this function stops and waits until the target thread is gone. Consequently, it can be called only from

PASSIVE_LEVEL IRQL.

VOID KillThread(IN PDEVICE_EXTENSION pDE) {

 // Set the Stop flag

 pDE->bThreadShouldStop = TRUE;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Make sure the thread wakes up

 KeReleaseSemaphore(

 &pDE->semIrpQueue,

 0, // No priority boost

 1, // Increment semaphore by 1

 TRUE); // WaitForXxx after this call

 // Wait for the thread to terminate

 KeWaitForSingleObject(

 &pDE->pThreadObj,

 Executive,

 KernelMode,

 FALSE,

 NULL);

 ObDereferenceObject(&pDE->pThreadObj);

}

Transfer.C

This portion of the example contains the support routines that perform I/O operations. This code is largely

derived from the packet-based slave DMA driver in chapter 12. Consequently, only those features that differ

significantly are described in detail.

The most notable detail is that very little actual work occurs within the Adapter Control or DpcForIsr routines.

Instead of doing their usual jobs, these functions just set Event objects to signal the thread's data transfer

routines that they can proceed.

PerformDataTransfer

This function moves an entire buffer of data to or from the device. This may include splitting the transfer over

several device operations if there aren't enough mapping registers to handle it all at once. This routine runs

at PASSIVE_LEVEL IRQL and doesn't return to the caller until everything is done.

CCHAR PerformDataTransfer(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp

)

{

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PDEVICE_EXTENSION pDE = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 PMDL pMdl = pIrp->MdlAddress;

 ULONG MapRegsNeeded;

 NTSTATUS status;

 // Set the I/O direction flag

 if(pIrpStack->MajorFunction == IRP_MJ_WRITE)

 pDE->bWriteToDevice = TRUE;

 else

 pDE->bWriteToDevice = FALSE;

 // Set up bookkeeping values

 pDE->bytesRequested =

 MmGetMdlByteCount(pMdl);

 pDE->bytesRemaining =

 pDE->bytesRequested;

 pDE->transferVA = (PCHAR)

 MmGetMdlVirtualAddress(pMdl);

 // Flush CPU cache if necessary

 KeFlushIoBuffers(

 pIrp->MdlAddress,

 !pDE->bWriteToDevice,

 TRUE);

 // Calculate size of first partial transfer

 pDE->transferSize = pDE->bytesRemaining;

 MapRegsNeeded =

 ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDE->transferVA,

 pDE->transferSize);

 if(MapRegsNeeded > pDE->mapRegisterCount)

 {

 MapRegsNeeded =

 pDE->mapRegisterCount;

 pDE->transferSize =

 MapRegsNeeded * PAGE_SIZE -

 MmGetMdlByteOffset(pMdl);

 }

 // Acquire the adapter object.

 status = AcquireAdapterObject(

 pDE,

 MapRegsNeeded);

 if(!NT_SUCCESS(status)) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information = 0;

 return IO_NO_INCREMENT;

 }

 // Try to perform the first partial transfer

 status =

 PerformSynchronousTransfer(

 pDevObj,

 pIrp);

 if(!NT_SUCCESS(status)) {

 pDE->pDmaAdapter->DmaOperations->

 FreeAdapterChannel (pDE->pDmaAdapter);

 pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information = 0;

 return IO_NO_INCREMENT;

 }

 // It worked. Update the bookkeeping information

 pDE->transferVA += pDE->transferSize;

 pDE->bytesRemaining -= pDE->transferSize;

 // Loop through all the partial transfer

 // operations for this request.

 while(pDE->bytesRemaining >0)

 {

 // Try to do all of it in one operation

 pDE->transferSize = pDE->bytesRemaining;

 MapRegsNeeded =

 ADDRESS_AND_SIZE_TO_SPAN_PAGES(

 pDE->transferVA,

 pDE->transferSize);

 // If the remainder of the buffer is more

 // than we can handle in one I/O. Reduce

 // our expectations.

 if (MapRegsNeeded > pDE->mapRegisterCount) {

 MapRegsNeeded = pDE->mapRegisterCount;

 pDE->transferSize =

 MapRegsNeeded * PAGE_SIZE -

 BYTE_OFFSET(pDE->TransferVA);

 }

 // Try to perform a device operation.

 status =

 PerformSynchronousTransfer(

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDevObj,

 pIrp);

 if(!NT_SUCCESS(status)) break;

 // It worked. Update the bookkeeping

 // information for the next cycle.

 pDE->transferVA += pDE->transferSize;

 pDE->bytesRemaining -= pDE->transferSize;

 }

 // After the last partial transfer is done,

 // release the DMA Adapter object .

 pDE->pDmaAdapter->DmaOperations->

 FreeAdapterChannel (pDE->pDmaAdapter);

 // Send the IRP back to the caller. Its final

 // status is the status of the last transfer

 // operation.

 pIrp->IoStatus.Status = status;

 pIrp->IoStatus.Information =

 pDE->bytesRequested -

 pDE->bytesRemaining;

 // Since there has been at least one I/O

 // operation, give the IRP a priority boost.

 //

 return IO_DISK_INCREMENT;

}

AcquireAdapterObject and AdapterControl

These two functions work together to give a thread a synchronous mechanism for acquiring ownership of

the adapter object. AcquireAdapterObject runs in the context of a system thread so it can stop and wait for

a nonzero time interval.

static NTSTATUS AcquireAdapterObject(

 IN PDEVICE_EXTENSION pDE,

 IN ULONG MapRegsNeeded

) {

 KIRQL OldIrql;

 NTSTATUS status;

 // We must be at DISPATCH_LEVEL in order

 // to request the Adapter object

 KeRaiseIrql(DISPATCH_LEVEL, &OldIrql);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDE->pDmaAdapter->DmaOperations->

 AllocateAdapterChannel (

 pDE->pDmaAdapter,

 pDE->pDevice,

 MapRegsNeeded,

 AdapterControl,

 pDE);

 KeLowerIrql(OldIrql);

 // If the call failed, it's because there

 // weren't enough mapping registers.

 if(!NT_SUCCESS(status))

 return status;

 // Stop and wait for the Adapter Control

 // routine to set the Event object. This is

 // our signal that the Adapter object is ours.

 KeWaitForSingleObject(

 &pDE->evAdapterObjectIsAcquired,

 Executive,

 KernelMode,

 FALSE,

 NULL);

 return STATUS_SUCCESS;

}

IO_ALLOCATION_ACTION AdapterControl(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID MapRegisterBase,

 IN PVOID pContext

)

{

 PDEVICE_EXTENSION pDE = (PDEVICE_EXTENSION)

 pContext;

 // Save the handle to the mapping

 // registers. The thread will need it

 // to set up data transfers.

 //

 pDE->mapRegisterBase = MapRegisterBase;

 // Let the thread know that its Device

 // object the Adapter object

 KeSetEvent(

 &pDE->evAdapterObjectIsAcquired,

 0,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 FALSE);

 return KeepObject;

}

PerformSynchronousTransfer

Running in the context of the system thread, this function performs a single data transfer operation. It

doesn't return to the caller until the transfer finishes. Notably, the function uses an Event object to wait for

the arrival of a device interrupt.

NTSTATUS PerformSynchronousTransfer(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp

) {

 PDEVICE_EXTENSION pDE = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 // Set up the system DMA controller

 // attached to this device.

 pDE->pDmaAdapter->DmaOperations->

 MapTransfer(

 pDE->pDmaAdapter,

 pIrp->MdlAddress,

 pDE->mapRegisterBase,

 pDE->transferVA,

 &pDE->transferSize,

 pDE->bWriteToDevice);

 // Start the device

 WriteControl(

 pDE,

 CTL_INTENB | CTL_DMA_GO);

 // The DPC routine will set an Event

 // object when the I/O operation is

 // done. Stop here and wait for it.

 KeWaitForSingleObject(

 &pDE->evDeviceOperationComplete,

 Executive,

 KernelMode,

 FALSE,

 NULL);

 // Flush data out of the Adapater

 // object cache.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDE->pDmaAdapter->DmaOperations->

 FlushAdapterBuffers(

 pDE->pDmaAdapter,

 pIrp->MdlAddress,

 pDE->mapRegisterBase,

 pDE->transferVA,

 pDE->transferSize,

 pDE->bWriteToDevice);

 // Check for device errors

 if(!STS_OK(pDE->DeviceStatus))

 return STATUS_DEVICE_DATA_ERROR;

 else

 return STATUS_SUCCESS;

}

DpcForIsr

When the device generates an interrupt, the Interrupt Service Routine (not shown here) saves the status of

the hardware and requests a DPC. Eventually, DpcForIsr executes and just sets an Event object into the

signaled state.

PerformSynchronousTransfer (which has been waiting for this Event object) wakes up and continues

processing the current IRP.

VOID DpcForIsr(

 IN PKDPC pDpc,

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext

)

{

 PDEVICE_EXTENSION pDE = (PDEVICE_EXTENSION)

 pContext;

 KeSetEvent(

 &pDE->evDeviceOperationComplete,

 0,

 FALSE);

 return;

}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

This chapter presented the use of system threads within drivers to accomplish specific tasks in

parallel with others. Although not all drivers should utilize a multithreaded architecture, there are

several scenarios where the technique is appropriate.

The next chapter deals with layering drivers to accomplish organization and reuse of code.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 15. Layered Drivers

CHAPTER OBJECTIVES

An Overview of Intermediate Driver

Writing Layered Drivers

Writing I/O Completion Rules

Allocating Additional IRPs

Writing Filter Drivers

Code Example: A Filter Driver

Writing Tightly Coupled Drivers

Summary

The ability to break a large unit of work into several smaller pieces is the cornerstone of

software development. The Windows 2000 device driver model supports this necessary

abstraction by allowing the work of a driver to be implemented in multiple layers. Besides

simplifying the overall job of writing a driver, this allows different vendors to supply different

parts of the implementation.

Indeed, the WDM driver model is based upon layering functional drivers on top of physical drivers,

with optional filter drivers surrounding the functional layer. In most cases, a physical driver (that

interacts with a standard bus) is never written. And in many cases, only a filter driver must be written

to affect the desired behavior from an existing functional driver.

This chapter describes the details of layering a driver design into a hierarchy.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

An Overview of Intermediate Drivers

Before moving into the intricacies of the implementation of intermediate drivers, a few definitions are

in order. This section also explores some of the trade-offs inherent in using a hierarchical driver

architecture.

Intermediate Drivers Defined

For the purposes of this chapter, an intermediate driver is any kernel-mode driver that issues I/O

requests to another driver. Intermediate drivers are often not responsible for any direct, register-level

manipulation of hardware resources. Instead, they depend on a lower-level device driver, such as

the physical driver, to perform hardware operations. In fact, intermediate drivers can assume a wide

variety of forms.

The term "intermediate driver" is so generic that it must be classified in order to provide useful

information. The possible classifications depend on whether or not the driver conforms to the WDM

model.

For WDM-compliant driver implementations, there are three kinds of drivers:

Bus drivers

—Provide a hardware bus interface on a per slot basis and create one or more Physical

Device Objects (PDOs).

Function drivers

—Provide read, write, and other functional logic for an individual device. They create and

manage one or more Functional Device Objects (FDOs)

Filter drivers

—Provide modifications to an I/O request before presentation to lower layer drivers. Filters

can be placed around the functional driver or on top of a bus driver.

Note the relationship between a bus driver and a physical device object. The bus driver constructs

and manages PDOs and is therefore often called a physical driver.

Outside the WDM model, driver architectures can choose to use layered approaches in other ways:

Filter drivers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

—A driver can be written to transparently intercept requests intended for some other driver.

This allows behavior modifications of an existing driver.

Tightly coupled drivers

—This category includes drivers that define a private interface between them. The interface

does not use the I/O Manager's calling mechanism for inter-driver communication.

With the exception of tightly coupled drivers, all intermediate drivers are a form of layered drivers.

Later parts of this chapter explain how to develop drivers in each of these families.

When To Use a Layered Architecture

One early and important driver design issue is whether to implement the driver as a series of layers,

or whether it should be structured as a single, monolithic unit. The following section provides the

trade-offs of using a layered approach.

PROS OF LAYERED ARCHITECTURE

Depending on the goals, multiple driver layers can provide a number of benefits. Using layers allows

the separation of higher-level protocol issues from management of the specific underlying hardware.

This makes it possible to support a wider variety of hardware without having to rewrite large

amounts of code. It also promotes flexibility by allowing the same protocol driver to plug into different

hardware drivers at runtime. This is the approach taken by Windows 2000 network drivers.

If several different kinds of peripherals can all be attached to the same controller (as in the case of a

SCSI adapter), layering allows the decoupling of the management of the peripheral from the

management of the controller. To do this, a single device driver for the controller (the port driver)

and separate higher-level class drivers for each type of attached peripheral must be written. The two

main benefits are that the class drivers are smaller and simpler, and (assuming a well-defined

protocol) the class and port drivers can come from different vendors.

The implementation of the USB and IEEE 1394 buses is based upon a layered approach for these

exact reasons.

Layering also makes it possible to hide hardware limitations from users of the device, or to add

features not supported by the hardware itself. For example, if a given piece of hardware can handle

transfers only of a certain size, another driver that would break oversized transfers into smaller

pieces might be stacked on top. Users of the device would be unaware of the device's shortcomings.

Inserting driver layers provides a transparent way to add or remove features from a product without

having to maintain multiple code bases for the same product. Fault-tolerant disks are one example

of this. They are implemented as a separate driver layer that is shipped with Windows 2000 Server

but not with Windows 2000 Professional.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

CONS OF LAYERED ARCHITECTURE

Of course, there is a downside to the use of a layered architecture. First, I/O requests incur extra

overhead because each IRP has to take a trip through the I/O Manager every time it passes from

one driver to another. To some extent, this overhead can be reduced by defining a private

inter-driver interface that partially bypasses the I/O Manager.

It also takes somewhat more design effort to make sure that the separate driver components fit

together seamlessly. In the absence of an external standard, this can be especially painful if some

of the drivers are coming from different vendors.

Since the overall functionality is no longer contained in a single driver executable, there is somewhat

more bookkeeping involved in managing the drivers.

This also has some impact on maintaining version compatibility between various members of a

hierarchy.

Finally, installing layered drivers is slightly more involved since each must provide proper installation

procedures. In addition, it is necessary to set dependency relationships among the various drivers in

the hierarchy to make sure they start in the proper order.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Layered Drivers

Layered drivers are the most general type of intermediate driver. They depend on a well-defined inter-driver

calling mechanism provided by the I/O Manager. The following three sections explain how this mechanism

works and what a driver needs to do if it wants to use another driver as a component.

How Layered Drivers Work

As shown in Figure 15.1, a layered driver may expose one or more named Device objects to which clients

send I/O requests. When an IRP representing one of these requests arrives, the layered driver can proceed

in two different ways.

Figure 15.1. Layared driver operation.

Send the IRP directly to a lower-level driver.

Hold the IRP in a pending state while it allocates additional IRPs and sends them to one or more

lower-level drivers.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If the layered driver needs to regain control after a lower-level driver finishes with an IRP, it can attach an

I/O Completion routine to the IRP. This routine executes when the lower driver calls IoCompleteRequest.

Initialization and Cleanup in Layered Drivers

Like every other kernel-mode driver, a layered driver must expose a main entry point called DriverEntry. It

must also supply a corresponding Unload routine. As a WDM driver, a layered driver must support

AddDevice and RemoveDevice, along with other PnP request handlers as appropriate. The following

sections describe what these routines must do.

DriverEntry

The initialization steps performed by a layered driver are similar to those of a regular driver. The prime

difference is that a layered driver must determine which I/O requests it handles directly and which it passes

through to lower-level drivers. The layered driver entry points are initialized to routines that perform the

appropriate action on the various IRP requests.

AddDevice

The work performed by a layered driver is a variation of the work that any WDM driver must perform. It

includes

Calling IoCreateDevice to build the upper-level device objects seen by the outside world. Like the

device objects created by other drivers, the device name must be unique.

1.

Calling IoAttachDeviceToDeviceStack to pile the layered driver's device on top of an existing

stack of devices.

2.

Normally, AddDevice saves the target Device object pointer in the Device Extension of the

upper-level Device object at the time it stacks itself on top of the driver stack.

3.

If the layered driver forwards incoming IRPs to the target Device object, AddDevice should set the

layered Device object's StackSize field to a value one greater than the StackSize field of the target

Device object. This guarantees that there are enough stack slots for all the drivers in the hierarchy.

4.

If the lower-level driver requires it, AddDevice fabricates an IRP with IRP_MJ_CREATE as its

major function code and sends it to the target Device object.

5.

If the Device object is exposed separately to Win32 applications, Add-Device calls

IoCreateSymbolicLink to add its Win32 name to the \?? area of the Object Manager's

namespace.

6.

After these steps are performed, the layered driver can use the target Device object pointer to make calls to

the lower-level driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

RemoveDevice

When a layered driver is sent the PnP request for IRP_MN_REMOVE_DEVICE, the driver must reverse the

work of AddDevice. Although the exact steps may vary, a layered driver's RemoveDevice routine generally

performs the following:

It calls IoDeleteSymbolicLink to remove the upper-level Device object's Win32 name from the

Object Manager's namespace.

1.

If the lower-level driver requires it, an IRP with IRP_MJ_CLOSE as its major function code is

fabricated and sent to the target Device object.

2.

The target Device object's pointer reference count is decremented by calling IoDetachDevice. This

effectively breaks the connection with the target Device object.

3.

Finally, it destroys the upper-level Device object by calling IoDeleteDevice.4.

Code Fragment: Connecting to Another Driver

The following code fragment shows how one driver might layer itself on top of another. In this example, the

lower-level driver, LODRIVER, exposes a device called LO0 and the layered driver, HIDRIVER, exposes

HI0.

NTSTATUS AddDevice (

 IN PDRIVER_OBJECT pDriverObject,

 IN PDEVICE_OBJECT pdo) {

 CUString hiDevName("\device\HI");

 PDEVICE_OBJECT pHiFdo;

 PDEVICE_EXTENSION pHiExt;

 NTSTATUS status;

 // Form the internal Device Name for the hi object

 ulHiDeviceNumber++;

 hiDevName += CUString(ulHiDeviceNumber);

 // Now create the device

 status =

 IoCreateDevice(pDriverObject,

 sizeof(DEVICE_EXTENSION),

 &(UNICODE_STRING)hiDevName,

 FILE_DEVICE_UNKNOWN,

 0, TRUE,

 &pHiFdo);

 if (!NT_SUCCESS(status))

 return status;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Initialize the Device Extension

 pHiExt = (PDEVICE_EXTENSION)pHiFdo->DeviceExtension;

 pHiExt->pDevice = pHiFdo; // back pointer

 pHiExt->DeviceNumber = ulHiDeviceNumber;

 pHiExt->ustrDeviceName = hiDevName;

 // Pile this new fdo on top of the existing lower stack

 pHiExt->pLowerDevice = // downward pointer

 IoAttachDeviceToDeviceStack(pHiFdo, pdo);

 // Since IRPs will be forwarded to the lower device,

 // room must be reserved within the IRP I/O Stack

 // locations for this higher Device object.

 pHiFdo->StackSize = pHiExt->pLowerDevice->StackSize + 1;

 // Finally, copy the characteristics of the lower device

 // into the high device's "Flags" & "DeviceType" fields:

 pHiFdo->Flags |=

 (pHiExt->pLowerDevice->Flags &

 (DO_BUFFERED_IO | DO_DIRECT_IO |

 POWER_INRUSH | POWER_PAGABLE));

 pHiFdo->DeviceType =

 pHiExt->pLowerDevice->DeviceType;

 pHiFdo->Characteristics =

 pHiExt->pLowerDevice->Characteristics;

 // Form the symbolic link name (if necessary), etc.

 ...

Other Initialization Concerns for Layered Drivers

Layered drivers operate, generically, in one of two modes: transparent or virtual.

TRANSPARENT

Some layered drivers are intended to slip transparently between a lower-layer driver and its clients. The

layered driver would therefore need to mimic the behavior of the lower driver, since clients are likely to be

unaware of the inserted layer. Windows 2000 fault-tolerant disk driver is one example of a transparent layer.

To guarantee that the layered driver behaves in a transparent manner, the DriverEntry and AddDevice

function needs to perform the following extra initialization:

Within DriverEntry, the exact set of MajorFunction codes as the lower driver should be supported,

either passing through IRP requests or overriding the behavior of the lower driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Within AddDevice, copy the DeviceType and Characteristics fields from the target Device object

into the layered Device object. This step is shown in the preceding code example.

AddDevice should copy the DO_DIRECT_IO or DO_BUFFERED_IO bits from the target Device's

Flags field. This ensures that the layered Device object uses the same buffering strategy as the

target.

VIRTUAL OR LOGICAL DEVICE LAYER

The other possibility is that the layered driver exposes virtual or logical Device objects. It is possible to

synthesize a device abstraction that bears little, if any, resemblance to the actual underlying physical

implementation. For example, a named pipe object is a logical device that is far removed from the actual

network hardware upon which it may be implemented.

In this case, the layered driver should choose appropriate values for the Type and Characteristics fields of

the layered Device object. Also, the exact set of MajorFunction dispatch functions supported by the layered

driver is the set appropriate to the logical Device object. Similarly, there is no requirement for the layered

and target Device objects to use the same buffering strategy.

I/O Request Processing in Layered Drivers

Since layered drivers do not directly manage hardware, they do not need Start I/O, Interrupt Service, or DPC

routines. Instead, most of the code in a layered driver consists of Dispatch routines and I/O Completion

routines. Because they deserve extra attention, I/O Completion routines are discussed later in this chapter.

The sections below describe the operation of the layered driver's Dispatch routines. When one of these

Dispatch routines receives an IRP, one of three actions can be taken: complete the IRP directly, pass down

the IRP, or generate new IRP requests for lower layers. Each possibility is descried below.

COMPLETE THE ORIGINAL IRP

The simplest case is when the Dispatch routine is able to process the request all by itself and return either

success or failure notification to the original caller. The Dispatch routine does the following:

It calls IoGetCurrentStackLocation to get a pointer to the driver's I/O stack slot.1.

The Dispatch routine processes the request using various fields in the IRP and the I/O stack

location.

2.

It puts an appropriate value in the IoStatus.Information field of the IRP.3.

The Dispatch routine also fills the IoStatus.Status field of the IRP with a suitable STATUS_XXX

code.

4.

Then it calls IoCompleteRequest with the priority-boost value of IO_NO_INCREMENT to send the

IRP back to the I/O Manager.

5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As its return value, the Dispatch routine passes back the same STATUS_XXX code that it puts into

the IRP.

6.

This process is not magic. In fact, it is the same procedure any Dispatch routine follows when it wants to

end the processing of a request.

PASS THE IRP TO ANOTHER DRIVER

The second possibility is that the layered driver's Dispatch routine needs to pass the IRP to the next lower

driver. The Dispatch routine does the following:

It calls IoGetCurrentIrpStackLocation to get a pointer to its own I/O stack location.1.

The Dispatch routine also calls IoGetNextIrpStackLocation to retrieve a pointer to the I/O stack

location of the next lower driver.

2.

It sets up the next lower driver's I/O stack location, including the MajorFunction field and various

members of the Parameters union.

3.

The Dispatch routine calls IoSetCompletionRoutine to associate an I/O Completion routine with

the IRP. At the very least, this I/O Completion routine is going to be responsible for marking the IRP

as pending.

4.

It sends the IRP to a lower-level driver using IoCallDriver. This is an asynchronous call that returns

immediately regardless of whether the lower-level driver completed the IRP.

5.

As its return value, the Dispatch routine passes back whatever status code is returned by

IoCallDriver. This will be STATUS_SUCCESS, STATUS_PENDING, or some STATUS_XXX error

code.

6.

Notice that the Dispatch routine does not call IoMarkIrpPending to put the original IRP in the pending state

before sending it to the lower driver. This is because the Dispatch routine does not know whether the IRP

should be marked pending until after IoCallDriver returns. Unfortunately, by that time IoCallDriver has

already pushed the I/O stack pointer in the IRP, so a call to IoMarkIrpPending (which always works with the

current stack slot) would mark the wrong stack location. The solution is to call IoMarkIrpPending in an I/O

Completion routine after the IRP stack pointer has been reset to the proper level.

ALLOCATE ADDITIONAL IRPs

Finally, the layered driver's Dispatch routine may need to allocate one or more additional IRPs, which it then

sends to lower-level drivers. The Dispatch routine has the option of waiting for these additional IRPs to

complete, or of issuing asynchronous requests to the lower driver. In the asynchronous case, cleanup of the

additional IRPs occurs in an I/O Completion routine The technique of allocating IRPs within a driver is

explained later in this chapter.

Code Fragment: Calling a Lower-Level Driver

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The code fragment below shows how the Dispatch routine in one driver might forward an IRP to a

lower-level driver. For purposes of the example, it also shows how the upper driver could store some context

(in this case, a retry count) in an unused field of its own I/O stack location.

NTSTATUS DispatchRead(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 PIO_STACK_LOCATION pThisIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PIO_STACK_LOCATION pNextIrpStack =

 IoGetNextIrpStackLocation(pIrp);

 // In this case, the upper driver copies the entire

 // stack location from its slot into the stack

 // of the next lower driver.

 // In other words - pass-thru to next lower driver

 *pNextIrpStack = *pThisIrpStack;

 // Choose a (now) unused field with the upper

 // driver's IRP to store some context in this

 // case, a retry count.

 pThisIrpStack->Parameters.Read.Key =

 RETRY_COUNT_MAXIMUM_VALUE;

 // To recapture this IRP after the lower driver

 // finishes, the upper driver attaches an

 // I/O Completion routine: ReadCompletion.

 // Since the final 3 args of the following call are

 // TRUE, ReadCompletion is called regardless

 // of why the IRP completes.

 IoSetCompletionRoutine(

 pIrp,

 ReadCompletion,

 NULL,

 TRUE, TRUE, TRUE);

 // Now send the IRP to the lower driver.

 // Return whatever the lower driver returns.

 return IoCallDriver(pDevExt->pLowerDevice, pIrp);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing I/O Completion Routines

An I/O Completion routine is an I/O Manager callback that notifies a higher-level driver when the

lower-level driver has finished work on an IRP. This section explains how to use I/O Completion

routines in intermediate drivers.

Requesting an I/O Completion Callback

To regain control of an IRP after it has been processed by a lower-level driver, use

IoSetCompletionRoutine (described in Table 15.1). This function puts the address of an I/O

Completion routine in the IRP stack location associated with the next lower driver. When some

lower-level driver calls IoCompleteRequest, the I/O Completion routine executes as the IRP

bubbles its way back to the top of the driver hierarchy.

Except for the driver on the bottom, each driver in the hierarchy can attach its own I/O Completion

routine to an IRP. This allows every level to receive notification when an IRP completes. The I/O

Completion routines execute in driver-stacking order, from bottom to top.

Table 15.1. Function Prototype for IoSetCompletionRoutine

VOID IoSetCompletionRoutine IRQL <=DISPATCH_LEVEL

Parameter Description

IN PIRP pIrp Address of IRP the driver wants to track

IN PIO_COMPLETION_ROUTINE

CompletionRoutine

Routine to call when a lower driver completes

the IRP

IN PVOID pContext Argument passed to I/O Completion routine

IN BOOLEAN bInvokeOnSuccess Call routine if IRP completes successfully

IN BOOLEAN bInvokeOnError Call routine if IRP completes with error

IN BOOLEAN bInvokeOnCancel Call routine if IRP is canceled

Return value - void -

The three BOOLEAN parameters passed to IoSetCompletionRoutine allow the callback to be

invoked based on the disposition of the IRP by the lower level. The I/O Manager uses the

IoStatus.Status field of the IRP to decide whether to invoke the I/O Completion routine.

Execution Context

By the time an I/O Completion routine is called, the I/O Manager has already popped the I/O stack

pointer, so the current stack location is the one belonging to the driver. Table 15.2 lists the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

arguments passed to an I/O Completion routine.

The execution context of an I/O Completion routine is the same as that of the caller of

IoCompleteRequest. This could be either PASSIVE_LEVEL or DISPATCH_LEVEL, depending

upon whether a DPC routine is used to complete the IRP. Since the design of the lower level is not

likely to be under the control of the higher level, an I/O completion routine must assume the more

restrictive context of DISPATCH_LEVEL IRQL.

When an I/O Completion routine is finished, it should return one of two status codes. Returning

STATUS_SUCCESS allows the IRP to continue its journey back toward the original requester.

Along the way, other I/O Completion routines attached to higher-level drivers execute. This is

normally the appropriate return value when the IRP originated from a higher level.

To suspend further processing of the "completed" IRP, an I/O Completion routine can return

STATUS_MORE_PROCESSING_REQUIRED. This value blocks the execution of any higher-level

I/O Completion routines attached to the IRP. It also prevents the original caller from receiving

notification that the IRP has completed. An I/O Completion routine should return this code if it either

plans to send the IRP back down to a lower-level driver (as in the case of a split transfer) or if the

IRP was allocated by this driver and the I/O Completion routine is going to deallocate it.

Table 15.2. Function Prototype for an I/O Completion Routine

NTSTATUS IoCompletion IRQL ==PASSIVE_LEVEL or IRQL == DISPATCH_LEVEL

Parameter Description

IN PDEVICE_OBJECT pDevObj Device object of the just completed request

IN PIRP pIrp The IRP being completed

IN PVOID pContext Context passed from IoSetCompletionRoutine

Return value
STATUS_MORE_PROCESSING_REQUIRED

STATUS_SUCCESS

What I/O Completion Routines Do

An intermediate driver can attach an I/O Completion routine to any IRP it sends to another driver.

This includes the original IRP the driver received from another caller, as well as any IRPs that the

driver itself allocates. When an I/O Completion routine executes, there are three general kinds of

tasks it may need to perform.

RELEASE THE ORIGINAL IRP

If the completed IRP is one that came from an outside caller, it may require some driver-specific

cleanup. At the very least, the I/O Completion routine for one of these IRPs needs to do the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

following:

Test the value of the IRP's PendingReturned flag.1.

If this flag is TRUE, the I/O Completion routine puts the current I/O stack location into the

pending state with a call to IoMarkIrpPending.

2.

Finally, it returns a value of STATUS_SUCCESS to allow completion processing to

continue.

3.

DEALLOCATE THE IRP

If the IRP was allocated by the driver, the I/O Completion routine may be responsible for releasing it.

Based on how the IRP was allocated, an appropriate deallocation technique must be employed. The

next section explains the entire process.

RECYCLE THE IRP

Some intermediate drivers have to split a transfer into smaller pieces before sending it to a

lower-level driver. Normally, the most efficient way to do this is to send each partial transfer to the

lower driver by reusing the same IRP. To recycle an IRP, the I/O Completion routine does the

following:

It checks the context information stored with the IRP to see if this was the last partial

transfer. If the whole transfer is finished and the IRP came from an outside caller, the driver

performs any necessary cleanup and returns STATUS_SUCCESS to allow further

completion processing.

1.

If the entire transfer is finished and the IRP is driver-allocated, the I/O Completion routine

performs any necessary cleanup, frees the IRP, and returns

STATUS_MORE_PROCESSING_REQUIRED to prevent any further completion

processing.

2.

If there is more work to be done, the I/O Completion routine calls

IoGetNextIrpStackLocation and sets up the I/O stack slot for the next lower driver.

3.

It uses IoSetCompletionRoutine to attach the address of this I/O Completion routine to the

IRP.

4.

It passes the IRP to the target Device object using IoCallDriver.5.

Finally, it returns STATUS_MORE_PROCESSING_REQUIRED to prevent any further

completion processing of this IRP.

6.

During each partial transfer, an intermediate driver must maintain the current transfer count. One

clever way to maintain this context information is to store it in unused fields of the intermediate

driver's I/O stack location. For example, the Parameters.ByteOffset and Parameters.Key fields of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the IRP stack area are often unused fields for a higher-level driver. Three DWORDs of context data

can be maintained within these fields.

Otherwise, the straightforward technique of allocating a private block from pooled memory that is

passed as a context argument to the I/O Completion routine can always be used.

Code Fragment: An I/O Completion Routine

Listed below is a fragment of an I/O Completion routine. It complements the DispatchRead function

presented in the last section. If the request completes normally, the IRP is sent back to the original

caller. If some- thing fails at a lower level, it retries the operation a fixed number of times.

NTSTATUS ReadCompletion(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

 PDEVICE_EXTENSION pDevExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 PIO_STACK_LOCATION pThisIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PIO_STACK_LOCATION pNextIrpStack =

 IoGetNextIrpStackLocation(pIrp);

 // Set up a reference variable for the retryCount.

 // The variable uses the Parameters.Read.Key field.

 DWORD &retryCount =

 pThisIrpStack->Parameters.Read.Key;

 // If the lower level finshed successfully,

 // or if we have exceeded our retry count,

 // return normally.

 if ((NT_SUCCESS(pIrp->IoStatus.Status)) ||

 (retryCount == 0)) {

 // If the lower level requested that the

 // IRP be marked "pending", make it so.

 if (pIrp->bPendingReturned)

 IoMarkIrpPending(pIrp);

 return STATUS_SUCCESS;

 }

 // The lower level reported a failure, but we still

 // have the patience to try again (for a while)

 retryCount--; // patience counter

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Copy down the stack (again)

 *pNextIrpStack = *pThisIrpStack;

 // Don't confuse lower level with our retry count

 *pNextIrpStack->Parameters.Read.Key = 0;

 // The I/O Completion routine must be reset each

 // time the IRP is recyled.

 IoSetCompletionRoutine(

 pIrp,

 ReadCompletion,

 NULL,

 TRUE, TRUE, TRUE);

 // Send the IRP back to the lower level

 IoCallDriver(pDevExt->LowerDevice, pIrp);

 // Indicate to the I/O Manager that we're still

 // working on the request.

 return STATUS_MORE_PROCESSING_REQUIRED;

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Allocating Additional IRPs

There are some situations where an intermediate driver needs to allocate additional IRPs to send to

another driver. For example, the initialization code in one driver might want to query the capabilities

of a lower-level driver by issuing an IOCTL request. An example filter driver that implements this

strategy is listed later in this chapter.

As another example, a fault-tolerant disk driver, implemented as an intermediate driver, might

allocate an additional IRP to send to a second (mirror) driver. This second IRP would mirror the

original request.

Yet a third example occurs when a higher-level driver exposes an abstract command to a client. The

command itself is implemented through a series of lower-level calls, each requiring the allocation of

a new IRP. The SCSI class driver implements this strategy when relying upon the lower-level SCSI

port driver.

The IRP's I/O Stack Revisited

Before explaining the available IRP allocation techniques, it is important to have a clear

understanding of the IRP stack operation. As already described, each driver that receives an IRP is

supplied a unique IRP stack location that is easily obtained with a call to

IoGetCurrentIrpStackLocation.

If an intermediate driver plans to pass an incoming IRP to a lower-level driver, it has to set up the

I/O stack location for the next lower driver. To obtain a pointer to the lower driver's I/O stack slot, the

intermediate driver uses IoGetNextIrpStackLocation. After setting up the lower stack slot (perhaps

by copying the current slot into the next slot), the intermediate driver uses IoCallDriver to pass the

IRP down. This function, IoCallDriver, automatically pushes the I/O stack pointer so that when the

lower driver calls IoGetCurrentIrpStackLocation, it will get the right address (i.e., one lower than

its caller).

When the lower driver calls IoCompleteRequest, the completed IRP's I/O stack is popped. This

allows an I/O Completion routine belonging to the higher driver to call

IoGetCurrentIrpStackLocation if it needs to access its own stack location. As the IRP bubbles its

way back up to the original caller, the I/O stack is automatically popped again for each driver in the

hierarchy. Table 15.3 summarizes the effects of these functions on an IRP's I/O stack pointer.

To maintain consistent behavior with driver-allocated IRPs, the I/O Manager initializes the new IRP's

I/O stack pointer so that it points to a nonexistent slot one location before the beginning of the stack.

This ensures that when the driver passes the IRP to a lower-level driver, IoCallDriver's "push"

operation sets the stack pointer to the first real slot in the stack. Thus, the higher-level driver must

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

call IoGetNextIrpStackLocation to retrieve a pointer to the I/O stack slot intended for the target

driver.

Table 15.3. Effect of Functions on IRP's I/O Stack Pointer

Working with the IRP Stack Pointer

Function Effect on the IRP stack pointer

IoGetCurrentIrpStackLocation No change

IoGetNextIrpStackLocation No change

IoSetNextIrpStackLocation Pushes stack pointer by one location

IoCallDriver Pushes stack pointer by one location

IoCompleteRequest Pops stack pointer by one location

Controlling the Size of the IRP Stack

When a driver receives an IRP from an outside caller, the number of I/O stack slots is determined by

the StackSize field of the driver's Device object. If the intermediate driver plans to pass incoming

IRPs to a lower-level driver, it needs to increment this field to one more than the number of slots

reserved by all lower drivers. That is, it must set the Device object's StackSize field to the value of

the lower Device object's StackSize field plus one. This ensures that there are enough stack slots

for all drivers within the hierarchy. Of course, the technique requires that drivers pile on top of each

other, with the lower driver initialized prior to the higher driver.

The value of StackSize in a Device object represents the number of stack slots needed by all lower

drivers, including one slot for itself. That is, it represents the maximum call depth beneath the

current level plus one.

The I/O Manager constructs IRPs upon request of a driver when any of the following calls are made:

IoBuildAsynchronousFsdRequest

IoBuildDeviceIoControlRequest

IoBuildSynchronousFsdRequest

The IRP constructed contains the number of stack slots specified in the target (where the IRP is

being sent) Device object's StackSize field. The target Device object is passed as an argument to

the three functions listed. These IRPs therefore contain sufficient stack slots for all calls to lower

drivers, but do not contain a slot for the intermediate driver itself.

If an intermediate driver uses IoAllocateIrp or ExAllocatePool to create an IRP, the driver must

explicitly specify the number of I/O stack slots in the new IRP. Of course, the common practice is to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

use the StackSize field of the target Device object to determine the proper number of slots.

Ordinarily, an intermediate driver does not need a stack slot for itself in the IRP it allocates. The

exception occurs if the intermediate driver chooses to associate some per-request context within the

IRP. In such a case, the driver allocates an IRP with one extra stack slot for itself, which is then

used to hold private context data. The following code fragment shows how this technique is

implemented:

pNewIrp = IoAllocateIrp(pLowerDevice->StackSize + 1);

// Bearing in mind that a new IRP is allocated with

// the stack pointer just before the beginning

// Push the I/O stack pointer so that it points to

// the first valid slot. Use this slot to hold

// context information needed by the upper driver.

IoSetNextIrpStackLocation(pNewIrp);

pContextArea = IoGetCurrentIrpStackLocation(pNewIrp);

pNextDriverSlot = IoGetNextIrpStackLocation(pNewIrp);

// Set up the next driver's I/O stack slot:

pNextDriverSlot->MajorFunction = IRP_MJ_XXX;

...

// Attach an I/O Completion routine:

IoSetCompletionRoutine(

 pNewIrp,

 IoCompletion,

 NULL,

 TRUE, TRUE, TRUE);

// Send the IRP to someone else:

IoCallDriver(pLowerDevice, pNewIrp);

Creating IRPs with IoBuildSynchronousFsdRequest

The I/O Manager provides three convenience functions that simplify the process of building IRPs for

standard kinds of I/O requests. The first one is IoBuildSynchronousFsdRequest, and it fabricates

read, write, flush, or shutdown IRPs. See Table 15.4 for a description of this function.

The number of I/O stack locations in IRPs created with this function is equal to the StackSize field

of the TargetDevice argument. There is no straightforward way to leave room in the I/O stack for the

intermediate driver itself.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Buffer, Length, and StartingOffset arguments to this function are required for read and write

operations. They must be NULL (or 0) for flush or shutdown operations.

IoBuildSynchronousFsdRequest automatically sets up various fields in the Parameters area of

the next lower I/O stack location, so there is rarely any need to touch the I/O stack. For read or write

requests, this function also allocates system buffer space or builds an MDL, depending on whether

the TargetDevice does Buffered or Direct I/O. For buffered outputs, it also copies the contents of the

caller's buffer into the system buffer; at the end of a buffer input, data is automatically copied from

the system buffer back to the caller's buffer.

As the function name suggests, IoBuildSynchronousFsdRequest operates synchronously. In

other words, the thread that calls IoCallDriver normally blocks itself until the I/O operation

completes. To conveniently perform the block, pass the address of an initialized Event object in the

IRP that is allocated. Then, after sending the IRP to a lower-level driver with IoCallDriver, use

KeWaitForSingleObject to wait for the Event object. When a lower-level driver completes the IRP,

the I/O Manager puts this Event object into the signaled state, which awakens the intermediate

driver. The I/O status block signifies whether everything worked.

Drivers that perform blocking I/O can degrade system performance because they prevent the calling

thread from overlapping its I/O operations. This is contrary to the philosophy of the Windows 2000

I/O architecture, so it should not be used without good reason.

Table 15.4. Function Prototype for IoBuildSynchronousFsdRequest

PIRP IoBuildSynchronousFsdRequest IRQL == PASSIVE_LEVEL

Parameter Description

IN ULONG MajorFunction

One of the following:

IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_FLUSH_BUFFERS

IRP_MJ_SHUTDOWN

IN PDEVICE_OBJECT pTargetDevice Device object where IRP is sent

IN OUT PVOID pBuffer Address of I/O buffer

IN ULONG Length Length of buffer in bytes

IN PLARGE_INTEGER startingOffset Device offset where I/O begins

IN PKEVENT pEvent Event object used to signal I/O completion

OUT PIO_STATUS_BLOCK Iosb Receives final status of I/O operation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Return value
Non-NULL: address of new IRP

IRP could not be allocated

This is contrary to the philosophy of the Windows 2000 I/O architecture, so it should not be used

without good reason.

Also, the Event object used to wait for I/O completion needs to be synchronized properly among

multiple threads. Consider the case where two threads in the same process issue a read request

using the same handle. The DispatchRead routine executes in the context of the first thread and

blocks itself waiting for the Event object. Then, this same DispatchRead routine executes in the

context of the other thread and reuses the same Event object to issue a second request. When the

IRP for either request completes, the Event object signals. Both threads awaken, and neither thread

knows which IRP really completed. One solution is to guard the Event object with a Fast Mutex.

Perhaps a better solution is to allocate a new Event object with each IRP fabricated.

The I/O Manager automatically cleans up and deallocates IRPs created with

IoBuildSynchronousFsdRequest after their completion processing is done. This includes releasing

any system buffer space or MDL attached to the IRP. To trigger this cleanup, a lower-level driver

simply has to call IoCompleteRequest.

Normally, there is no need to attach an I/O Completion routine to one of these IRPs unless some

driver-specific postprocessing is needed. If an I/O Completion routine is attached, it should return

STATUS_SUCCESS. This lets the I/O Manager free the IRP.

Creating IRPs with IoBuildAsynchronousFsdRequest

The second convenience function, IoBuildAsynchronousFsdRequest, is quite similar to the

synchronous version. It builds read, write, flush, or shutdown requests without regard to many

details. The main difference is that the IRPs fabricated by this call process asynchronously. There is

no option to stop and wait for the I/O to complete. Table 15.5 contains the prototype for this function.

As with IoBuildSynchronousFsdRequest, the Buffer, Length, and StartingOffset parameters to

IoBuildAsynchronousFsdRequest are required for read and write operations. They must be NULL

(or 0) for flush or shutdown operations.

Notice that IoBuildAsynchronousFsdRequest can be called at or below DISPATCH_LEVEL

IRQL. The synchronous version can be called only from PASSIVE_LEVEL.

Unlike the IRPs fabricated from the synchronous version, the ones from this function are not

released automatically when a lower-level driver completes them. Instead, an I/O Completion

routine must be attached to any IRP created with IoBuildAsynchronousFsdRequest. The I/O

Completion routine calls IoFreeIrp, which releases the system buffer or MDL associated with the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

IRP and then deallocates the IRP itself. The return value of the I/O Completion routine should be

STATUS_MORE_PROCESSING_REQUIRED.

Table 15.5. Function Prototype for IoBuildAsynchronousFsdRequest

PIRP IoBuildAsynchronousFsdRequest IRQL <= DISPATCH_LEVEL

Parameter Description

IN ULONG MajorFunction

One of the following:

IRP_MJ_READ

IRP_MJ_WRITE

IRP_MJ_FLUSH_BUFFERS

IRP_MJ_SHUTDOWN

IN PDEVICE_OBJECT pTargetDevice Device object where IRP is sent

IN OUT PVOID pBuffer Address of I/O buffer

IN ULONG Length Length of buffer in bytes

IN PLARGE_INTEGER startingOffset Device offset where I/O begins

OUT PIO_STATUS_BLOCK Iosb Receives final status of I/O operation

Return value
Non-NULL: address of new IRP

IRP could not be allocated

Creating IRPs with IoBuildDeviceIoControlRequest

The last convenience function, IoBuildDeviceIoControlRequest (described in Table 15.6)

simplifies the task of building IOCTL IRPs. This is useful because it is fairly common for drivers to

expose odd behavior through custom IOCTLs.

The InternalDeviceIoControl argument specifies the major function code in the target driver's I/O

stack slot. FALSE produces an IRP with IRP_MJ_ DEVICE_CONTROL, while TRUE causes it to be

sent to IRP_MJ_INTERNAL_ DEVICE_CONTROL.

Also, notice that either synchronous or asynchronous calls can be performed with IRPs returned by

this function. To perform synchronous I/O control operations, simply pass the address of an

initialized Event object when the IRP is allocated. Then, after sending the IRP to a lower-level driver

with IoCallDriver, use KeWaitForSingleObject to wait for the Event object. When a lower-level

driver completes the IRP, the I/O Manager puts this Event object into the Signaled state, which

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

awakens the intermediate driver. The I/O status block reports the ultimate disposition of the IRP. As

with IoBuildSynchronousFsdRequest, care must be taken when the Event object is used among

multiple threads.

The I/O Manager automatically cleans up and deallocates IRPs created with

IoBuildDeviceIoControlRequest after their completion processing is done. This includes releasing

any system buffer space or MDL attached to the IRP. To trigger this cleanup, a lower-level driver

simply has to call IoCompleteRequest.

Table 15.6. Function Prototype for IoBuildDeviceIoControlRequest

PIRP IoBuildDeviceIoControlRequest IRQL == PASSIVE_LEVEL

Parameter Description

IN ULONG IoControlCode IOCTL code recognized by target device

IN PDEVICE_OBJECT pTargetDevice Device object where IRP is sent

IN PVOID inputBuffer Buffer passed to lower driver

IN ULONG inputLength Length of input buffer in bytes

OUT PVOID outputBuffer Buffer returned by lower driver

IN ULONG outputLength Length of output buffer in bytes

IN BOOLEAN InternalDeviceIoControl TRUE-Internal request FALSE-External request

IN PKEVENT pEvent Event object used to signal I/O completion

OUT PIO_STATUS_BLOCK Iosb Receives final status of I/O operation

Return value
Non-NULL: address of new IRP

NULL: IRP could not be allocated

Normally, there is no need to attach an I/O Completion routine to one of these IRPs unless some

driver-specific postprocessing is needed. If an I/O Completion routine must be used, it should return

STATUS_SUCCESS when it is done. This lets the I/O Manager free the IRP.

The one idiosyncrasy with this function is the way it handles the buffering method bits embedded in

the IOCTL code. If an IOCTL code contains METHOD_BUFFERED,

IoBuildDeviceIoControlRequest allocates a nonpaged pool buffer and copies the contents of the

InputBuffer. When the IRP completes, the contents of the nonpaged pool buffer are automatically

copied to OutputBuffer. As just described, it behaves exactly like a Win32 DeviceIoControl call

coming from a user-mode application.

But if an IOCTL code containing a Direct I/O method is specified, an interesting result occurs:

IoBuildDeviceIoControl always builds an MDL forthe output buffer address and always uses a

nonpaged pool buffer for theInput Buffer address, regardless of whether the IOCTL code specifies

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

METHOD_IN_DIRECT or METHOD_OUT_DIRECT.

Creating IRPs from Scratch

The I/O Manager routines just described are the most convenient way to work with driver-allocated

IRPs. Occasionally, however, they may not be the appropriate vehicle for IRP allocation. For

example, when issuing a request other than for read, write, flush, shutdown, or device I/O control,

these functions do not help. The only option is to allocate a blank IRP and set it up manually. The

following sections describe several ways to do this.

IRPs from IoAllocateIrp

The IoAllocateIrp function allocates an IRP from an I/O Manager zone buffer and performs certain

basic kinds of initialization. A driver must fill the I/O stack location for the target driver and set up

whatever kind of buffer thetarget driver is expecting to find. The following code fragment illustrates

the use of this function.

PMDL pNewMdl;

PIRP pIrp;

PIO_STACK_LOCATION pNextIrpStack;

// Allocate the new IRP with enough stack locations to

// hold the requirements of the drivers beneath us

pNewIrp = IoAllocateIrp(pLowerDevice->StackSize);

// Allocate the memory descriptor list for any driver

// doing DMA beneath us

pNewMdl = IoAllocateMdl(

 MmGetMdlVirtualAddress(

 pOriginalIrp->MdlAddress),

 MAX_TRANSFER_SIZE,

 FALSE, // Primary buffer

 FALSE, // No quota charge

 pNewIrp);

IoBuildPartialMdl(

 pOriginalIrp->MdlAddress,

 pNewMdl,

 MmGetMdlVirtualAddress(pOriginalIrp->MdlAddress),

 MAX_TRANSFER_SIZE);

// Place a request into the new IRP (in this case, Read)

// The lower driver is being asked to perform a Read.

pNextIrpStack = IoGetNextIrpStackLocation(pNewIrp);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

pNextIrpStack->MajorFunction = IRP_MJ_READ;

// Set any parameters appropriate for a Read request

pNextIrpStack->Parameters.Read.Length =

 MAX_TRANSFER_SIZE;

// Ensure that the lower driver knows what thread made

// the original request (in case an error must be

// reported - see text below)

pNewIrp->Tail.Overlay.Thread =

 pOriginalIrp->Tail.Overlay.Thread;

IoSetCompletionRoutine(

 pNewIrp,

 IoCompletion,

 NULL,

 TRUE, TRUE, TRUE);

// Finally, pass the new IRP request down:

IoCallDriver(pLowerDevice, pNewIrp);

If the new IRP is targeted at a disk device, or a device with removable media, the intermediate

driver needs to provide information about the thread making the original request. This provides the

lower-level driver with a target for any pop-up dialog box reporting a potential error using

IoSetHardErrorOrVerifyDevice. This thread information is contained in the original IRP's

Tail.Overlay.Thread field and should be copied directly into the new IRP.

An intermediate driver is responsible for releasing any IRP created with IoAllocateIrp. It must also

release other resources (MDLs or system buffers, for example) associated with the IRP. Normally,

this cleanup occurs in the IRP's I/O Completion routine. The following code fragment provides an

example.

NTSTATUS IoCompletion(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

 ...

 IoFreeMdl(pIrp->MdlAddress);

 IoFreeIrp(pIrp);

 return STATUS_MORE_PROCESSING_REQUIRED;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

}

IRPs from ExAllocatePool

IRPs can also be allocated directly from a nonpaged pool using ExAllocatePool. The generic

memory allocated must be initialized into an IRP using IoInitializeIrp. Setting up the I/O stack

location, transfer buffers, and an MDL for DMA operations remain the responsibility of the driver.

The following is an example of a manually allocated IRP using ExAllocatePool. The lower Device

object expects a nonpaged pool buffer rather than an MDL.

pNewIrp = ExAllocatePool(

 NonPagedPool,

 IoSizeOfIrp(pLowerDevice->StackSize));

IoInitializeIrp(

 pNewIrp,

 IoSizeOfIrp(pLowerDevice->StackSize),

 pLowerDevice->StackSize);

pNextIrpStack = IoGetNextIrpStackLocation(pNewIrp);

// Assuming a Read operation, set it up

pNextIrpStack->Parameters.Read.Length = BUFFER_SIZE;

// Instead of an MDL, use a custom buffer

pNewIrp->AssociatedIrp.SystemBuffer =

 ExAllocatePool(NonPagedPool, BUFFER_SIZE);

// As before, copy thread info of original caller

pNewIrp->Tail.Overlay.Thread =

 pOriginalIrp->Tail.Overlay.Thread;

IoSetCompletionRoutine(

 pNewIrp,

 IoCompletion,

 NULL,

 TRUE, TRUE, TRUE);

// Tell the fabricated IRP to "come on down"

IoCallDriver(pLowerDevice, pNewIrp);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Again, it is the job of the I/O Completion routine attached to the new IRP to perform cleanup and

release the IRP. The following code fragment demonstrates.

NTSTATUS IoCompletion(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

 ...

 // Free the custom buffer used by the lower driver

 ExFreePool(pIrp->AssociatedIrp.SystemBuffer);

 // Free the manually allocated IRP

 IoFreeIrp(pIrp);

 return STATUS_MORE_PROCESSING_REQUIRED;

}

Notice that IoFreeIrp is used to free the IRP, even though it was allocated with ExAllocatePool.

This is because the field in the IRP tells the I/O Manager whether this IRP came directly from the

pool or whether it came from the I/O Manager's private zone buffer.

IRPs from Driver-Managed Memory

Finally, there are situations where a driver design chooses to maintain a private collection of IRPs

allocated within a driver-specific zone buffer or a look-aside list. Such IRPs still need to be initialized

using IoInitalizeIrp. However, since the I/O Manager knows nothing about the driver's memory

management strategy for these IRPs, the IoFreeIrp function cannot be used. Instead, the I/O

Completion routine needs to call whatever internal driver function is responsible for releasing the

IRP.

Setting Up Buffers for Lower Drivers

The previous examples of the manually allocated IRPs demonstrate the need to initialize and clean

up any buffers needed by those I/O requests. The actual technique utilized depends on whether the

target Device object performs buffered or direct I/O.

Buffered I/O Requests

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In this case, the Dispatch routine in the intermediate driver has to call ExAllocatePool to allocate

the buffer. It stores the address of this buffer in the AssociatedIrp.SystemBuffer field of the

driver-allocated IRP. Later, an I/O Completion routine attached to the IRP must release the buffer

with a call to ExFreePool.

Direct I/O Requests

Handling these requests means the intermediate driver must set up an MDL describing the I/O

buffer. The intermediate driver's Dispatch routine performs the following:

It calls IoAllocateMdl to create an MDL large enough to map the buffer. It stores the

address of this MDL in the MdlAddress field of the driver-allocated IRP.

1.

The Dispatch routine fills the MDL. To map a portion of the buffer associated with the

original caller's IRP, it calls IoBuildPartialMdl. To map system memory into the MDL, it

uses MmBuildMdlForNonPagedPool.

2.

It then attaches an I/O Completion routine to the driver-allocated IRP using

IoSetCompletionRoutine.

3.

Finally, the Dispatch routine sends the IRP to a lower-level driver with IoCallDriver.4.

When the lower-level driver completes the IRP, the intermediate driver's I/O Completion routine uses

IoFreeMdl to release the MDL.

Keeping Track of Driver-Allocated IRPs

Intermediate drivers must be careful about the handling of incoming I/O requests that result in

multiple IRPs being sent in parallel to lower drivers. In particular, it is vital for the original incoming

IRP not to be completed until all the allocated IRPs have finished their work. Exactly how the

intermediate driver does this depends on whether it performs synchronous or asynchronous I/O with

the driver-allocated IRPs.

Synchronous I/O

This is the simpler of the two cases since the intermediate driver's Dispatch routine just has to stop

and wait until all the allocated IRPs have been completed. In general, the Dispatch routine does the

following:

It calls IoBuildSynchronousFsdRequest to create some number of driver-allocated IRPs.1.

Next, the Dispatch routine calls IoCallDriver to pass all the driver-allocated IRPs to other
2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

drivers.

It then calls KeWaitForMultipleObjects and freezes until all the allocated IRPs have

completed.

3.

Finally, it calls IoCompleteRequest with the original IRP to send back to the caller.4.

Notice that since the original request is blocked inside the Dispatch routine itself, there is no need to

mark the original IRP as pending.

Asynchronous I/O

This is the more complex case because there is no central point of control where the driver can stop

and wait for everything to finish. Instead, the intermediate driver must attach I/O Completion routines

to each driver-allocated IRP, and the completion routine must decide whether it is time to complete

the original caller's IRP.

The following steps are typical of work that is done in the Dispatch routine of intermediate drivers

using Asynchronous I/O requests to lower drivers.

It puts the original caller's IRP in the pending state by calling IoMarkPending.1.

Next, the Dispatch routine uses one of the methods described in the previous section to

allocate additional IRPs.

2.

It attaches an I/O Completion routine to each of these IRPs with IoSetCompletionRoutine.

When it makes this call, the Dispatch routine passes a pointer to the original caller's IRP as

the pContext argument.

3.

The Dispatch routine stores a count of outstanding allocated IRPs in an unused field of the

original IRP. The Key field in the current I/O stack locations Parameters union is one

possible context.

4.

Next, it uses IoCallDriver to pass all the IRPs to other drivers.5.

Finally, the Dispatch routine passes back STATUS_PENDING as its return value. This is

necessary because the original IRP is not yet ready for completion processing.

6.

As each of the lower drivers complete each of their IRPs, the intermediate driver's I/O Completion

routine executes. This routine does the following:

First, it performs whatever cleanup is necessary and deletes the driver-allocated IRP.1.

The I/O Completion routine calls ExInterlockedDecrementLong to decrement the count of

outstanding IRPs contained in the original caller's IRP. A pointer to this original IRP is

2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

passed as its pContext argument.

If the count equals zero, then this indicates that the last outstanding driver-allocated IRP

has completed. In this case, the I/O Completion routine completes the original IRP by

calling IoCompleteRequest.

3.

Finally, it returns STATUS_MORE_PROCESSING_REQUIRED to prevent any further

completion processing of the driver-allocated IRP (which incidentally has just been deleted).

4.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Filter Drivers

A filter driver is a special type of intermediate driver. Filter drivers perform their work surreptitiously. They sit

on top of some other driver and intercept requests directed at the lower driver's Device objects. Users of the

lower driver are completely unaware that their requests are being preprocessed or intercepted by the filter

driver. Some examples of the use of filter drivers include the following:

Filters allow modification of some aspect of an existing driver's behavior without rewriting the entire

driver. SCSI filter drivers work this way.

Filters make it easier to hide the limitations of lower-level device drivers. For example, a filter could

split large transfers into smaller pieces before passing them on to a driver with transfer size limits.

Filters allow the addition of new features like compression or encryption to a device without

modifying the underlying device driver or the programs that use the device.

Filters allow the addition or removal of expensive behavior (like performance monitoring) a driver

may not perform at all times. The disk performance monitoring tools in Windows 2000 work this

way.

The remainder of this section explains how to write filter drivers. Bear in mind that driver-allocated IRPs and

I/O Completion routines work the same in a filter driver as they do in a regular layered driver.

How Filter Drivers Work

The main distinction between filter drivers and other layered drivers is in the Device objects they create.

Whereas a layered driver exposes Device objects with their own unique names, filter drivers' Device objects

have no names at all. Filter drivers work by attaching one of these nameless Device objects to a Device

object created by some lower-level driver. Figure 15.2 illustrates this relationship.

Figure 15.2. Filter driver operation.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In the diagram, FLTDRIVER has attached a filter Device object to FD0, one of FDODRIVER's Device

objects. Any IRPs sent to FD0 are automatically rerouted to the Dispatch routines in FLTDRIVER. It works

as follows:

The AddDevice routine in the filter driver creates an invisible Device object and attaches it to a

named Device object belonging to a driver beneath it.

1.

A client of the lower-level driver opens a connection to FD0. This is typically done using the Win32

CreateFile method to obtain a handle, or a kernel-mode client can use IoGetDeviceObjectPointer.

Regardless, the I/O Manager actually opens a connection between the client and the filter driver's

invisible Device object.

2.

When the client sends an I/O request to FD0, the I/O Manager sends it to the filter driver's unnamed

Device object instead. The I/O Manager uses the MajorFunction table of the filter's Driver object to

select an appropriate Dispatch routine.

3.

The Dispatch routines in the filter driver either process the IRP on their own and complete

immediately, or they send the IRP down to FD0 with IoCallDriver. If the filter driver needs to regain

control of the IRP when a lower-level driver completes it, the filter can associate an I/O Completion

routine with the IRP.

4.

Filters can also be layered above other filters. Attaching a new filter to an already filtered Device object

results in the new filter simply getting layered on top of the highest existing filter. Essentially, any number of

filter layers can exist for a single Device object.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Initialization and Cleanup in Filter Drivers

Like every other kernel-mode driver, a filter driver must have a main entry point called DriverEntry. Like

other WDM drivers, it must export an AddDevice, RemoveDevice, and Unload routine. The following

sections describe what these routines must do.

AddDevice routine

The initialization sequence in a filter driver for the PnP request to add a device is straightforward.

The filter calls IoCreateDevice to create a filter Device object for this target device. The filter Device

object has no internal name, nor does it have a symbolic link name.

1.

It calls IoAttachDeviceToDeviceStack (as usual) to stack itself on top of the lower driver and

obtain a pointer to the target Device object.

2.

It stores the address of the target device object in the Device Extension of the filter Device object.

Other parts of the filter driver use this pointer to call the target driver.

3.

Next, AddDevice copies the DeviceType and Characteristics fields from the target Device object

to the filter Device object. It also copies the DO_DIRECT_IO, DO_BUFFERED_IO,

DO_POWER_INRUSH, and DO_POWER_PAGABLE bits from the target Device object's Flags

field. This guarantees that the filter looks the same and has the same buffering strategy as the

target driver.

4.

RemoveDevice Routine

A filter driver's RemoveDevice routine must disconnect the filter and target Device objects. It does this by

calling IoDetachDevice and passing a pointer to the target Device object. Once the filter Device object has

been detached, the RemoveDevice routine calls IoDeleteDevice to delete the unnamed object.

Making the Attachment Transparent

Once a filter has attached itself to the target driver, any I/O requests sent to the target must pass through

the Dispatch routines of the filter driver first. If the MajorFunction table of the filter Driver object does not

support the same set of IRP_MJ_XXX codes as the target driver, clients of the target may experience

problems when the filter is attached. Specifically, some types of requests that work without the filter are

rejected as illegal operations when the filter is in place.

To avoid this inconsistency, the filter driver's MajorFunction table must contain a Dispatch routine for every

IRP_MJ_XXX function supported by the target driver. Even if the filter is not interested in modifying a

particular MajorFunction code, it still must supply the Dispatch routine that simply passes the IRP on to the

target driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The most straightforward way for the filter driver to avoid the inconsistency problem is to provide a

pass-through Dispatch routine for every slot within the MajorFunction table of the filter Driver object. For

each MajorFunction entry that the filter wishes to override, a non-pass-through function is provided. The

sample driver in the next section demonstrates this technique.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A Filter Driver

This example demonstrates a basic filter driver, called the HIFILTER, that intercepts all requests

intended for a lower-level driver (LODRIVER). The purpose of the filter is to hide the lower driver's

limited output transfer size. To do this, it breaks large transfer requests into smaller pieces. It also

overrides an IOCTL from the lower driver that returns the maximum size of an output buffer. All

other major function codes supported by the lower driver are passed through from the filter.

The code for this example is included on the accompanying disk and at the book's Web site:

http://www.W2KDriverBook.com.

The DEVICE_EXTENSION Structure

The declarations of the Device Extension for the filter driver are minimal; the filter driver has few

direct responsibilities.

 // BUFFER_SIZE_INFO is a driver-defined structure

 // that describes the buffers used by the filter

typedef struct _BUFFER_SIZE_INFO

{

 ULONG MaxWriteLength;

 ULONG MaxReadLength;

} BUFFER_SIZE_INFO, *PBUFFER_SIZE_INFO;

typedef struct _DEVICE_EXTENSION {

 PDEVICE_OBJECT pDeviceObject; // Back pointer

 PDEVICE_OBJECT pTargetDevice; // Lower device

 BUFFER_SIZE_INFO bufferInfo;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

The DriverEntry Function

The DriverEntry function for a filter is unique in that its Dispatch routine announcement must closely

follow the functionality exposed by the lower driver. If the lower driver supports a Dispatch entry, the

filter must expose it as well. For those entries that the filter is modifying (overriding), the filter installs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.W2KDriverBook.com

its own Dispatch function address. For entries that the filter does not override, a pass-through

dispatch function is installed.

NTSTATUS DriverEntry(

 IN PDRIVER_OBJECT pDrvObj,

 IN PUNICODE_STRING pRegPath) {

 // Export other driver entry points

 pDrvObj->DriverUnload = DriverUnload;

 pDrvObj->DriverExtension->AddDevice = AddDevice;

 // Assume (initially) nothing is overridden

 for (int i=0; i<=IRP MJ MAXIMUM_FUNCTION; i++)

 if (i!=IRP MJ POWER)

 pDriverObject->MajorFunction[i] = DispatchPassThru;

 // Export the overridden MajorFunctions

 pDrvObj->MajorFunction[IRP_MJ_WRITE] =

 OverriddenDispatchWrite;

 pDrvObj->MajorFunction[IRP_MJ_DEVICE_CONTROL] =

 OverriddenDispatchIoControl;

 :

 return STATUS_SUCCESS;

}

The AddDevice Function

This portion of the example shows the code executed each time a filter device attaches to the target

device.

NTSTATUS AddDevice(IN PDRIVER_OBJECT pDrvObj,

 IN PDEVICE_OBJECT pdo) {

 NTSTATUS status;

 PDEVICE_OBJECT pFilterDevObj;

 PDEVICE_EXTENSION pDevExt;

 // Create the un-named filter device

 status =

 IoCreateDevice(pDrvObj,

 sizeof(DEVICE_EXTENSION),

 NULL, // no name

 FILE_DEVICE_UNKNOWN,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 0, TRUE,

 &pFilterDevObj);

 if (!NT_SUCCESS(status))

 return status;

 // Initialize the Device Extension

 pDevExt = (PDEVICE_EXTENSION)

 pFilterDevObj->DeviceExtension;

 pDevExt->pDevice = pFilterDevObj; // back pointer

 // Pile this new filter on top of the existing target

 pDevExt->pTargetDevice = // downward pointer

 IoAttachDeviceToDeviceStack(pFilterDevObj, pdo);

 // Copy the characteristics of the target into the

 // the new filter device object

 pFilterDevObj->DeviceType =

 pDevExt->pTargetDevice->DeviceType;

 pFilterDevObj->Characteristics =

 pDevExt->pTargetDevice->Characteristics;

 pFilterDevObj->Flags |=

 (pDevExt->pTargetDevice &

 (DO_BUFFERED_IO | DO_DIRECT_IO |

 DO_POWER_INRUSH | DO_POWER_PAGABLE));

 // Explore the limitations of the target device's

 // buffer. Save the results in the bufferInfo struct

 GetBufferLimits(pDevExt->pTargetDevice,

 &pDevExt->bufferInfo);

 return STATUS_SUCCESS;

}

GetBufferLimits

This is a helper function that queries the lower-level driver for information about its buffer size limits.

It shows how to make a synchronous IOCTL call from one driver to another.

VOID GetBufferLimits(

 IN PDEVICE_OBJECT pTargetDevObj,

 OUT PBUFFER_SIZE_INFO pBufferInfo) {

 KEVENT keIoctlComplete;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IO_STATUS_BLOCK Iosb;

 PIRP pIrp;

 // Initialize the event that is signaled when the

 // IOCTL IRP completes (by the target device)

 KeInitializeEvent(

 &keIoctlComplete,

 NotificationEvent,

 FALSE);

 // Construct the IRP for the private IOCTL request

 pIrp = IoBuildDeviceIoControlRequest(

 IOCTL_GET_MAX_BUFFER_SIZE,

 pTargetDevObj,

 NULL,

 0,

 pBufferInfo,

 sizeof(BUFFER_SIZE_INFO),

 FALSE,

 &keIoctlComplete,

 &Iosb);

 // Send the new IRP down to the target

 IoCallDriver(pTargetDevObj, pIrp);

 // Wait for the target to complete the IRP

 KeWaitForSingleObject(

 &keIoctlComplete,

 Executive,

 KernelMode,

 FALSE,

 NULL);

}

The OverriddenDispatchWrite Function

The DispatchWrite function of the target (lower) driver is overridden by the filter. Since the lower

driver has a limit on the maximum size of a write request, the filter breaks client requests for larger

transfers into smaller pieces. This OverriddenDispatchWrite routine, along with an I/O Completion

routine, performs the work of the split transfer.

NTSTATUS OverriddenDispatchWrite(

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PDEVICE_EXTENSION pFilterExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PIO_STACK_LOCATION pNextIrpStack =

 IoGetNextIrpStackLocation(pIrp);

 ULONG maxTransfer =

 pFilterExt->bufferInfo.MaxWriteLength;

 ULONG bytesRequested =

 pIrpStack->Parameters.Write.Length;

 // We can handle the request for 0 bytes ourselves

 if (bytesRequested == 0) {

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 pIrp->IoStatus.Information = 0;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;

 }

 // If the request is small enough for the target

 // device, just pass it thru...

 if (bytesRequested < maxTransfer)

 return DispatchPassThru(pDevObj, pIrp);

 // Set up the next lower stack location to xfer as

 // much data as the lower level allows.

 pNextIrpStack->MajorFunction = IRP_MJ_WRITE;

 pNextIrpStack->Parameters.Write.Length = maxTransfer;

 // It turns out that the lower driver doesn't use the

 // ByteOffset field of the IRP's Parameter.Write block

 // so we use it for context storage.

 // HighPart holds the remaining transfer count.

 // LowPart holds the original buffer address.

 pIrpStack->Parameters.Write.ByteOffset.HighPart =

 bytesRequested;

 pIrpStack->Parameters.Write.ByteOffset.LowPart =

 (ULONG) pIrp->AssociatedIrp.SystemBuffer;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Set up the I/O Completion routine. Since there is

 // no external context (beyond the IRP's Parameters)

 // no context is passed to the Completion routine.

 IoSetCompletionRoutine(

 pIrp,

 WriteCompletion,

 NULL, // no context

 TRUE, TRUE, TRUE);

 // Pass the IRP to the target

 return IoCallDriver(

 pFilterExt->pTargetDevice,

 pIrp);

}

The OverriddenDispatchDeviceIoControl Function

To further hide the limitations of the lower-level driver, the filter intercepts the IOCTL queries about

the driver's maximum transfer size. Instead of returning the lower-level driver's limit values, it lies

and says there are no limits. Any other kind of IOCTL function is passed through.

NTSTATUS OverriddenDispatchDeviceIoControl(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PBUFFER_SIZE_INFO pBufferInfo;

 // Here is the interception

 if (pIrpStack->Parameters.DeviceIoControl.IoControlCode

 == IOCTL_GET_MAX_BUFFER_SIZE) {

 // The buffer passed by the user (by mutual

 // agreement) is treated as BUFFER_SIZE_INFO type.

 pBufferInfo = (PBUFFER_SIZE_INFO)

 pIrp->AssociatedIrp.SystemBuffer;

 pBufferInfo->MaxWriteLength = NO_BUFFER_LIMIT;

 pBufferInfo->MaxReadLength = NO_BUFFER_LIMIT;

 // Complete the IRP by announcing the size of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // the returned BUFFER_SIZE_INFO information.

 pIrp->IoStatus.Information =

 sizeof(BUFFER_SIZE_INFO);

 pIrp->IoStatus.Status = STATUS_SUCCESS;

 IoCompleteRequest(pIrp, IO_NO_INCREMENT);

 return STATUS_SUCCESS;

 } else

 // not the IOCTL we're supposed to intercept,

 // just pass it thru to the "real" device.

 return DispatchPassThru(pDevObj, pIrp);

}

The DispatchPassThru Function

If the IRP request (intercepted by the filter) is not a write or an IOCTL with

IOCTL_GET_MAX_BUFFER_SIZE code, it is passed down to the target device without

modification. The filter driver attaches a generic I/O Completion routine to the request to handle the

case of marking the IRP pending when the target requires.

NTSTATUS DispatchPassThru(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp) {

 PDEVICE_EXTENSION pFilterExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PIO_STACK_LOCATION pNextIrpStack =

 IoGetNextIrpStackLocation(pIrp);

 // Copy args to the next level

 *pNextIrpStack = *pIrpStack;

 // Set up a completion routine to handle the bubbling

 // of the "pending" mark of an IRP

 IoSetCompletionRoutine(

 pIrp,

 GenericCompletion,

 NULL,

 TRUE, TRUE, TRUE);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 // Pass the IRP to the target.

 return IoCallDriver(

 pFilterExt->pTargetDevice,

 pIrp);

 }

The I/O Completion Routines

The filter driver example uses two I/O Completion routines. One handles the completion of write

requests. The other handles the pass-through completion.

WriteCompletion

This somewhat involved function performs all the additional work required after a partial transfer has

occurred. If any partial transfer results in an error, the entire transfer is aborted. Otherwise, it sets up

the IRP for another small chunk and sends it to the target device. When the entire transfer finishes,

the routine completes the original IRP.

NTSTATUS WriteCompletion(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

 PDEVICE_EXTENSION pFilterExt = (PDEVICE_EXTENSION)

 pDevObj->DeviceExtension;

 PIO_STACK_LOCATION pIrpStack =

 IoGetCurrentIrpStackLocation(pIrp);

 PIO_STACK_LOCATION pNextIrpStack =

 IoGetNextIrpStackLocation(pIrp);

 ULONG transferSize =

 pIrp->IoStatus.Information;

 ULONG bytesRequested =

 pIrpStack->Parameters.Write.Length;

 ULONG bytesRemaining = (ULONG)

 pIrpStack->Parameters.Write.ByteOffset.HighPart;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 ULONG maxTransfer =

 pFilterExt->bufferInfo.MaxWriteLength;

 NTSTATUS status = pIrp->IoStatus.Status;

 // If the last transfer was successful, reduce the

 // "bytesRemaining" context variable.

 if (NT_SUCCESS(status))

 bytesRemaining -= transferSize;

 pIrpStack->Parameters.Write.ByteOffset.HighPart =

 bytesRemaining;

 // If there is still more data to transfer, do it.

 if (NT_SUCCESS(status) « (bytesRemaining > 0)) {

 // Bump the buffer address to next chunk.

 pIrp->AssociatedIrp.SystemBuffer =

 (PUCHAR) pIrp->AssociatedIrp.SystemBuffer +

 transferSize;

 // Update the new transferSize:

 transferSize = bytesRemaining;

 if (transferSize > maxTransfer)

 transferSize = maxTransfer;

 // Build the IRP stack beneath us (again)

 pNextIrpStack->MajorFunction = IRP_MJ_WRITE;

 pNextIrpStack->Parameters.Write.Length =

 transferSize;

 // Set up so we get called again:

 IoSetCompletionRoutine(

 pIrp,

 WriteCompletion,

 NULL,

 TRUE, TRUE, TRUE);

 // Now pass it down:

 IoCallDriver(

 pFilterExt->pTargetDevice,

 pIrp);

 return STATUS_MORE_PROCESSING_REQUIRED;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

} else {

 // There was either an error on the last xfer, or

 // we're done. Either way, complete the IRP.

 // Restore the original system buffer address:

 pIrp->AssociatedIrp.SystemBuffer = (PVOID)

 pIrpStack->Parameters.Write.ByteOffset.LowPart;

 // Show the total number of bytes xfered:

 pIrp->IoStatus.Information =

 bytesRequested - bytesRemaining;

 // See if the pending mark should be bubbled:

 if (pIrp->PendingReturned)

 IoMarkIrpPending(pIrp);

 return STATUS_SUCCESS;

 }

}

GenericCompletion

When a pass-through request completes, this completion routine checks the IRP returned by the

lower level to see if it has been marked PendingReturned. If so, it marks the (now current) filter IRP

stack location as pending.

NTSTATUS GenericCompletion(

 IN PDEVICE_OBJECT pDevObj,

 IN PIRP pIrp,

 IN PVOID pContext) {

 if (pIrp->PendingReturned)

 IoMarkIrpPending(pIrp);

 return STATUS_SUCCESS;

}

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing Tightly Coupled Drivers

Unlike layered and filter drivers, tightly coupled drivers do not use the I/O Manager's IoCallDriver function to

communicate with each other. Indeed, tightly coupled drivers do not need to conform to the strict stacking

architecture that the WDM model constructs. Instead, they define a private calling interface. The advantage

of this approach is that it is usually faster than the IRP passing model supported by the I/O Manager. In

trade for improved performance, the mechanics of the interface between tightly coupled drivers is left as an

implementation detail. As a result, it is difficult for tightly coupled drivers from different vendors to

interoperate.

How Tightly Coupled Drivers Work

Since the interface between two tightly coupled drivers is completely determined by the driver designer, it is

impossible to provide a single, unified description of how all tightly coupled drivers work. Instead, this section

presents some general architectural guidelines. Figure 15.3 shows one common method of tightly coupling a

pair of drivers.

Figure 15.3. Tightly coupled driver operation.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

In Figure 15.3, the lower driver has exposed an interface. During the upper driver's initialization, the interface

is retrieved from the lower driver using the PnP request IRP_MN_QUERY_INTERFACE. The interface is

returned as a structure of data and function pointers. When the upper driver needs the services of the lower

driver, it calls one of the functions in this structure directly, rather than using IoCallDriver. Before unloading,

the upper driver calls another function in the interface, InterfaceDereference, to disconnect it from the lower

driver.

Initialization and Cleanup in Tightly Coupled Drivers

The following sections describe in general terms how a pair of tightly coupled drivers might initialize and

unload. Of course, the exact steps vary depending upon the driver design.

Lower AddDevice Routine

The "lower" driver acts as a server for the upper driver, exposing an interface that is used by this "client."

The following steps describe the work performed by the lower driver.

Using the technique discussed in chapter 9, the lower driver exposes an interface using

IoRegisterDeviceInterface. The interface exposed has a unique GUID and the interface structure

1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

is known to all clients a priori, including the higher driver.

The lower driver enables the exposed interface by calling IoSetDevice-InterfaceState.2.

The lower driver performs normal operations, awaiting the connection to its interface by the upper

driver.

3.

Upper AddDevice Routine

The upper driver, acting as a client of the server lower driver, performs the following steps:

It calls IoGetDeviceObjectPointer to obtain a reference to the lower device object. Since this

routine also returns a corresponding File object pointer that is "counted," the File object pointer is

usually dereferenced by using ObDereferenceObject.

1.

Using the Device object pointer returned by IoGetDeviceObjectPointer, a call to

IoGetDeviceInterface confirms the existence of the requested interface, by GUID, in the lower

driver.

2.

Using IoCallDriver, an IRP is sent to the lower device with IRP_MJ_PNP, minor subcode

IRP_MN_QUERY_INTERFACE, to obtain the requested interface. The interface is returned as a

structure of data and function pointers.

3.

The higher driver calls InterfaceReference, a required function pointer entry within the interface.

This function allows the lower driver to keep track of clients of its exposed interface.

4.

The higher driver calls any other method of the interface, or may choose to read or write data

exposed by the interface.

5.

Upper RemoveDevice Routine

When the upper driver no longer requires use of the interface, typically during RemoveDevice, the higher

driver calls InterfaceDereference to release its use of the interface on the lower driver.

Lower RemoveDevice Routine

The lower driver must call IoSetDeviceInterfaceState to announce that its interface is no longer available

for clients. If any clients are connected to an interface at the time RemoveDevice is invoked, the lower

driver must determine an appropriate course of action. For example, it may need to forcibly disconnect

clients by freeing resources reserved on their behalf. Otherwise, the lower driver can reject the

RemoveDevice request.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

The layered architecture of Windows 2000 allows the simplified design of device drivers. Breaking a

monolithic driver into smaller, logically distinct pieces makes implementation and maintenance

easier, reduces debugging time, and increases the likelihood that some of the software will be

reusable.

In this chapter, different methods of stacking drivers on top of one another were presented. Most of

the techniques depend on the I/O Manager's standard calling mechanism to send IRPs from one

driver to another. When this mechanism proves insufficient, a private interface can be defined

between a pair of drivers. In general, private interfaces make the design more fragile and harder to

maintain.

The next chapter describes the details necessary to professionally install device drivers.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 16. Driver Installation

CHAPTER OBJECTIVES

Installation of a Driver

Auto-Install Using INF Files

Using a Driver INF File

Controlling Driver Load Sequence

Digital Signing of a Driver

Summary

The convenient, automated, and trouble-free installation of a device driver is an essential

step for users and support personnel. For Plug and Play drivers, the installation process is

fundamental in providing the user with effortless device management.

This chapter focuses on the details necessary to ensure proper device driver installation.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Installation of a Driver

The automated installation of a device driver is controlled by a text file with the INF extension. The

INF format resembles the old-style .INI files of Windows 3.x fame, but is deceptively more complex.

An INF file, properly stored on a Windows 2000 system, allows for an automated or dialog-assisted

installation of driver files.

It is important to understand that the end result of a driver installation consists of two persistent

changes to a system:

System registry entries describing the driver, its load order, and any appropriate

configuration data

Driver files, copied to a suitable system directory

While the INF file is the standard mechanism for affecting these changes, it is also true that a

custom installation program can be provided, if appropriate, to force the same resulting system

changes. The next section deals with the syntax and operation of an INF file.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Auto-Install Using INF Files

INF files are typically provided with the hardware and driver on diskette or CD. The structure and content of

the INF file is the responsibility of the driver author.

INF File Structure

An INF file is a simple text file divided into sections, with each section designated by an identifier within

closed braces ([]). Some section names are required, while others are driver-specific. Entries beneath each

section control some installation action, or they link or enumerate other sections.

The order that sections appear in a file is unimportant, since each section is named and linked. A section

continues until either another section or the end-of-file is encountered. The unique name that specifies a

section is case-insensitive and should be limited to 28 characters in length to maintain compatibility with

Windows 98. Section names can include spaces, but only if the entire name is quoted. The underscore and

dot characters are allowed.

The general format of section entries is

entry = value [, value...]

where entry is a directive, keyword, or filename, and value is the attribute that is to be applied to entry.

An illustration of the linkage of section names is shown in Figure 16.1.

Figure 16.1. INF file section linkage.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The entry or value names can be specified as a string token, which is a substitution string enclosed within

percent signs (%). A separate INF section, [Strings], provides the string token values for a given language

ID.

Version Section

A valid INF file begins with a section named [Version], which acts as a header and signature for the entire

INF file. The allowed and required entries within the [Version] section are listed in Table 16.1.

Manufacturers Section

Another required section is the [Manufacturers] entries. Each entry within this section lists the devices and

their drivers that are installed by the INF file. The form of each entry is

manufacturer=model

where the manufacturer lists an INF-unique name for the producer of one or more models of hardware being

installed. The model value points to another INF section name that lists the further direction for driver

installation of the hardware model.

Models Section

For each model listed within the [Manufacturers] section, a corresponding section must appear as specified

by model. The form of each model entry is

device-description=install-section-name,hw-id[,compatible-id...]

where device-description represents a human-readable listing of the device model and a short description.

This string is presented to the user in a dialog box during some installations, so it may need to be provided

in multiple languages as a string token.

Table 16.1. [Version] Section Entries

[Version]

Section

Entry Value

Signature One of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 •"$Windows NT$"

 • "$Windows 95$"

 • "$Chicago$"

Class
A class name for an entire family of drivers. Some names, such as Net or Display, are

predefined.

ClassGuid The unique GUID for a class.

Provider Provider of the INF file; organization name.

LayoutFile
Used only by system-supplied INF files; OEM-supplied files must use SourceDisksNames

and SourceDisksFiles instead.

CatalogFile
Specifies a file (with .CAT extension) to validate drivers files; use only after validation by

Microsoft HW Quality Lab.

DriverVer mm/dd/yyyy[,x,y,v,z]; Required entry includes optional version numbers after date.

The value of install-section-name, also referred to as the [DDInstall] section, represents yet another INF

section that directs further installation. The hw-id value is the PnP identifier returned by the hardware device

during its announcement on a PnP-compatible bus. For example, USB\VID_045E&PID_00B identifies the

Microsoft HID (Human Input Device) keyboard device on a USB. Any number of compatible-id values can be

appended signifying that the same install script is to be used for any device contained in the list.

DDInstall Section

Near (but not quite at) the bottom of this linked list of INF section names is the [DDInstall] section, whose

name is actually specified uniquely for each model of each manufacturer from the [Models] sections. The

allowed and required entries within the [DDInstall] section are listed in Table 16.2.

While only the AddReg entry is syntactically required, the CopyFiles entry is an essential directive for

[DDInstall] sections. It takes the form

CopyFiles=file-list-section[,file-list-section...] or

CopyFiles=@filename

The former version is more common in that it allows an indirect pointer to another section that contains a list

of files to be installed. However, for simple driver installations, the direct filename approach gets the job

done. Both the AddReg and CopyFiles directives are explained in further detail in the next two sections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 16.2. [DDInstall] Section Entries

[DDInstall]

Section

Entry Value

DriverVer mm/dd/yyyy[,x,y,v,z]; required entry includes optional version numbers after date.

CopyFiles
Either another section name specifying a list of files to copy for this installation, or an

individual filename, prefixed with the @ character.

AddReg
Required. Lists other section names that contain system registry information to be added

by this installation.

Include INF filename pointer list to other INF files (and directives) needed by this install.

Needs Subsets the Include entry (above) listing the sections needed within the INF files.

DelFiles
Specifies other section names that list files to be removed from target (typically for

upgrade purposes).

RenFiles
Specifies other section names that list files to be renamed on target prior to installation

(typically to save previous installation state).

DelReg
Lists other section names that contain system registry information to be removed by this

install.

ProfileItems Lists other sections that contain modifications to the Start menu on the target system.

CopyFiles Section

The [CopyFiles] sections of an INF file are uniquely named and referenced from CopyFiles directives in the

[DDInstall] sections. Each entry within the section takes the form

destination-filename[,source-filename,temp-filename,flag]

where destination-filename is the ultimate target name for the file to be copied. If the source filename is not

the same, source-filename must be specified. The temp-filename value is an anachronism (though still

required for Windows 98) that specifies an intermediate filename for the new file until the next system

reboot. For Windows 2000, the value is ignored.

The flag value specifies the disposition of the new target file and is described in Table 16.3. The bits within

the flag value are ORed to effect multiple actions. Several actions are mutually exclusive (e.g.,

WARN_IF_SKIP and NOSKIP) and the documentation should be checked when in doubt.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 16.3. CopyFiles flag Definition

CopyFiles flag

Definition

Bit value Symbolic Name Description

0x0400 COPYFLG_REPLACEONLY Copy if source already present

0x0800 COPYFLG_NODECOMP Copy without decompressing

0x0008 COPYFLG_FORCE_FILE_IN_USE
Copy source to temp name; force reboot;

rename temp

0x0010 COPYFLG_NO_OVERWRITE Do not replace existing source

0x1000 COPYFLG_REPLACE_BOOT_FILE File is part of system loader; force reboot

0x2000 COPYFLG_NOPRUNE
Force copy operation, even if installer

believes unnecessary.

0x0020 COPYFLG_NO_VERSION_DIALOG
Do not overwrite newer file (ignored if install

package is digitally signed)

0x0004 COPYFLG_NOVERSIONCHECK Always overwrite target file

0x0040
COPYFLG_OVERWRITE_

OLDER_ONLY
Overwrite older target file

0x0001 COPYFLG_WARN_IF_SKIP Warn if the user skips file

0x0002 COPYFLG_NOSKIP Do not allow user to skip file

Since the syntax for the [CopyFiles] entry does not include an option to specify a disk or path for the source

file, other INF sections, [SourceDisksNames] and SourceDisksFiles] must be used. The files copied by

the entries within the [CopyFiles] section are targeted by yet another INF section, [DestinationDirs].

AddReg Section

The [AddReg] sections of an INF file are uniquely named and referenced from AddReg directives in the

[DDInstall] sections. The purpose of the section is to provide directives that add or modify entries in the

target system registry. Each entry within the section takes the form

reg-root[,subkey,value-name,flags,value]

where reg-root is an abbreviation for one of the Registry hives, as listed in Table 16.4. The value designates

the hive being modified. The subkey value represents the key name beneath the hive, with subkeys

separated in the hierarchy by the backslash (\) character. For example, Software\W2KDriverBook\

Driver\Setting is a valid subkey in either the HKCU or HKLM hive.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 16.4. AddReg reg-root Abbreviations

AddReg reg-root Abbreviations

Value Description

HKCR HKEY_CLASSES_ROOT

HKCU HKEY_CURRENT_USER

HKLM HKEY_LOCAL_MACHINE

HKU HKEY_USERS

HKR The hardware subkey for the device being installed

The value-name designates the Registry value being added or modified. Each system Registry key contains

zero or more values that hold different types of data. The Registry Editors list values of a subkey in the

right-hand pane. Both the value name and the value data appear in this pane. The left pane lists only

subkeys. Figure 16.2 illustrates the relationship between Registry terms.

Figure 16.2. System Registry terminology.

The flags specify the type of data that is to be stored and the possible bit values for flags is listed in Table

16.5.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 16.5. AddReg flags Definition

AddReg flags Definition

Bit value Symbolic Name Description

0x00000 FLG_ADDREG_TYPE_SZ Null-terminated string

0x00001 FLG_ADDREG_BINVALUETYPE Binary data

0x00002 FLG_ADDREG_NOCLOBBER Do not replace existing value

0x00004 FLG_ADDREG_DELVALUE Delete subkey or value-name

0x00010 FLG_ADDREG_KEYONLY Create subkey, ignore value

0x00020 FLG_ADDREG_OVERWRITEONLY If value exists, replace it, else do nothing

0x10000 FLG_ADDREG_TYPE_MULTI_SZ REG_MULTI_SZ data (array)

0x00008 FLG_ADDREG_APPEND Append to existing REG_MULTI_SZ array

0x20000 FLG_ADDREG_TYPE_EXPAND_SZ REG_EXPAND_SZ data

0x10001 FLG_ADDREG_TYPE_DWORD DWORD data

0x20001 FLG_ADDREG_TYPE_NONE REG_NONE data

The significance of system Registry entries to a driver installation is discussed in a later section of this

chapter.

SourceDisksNames Section

If the distribution of the driver files controlled by the INF file spans more than a single disk (diskette or CD),

the INF file must include a [Source-DisksNames] section. This section includes one entry for each disk

within the distribution set. The entry takes the form

diskid=disk-description[,tagfile,unused,path]

where diskid is a unique number within the distribution set. Typically, disks are numbered starting at 1. The

disk-description tag is a human-readable text string that can be used to prompt the user for the proper disk

as needed.

The tagfile value assumes a dual role. To ensure that the user supplies the correct disk during the

installation process, the tagfile value is verified as existing on the inserted media before the install process

continues. If the tagfile file is missing, the user is reprompted to insert the correct disk. If the tagfile value

contains a .CAB extension, the file is further assumed to be a collection of compressed files for the source of

driver files on the disk.

The path value is a root-relative disk path value for the source of driver files on the disk. Like the tagfile

value, path is optional. If omitted, the root directory is assumed to be the source of the files.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SourceDisksFiles Section

A driver INF file must also contain a section named [SourceDisksFiles]. This section lists the filenames

used during installation of the driver. Each file corresponds to one entry within the section and takes the

form

filename=diskid[,subdir,size]

Naturally, the diskid value specifies a disk within the [SourceDisksNames] section where the filename is to

be found. The optional subdir value specifies a path on the disk for the file. The optional size value specifies

the uncompressed size of the file in bytes. An installation process can use the size to determine if the

source file fits on the target system prior to attempting the copy.

DestinationDirs Section

This required section in an INF file specifies the target directory for source files. Without knowledge of this

section, an installation program or process would have no target directory in which to copy files. The entries

in the [DestinationDirs] section take the form

file-list-section=dirid[,subdir] or

DefaultDestDir=dirid[,subdir]

where file-list-section specifies a section called out in a [CopyFiles] directive. It specifies that all the files

copied by a directive install into the specified directory. For the entry DefaultDestDir, the specification

applies to all [CopyFiles] directives that do not otherwise associate with a file-list-section within the

DestinationDirs section.

The dirid value specifies an enumerated value for a destination directory according to Table 16.6. If the value

subdir is supplied, it specifies a relative path beneath the directory called out by dirid.

DDInstall.Services Section

In order to actually have the copied file(s) act as a driver on the target system, the Service Control Manager

(SCM) must be notified. As discussed in chapter 6, entries are made in the Registry under

HKLM\System\CurrentControlSet\Services for each driver installed under Windows 2000. A

ServiceType value of 1 signifies a kernel-mode device driver. StartType designates at what point in the

boot process the driver loads (3 denotes on-demand or manual start). The ErrorControl value determines

what happens during the driver load if an error is encountered. ServiceBinary value points to the location of

the driver file (.SYS file), but may be omitted if the binary is located in the %windir%\system32\drivers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

directory and has the same name as the subkey name underneath HKLM\...\Services.

Table 16.6. DestinationDirsdirid Definition

DestinationDirs dirid Definition

Value Meaning

12 %windir%\system32\drivers for Windows 2000

 %windir%\system\IoSubsys for Windows 98

10 %windir%

11 %windir%\system32 for Windows 2000

 %windir%\system

30 Root directory of the boot drive

54 Boot directory for Windows 2000

01 Directory of this INF file

17 INF file directory

20 Fonts directory

51 Spool directory

52 Spool drivers directory

55 Print processors directory

23 Color (ICM)

-1 Absolute path

21 Viewers directory

53 User Profile directory

24 Applications directory

25 Shared directory

18 Help directory

16406 All Users\Start Menu

16407 All Users\Start Menu\Programs

16408 All Users\Start Menu\Programs\Startup

16409 All Users\Desktop

16415 All Users\Favorites

16419 All Users\Application Data

16422 Program Files

16427 Program Files\Common

16429 All Users\Templates

16430 All Users\Documents

The entries of the DDInstall.Services section include an entry of the form

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

AddService=ServiceName,[flags],service-install-

section[,eventlog-install-section]

where ServiceName represents the name of the service, typically the name of the driver, sans the .SYS

extension. The flags value is described in Table 16.7.

Table 16.7. AddService flags Definition

AddService flags

Definition

Bit value Symbolic Name -SPSVCINST_ Description

0x0002 ASSOCSERVICE
Driver is an FDO (function driver), not a

filter

0x0008 NOCLOBBER_DISPLAYNAME Do not overwrite friendly name

0x0100 NOCLOBBER_DESCRIPTION Do not overwrite description

0x0010 NOCLOBBER_STARTTYPE Do not overwrite start type

0x0020 NOCLOBBER_ERRORCONTROL Do not overwrite error control

The service-install-section and optional eventlog-install-section values call out additional INF section names

that control service value entries (such as ServiceType and StartType).

ServiceInstall Section

The [ServiceInstall] section, whose name is actually specified uniquely for each AddService entry within the

DDInstall.Services sections, controls the installation of a driver into the Service Control Manager. The

allowed entries within the [ServiceInstall] section are listed in Table 16.8.

Table 16.8. ServiceInstall Section Entries

[ServiceInstall] Section

Entry Value

DisplayName Friendly name of driver, displayed in Device Manager

Description Short description of purpose of driver or service, displayed by Device Manager

ServiceType Type of driver:

 0x01 - kernel driver

 0x02 - file system driver

StartType Specifies when driver loads:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 0 - Boot time

 1 - System start

 2 - Auto start after system

 3 - Demand start

 4 - Disabled

ErrorControl Disposition of errors during driver load:

 0 - Ignore all errors

 1 - Display errors to user

 2 - Restart with "last known good," ignore further errors

 3 - Restart with "last known good," bugcheck if further errors

ServiceBinary Full path name of driver, which may include dirid values (see Table 16.6)

INF Example

If the preceding explanation of INF files appears overly complex, a simple example may clarify. In the

following example, a two-file driver is controlled by the INF file. The driver binary, Launcher.SYS, is copied

into the system's driver directory (e.g., WINNT\System32\Drivers). A separate help file, Launcher.HLP, is

copied into the help directory of the system (e.g., WINNT\Help).

[Version]

Signature="$Windows NT$"

Class=Missiles

ClassGUID={C9B3D080-6889-11d4-93FC-444553540000}

Provider=W2KDriverBook

DriverVer=07/04/2000,1.00.2468.1

; Comments follow a semicolon

[DestinationDirs] ; Specify where files are copied to

DefaultDestDir=12 ; %windir%\system32\drivers

CopyLaunchHelp=18 ; standard help directory

[Manufacturer]

W2KDriverBook=MyMfgName ; call out a model section

[MyMfgName] ; begin a Models section

; Our list of devices follows:

"ISA Missile Launcher"=InstallLauncher,ISA\Launcher

[InstallLauncher] ; begin a DDInstall section

CopyFiles=CopyLaunchFiles ; call out a CopyFiles sec.

CopyFiles=CopyLaunchHelp ; and one for the help files

AddReg=LaunchRegSection ; call out an AddReg section

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

[CopyLaunchFiles] ; begin a CopyFiles section

Launcher.sys

[CopyLaunchHelp] ; a second CopyFiles for Help file

Launcher.hlp

[LaunchRegSection] ; begin an AddReg section

; Provide a DWORD registry value of 0 for our device:

HKR,"Parameters","Coordinates"

,FLG_ADDREG_TYPE_DWORD,0

[SourceDisksNames]

; This section is not really required because we have

; only two files and they probably fit on one disk.

1="Missile Launcher Driver Files"

[SourceDisksFiles]

; Similarly, since everything came from one disk,

; we don't really need this section either.

Launcher.sys=1

Launcher.hlp=1

[InstallLauncher.Services] ; DDInstall.Services sec.

AddService=Launcher,2,LaunchService

; Setup the SCM registry entries so driver can start

[LaunchService]

ServiceType=1 ; driver

StartType=3 ; on-demand (manual)

ErrorControl=1 ; report errors

ServiceBinary=%12%\Launcher.sys ; path to driver

Validating INF Syntax

The DDK includes a rudimentary tool, CHKINF, in the Tools directory of the DDK. It relies upon the Perl

scripting engine, available for download from http://www.perl.com. While the tool is not without merit, it

reports numerous errors when checking standard Microsoft INF files. The output from the tool is in the form

of an HTML file.

The DDK Tools directory also contains a utility to simplify the construction of an INF file, GENINF.EXE. The

tool must also be classified as rudimentary but may assist first-time authors.

Finally, a simple tool supplied with the DDK, STAMPINF.EXE, provides a quick mechanism to add or modify

the version information in an INF file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.perl.com

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Using a Driver INF File

Once the driver's INF file is created, it must be processed for it to take effect. Obviously, the strict adherence

to INF syntax suggests that an engine exists for just such a purpose. This section describes the mechanics

of running the engine, either automatically or manually.

Manual Installation

To process an INF file manually, simply use the Windows Explorer file manager to select the INF file.

Right-clicking the file offers the option to Install (process) the file.

In a true Plug and Play environment, the insertion or removal of a device triggers the installation, load, and

unload of an appropriate driver. Therefore, the use of manual installation is reserved for initial testing and

debugging of a driver.

Automatic Installation

When a PnP device is inserted into a system, several subsystems interact to force the loading of a new

driver, if necessary. The steps are outlined below.

When the device is inserted, the hardware, using auto-detection and notification, alerts the bus

driver that the device is present. Depending on the bus hardware, this might involve notifying the

bus driver that a change has occurred that warrants a new enumeration of bus devices. Regardless,

at the end of this step, the bus driver is aware that the new device is present and that it has a

specific device ID.

1.

The kernel-mode PnP Manager notifies the user-mode PnP Manager that a new device with a

specific ID is present in the system.

2.

The user-mode PnP Manager, using the Setup API library of Windows 2000, constructs a likely list

of drivers for the new device. The INF directory of the system (e.g., WINNT\INF) is searched using

the class and model information from the new device for a suitable match.

3.

If a suitable INF file cannot be located, the system delays further action until a privileged user logs

on. Then the user is presented with a dialog-driven New Hardware wizard. The user supplies the

location of the drivers (CD, diskette, Web location, etc.) and the appropriate INF file is located.

4.

Once the INF file is found, it is processed using the CfgMgr API library. The driver files and Registry

entries are installed and modified. This step is primarily carried out by the kernel-mode PnP

Manager.

5.

Based on the directives of the INF file, the kernel-mode PnP Manager loads any lower filter drivers,

then the functional driver, and finally any upper filter drivers for the device. The top driver in the

stack is then sent appropriate PnP messages, including IRP_MN_START_DEVICE.

6.

The Add/Remove Hardware Wizard

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As just explained, the user must sometimes interact with even an automated installation. The prime interface

for this interaction is the New Hardware wizard. A typical screen shot from this (all too) familiar tool is shown

in Figure 16.3. Notice that there is a column for Manufacturers (listed from INF files [Manufacturers]

section), and for Models (listed from INF files [Models] sections).

Figure 16.3. New Hardware wizard.

In general, the user manually selects the appropriate driver to install and load. If the driver survives

installation, its DriverEntry and AddDevice routines must still validate that the hardware they are being

asked to drive satisfies their set of code assumptions. In other words, a manual selection process can

succeed the installation, but still fail initialization.

Class Names and Device IDs

The automated process of installation of a Plug and Play device depends largely on the ability of the Setup

program to locate an appropriate INF file and section for the driver. The purpose of this section is to explain

the source for Device IDs and Class Names, as well as explain the matching process that is used to locate

an INF file section.

Every Plug and Play device should have an identifier that uniquely specifies the model of hardware. This

Device ID must be provided to the Plug and Play bus hardware and, therefore, to a bus driver upon request.

Of course, the bus driver requests the Device ID shortly after a new device is inserted. The form of a Device

ID varies somewhat with the hardware bus type, but generally appears as

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

<enumerator>\<enumerator-specific-device-ID>, (for example,

PCI\VEN_1000&DEV_0001&SUBSYS_00000000&REV_02)

to driver code. A given hardware device can report more than one Device ID, which is a statement that the

device is functionally compatible with numerous models. Since the [Models] section of an INF file includes

an hw-id value, it is a simple matter to look for a direct match between an entry in the INF file with the

Device ID returned by a newly installed device. The same INF entry allows for the specification of a list of

(hopefully) compatible hardware, in the form of additional Device IDs. If an exact match cannot be located

with the INF file for the Device ID, a compatible match is used as recourse.

Another key element used in locating appropriate drivers for a device is the notion of a Setup Class. A group

of related devices can share layers of drivers (e.g., upper or lower filters) even though individual drivers

within the stack vary. Setup Classes are uniquely identified by GUID and name. Microsoft defines a series of

driver classes, listed in Table 16.9. New classes can be defined for new hardware groupings, with the same

benefits bestowed to drivers that participate in the group membership. To create a new group, a new GUID

and class name must be chosen.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 16.9. Setup Classes: Names and GUIDs

Setup Classes

Class Name Description GUID

1394 1394 Host Bus Controller {6bdd1fc1-810f-11d0-bec7-08002be2092f}

Battery Battery Devices {72631e54-78a4-11d0-bcf7-00aa00b7b32a}

CDROM CD-ROM Drives {4d36e965-e325-11ce-bfc1-08002be10318}

DiskDrive Disk Drives 4d36e967-e325-11ce-bfc1-08002be10318}

Display Display Adapters {4d36e968-e325-11ce-bfc1-08002be10318}

FloppyDisk Floppy Disk Controllers {4d36e980-e325-11ce-bfc1-08002be10318}

HDC Hard Disk Controllers {4d36e96a-e325-11ce-bfc1-08002be10318}

HIDClass Human Input Devices {745a17a0-74d3-11d0-b6fe-00a0c90f57da}

Image Imaging Devices {6bdd1fc6-810f-11d0-bec7-08002be2092f}

Infrared IrDA Devices {6bdd1fc5-810f-11d0-bec7-08002be2092f}

Keyboard Keyboard {4d36e96b-e325-11ce-bfc1-08002be10318}

MediumChangers Medium Changers {ce5939ae-ebde-11d0-b181-0000f8753ec4}

MTD Memory Technology Driver {4d36e970-e325-11ce-bfc1-08002be10318}

Media Multimedia {4d36e96c-e325-11ce-bfc1-08002be10318}

Modem Modem {4d36e96d-e325-11ce-bfc1-08002be10318}

Monitor Monitor {4d36e96e-e325-11ce-bfc1-08002be10318}

Mouse Mouse {4d36e96f-e325-11ce-bfc1-08002be10318}

Multifunction Multifunction Devices {4d36e971-e325-11ce-bfc1-08002be10318}

MultiportSerial Multi-port Serial Adapters {50906cb8-ba12-11d1-bf5d-0000f805f530}

Network Network Adapter {4d36e972-e325-11ce-bfc1-08002be10318}

NetClient Network Client {4d36e973-e325-11ce-bfc1-08002be10318}

NetService Network Service {4d36e974-e325-11ce-bfc1-08002be10318}

NetTrans Network Transport {4d36e975-e325-11ce-bfc1-08002be10318}

PCMCIA PCMCIA Adapters {4d36e977-e325-11ce-bfc1-08002be10318}

Ports Ports (COM & LPT) {4d36e978-e325-11ce-bfc1-08002be10318}

Printer Printer {4d36e979-e325-11ce-bfc1-08002be10318}

SCSIAdapter SCSI and RAID Controllers {4d36e97b-e325-11ce-bfc1-08002be10318}

SmartCardReader Smart Card Readers {50dd5230-ba8a-11d1-bf5d-0000f805f530}

Volume Storage Volumes {71a27cdd-812a-11d0-bec7-08002be2092f}

System System Devices {4d36e97d-e325-11ce-bfc1-08002be10318}

TapeDrive Tape Drives {6d807884-7d21-11cf-801c-08002be10318}

USB USB {36fc9e60-c465-11cf-8056-444553540000}

Customizing an Installation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

There are generally two things that a driver author can provide to customize the installation of a driver. First,

a custom installation program can be provided that essentially replaces the work of the New Hardware

wizard. To provide this functionality, the custom program must utilize the library routines provided by

SETUPAPI.DLL. Each of the functions within this library begins with the name SetupDiXxx. The DDK

provides the laborious details of the use of this DLL.

Second, a driver can provide a custom wizard page to allow the specification of custom device settings. Just

prior to the completion of its work, the setup process sends a DIF_NEWDEVICEWIZARD_FINISHINSTALL

request that offers the opportunity for a driver to display the custom page. Again, the DDK provides the

details for this process.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Controlling Driver Load Sequence

Sometimes, the order in which a driver loads is important. Perhaps one driver depends on another

to complete its initialization. When such dependencies arise, the Service Control Manager can be

informed with the Registry entries LoadOrderGroup and Dependencies. These values can also be

specified in the [ServiceInstall] section of an INF file.

The LoadOrderGroup identifies by name a single group in which the specified driver is a member.

The Dependencies value specifies which other groups must load prior to this driver loading

successfully.

The need for such interdependencies is not common, nor should it be. In a truly device-centric

environment (which Plug and Play purports), drivers should be in a position to load and unload with

few strings attached. On the other hand, heavily layered driver implementations may have legitimate

needs for such specifications.

Driver Stack Order

A related issue concerns the order in which drivers stack. In a layered driver environment, any

number of drivers can stack on top of each other to distribute and reuse code. In a typical WDM

model, driver stacks exist that contain a PDO (Physical Device Object) at the bus level, a possible

bus filter object, an FDO (Functional Device Object), and surrounding upper and lower filter devices.

(refer to chapters 1 and 15.)

In such environments, it is the Registry entries (once again) for each driver layer that determine the

order in which drivers stack. Notice that the load order is independent of the stack order. When a

driver invokes IoAttachDeviceToDeviceStack, it is the responsibility of the I/O Manager to link

drivers appropriately, independently of their load order.

The Registry entries for a driver may contain values named UpperFilters and LowerFilters. These

are REG_MULTI_SZ string arrays, each containing the names of drivers that stack above and

below the given driver. The order of the string array determines the stack order for multiple upper or

lower filters.

A segment of an INF file appears below to demonstrate the installation of a filter driver. Notice that

the upper filter is installed as a demand start driver. Even though it has announced that it stacks on

top of the functional device, the driver may not load and insert itself into the stack until it is manually

loaded.

...

[upperFilter_install] ; DDInstall section

CopyFiles = @upperFilter.SYS

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

AddReg = upperFilter_addreg

[upperFilter_addreg] ; AddReg section

; append this filter to the list of filters

HKR,,"UpperFilters",0x10008,"upperFilter"

[upperFilter_install.Services] ; DDInstall.Services

AddService = Launcher,0x2,Launcher_Service

AddService = upperFilter,,upperFilter_Service

[upperFilter_Service]

DisplayName = "Upper Filter Service for Launcher"

ServiceType = 1 ; kernel-mode driver

StartType = 3 ; demand start

ErrorControl = 1

ServiceBinary = %12%\upperFilter.SYS

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Digital Signing of a Driver

Many third-party drivers ship with the Microsoft Windows 2000 CD distribution. In order to participate

in this program, several requirements must be met.

Additionally, whenever a naive attempt to install a driver on Windows 2000 is made, a warning

message is issued stating that the device driver is not digitally signed and its authenticity cannot be

verified by Microsoft.

This section explains the role of Microsoft in verifying driver authenticity and the burden placed on a

driver author and hardware manufacturer to certify their package for inclusion into future Windows

2000 CD distribution.

Why Microsoft Verifies Drivers

It is in Microsoft's best interest to promote two (conflicting) goals.

Provide or promote as much interoperability for Windows 2000 and varied hardware devices

as possible through the convenient distribution of device drivers.

Ensure that device drivers are stable and do not compromise the integrity of the system.

Since device drivers operate in kernel mode, they have the capability to slowly or quickly crash a

system. Since instability of the system will often be blamed on the kernel itself, it is clearly in

Microsoft's interest to maintain a list of certified vendors and drivers for their operating systems.

Of course, stating that Windows 2000 interoperates with more hardware devices than other OSs is a

strong selling feature. Therefore, Microsoft often works with hardware vendors to ensure timely

release of compatible drivers.

To accomplish the two goals, Microsoft has established a specialized group, the Windows Hardware

Quality Labs (WHQL), that provides a certification of hardware and the device driver. The

participation benefits for hardware vendors include

Use of the Windows logo on the certifying hardware and software

Inclusion in the official list of supported and certified hardware for the various Microsoft

operating system offerings (see http://www.microsoft.com/hcl)

The opportunity to distribute the driver with future releases of the OS

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.microsoft.com/hcl

A digital signature that ensures tamper-proof code and allows customers to obtain the latest

versions of drivers through Microsoft's Windows Update site

To participate in the program, visit the site http://www.microsoft.com/hwtest for procedures and

pricing.

Digital Signatures

As part of the WHQL program, a certified driver obtains a digital signature that permits Windows

2000 to install the driver without the unprofessional warning of "imminent danger." The digital

signature consists of several components.

A catalog file (.CAT) that is included with the distributed driver package. It contains the

actual digital signature assigned by Microsoft.

An INF file entry in the [Versions] section that references the .CAT file.

Windows 2000 policy that restricts whether or not an unsigned driver can be installed.

The digital signature is allegedly tamper-proof and ensures that the driver being installed is the

original code supplied by the vendor. It uses cryptographic technology to achieve this goal. The

signature itself does not alter the code in any way.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://ww.microsoft.com/hwtest

< BACK NEXT >

[oR]

Summary

For those familiar with the installation of drivers into earlier implementations of Windows, the

automated process of Windows 2000 and Windows 98 is a great step forward for users. However,

the step requires additional work on the part of the driver author in that, at a minimum, an INF file

must be supplied. In the end, all parties benefit from the common, standardized mechanism of driver

installation.

The final chapter in the book deals with the necessary subject of debugging device drivers using

Microsoft tools.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Chapter 17. Testing and Debugging Drivers

CHAPTER OBJECTIVES

Guidelines for Driver Testing

Why Drivers Fail

Reading Crash Screens

An Overview of WinDbg

Analyzing a Crash Dump

Interactive Debugging

Writing WinDbg Extensions

Code Example: A WinDbg Extension

Miscellaneous Debugging Techniques

Summary

In many ways, this chapter should be first in the book. After all, it is not possible to design

software (that works, anyway) without considering a testing and debugging strategy from the

very beginning. Of course, since the purpose of the book is to present the Windows 2000

driver architecture, the focus has been to explain the way drivers work, not fail.

The purpose of this chapter is to introduce the concept of writing defensive driver code. By

considering the ways in which code can fail, the design and implementation of the driver can

facilitate the isolation and reporting of the error. The techniques covered in this chapter include a

presentation of trace methods and procedures.

The chapter also presents some tools provided by Microsoft with the DDK and elsewhere. For

example, the very useful WinDbg debugger operation is explained.

And, by placing this chapter at the end, it does make for easy reference whenever it is needed.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Guidelines for Driver Testing

In many ways, driver testing is like all software testing: develop test cases that exercise boundary

and stress conditions and measure the results. At a more practical level, however, driver testing

requires innovation, real-time skills, hardware knowledge, and above all, patience.

A Generalized Approach to Testing Drivers

No complex body of code can ever be bug-free. Everyone is familiar with the phenomena that fixing

bugs introduces new bugs. Bugs cannot be stopped; they can only be contained. This is especially

true when software interacts with other vendors' software and hardware. Further, as software design

occurs in layers and components, the actual mix of software and hardware versions may never have

been tested as a system. This classic problem appears time and again with DLLs. Vendors test their

code with one version of DLLs, but by the time the product is deployed en masse, the DLL versions

have changed on the end users' systems.

Therefore, every test plan must be reasonable—searching for the knee in the curve beyond which

diminishing returns on the testing effort occur. The real point is that test design is every bit as

challenging as software design.

WHEN TO TEST

Experience shows that incremental testing of software components as they are developed is far

more effective than waiting until the entire system is constructed. Although incremental testing

requires a large number of small tests, bug isolation makes the technique worthwhile. Additionally,

predicting the ship date of progressively tested software is more reliable than predicting the ship

date of code that has never been tested.

The small test programs developed for this strategy also form the basis of a more formal regression

test. As future changes are made to the code base, the small tests help ensure that new bugs are

not introduced.

Yet another advantage of incremental testing throughout the driver development phase is that

hardware design flaws are identified early. This is especially important for new hardware under

design. Nothing kills a schedule more than identifying another spin on a custom ASIC late in the

development phase.

WHAT TO TEST

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Generally, driver tests can be categorized as follows:

Hardware tests

verify the operation of the hardware. These tests are essential when the device and driver

are being developed in parallel.

Normal response tests

validate the complete and accurate functionality of the driver. Does the driver respond to

each command as promised?

Error response tests

check for appropriate action when a bad stimulus is applied to the driver. For example, if the

device reports an error, does the driver respond by reporting and logging the error? The

error stimulus can also be bad data from a user response.

Boundary tests

exercise the published limits of the driver or device. For example, if there is a maximum

transfer size, does the driver deal appropriately when presented with one more byte?

Speed boundaries are also addressed in this category.

Stress tests

subject the driver and device to high levels of sustained activity. The amount of stimulus is

ideally just beyond what will be encountered in the real world. Within this category, different

subcategories of stress can be applied. For example, limited CPU availability, limited

memory, and heavy I/O activity are all dimensions where stress can be applied.

HOW TO DEVELOP THE TESTS

For optimum scheduling and to ensure a dedicated effort, a separate test design team should be

established. However, it is often difficult enough to staff a driver development team, let alone

attempt to find specialists in driver testing. As mentioned, the skill set required for the testing effort is

every bit as rare as the driver development set. Few organizations can realistically afford the luxury

of separate development and test teams.

Thus, the driver author must often write the incremental tests in parallel with the development code.

One advantage of the singleton approach is that the author implicitly knows the boundary conditions

of the code just developed. Tests to exercise arbitrary software limits are therefore well known.

Regardless, a good discipline must be established to ensure that the scheduling process allocates

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

sufficient time to both development and testing efforts. Reducing test time to enhance a schedule is

a "fools gold" approach to any development effort.

HOW TO PERFORM THE TESTS

The test procedure should be as automated as possible. Besides eliminating the boredom and

opportunity for missed tests or errors, an automated test script ensures that if (when) an error

occurs, the opportunity to reproduce it is high.

Also, after each round of bug fixes is applied to code, the entire suite of incremental tests should be

rerun. This is called regression testing and it ensures that one bug fix doesn't introduce others.

All test runs should be logged and it is a good idea to keep statistics on the number of bugs found

versus lines of development code added. Beyond the simple value of a management metric, it

provides hard evidence of techniques that provide diminishing returns. For example, is it really

productive to have developers work 14 hour days to "meet" the schedule?

WHO SHOULD PERFORM THE TESTS

The code author often has a vested interest in keeping some bugs hidden. Perhaps bugs are

suspected but the developer is not yet ready to confirm their presence. Perhaps a questionable

design must be defended. Perhaps simple ego prevents honest observation of a result. For all of

these reasons, the test author is the better choice to run regression tests. A code author simply

cannot be expected to be objective about his or her own code and design.

Of course, if the team does not have separate development and test personnel, an alternative must

be accepted. When more than one developer makes up the team, the operating procedure can be to

have different members test code written by other members.

The Microsoft Hardware Compatibility Tests

Microsoft provides a hardware compatibility test suite (or simply, the HCTs) that is the official test for

a hardware platform's ability to run Windows 2000. The suite contains a number of different

components, including

General system tests that exercise the CPU, the onboard serial and parallel ports, the

keyboard interface, and the HAL.

Tests that exercise drivers for specific kinds of hardware, such as video adapters,

multimedia devices, network interface cards, tape drives, SCSI devices, and so on.

General stress tests that put unusually high loads on system resources and I/O bandwidth.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A GUI-based test manager that automates test execution and data collection.

Even if the class of hardware for the driver being developed is not covered by the HCTs, the suite

can still serve as a tool to place system-level stress on custom driver tests.

The HCT suite is shipped as a separate disk within the DDK. It should be installed on the target

machine, not on the development machine. A complete set of documentation is included on the

HCTs CD.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Why Drivers Fail

While testing uncovers the presence of bugs, the more serious challenge is to analyze, isolate, and

correct the source of the bug. The goal of this section is to provide the basis for the analysis of

driver bugs. Drivers fail for specific reasons and some up-front thought about the ways in which they

fail can start the elusive search for a bug in an orderly fashion.

Categories of Driver Errors

Drivers can fail in any number of interesting ways. Although it is not possible to give a complete list,

the following sections describe some of the more common types of driver pathology.

HARDWARE PROBLEMS

It goes without saying (to a software developer, anyway) that there is always an even chance that

the hardware itself is the source of a problem. In fact,when developing drivers for new, undeployed,

untested hardware, the chances of a hardware problem rise significantly. Symptoms of hardware

problems include

Errors occur during data transfer.

Device status codes indicate an error (when a device reports an internal error, it is the

equivalent of a confession).

Interrupts do not arrive or they arrive spuriously.

The device does not respond properly to commands.

The cause might be as simple as undocumented behavior in the device, and hardware designers

have been known to alter documentation after witnessing the results of their work. There might be a

restriction on command timing or sequencing. The firmware on the device might be faulty. There

could be a bus protocol problem resulting in sporadic failures as other devices on the bus engage.

Then again, the device might just be broken.

Because attempting to debug a problem whose ultimate source is hardware is so frustrating, it is

best to eliminate (within reason) this category of fault before proceeding.

The best approach to validate a hardware problem is to employ a logic analyzer or hardware

emulator. Hardware and software designers should work closely on unstable platforms until the first

level of fault isolation can be determined.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SYSTEM CRASHES

Because driver code operates in kernel mode, it is straightforward for such code to kill the entire

system. While many driver logic errors produce a crash, the most common stem from access

violations (e.g., referencing a logical address that has no physical memory behind it) through use of

a bad C pointer. Among the more difficult-to-trace scenarios within this category is setting DMA

addresses incorrectly into the mapping registers. The device scribbles into random memory with a

resulting crash seemingly caused by another entire subsystem.

A later section in this chapter deals with analyzing system crashes to determine the ultimate source.

RESOURCE LEAKS

Because kernel-mode driver code is trusted code, the system does not perform any tracking or

recovery of system resources on behalf of a driver. When a driver unloads, it is responsible for

releasing whatever it may have allocated. This includes both memory from the pool areas and any

hardware the driver manages.

Even while a driver is running, it can leak memory if it regularly allocates pool space for temporary

use and then fails to release it. High-layered drivers can leak IRPs by failing to free those fabricated

and passed to lower levels. Resource leaks force sluggish system performance and, ultimately, a

system crash.

Windows 2000 allows memory allocated by kernel-mode code to be tagged with an ID. When

analyzing system memory after a crash, the tags help determine where the blocks are located, their

size, and most importantly, which subsystem allocated them. Tools such as GFLAGS, supplied with

the Platform SDK, enable the pool tagging feature globally for the system.

Resource leaks in progress can sometimes be determined by careful monitoring of system objects.

Tools such as WINOBJ (supplied with the Platform SDK or by www.sysinternals.com) assist in this

monitoring.

Tracking resource leakage can be an arduous process. Considerable patience must be exercised

when analyzing and isolating such problems.

THREAD HANGS

Another failure mode is caused by synchronous I/O requests that never return. The user-mode

thread issuing the request is blocked forever and remains forever in its wait state. This type of

behavior can result from several causes.

First, an explicit bug might be failing to ever call IoCompleteRequest, thus never sending the IRP

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

back to the I/O Manager. Not so obvious is the need to call IoStartNextPacket. Even if there are no

pending requests to be processed, a driver must call this function because it marks the Device

object as idle. Without this call, all new IRPs are placed in the pending queue, never arriving at the

Start I/O routine.

Second, a logic error can hang a thread in a Dispatch routine. Perhaps the driver is attempting

recursively to acquire a Fast Mutex or an Executive resource. Perhaps another code path has

acquired a mutex but failed to release it. Subsequent requests for the mutex hang indefinitely.

Similarly, DMA drivers can hang while awaiting ownership of the Adapter object or its mapping

registers. The IRP request is therefore never processed, which in turn queues all further IRPs. For

slave DMA devices, the offending driver might cause other drivers using the same DMA channel to

freeze.

Drivers that manage multiunit controllers can effect similar problems by not releasing the Controller

object. New IRPs sent to any Device object using the locked Controller object queue indefinitely.

Unfortunately, there is no convenient way to see who currently owns Adapter or Controller objects,

Mutexes, or Executive resources. It is sometimes helpful to maintain a resource management

structure for tracking purposes. Each owner of a synchronization object should register its use within

the structure, clearing it when the object is released. Of course, this technique requires a manual

coding effort; the act of adding the code often reveals the source of the problem.

Another hit or miss attempt to isolate thread hang problems is the use of the checked build of the

Windows 2000 kernel. The checked build reports the use of system synchronization objects through

DbgPrint statements that appear on an attached debugger.

SYSTEM HANGS

Occasionally, a driver error causes the entire system to lock up. For example, a deadly embrace

involving multiple spin locks (or attempts to acquire the same spin lock multiple times on a single

CPU) can freeze system operation. Endless loops in a driver's Interrupt Service Routine or DPC

routine cause a similar failure.

Once this kind of system collapse occurs, it is difficult, if not impossible, to regain control of the

system. The best approach is usually to debug the driver interactively, using WinDbg, and attempt to

duplicate the failure.

Reproducing Driver Errors

One key to isolating a driver bug is the ability to reproduce the problem. Intermittent errors are the

bane of a driver author's existence. By meticulously recording the exact sequence of events leading

up to the failure, the possibility of reproduction increases. The causes of intermittent failures are

numerous.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

TIME DEPENDENCIES

Some problems occur only when a driver is running at full speed (or worse, at some exact slower

speed). This could produce an unusually high I/O request rate or data transfer rate. Stress testing is

usually a good way to attempt reproduction of this type of failure.

MULTIPROCESSOR DEPENDENCIES

If the driver is certified for multiprocessor operation, it must be tested on a multiprocessor platform.

Numerous timing conditions present themselves only within the MP environment. For example, ISR,

DPC, and I/O Timer routines can run simultaneously on an SMP machine. One warning: SMP

debugging is very painful, so it is best to start with a single processor environment.

MULTITHREADING DEPENDENCIES

If a driver manages sharable Device objects, the test strategy must access a single Device object

from multiple threads. IRPs that flow from multiple threads often provoke unintended results.

OTHER CAUSES

A computer system involves many components. Sometimes behavior appears non-deterministic due

to system load conditions, combinations of installed hardware and drivers, or other configuration

differences. A detailed log is perhaps the best tool to assist in identifying this category of problem.

Defensive Coding Strategies

Any good software design anticipates problems. To facilitate the detection and isolation of failures,

several coding techniques should be employed.

Maximize the generation of intermediate output within the driver code. Intermediate output,

also known as trace output, should be sprinkled liberally within the driver code. Using the

function DbgPrint (described later in this chapter), intermediate output is directed at a

connected interactive debugger such as WinDbg. Sysinternals also produces a utility,

DebugView, that captures this trace output on a single system.

Use assertions (described later in this chapter) liberally to validate internal consistency

within driver code.

Debug code can remain with the driver source, properly bracketed by #ifdef and #endif

statements. When needed, a debug version of the driver can be used to track particularly

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

elusive bugs.

Faithfully maintain version information for each driver shipped. Often, bugs follow a

particular version of a driver, yielding major clues to its cause.

Use version control software throughout the development process. This allows code

changes to be easily backed out to test for failure modes on older code bases.

Keeping Track of Driver Bugs

Research has shown that bugs are not evenly distributed throughout code. Rather, they tend to

cluster in a few specific routines, proportional to the routine's complexity. A carefully maintained bug

log identifies the routines that deserve special attention.

A good bug log allows patterns that highlight configuration-related failures to be spotted. It can also

highlight holes within the testing design and strategy itself.

Good failure logs should contain at least the following:

An exact description of the failure.

As much detail as possible about the prevailing conditions at the time of the failure. For

example, the OS version and service pack, the drivers installed and their versions, and so

on.

The exact configuration of the system at the time of failure.

Bug severity (from showstopper to cosmetic).

Current status of the bug.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Reading Crash Screens

System crashes, which Microsoft euphemistically terms "STOP messages," are a dramatic sign that a driver

has failed. This section describes how STOP messages are generated and explains how they provide useful

information.

What Happens When the System Crashes

Despite its name, a system crash is quite orderly. The OS is reporting that it has detected an internal state

that is inconsistent with continued operation. As a result, the OS believes it is better to shutdown now rather

than continue operation with the illegal state. This is appropriate in many cases since the illegal state could

cause real damage, perhaps to the file system. Continuing operation under such circumstances could also

breach security.

Two different sequences of events can lead to a system crash. First, some kernel-mode component can be

the detector of an illegal state and elect to force a system STOP. For example, if the I/O Manager discovers

that a driver is passing an already completed IRP to IoCompleteRequest, the I/O Manager forces a system

STOP.

The second scenario is more indirect. A kernel-mode component is the direct source of the failure,

generating an exception within its code operation. For example, a memory access violation or integer

division by zero result in an exception being generated. Referencing paged memory at an elevated IRQL

level is also an exception. If the kernel-mode routine that performs the illegal operation does not trap the

exception directly, the result is an unhandled exception within kernel mode.

When this occurs, a standard exception handler within the kernel responds and initiates a system STOP.

Regardless of which kernel subsystem initiates the system STOP, one of two calls actually performs the

operation.

VOID KeBugCheck(Code);

VOID KeBugCheckEx(Code, Arg1, Arg2, Arg3, Arg4);

Either function generates the STOP screen and optionally saves a crash dump file to disk. Depending on the

system administrator's choice, the system either halts, reboots, or starts the kernel's debug client.

The Code argument to the KeBugCheck routines specifies the cause of the crash as a simple DWORD

value. It is also known as a bugcheck code. The additional four arguments to KeBugCheckEx appear within

the STOP message screen as further information for the user to report (and hopefully assist in isolating the

source of the STOP).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Bugcheck codes are either defined by Microsoft (see BUGCODES.h within the DDK and Appendix B of this

book) or are driver-specific.

Calls to either KeBugCheck function can be made from a driver. In fact, it is common for a debug version of

a driver to force system STOPs at various points of interest.

The Blue Screen of Death

A system STOP message appears on an entire screen of blue background, earning it the name Blue Screen

of Death, or BSOD. In versions of NT prior to Windows 2000, the STOP message filled the screen with

information of questionable value. In Windows 2000, the STOP message is simplified, containing the most

relevant information about the cause and location of the crash. A sample BSOD is illustrated in Figure 17.1.

Figure 17.1. The STOP message screen (Blue Screen of Death).

The STOP message contains three lines of information. The bugcheck code, along with the four arguments

passed to KeBugCheckEx if it initiated the STOP, is supplied on the first line. Depending on the bugcheck

code, the four extra arguments contain meaningful information (see Appendix B for a description).

The second line identifies the bugcheck code symbolically. In this case, the bugcheck code of 0xD1

specifies DRIVER_IRQL_NOT_LESS_OR_EQUAL. Appendix B states that code 0xD1 indicates that a driver

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

caused a page fault at or above DISPATCH_LEVEL IRQL. Also, the four KeBugCheckEx arguments for this

code specify

Arg1: The paged address referenced: 0

Arg2: IRQL level at the time of the reference: 2

Arg3: Type of access: 0 means "read"

Arg4: Address of instruction that caused the fault: 0xFCE10796.

Thoughtfully, the third line of the STOP message information looks up the failing instruction address and

specifies the module that contains the instruction. In this example, Driver.sys was responsible for the page

fault.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

An Overview of WinDbg

WinDbg (affectionately pronounced wind bag) is a hybrid kernel-mode and user-mode debugger that

can be used to analyze crash dump files, executing driver code, and application dump files created

by the Dr. Watson utility. This section provides an overview of the WinDbg capabilities. The DDK

documentation provides additional details on the use of WinDbg in various debugging scenarios.

WinDbg is a hybrid debugger in that it serves a purpose in both kernel mode and user mode. It also

combines the look and feel of a GUI (graphical) debugger with a window for entering old-style

keyboard commands.

WinDbg is supplied from several sources, including the DDK and Platform SDK. Additionally, it is

supplied on the Customer Support and Diagnostics Tools CD of the Windows 2000 distribution.

The Key to Source Code Debugging

One of WinDbg's most powerful features is its ability to debug kernel-mode components at the

source-code level. Source code and symbol files must be available to WinDbg during the debug

session to allow this mode of operation.

SYMBOL DIRECTORIES

Symbol files are optionally generated with the compile and link process of a project. They include

names for local and global variables, linked function addresses, and typedef information. Line

number information is also provided by symbol files so that compiled machine instructions can be

associated with source code lines. Microsoft tools can supply symbol files in several formats

including an older (but more standard) COFF format (Common Object File Format) and the PDB

format (Program Database). Compiler and linker switches determine the format of the symbols

generated.

The Windows 2000 operating system itself is supplied with associated symbol files. They are

optionally installed from the Customer Support and Diagnostics Tools CD. Since symbol files

change with each build, a service pack distribution of the operating system requires that the symbol

files be updated.

Access to driver and OS symbols is essential for any serious debugging attempt. They provide

intelligible call stack information and display of source code. Trying to isolate a bug from screens of

disassembly is an exercise in frustration.

Once symbols are installed, WinDbg must be informed of their install location. This is accomplished

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

by using the Symbols tab of the Options dialog box under the View menu. Operating system

symbols are usually installed in the %SystemDir%\Symbols directory. Symbol files for a driver (.DBG

or .PDB extension) are often kept with the binary .SYS file.

SOURCE CODE DIRECTORIES

Besides the symbol files, WinDbg needs access to the source code (.C and .H) for the driver in

order to display it during debugging. A path for the source code directories can be supplied through

the Source Files tab of the Options dialog under the View menu in WinDbg.

Some WinDbg Commands

Although WinDbg is a GUI program, its most useful operations are initiated from a command-line

window. The command set is similar to other command-line debuggers supplied by Microsoft (e.g.,

NTSD and KD), so knowledge of the command set is leveraged. Table 17.1 provides a quick

overview of the more common WinDbg commands. The WinDbg Help option provides more detailed

information. Also, see the DDK for driver-specific (kdextx86.DLL) extension command help.

Extension commands begin with a bang (!).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 17.1. Common WinDbg Commands and Extensions

WinDbg Common Commands and Extensions

Command Description

Help Display list of basic WinDbg commands

k, kb, and kv Display stack trace

dd address Dump the contents of memory

ln Display symbol names to the break point

r Display or modify CPU register(s)

p Trace over

t Trace into

g go (continue execution)

.reboot Reboot target computer

!help Display help for WinDbg extension commands

!handle Display information about process handle(s)

!process 0 0 Display list of current processes

!process pid flags Display information about specific process

!thread tid Display information about specific thread

!vm Display virtual memory statistics

!sysptes Display information of system page table usage

!drivers List currently loaded drivers

!drvobj address Display information about driver object

!devobj address Display information about device object

!exr address Display the exception record at given address

!cxr address Display the context record at given address

!irp address [verbose] Dump an IRP

!irpfind Display list of IRPs allocated

!errlog Display list of pending error log entries

!trap Display contents of a trap frame

!poolfind tag Locate instances of a pool tag

!poolused Display memory usage summary based on tag

!reload module Reload module symbols

!load name Load an extension DLL

!unload name Unload an extension DLL

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Analyzing a Crash Dump

When a crash occurs, Windows 2000 can save the state of the system in a dump file. To enable this feature,

the System Control Panel applet (Advanced tab, Startup and Recovery) must be configured. Crash dumps

allow an immediate reboot of the system without losing the state of memory at the moment of failure. This

section explains how to analyze a system crash dump.

Goals of the Analysis

With WinDbg and a crash dump file, the state of the failed system can be examined. It is possible to find out

almost as much information as if it were still running or if a live debugger were attached at the moment of

failure. This kind of forensic pathology can help develop a convincing explanation of what led to the crash.

Some of the questions that should be asked during the analysis include

Which drivers were executing at the time of the crash?

Which driver was responsible for the crash?

What was the sequence of events leading to the crash?

What operation was the driver trying to perform when the system crashed?

What were the contents of the Device Extension?

What Device object was it working with?

Starting the Analysis

To begin the analysis, the crash dump file must be obtained. If WinDbg is available on the target system (the

system that crashed), the file is present wherever the Control Panel configuration specified (e.g.,

WINNT\Memory.DMP). If the system that crashed is at a remote site, the dump file must be transported.

Since dump file sizes range from large to very large, be sure to use appropriate techniques for transport

(e.g., compression and/or CD-R media).

On the analyzing machine, invoke WinDbg. Then choose the menu option File and select Open Crash

Dump. Choose the dump file name to open. After the dump file loads, information is displayed as shown in

the following excerpt:

Kernel Debugger connection established for D:\WINNT\MEMORY.DMP

Kernel Version 2195 Free loaded @ ffffffff80400000

Bugcheck 0000001e : c0000005 f17a123f 00000000 00000000

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Stopped at an unexpected exception: code=80000003 addr=8045249c

Hard coded breakpoint hit

...

Module Load: CRASHER.SYS (symbol loading deferred)

The initial information reveals the same STOP message information from the original blue screen. The

bugcheck code is 0x1E, signifying KMODE_EXCEPTION_NOT_HANDLED. The second bugcheck

argument is the address where the problem occurred (0xF17A123F). To see where this instruction falls

within the source code, choose Edit, then Goto Address and enter the address from the bugcheck

information. If symbol information is located (don't forget to set the symbol path from the Options dialog of

the View menu), the source file is opened. For this example, a function that purposefully generates an

unhandled exception, TryToCrash, is displayed with the cursor placed on the line of code that was

executing. The screen shot of Figure 17.2 displays this remarkably helpful feature.

Figure 17.2. Crash dump analysis screen shot.

The first parameter for bugcheck 0x1E is the unhandled exception code, 0xC0000005. This signifies an

access violation, which is not surprising given the code of TryToCrash. Dereferencing a NULL pointer is

never a great idea.

Do not be misled by the message about the unexpected exception with code 0x80000003. This is just the

breakpoint used by KeBugCheck itself to halt the system, so it has no significance.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Tracing the Stack

The stack trace is one of the most important steps in analyzing a crash dump. The stack state at the time of

the crash is a record of the calls made from the oldest frame (at the stack bottom) to the crash point itself (at

the top).

Unfortunately, finding the right stack to trace is often quite involved. This is due to the fact that systems

operate with many threads, each with their own context (which includes a private stack). At the time of an

unhandled exception (as in the example), control is transferred to a system routine that switches to a safe

context. (After all, the unhandled exception could have been caused by a corrupt stack. Further processing

within that context would be unsafe.) The Windows 2000 kernel routine that performs the unhandled

exception processing for most driver operations is PspUnhandledExceptionInSystemThread.

HIGH IRQL CRASHES

If the system crashed while it was running at or above DISPATCH_LEVEL IRQL, a straightforward stack

trace is in order.

To obtain a stack trace from a crash dump under analysis by WinDbg, the Call Stack option can be selected

from the View menu, or the k command can be used directly. To continue the example, the following is

displayed:

> k

f79a6678 8045251c f79a66a0 8045cc77 f79a66a8

 NTOSKRNL!PspUnhandledExceptionInSystemThread+0x18

f79a6ddc 80465b62 80418ada 80000001 00000000 NTOSKRNL!Psp-

 SystemThreadStartup+0x7a (EBP)

00000000 00000000 00000000 00000000 00000000

 NTOSKRNL!KiThreadStartup+0x16 (No FPO)

>

Each line shows the address of the stack frame, the return address of the function, and the first three

arguments passed to the function. (The kb stack backtrace command can be used instead of k to better

format the display.)

CRASHES BELOW DISPATCH_LEVEL

As demonstrated, the function PspUnhandledExceptionInSystemThread indeed was called to handle the

NULL pointer dereference, but there is no obvious linkage back to the faulty driver code itself.

The first input parameter to PspUnhandledExceptionInSystemThread is a pointer to a structure that

contains the exception and context records. The !exr and !cxr extension commands can be used to format

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

and display these vital records.

After the !cxr command executes, the very useful !kb command displays a stack trace using the context of

the last !cxr command. This should be the call stack that was in context at the time of the unhandled

exception.

> dd f79a66a0 l 2 ; this is a lowecase L, not a 1

0xF79A66A0 f79a6b28 f79a6780

> !exr f79a6b28

Exception Record @ F79A6B28:

ExceptionAddress: f17a123f (TryToCrash+0xf)

 ExceptionCode: c0000005

 ExceptionFlags: 00000000

NumberParameters: 2

 Parameter[0]: 00000000

 Parameter[1]: 00000000

> !cxr f79a6780

CtxFlags: 00010017

eax=00000001 ebx=00000000 ecx=01000100 edx=f79a6dcc esi=e1eba118 edi=fcdb8c38

eip=f17a123f esp=f79a6bf0 ebp=f79a6bf4 iopl=0 nv up ei pl zr na po nc

vip=0 vif=0

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00210246

0000123F

> !kb

Chi=00210246

0000123F

> !kb

Chi=00210246

0000123F

> !kb

ChildEBP RetAddr Args to Child

f79a6bf4 f17a11b5 00000001 00000000 7cdb3738 CRASHER!TryToCrash+0xf

f79a6c78 f17a102e fcdb3750 00000000 804a43c4 CRASHER!CreateDevice+0x162

f79a6c90 804a4431 fcdb3750 fcd67000 f79f2d08 CRASHER!DriverEntry+0x2e

f79a6d58 804d9281 0000035c fcd67000 f79f2d08 NTOSKRNL!_NtSetInformationFile@20+0x5a0

f79a6d78 80418b9f f79f2d08 00000000 00000000 NTOSKRNL!_NtSetInformationFile@20+0x7e1

f79f2d58 80461691 00f1f784 00000000 00000000 NTOSKRNL!_ExpWorkerThread@4+0xae

f79f2d58 77f9a31a 00f1f784 00000000 00000000 NTOSKRNL!_KiSystemService+0xc4

f79a6bec 01000100 f79a6c78 f17a11b5 00000001 +0xffffffff

00f1f794 00000000 00000000 00000000 00000000 +0xffffffff

Indirect Methods of Investigation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If a driver was not the direct cause of the crash, it still cannot be ruled out as an indirect cause. Perhaps a

device DMA operation scribbled into memory. To analyze such situations, considerable information must be

gathered. This can involve creativity and imagination (a.k.a. snooping and patience).

FINDING I/O REQUESTS

A good starting point is to identify any IRPs that the driver was processing at the time of the crash. Begin by

obtaining a list of the active IRPs on the entire system with the !irpfind command.

> !irpfind

Searching NonPaged pool (8090c000 : 8131e000) for Tag: Irp

8097c008 Thread 8094d900 current stack belongs to \Driver\Crasher

8097dec8 Thread 8094dda0 current stack belongs to \FileSystem\Ntfs

809861a8 Thread 8094dda0 current stack belongs to \Driver\symc810

809864e8 Thread 80951ba0 current stack belongs to \Driver\Mouclass

80986608 Thread 80951ba0 current stack belongs to \Driver\Kbdclass

80986728 Thread 8094dda0 current stack belongs to \Driver\symc810

From this list, select the IRP belonging to the driver under test. Then the !irp command is used to format the

specific IRP.

> !irp 8097c008

Irp is active with 1 stacks 1 is current

 No Mdl System buffer = ff593d88 Thread 80987da0: Irp stack trace.

 cmd flg cl Device File Completion-Context

> 4 0 1 809d50d0 00000000 00000000-00000000 pending

 \Driver\Crasher

 Args: 0000000C 00000000 00000000 00000000

The cmd field shows the major function, and the Args field displays the Parameters union of the I/O stack

location. The flg and cl fields show the stack location flags and control bits, defined in NTSTATUS.H.

For this example, the IRP major function code is 4, signifying IRP_MJ_WRITE, with a

Parameters.Write.Length of 12 (0xC). Further, no completion routine is associated with the IRP and it has

been marked pending at the time of the crash.

There is a system buffer associated with the IRP (at location 0xFF593D88), which can be examined with the

dd command or the Memory option in the View menu. This device is performing buffered I/O.

To examine the Device object the IRP was sent to, use the !devobj command on the address specified by

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the IRP.

> !devobj 809d50d0

Device object is for:

 Crash0 \Driver\Crasher DriverObject ff53e1d0

 Current Irp 8097c008 RefCount 1 Type 00000022 DevExt ff58bc58

 DeviceQueue:

The Device Extension can also be dumped using the dd command. Later in this chapter, a WinDbg

extension that makes the Device Extension easier to display is demonstrated.

Of course, the IRP may not yield as much information as the stack trace, but it does reveal some possibly

relevant information. For example, the IRP reveals that the driver was performing buffered I/O and that the

request was passed to the Start I/O routine, since it was marked as pending. Detective work does not

always yield a quick path to the truth.

EXAMINING PROCESSES

Sometimes, it is helpful to know what processes were running on a system at the time of a crash. This can

help spot patterns of system usage or even specific user programs that trigger a driver to fail. For general

information, the !process command is used.

> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 80a02a60 Cid: 0002 Peb: 00000000 ParentCid: 0000

 DirBase: 00006e05 ObjectTable: 80a03788 TableSize: 150.

 Image: System

PROCESS 80986f40 Cid: 0012 Peb: 7ffde000 ParentCid: 0002

 DirBase: 000bd605 ObjectTable: 8098fce8 TableSize: 38.

 Image: smss.exe

PROCESS 80958020 Cid: 001a Peb: 7ffde000 ParentCid: 0012

 DirBase: 0008b205 ObjectTable: 809782a8 TableSize: 150.

 Image: csrss.exe

PROCESS 80955040 Cid: 0020 Peb: 7ffde000 ParentCid: 0012

 DirBase: 00112005 ObjectTable: 80955ce8 TableSize: 54.

 Image: winlogon.exe

PROCESS 8094fce0 Cid: 0026 Peb: 7ffde000 ParentCid: 0020

 DirBase: 00055005 ObjectTable: 80950cc8 TableSize: 222.

 Image: services.exe

PROCESS 8094c020 Cid: 0029 Peb: 7ffde000 ParentCid: 0020

 DirBase: 000c4605 ObjectTable: 80990fe8 TableSize: 110.

 Image: lsass.exe

PROCESS 809258e0 Cid: 0044 Peb: 7ffde000 ParentCid: 0026

 DirBase: 001e5405 ObjectTable: 80925c68 TableSize: 70.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 Image: SPOOLSS.EXE

For more information, the CID number of a specific process can be used to increase the level of verbosity.

> !process 0 7

**** NT ACTIVE PROCESS DUMP ****

PROCESS fb667a00 Cid: 0002 Peb: 00000000 ParentCid: 0000

 DirBase: 00030000 ObjectTable: e1000f88 TableSize: 112.

 Image: System

 VadRoot fb666388 Clone 0 Private 4. Modified 9850. Locked 0.

 FB667BBC MutantState Signalled OwningThread 0

 Token e10008f0

 ElapsedTime 15:06:36.0338

 UserTime 0:00:00.0000

 KernelTime 0:00:54.0818

 QuotaPoolUsage[PagedPool] 1480

Working Set Sizes (now,min,max) (3, 50, 345)

 PeakWorkingSetSize 118

 VirtualSize 1 Mb

 PeakVirtualSize 1 Mb

 PageFaultCount 992

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 8

 THREAD fb667780 Cid 2.1 Teb: 00000000 Win32Thread: 80144900 WAIT:

 (WrFreePage) KernelMode Non-Alertable

 80144fc0 SynchronizationEvent

 Not impersonating

 Owning Process fb667a00

 WaitTime (seconds) 32278

 Context Switch Count 787

 UserTime 0:00:00.0000

 KernelTime 0:00:21.0821

 Start Address Phase1Initialization (0x801aab44)

 Initial Sp fb26f000 Current Sp fb26ed00

 Priority 0 BasePriority 0 PriorityDecrement 0 DecrementCount 0

 ChildEBP RetAddr Args to Child

 fb26ed18 80118efc c0502000 804044b0 00000000 KiSwapThread+0xb5

 fb26ed3c 801289d9 80144fc0 00000008 00000000 KeWaitForSingleObject+0x1c2

For multithreaded processes, this form of the !process command lists thread information, including objects

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

on which they might be waiting. It also provides information about the I/O requests issued by a given thread,

which may help in resolving deadlock conditions.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Interactive Debugging

Post mortem analysis is a necessary skill, but many driver problems are easier to diagnose while the driver

is actively running. This section briefly describes how to debug driver code interactively.

Starting and Stopping a Debug Session

WinDbg is the primary tool for interactive debugging. To use it, two machines are needed: the target

(machine under test) and the host (development machine running WinDbg). Appendix A describes the basics

of making the connection between machines, but essentially a serial link is used to control and monitor

activity on the target. Figure 17.3 shows the positioning of the host and target machines and files.

Figure 17.3. Interactive debugging using WinDbg.

The first secret to successful interactive debugging is to ensure that the necessary files are installed on the

proper machines. The steps are outlined below.

Install the binary driver file (.SYS) on the target. The target does not need symbol files or source

code.

1.

The host requires symbol information for both the driver and the operating system of the target. For

simplicity, it is a good idea to ensure that both target and host are running the same version

(including service pack) of Windows 2000, but this is not strictly required.

2.

On the host, launch WinDbg. Set up the symbols and source directory options to include a path to

the appropriate information. Remember, the symbols and source information must match the

target's binary file.

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Select kernel mode debugging from the View menu under the Options Kernel Debugger tab of

WinDbg.

4.

Select the appropriate COM port and baud rate from this dialog box.5.

Choose the GO toolbar button, or type g in the command window. This places WinDbg into a mode

where it waits to connect to the target.

6.

Reboot the target machine with the kernel's debug client enabled. (Details are included in Appendix

A.) As the system boots, a connection between host and target is established. Once connected, the

command window of WinDbg displays considerable information.

7.

The host is now in complete control of the target. The interactive version of a WinDbg session is a superset

of the post mortem mode of crash dump analysis. Breakpoints can be established, even on top of code that

has yet to be loaded into kernel memory.

To disconnect a debug session, perform the following steps:

Pause the target by typing Ctrl-C in the WinDbg command window. You can also press the

SYSREQ key on the target.

1.

Choose Edit, then Breakpoints, from the WinDbg menu and choose Clear All. It is important to clear

breakpoints before breaking the connection between host and target.

2.

From the Run menu, choose Go (or use the toolbar button) to release the target for continued

execution.

3.

From WinDbg, choose File, then Exit.4.

The target may still run sluggishly for a time after disconnecting from the host, but should recover shortly.

This may be due to the fact that KdPrint and DbgPrint routines no longer have a connected debugger to

which they can send output.

Setting Breakpoints

Setting breakpoints in live code is often the most attractive way to chase bugs in drivers. The technique is

actually overblown in that stopping the system for a breakpoint is a remarkably invasive action. Frequently,

intermediate or trace output judiciously placed in driver code yields superior results. However, there is

comfort in the knowledge that this incredibly fast system has completely paused while the slow human takes

time to sort things out and poke around.

To set a breakpoint with WinDbg, perform the following:

If the target machine is running, type Ctrl-C in the WinDbg command window to pause the target

and regain control. Breakpoints cannot be set if the target is running.

1.

From the File menu, choose Open. This allows any source code module to be opened within the
2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

host's WinDbg session.

Move the cursor onto a source code line where the desired breakpoint is to be set. If choosing a

multiline C statement, choose a position that includes the statement's semicolon.

3.

Click on the breakpoint button in the toolbar. (It resembles a raised hand.) If the driver is currently

loaded into memory, the source code line turns red. Otherwise, the line is colored magenta.

4.

Resume the target by clicking the Go button on the toolbar. Just prior to the source-code line

executing, control is returned to the host and the breakpoint source code line turns green.

5.

To remove a breakpoint, pause the target, select the source code line, and click on the breakpoint button.

The Edit, Breakpoints menu item allows the removal of multiple breakpoints.

Setting Hard Breakpoints

Given WinDbg's interactive capabilities, there are not many reasons for putting hard breakpoints into driver

code. When the need arises, the following two calls can be used:

VOID DbgBreakPoint();

VOID KdBreakPoint();

KdBreakPoint is just a macro that wraps a conditional compilation directive around a call to

DbgBreakPoint. The macro generates no call if the driver is built for release (free build).

Beware: Windows 2000 crashes with a KMODE_EXCEPTION_NOT_HANDLED STOP message if a driver

encounters a hard-coded breakpoint and the kernel's debug client is not enabled. If a driver hits a breakpoint

and there is no debugger connected to the serial line, the target hangs. Sometimes, this situation can be

rectified by launching WinDbg on the host, after the fact.

Intermediate Output

Debugging code by sprinkling printf statements throughout has a long and honored tradition. The technique

is sometimes called generating intermediate output. In fact, there is probably no bug that cannot be found by

sufficient and proper use of intermediate output.

The technique lacks the glamour of breakpoint debugging, but is often better suited for chasing

timing-sensitive bugs. The two routines to generate trace messages DbgPrint and KdPrint are described in

Table 17.2. Both send a formatted string generated on the target to WinDbg on the host.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 17.2. DbgPrint and KdPrint Function Prototype

ULONG DbgPrint or KdPrint

Parameter Description

PCHAR formatString printf-like string to control format of remaining arguments

… arguments vararg list of arguments, printf style

Since KdPrint is actually a macro (defined in NTDDK.H), an extra set of parentheses is required in order to

pass a variable-length list of arguments. The KdPrint macro becomes a no-op in retail (free) builds of a

driver.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Writing WinDbg Extensions

One of WinDbg's strengths is that its capabilities can be expanded by writing custom extension

commands. This can be quite convenient, particularly for formatting the display of driver-specific

data structures. This section explains the process of adding extension commands to WinDbg.

How WinDbg Extensions Work

A WinDbg extension is just a user-mode DLL that exports various commands in the form of DLL

functions. The extension DLL also contains several support routines that perform initialization and

version-checking operations.

The linkage between target system memory (whether crash file dump or a live target) is established

with callback routines that the extension DLL uses to reference the debug target. This means the

DLL has the same view of the target system's memory as WinDbg. In particular, extension

commands cannot reference memory that was paged out at the time a crash or breakpoint occurs.

Initialization and Version-Checking Functions

To write an extension DLL for WinDbg (or NTSD or KD, for that matter), two DLL export functions

are required for initialization. Optionally, a third version-checking function can be provided. These

functions are described below.

WinDbgExtensionDllInit

WinDbg calls this function when the user loads the extension DLL. Its job is to save the address of

the callback table so that other parts of the DLL can use it. This function (described in Table 17.3) is

required.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 17.3. Function Prototype for WinDbgExtensionDllInit

VOID WinDbgExtensionDllInit

Parameter Description

PWINDBG_EXTENSION_APIS Address of table containing pointers to WinDbg

pExtensionApis callback functions

USHORT MajorVersion 0xF for free build of Windows 2000

 0xC for checked build

USHORT MinorVersion Build number of Windows 2000

Return value - void -

ExtensionApiVersion

WinDbg calls this function when it attempts to load an extension DLL. Its purpose is to validate

version compatibility between WinDbg and the extension. It does this by returning a pointer to the

version structure associated with the extension DLL. This function (shown in Table 17.4) is required.

Table 17.4. Function Prototype for ExtensionApiVersion

LPEXT_API_VERSION

ExtensionApiVersion

Parameter Description

Void None

Return value
Address of the DLL's EXT_API_VERSION

structure

CheckVersion

Each time WinDbg executes a command in the DLL, it calls this function before calling the

command routine. CheckVersion's job is to ensure that the version of the extension DLL is

compatible with the version of Windows 2000 being debugged. If not, an error message should

inform the user of the problem. The function (described in Table 17.5) is optional.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table 17.5. Function Prototype for CheckVersion

VOID CheckVersion

Parameter Description

Void None

Return value None

Writing Extension Commands

Each command in an extension DLL is implemented as a separate function. A macro,

DECLARE_API, facilitates the declaration of each extension function.

DECLARE_API(command_name)

{

 //

 // code goes here...

 //

 ...

}

DECLARE_API provides the function with the prototype shown in Table 17.6. The names of

commands must be provided in complete lowercase; otherwise WinDbg cannot find them.

Table 17.6. Extension Command Function Prototypes

VOID command_name

Parameter Description

IN HANDLE hCurrentProcess Handle of current process on target

IN HANDLE hCurrentThread Handle of current target thread

IN ULONG dwCurrentPc Current value of program counter

IN ULONG dwProcessor Number of current CPU

IN PCSTR args Argument string passed to the command

Return value void

The work that an extension command might perform is boundless. Any operation that makes

debugging easier, such as formatting and displaying driver-specific data structures, is appropriate.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If an extension command takes (or could take) a long time to execute, or if considerable output is

involved, it should periodically check to see if the WinDbg user has typed Ctrl-C. Otherwise, the

user has no way to interrupt the command. One of the WinDbg helper functions described in the

next section performs this check.

WinDbg Helper Functions

An extension DLL gains access to the system being debugged by invoking helper functions exported

by WinDbg. These functions also provide access to the WinDbg command window for input and

output. Table 17.7 contains a brief description of these helper functions.

Table 17.7. WinDbg Helper Functions Available to Extension DLLs

WinDbg Helper Functions

Function Description

dprintf Print formatted text in WinDbg command window

CheckControlC See if WinDbg user has typed Ctrl-C

GetExpression Convert a C expression into a DWORD value

GetSymbol Locate name of symbol nearest a given address

Disassm Generate string representation of machine instruction

StackTrace Return stack-trace of current process

GetKDContext Return current CPU number and count of CPUs

GetContext Return CPU context of process being debugged

SetContext Modify CPU context of process being debugged

ReadControlSpace Get platform-specific CPU information

ReadMemory Copy data from system virtual space into buffer

WriteMemory* Copy data from buffer to system virtual space

ReadIoSpace* Read I/O Port

WriteIoSpace* Write I/O port

ReadIoSpaceEx* Read I/O port on specific bus-type and number (Alpha only)

WriteIoSpaceEx* Write I/O port on specific bus-type and number (Alpha only)

ReadPhysical Copy data from physical memory into buffer

WritePhysical* Copy data from buffer to specific physical addresses

The documentation for these helper functions is contained within the DDK help files. Look for the

section entitled "Routines Called From Debugger Extensions."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Building and Using an Extension DLL

A WinDbg extension is just a user-mode DLL, and, therefore, Visual Studio is an appropriate vehicle

for its construction. Interestingly, because a driver-specific extension relies on driver structures (and

perhaps some DDK structures), some unusual #include statements appear. Otherwise, the build

process is quite routine for an extension DLL.

To load and use an extension DLL with WinDbg, it must be loaded using the !load command. After

that, the commands are directly accessible by preceding them with a bang (!), using the form

!command. The !unload command allows the unloading of an extension DLL.

WinDbg allows up to 32 extension DLLs to be loaded simultaneously. When executing a !command,

WinDbg searches DLLs starting with the most recently loaded. Thus, it is possible to override the

functionality of an existing extension command.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Code Example: A WinDbg Extension

This example shows how to write a simple WinDbg extension DLL. The code is contained on the

accompanying CD and on the book's web site: http://www.W2KDriverBook.com. The purpose of the

extension is to provide one command: !devext that formats and displays the driver's Device

Extension data structure.

DBG.C

All the code for this extension resides in a single source file. Of course, the file #includes other files,

but they are sourced from elsewhere, such as the driver.

HEADER

This part of the code contains the definitions for the extension DLL.

// The ordering of #include files is important

#include <ntddk.h>

#include <windef.h>

// The following items are from WINBASE.H

// in the Win32 SDK. (WINBASE.H itself can't

// coexist with NTDDK.H, yet we need to be

// able to get at DDK and driver-defined data

// structures and types.)

#define LMEM_FIXED 0x0000

#define LMEM_MOVEABLE 0x0002

#define LMEM_NOCOMPACT 0x0010

#define LMEM_NODISCARD 0x0020

#define LMEM_ZEROINIT 0x0040

#define LMEM_MODIFY 0x0080

#define LMEM_DISCARDABLE 0x0F00

#define LMEM_VALID_FLAGS 0x0F72

#define LMEM_INVALID_HANDLE 0x8000

#define LPTR (LMEM_FIXED | LMEM_ZEROINIT)

#define WINBASEAPI

WINBASEAPI

HLOCAL

WINAPI

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.W2KDriverBook.com

LocalAlloc(

 UINT uFlags,

 UINT uBytes

);

WINBASEAPI

HLOCAL

WINAPI

LocalFree(

 HLOCAL hMem

);

#define CopyMemory RtlCopyMemory

#define FillMemory RtlFillMemory

#define ZeroMemory RtlZeroMemory

// Now we can bring in the WINDBG extension

// definitions...

#include <wdbgexts.h>

// Other header files...

#include <stdlib.h>

#include <string.h>

// Driver-specific header file...

#include ..\driver\xxdriver.h

GLOBALS

These global variables are necessary for the proper operation of the extension library.

// Structure passed back from ExtensionApiVersion

static EXT_API_VERSION

 ApiVersion = { 3, 5, EXT_API_VERSION_NUMBER, 0 };

// Holds callback function table from WinDbgExtensionDllInit

static WINDBG_EXTENSION_APIS ExtensionApis;

// Holds Windows 2000 build info - Major & Minor numbers

static USHORT SavedMajorVersion;

static USHORT SavedMinorVersion;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

REQUIRED FUNCTIONS

These functions perform the required initialization interaction with WinDbg.

VOID

WinDbgExtensionDllInit(

 PWINDBG_EXTENSION_APIS lpExtensionApis,

 USHORT MajorVersion,

 USHORT MinorVersion

)

{

 // Save pointer to the table of utility

 // functions provided by WinDbg

 ExtensionApis = *lpExtensionApis;

 // Save information about the version of

 // NT that's being debugged

 SavedMajorVersion = MajorVersion;

 SavedMinorVersion = MinorVersion;

 return;

}

VOID CheckVersion(VOID) {

 // Your version-checking code goes here

 //

 dprintf(

 CheckVersion called... [%1x;%d]\n,

 SavedMajorVersion,

 SavedMinorVersion

);

}

LPEXT_API_VERSION

ExtensionApiVersion(VOID) {

 return &ApiVersion;

}

COMMAND ROUTINES

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The one command supported by this sample DLL prints the contents of the Device Extension for an

associated driver. It illustrates how to access memory on the system being debugged.

DECLARE_API(devext)

{

 DWORD dwBytesRead;

 DWORD dwAddress;

 PDEVICE_OBJECT pDevObj;

 PDEVICE_EXTENSION pDevExt;

 // Get memory for Device object buffer

 if((pDevObj = (PDEVICE_OBJECT) malloc (

 sizeof(DEVICE_OBJECT))) == NULL)

 {

 dprintf("Can't allocate buffer.\n");

 return;

 }

 // Get address of Device object from command line

 dwAddress = GetExpression(args);

 if(!ReadMemory(

 dwAddress,

 pDevObj,

 sizeof(DEVICE_OBJECT),

 &dwBytesRead))

 {

 dprintf("Can't get Device object.\n ");

 free(pDevObj);

 return;

 }

 // Get memory for Device Extension buffer

 if((pDevExt = (PDEVICE_OBJECT) malloc (

 sizeof(DEVICE_EXTENSION))) == NULL)

 {

 dprintf("Can't allocate buffer.\n");

 free(pDevObj);

 return;

 }

 // Use Device object to get Device Extension

 if(!ReadMemory(

 (DWORD)pDevObj->DeviceExtension,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 pDevExt,

 sizeof(DEVICE_EXTENSION),

 &dwBytesRead))

 {

 dprintf("Can't get Device Extension.\n ");

 free(pDevExt);

 free(pDevObj);

 return;

 }

 // Print out interesting values

 dprintf(

 "BytesRequested: %d\n"

 "BytesRemaining: %d\n"

 "TimeoutCounter: %d\n"

 "DeviceObject: %8x\n",

 pDevExt->BytesRequested,

 pDevExt->BytesRemaining,

 pDevExt->TimeoutCounter,

 pDevExt->DeviceObject

);

 // Clean up and go

 free(pDevExt);

 free(pDevObj);

}

SAMPLE OUTPUT

Here is a sample of the output produced by the DBG extension DLL.

> !load dbg ; dbg.DLL must be in the standard DLL

;path for Windows 2000

Debugger extension library [dbg] loaded

> !devext ff58bc40

CheckVersion called... [f;2195]

BytesRequested: 0

BytesRemaining: 0

TimeoutCounter: 0

DeviceObject: ff58bc40

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

> !unload dbg

> Extension DLL dbg unloaded

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Miscellaneous Debugging Techniques

Often the main problem in correcting driver bugs is just getting enough information to make an

accurate diagnosis. This section presents a variety of techniques that may help.

Leaving Debugged Code in the Driver

In general, it is a good idea to leave debugging code in place, even after the driver is ready for

release. That way, it can be reused if the driver must be modified at some later date. Conditional

compilation makes this easy.

The BUILD utility defines a compile-time symbol called DBG that can be used to conditionally add

debugging code to a driver. In the checked BUILD environment, DBG has a value of 1; in the free

environment, it has a value of 0. Several of the macros described below use this symbol to suppress

the generation of extraneous debugging code in free versions of drivers. When adding debugging

code to a driver, it should be wrapped in #if DBG and #endif directives.

Catching Incorrect Assumptions

As in real life, making unfounded assumptions in kernel-mode drivers is a dangerous practice. For

example, assuming that some function argument will always be non-NULL, or that a piece of code is

only called at a specific IRQL level can lead to disaster if these expectations are not met.

To catch unforeseen conditions that could lead to driver failure, two things must be done. First, the

explicit assumptions made by code must be documented. Second, the assumptions must be verified

at runtime. The ASSERT and ASSERTMSG macros help with both these tasks. They have the

following syntax:

ASSERT(Expression);

ASSERTMSG(Message, Expression);

If Expression evaluates to FALSE, ASSERT writes a message to WinDbg's command window. The

message contains the source code of the failing expression, plus the filename and line number of

where the ASSERT macro was called. It then provides the option of taking a breakpoint at the point

of the ASSERT, ignoring the assertion failure, or terminating the process or thread in which the

assertion occurred.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ASSERTMSG exhibits the same behavior, except that it includes the text of the Message argument

with its output. The Message argument is just a simple string. Unlike the debug print functions

described earlier, ASSERTMSG does not allow printf-style substitutions.

It should be noted that both assertion macros compile conditionally and disappear altogether in free

builds of the driver. This means it is a very bad idea to put any executable code in the Expression

argument.

Also, the underlying function used by these macros, RtlAssert, is a no-op in the free version of

Windows 2000 itself. So, to see any assertion failures, a checked build of a driver must be run under

a checked version of Windows 2000.

Finally, a warning is in order. The checked build of Windows 2000 crashes with a

KMODE_EXCEPTION_NOT_HANDLED error if an assertion fails and the Kernel's debug client is

not enabled. If the debug client is enabled, but there is no debugger on the other end of the serial

line, the target machine simply hangs if an assertion fails. Recovery can be attempted by starting

WinDbg on the host machine, but the text of the assertion that failed is lost.

Using Bugcheck Callbacks

A bugcheck callback is an optional driver routine that is called by the kernel when the system begins

to crash. These routines provide a convenient way to capture debugging information at the time of

crash. They can also be used to place hardware in a known state before the system goes away.

They work as follows:

In DriverEntry, use KeInitializeCallbackRecord to set up a

KBUGCHECK_CALLBACK_RECORD structure. The space for this opaque structure must

be nonpaged and must be left untouched until it is released with a call to

KeDeregisterBugCheckCallback.

1.

Also in DriverEntry, call KeRegisterBugCheckCallback to request notification when a

bugcheck occurs. The arguments to this function include the bugcheck callback record, the

address of a callback routine, the address and size of the driver-defined crash buffer, and a

string that is used to identify this driver's crash buffer. As with the bugcheck-callback record,

memory for the driver's crash buffer must be nonpaged and left untouched until the driver

calls KeDeregisterBugCheckCallback.

2.

Call KeDeregisterBugCheckCallback in a driver's Unload routine to disconnect from the

bugcheck notification mechanism.

3.

If a bugcheck occurs, the system calls the driver's bugcheck-callback routine and passes it

the address and size of the driver's crash buffer. The job of the Callback routine is to fill the

crash buffer with any information that would not otherwise end up in the dump file (like the

contents of device registers).

4.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When analyzing a crash dump with WinDbg, use the !bugdump command to view the

contents of the crash buffer.

5.

There are some restrictions on what a bugcheck callback is allowed to do. When it runs, the

Callback routine cannot allocate any system resources (like memory). It also cannot use spinlocks

or any other synchronization mechanism. It is allowed to call kernel routines that don't violate these

restrictions, as well as the HAL functions that access device registers.

Catching Memory Leaks

A memory leak is one of the harder kinds of driver pathology. Drivers that allocate pool space and

then forget to release it may just degrade system performance over time, or they can lead to actual

system crashes. Using the Windows 2000 built-in pool-tagging mechanism can help determine if a

driver leaks memory. Here is how it works.

Replace calls to ExAllocatePool with ExAllocatePoolWithTag calls. The extra four-byte

tag argument to this function is used to mark the block of memory allocated by the driver.

1.

Run the driver under the checked build of Windows 2000. Keeping track of pool pages is an

expensive activity, so it only works under the checked version of the OS. Optionally, the

GFLAGS utility, supplied with the Platform SDK, can be used to enable the feature for the

retail version of Windows 2000.

2.

When analyzing a crash, or when a driver stops at a breakpoint, use the !poolused or

!poolfind commands in WinDbg to examine the state of the pool areas. These commands

sort the pool areas by tag value and display various memory statistics for each tag.

3.

One easy way to use pool tagging is to replace the ExAllocatePool function with

ExAllocatePoolWithTag inside of conditional compilation directives. This way, tagging can be

enabled and disabled without considerable effort. Even better, a driver macro can be used for all

pool allocations. The macro itself can contain the conditional compilation directives. For example:

#define ALLOCATE_POOL(type, size) \

#if DBG==1 \

 ExAllocatePoolWithTag((type), (size), 'DCBA') \

#else \

 ExAllocatePool((type), (size)) \

#endif

The tag argument to ExAllocatePoolWithTag consists of four case-sensitive ANSI characters.

Because of the byte-ordering phenomena of little-endian machines, the tag must be specified as

characters in reverse order. Hence, the DCBA tag in the example becomes ABCD in the pool tag

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

display.

In this example, the same tag value is used for all the allocations made by a single driver. For some

situations, it may be appropriate to use different tag values for different kinds of data structures, or

for allocations made by different parts of a driver. These kinds of strategies may help identify

memory leaks caused by a driver.

The POOLMON utility that ships with the DDK allows dynamic observation of pool tags without the

need for WinDbg. This command-line utility runs on the target machine and it outputs a continuously

updated display of the pool tags. The tool is also supplied with the Windows 2000 Resource Kit.

Using Counters, Bits, and Buffers

There is no question that interactive driver debugging is a wonderful feature. Unfortunately, some

bugs are time-dependent, and they disappear when breakpoints or single-stepping is used. This

section presents several techniques that may help under these circumstances.

SANITY COUNTERS

Pairs of counters can be used to perform several kinds of sanity checks in a driver. For example,

they might count how many IRPs arrive at a driver and how many are sent to IoCompleteRequest.

Or, in a higher-level driver, the number of IRPs allocated versus the number released could be

tracked. Checks like these can help find subtle inconsistencies in the behavior of a driver. The only

disadvantage of sanity counters is that they do not necessarily pinpoint the location of the problem.

Implementing a counter is very simple. Declare a ULONG variable within the Device Extension for

each counter, and then add appropriate code to increment the counters throughout the driver. As

with all debugging support, it is a good idea to wrap sanity-counter code in conditional compilation

statements that depend on the DBG symbol.

A somewhat ambitious plan would be to write a WinDbg extension command to display all of a

driver's counters. As a simple alternative, a driver can force a bugcheck after it has collected enough

data and simply use a bugcheck callback to save the counter values.

EVENT BITS

Another useful technique is to keep a collection of bit flags that track the occurrence of significant

events in a driver. Each bit represents one specific event, and when that event happens, a driver

sets the corresponding bit. Where sanity counters track global driver behavior, event bits provide

information about what parts of code have executed.

One of the design decisions for event bits is whether to clear the event variable during DriverEntry,

during the AddDevice or Dispatch routines, or when processing begins on each new IRP. Each of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

these options provides useful information in different situations.

TRACE BUFFERS

The problem with event bits and counters is that they do not provide information about the sequence

of execution of code. As an alternative, a simple tracing mechanism can be added that makes

entries in a special buffer as different parts of a driver execute.

Trace buffers can be very useful for tracking down unexpected interactions in asynchronous or

full-duplex drivers. On the downside, this extra information is not free. Trace buffers use more CPU

time than counters or event bits, and this can have invasive results on time-sensitive bugs.

Implementing a trace buffer mechanism takes more work than the other techniques already

presented. Here are the basic steps to follow.

Add trace buffer data structures to the driver. Normally, the structures should appear in the

Device Extension so that tracing can occur on a device-by-device basis. Occasionally, there

may be merit in providing a global buffer that traces the entire driver.

1.

Define a macro to make entries in the trace buffer. As with other debug code, it is a good

idea to bracket the trace macro with conditional compilation statements.

2.

Insert calls to the trace macro at various strategic places in the driver.3.

Write a debugger extension to dump the contents of the trace buffer.4.

The trace buffer is just an array coupled with a counter that keeps track of the next free slot. The

following code fragment illustrates the structure of the basic trace buffer:

typedef _DEVICE_EXTENSION {

 :

#if DBG==1

 ULONG traceCount;

 ULONG traceBuffer[TRACE_BUFFER_SIZE];

#endif

 :

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Again, depending upon the data being sought, the traceCount field can be initialized once in the

DriverEntry routine, or each time an IRP arrives.

Adding entries to the buffer is just a matter of storing an item in the array and incrementing the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

counter. The code fragment below demonstrates how to implement a basic trace macro.

#if DBG==1

#define DRVTRACE(pDE, Tag) \

 if (pDE->traceCount >= TRACE_BUFFER_SIZE) \

 pDE->traceCount = 0; \

pDE->traceBuffer[pDE->traceCount++] = \

 (ULONG) (Tag);

#else

#define DRVTRACE(pDE, Tag)

#endif

Notice that this implementation ignores all the synchronization issues that can arise when

DRVTRACE is used from multiple IRQL levels (potentially on multiple CPUs). Since the whole

purpose of using trace buffers is to catch errors that are sensitive to timing, putting synchronization

mechanisms into DRVTRACE would probably render it useless.

One solution is to call DRVTRACE only from places in a driver where synchronization will not be a

problem. For example, when calling DRVTRACE from DPC routines, synchronization is inherently

handled as part of the larger structure of the driver itself. Similarly, if it is called from an ISR and a

SyncCritSection routine, synchronization is already guaranteed. If these restrictions cannot be met,

explicit synchronization must be added to DRVTRACE.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Summary

When kernel-mode drivers execute, few limits are placed on what can be done to the system. With

such power comes the heavy burden of ensuring that a driver does not compromise system

integrity. Driver failures that overtly crash the system, as well as failures that cause more suble

damage, must be detected and corrected. This chapter has presented some techniques for

detection, isolation, and elimination of driver failures, both early in the development cycle and later

when the driver is distributed to the world.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Appendix A. The Driver Debug Environment

CHAPTER OBJECTIVES

Hardware and Software Requirements

Debug Symbol Files

Enabling Crash Dumps on the Target System

Enabling the Target System's Debug Client

The standard Microsoft tools for debugging device drivers require that two systems be used:

a host and target. The purpose of this appendix is to describe the details required to

successfully set up this debugging environment.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Hardware and Software Requirements

The terminology of the debug environment for drivers should be clear. The target machine executes

the driver under test. The host machine, sometimes referred to as the development system, runs the

debugger (e.g., WinDbg) and therefore controls the operation of the target. The two machines are

connected together using a null-modem serial cable.

Another important but confusing term is debug client. The target machine must be booted into a

special environment whereby it installs the debug client between the serial port and its operating

system code. The debug client is the small block of code that allows the host debugger, via the

serial port, to control the operation of the target system. The term can be confusing because the

target installs and executes the debug client, yet the code makes the target a slave of the host.

For convenience, a network connection between machines is usually established. This ensures that

files can be quickly exchanged—providing that both machines are operational. (Never forget that

while the target is paused by WinDbg, it cannot participate in network operations.)

Host System

The host system is typically used to compile and link the test driver, and it runs WinDbg as a kernel

debugger. Therefore, if a choice exists, choose the machine with the more powerful set of hardware

resources as the host system. The list of software that a host should contain follows:

Windows 2000 retail build

Visual C++

Platform SDK

Windows 2000 DDK

Symbol files for target OS build(s)

Driver source code

Driver symbol file(s)

The host does not necessarily need to execute the same OS version as the target, but it is more

convenient. The host requires the symbol file for the OS version running on the target (and it cannot

be networked from the target). Thus, if the host and target OS versions do not match, two versions

of OS symbols may conceivably be present on the host system. With each launch of WinDbg,

thought must be given to which OS symbol file set to use for the session.

Target System

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The target system provides the execution environment for the test driver. It is typically configured

with the following:

Windows 2000 retail and checked builds with debugging enabled for both

Driver executable (e.g., .SYS file)

Driver's hardware

Full crash dump enabled

Some tools from the Platform SDK (e.g., WinObj)

Hardware compatibility tests (HCTs) from the DDK

As explained later in this chapter, the BOOT.INI file on the target must be configured to allow

selection of the appropriate Windows 2000 kernel (retail or checked). The checked version runs with

considerable assertion and debug code enabled (at the cost of reduced OS performance). The extra

code can produce intermediate output that is helpful for tracing some driver or driver-related bugs.

Connecting the Host and Target

To debug a driver interactively with WinDbg, the host and target must be connected using serial

ports on each machine. A standard null-modem cable can be used. Since COM ports come in two

flavors of connectors, DB-9 and DB-25 (both male on the computer), a dual-headed cable (Y DB-9

and DB-25 female connectors at each end) is the preferred accessory.

For the do-it-yourselfer, Table A.1 shows the necessary connections. The debug client does not use

the flow control mechanisms of RS-232, but the universal jumpering scheme of DTR to DSR (Data

Terminal Ready to Data Set Ready) and RTS to CTS (Request To Send to Clear To Send) is a good

idea and cannot hurt. Table A.2 shows the signal assignments for the different cable connectors.

Table A.1. Null-Modem Cable Pin Assignments

Null-Modem Cable Pin Assignments

Connector A DB9 or DB25 Signal Connector B DB9 or DB25

2 Transmit to Receive 3

3 Receive to Transmit 2

7 Ground 7

Table A.2. Flow Control Jumpers for Null-Modem Cable

Flow Control Jumpers on Null-Modem Cable

DB9 DB25 Signal DB25 DB9

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1 20 DTR to DSR 6 6

6 6 DSR to DTR 20 1

8 4 RTS to CTS 5 7

7 5 CTS to RTS 4 8

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Debug Symbol Files

One of the more puzzling aspects of debugging is the role of symbol files. Symbol files falls into two

categories: OS and driver.

Operating System Symbols

With the release of each version (i.e., service pack) of Windows 2000, Microsoft releases the public

symbols for that build. Public symbols are essentially the information that could have been gleaned

from the linker's load map, except that they are in debugger-readable format. The information is

read, used, and displayed by the debugger during a stack trace operation, a trace or step operation,

or when evaluating and setting breakpoints.

Microsoft does not publish private symbol information for its operating systems. Such information is

deemed proprietary, and unless a bug were being chased in the OS itself, it is not particularly

helpful. The public symbol information, however, is quite useful and is a recommended installation

for application as well as driver debugging.

OS symbols are unique to each build (service pack) of an OS. Always install the symbols for the

base OS first by using the Windows 2000 Customer Support Diagnostics CD. Then, after a service

pack is applied to the OS, locate the symbol file for the service pack (the location varies based on

where the update is obtained) and install it over the existing OS symbols.

By default, OS symbols install into a directory %SystemRoot%\Symbols. The debugger must point

to appropriate directories for a given debug session. For WinDbg, the symbol path can be

configured from the Options dialog of the View menu, Symbols tab.

Driver Symbols

The driver symbols are created when the driver source compiles and links. The symbols for a driver

(as for the OS itself) fall into public and private categories. The public symbols provide link map

information (correlating function names and addresses), while the private symbols information

includes source-line linkage, data type definitions (e.g., typedefs), and static declarations (functions

and data).

To generate public symbol information for a driver, the link switch /pdb:"filename" can be used. To

generate private symbol information, the compiler switch /Zi is used. The slick Edit and Continue

feature should not be used for driver development. Linker and compiler switches can be set for a

command-line build (e.g., using the BUILD utility) or from Visual Studio if the IDE is used.

Incidentally, the generation of public and private symbols is a separate issue from the inclusion of

symbol data into a binary distribution file. While it is obvious that a debug (checked) build of a driver

should include symbol generation, it is less obvious, but nonetheless critical, that symbol information

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

be generated for a release build. The symbol information (.PDB or .DBG files) should then be

archived, but not distributed, with the released binary driver. (The REBASE utility's -x switch can be

used to strip a binary (.SYS) file of its symbol data.)

As with the OS symbol data, the debugger must be informed of the path of the driver symbol data.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Enabling Crash Dumps on the Target System

As presented in Chapter 17, crash dumps that occur after a driver failure can be very helpful in

isolating and locating bugs. To enable this feature on a target machine, the following steps are

required:

From the Control Panel, select the System applet.1.

Select the Advanced tab.2.

Choose the Startup and Recovery button.3.

Select either Complete Memory Dump or Kernel Memory Dump from the Write Debugging

Information group. It is prudent to also select Overwrite any existing file.

4.

Note (or change) the location and filename of the crash dump file. By default, it is

%SystemRoot%\MEMORY.DMP.

5.

Select OK.6.

Reboot the system, as the changes made to this reconfiguration take effect only with the

next boot.

7.

When a crash occurs, the system copies an image of physical memory into the paging file of the root

partition. During the next boot, the image is copied into the file specified with Control Panel.

Forcing a Memory Dump With a Keystroke Sequence

By modifying a registry entry, Windows 2000 allows the user to generate a keystroke sequence,

Ctrl-Scroll Lock (twice), to force a system Stop with the message:

*** STOP: 0x000000E2 (0x00000000,0x00000000,0x00000000,

0x00000000)

The end-user manually generated the crashdump.

The Registry entry is located in the key:

HKLM\System\CurrentControlSet\Services\i8042prt\Parameters

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

By adding the value with the name, type, and data shown below, the feature is enabled. For obvious

reasons, it is not enabled by default.

Table

Value Name: CrashOnCtrlScroll

Data Type: REG_DWORD

Value: 1

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Enabling the Target System's Debug Client

Both the retail and checked (debug) versions of Windows 2000 include a debugging client that

allows the kernel to communicate over a serial line with the WinDbg debugger. The debug client

must be enabled on the target system during the boot process.

To enable the debug client, select the OS for the target machine with cursor keys while the system

boot screen is displayed. Press F8 and select (with cursor keys) the option for Debugging Mode.

Press Enter twice to boot the system.

By default, the debug client uses the COM2 port, configured for 19200 baud. These are the same

defaults used by WinDbg. To use a different port or baud rate, the BOOT.INI file located on the boot

partition root must be modified.

Modifying BOOT.INI

The BOOT.INI file is a read-only, hidden file located on the boot partition's root directory. To edit it,

these attributes must be removed. Windows Explorer works well, or the ATTRIB utility of the

command prompt can be used.

attrib -s -h -r BOOT.INI

Then the file is modified using any familiar text editor, such as Notepad. The file is similar in

structure to an INI file and contains a section labeled [operating systems]. Each entry (line) within

this section is displayed on the system boot screen as a choice for user selection. (A timeout value

located in the [boot loader] section specifies how long the user has to make this choice.)

The format of each line of the [operating systems] section includes an ARC-style path to a specific

drive, partition, and directory, which holds kernel files. An ="Description" value specifies the text

shown to the user on the boot screen for the selection.

An example of a BOOT.INI file is

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(2)\WINNT

[operating systems]

multi(0)disk(0)rdisk(0)partition(2)\WINNT="W2K Pro" /fastdetect

C:\="Microsoft Windows"

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

To specify a boot option for debugging, switches are added to an existing or new [operating

systems] entry. The relevant switches for debugging are listed in Table A.3.

Table A.3. Debugging Options for BOOT.INI

BOOT.INI Options

Option Description

/DEBUG Enables kernel debug client

/NODEBUG Disables debug client (default)

/DEBUGPORT=PortName Specifies COMn port to use

/BAUDRATE=BaudRate Specifies baud rate for COM port

/CRASHDEBUG Causes debugger to activate only upon system bugcheck

/SOS Displays list of modules loaded while system starts

/MAXMEM=MBSize
Specifies maximum memory available to this boot (for testing with

smaller memory configurations)

An example entry to allow the user to select a debug client on COM port 4, with a baud rate of 38.4

KBaud, would be:

multi(0)disk(0)rdisk(0)partition(2)\WINNT="W2K Debug" /debugport=COM4 /baudrate=38400

If two different kernels are installed on the same system, they must reside in different directories.

The [operating systems] entry would specify the appropriate directory instead of WINNT.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Appendix B. Bugcheck Codes

System Stop messages, also known as bugchecks, display as codes, which designate the reason for

the system panic. Depending upon the bugcheck code, up to four parameters provide additional

information about the cause and location of the problem. The purpose of this appendix is to provide a

list of the more common bugcheck codes that a driver author may encounter. The meanings and

common causes of the codes, along with the meanings of the additional parameters, are listed.

Table

Bugcheck 0x0A IRQL_NOT_LESS_OR_EQUAL

The driver accessed paged memory at DISPATCH_LEVEL or above.

Parameter Description

1 align="center" Memory referenced

2 align="center" IRQL at time of reference

3 align="center" 0: Read operation

 1: Write operation

4 align="center" Address that referenced memory

Table

Bugcheck 0x1E KMODE_EXCEPTION_NOT_HANDLED

A kernel-mode program generated an unhandled exception.

Parameter Description

1 align="center" Exception Code

2 align="center" Address where exception occurred

3 align="center" Parameter 0 of exception

4 align="center" Parameter 1 of exception

Table

Bugcheck 0x24 NTFS_FILE_SYSTEM

A problem occurred in ntfs. sys.

Parameter Description

1 Source file and line number

2 Address of the exception record (optional)

3 Address of the context record (optional)

4 Address where the original exception occurred (optional)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0x2E DATA_BUS_ERROR

Typically indicates that a parity error in system memory has been

detected; usually a hardware problem.

Parameter Description

1
Virtual address that caused the

fault

2
Physical address that caused

the fault

3 Processor status register (PSR)

4
Faulting instruction register

(FIR)

Table

Bugcheck 0x35 NO_MORE_IRP_STACK_LOCATIONS

The IoCallDriver packet has no remaining stack locations.

Parameter Description

1 Address of the IRP

2–4 Reserved

Table

Bugcheck 0x3F NO_MORE_SYSTEM_PTES

A fragmented system page table exists.

Parameter Description

1–4 Reserved

Table

Bugcheck 0x50 PAGE_FAULT_IN_NONPAGED_AREA

Invalid system memory has been referenced.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0x58 FTDISK_INTERNAL_ERROR

System booted from the wrong copy of a mirrored partition.

Parameter Description

1–4 Reserved

Table

Bugcheck 0x76 PROCESS_HAS_LOCKED_PAGES

A driver failed to release locked pages after an I/O operation.

Parameter Description

1 0

2 Process address

3 Number of locked pages

4 0, or pointer to driver stacks

Table

Bugcheck 0x77 KERNEL_STACK_INPAGE_ERROR

The requested page of kernel data from the paging

file could not be read into memory.

Parameter Description

1 Status code or 0

2
Value found in stack where signature should be or

I/O status code

3 0 or page file number

4
Address of signature on kernel stack or offset into

page file

Table

Bugcheck 0x79 MISMATCHED_HAL

The Hardware Abstraction Layer (HAL) revision level or configuration

does not match that of the kernel or the machine.

Parameter Description

1
1: PRCB release-level

mismatch

 2: Build type mismatch

 3: Micro Channel mismatch

2
1: Release level of

ntoskrnl.exe

 2: Build type of ntoskrnl.exe

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3: Machine type detected

during boot

3 1: Release level of hal.dll

 2: Build type of hal.dll

3: Machine type supported by

HAL

4 Reserved

Table

Bugcheck 0x7A KERNEL_DATA_INPAGE_ERROR

The requested page of kernel data from the paging file

could not be read into memory.

Parameter Description

1
Lock type that was held or page table entry

address

2 I/O status code

3 If lock type is 1 or 2: current process

 If lock type is 3: virtual address

4
Virtual address that could not be paged into

memory

Table

Bugcheck 0x7B INACCESSIBLE_BOOT_DEVICE

Windows 2000 has lost access to the system partition during

startup. This error always occurs while the system is starting

and cannot be debugged because it generally occurs before

the operating system has loaded the debugger.

Parameter Description

1
Address of the device object that could

not be mounted

2 0

3 0

4 0

Table

Bugcheck 0x7F UNEXPECTED_KERNEL_MODE_TRAP

A trap, which the Kernel did not catch, was generated by the

Intel CPU.

Parameter Description

1–4 Reserved

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0x9F DRIVER_POWER_STATE_FAILURE

The driver is in an inconsistent

or invalid power state.

Parameter Description

1
1: The device object being freed still has an outstanding power request

that it has not completed

2: The device object completed the IRP for the system power state

request, but failed to call PoStartNextPowerIrp

3: The device driver did not properly set the IRP as pending or complete

the IRP

100: The device objects in the devnode were inconsistent in their use of

DO_POWER_PAGABLE

101: A parent device object has detected that a child device has not set

the DO_POWER_PAGABLE bit

2 1: Pointer to the device object

 2: Pointer to the target device object

 3: Pointer to the target device object

 100: Pointer to the nonpaged device object

 101: Child device object (FDO)

3 1: Reserved

 2: Pointer to the device object

 3: Pointer to the device object

 100: Pointer to the target device object

 101: Child device object (PDO)

4 1: Reserved

 2: Reserved

 3: The IRP

 100: Pointer to the device object to notify

 101: Parent device object

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xBE ATTEMPTED_WRITE_TO_READONLY_MEMORY

A driver attempted to write to a read-only memory

segment.

Parameter Description

1 Virtual address of attempted write

2 PTE contents

3–4 Reserved

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck

0xC1
SPECIAL_POOL_DETECTED_MEMORY_CORRUPTION

The driver

wrote to

an invalid

section of

the

special

memory

pool.

Parameter

1
Parameter 2

Parameter

3

Parameter

4
Description

Address

that the

driver tried

to free

Reserved 0 0x20

Attempt to

free pool

that was not

allocated

Address

that the

driver tried

to free

Bytes requested
Bytes

calculated
0x21, 0x22

Attempt to

free a bad

address

Address

that the

driver tried

to free

Address where bits are corrupted Reserved 0x23

Freeing an

address

when

nearby

bytes on

same page

have been

corrupted

Address

that the

driver tried

to free

Address where bits are corrupted Reserved 0x24

Freeing an

address

when bytes

after end of

allocation

have been

overwritten

Current

IRQL
Pool type

Number of

bytes
0x30

Attempt to

allocate

pool at

incorrect

IRQL

Current

IRQL
Pool type

Address

that the

driver tried

to free

0x31

Attempt to

free pool at

incorrect

IRQL

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xC2 BAD_POOL_CALLER

The current thread

is making a bad

pool request.

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Description

0x01, 0x02, or 0x04 Pointer to pool header
First part of pool

header contents
0

Pool header has been

corrupted

0x06 Reserved
Pointer to pool

header

Pool header

contents

Attempt to free pool that

was already freed

0x07 Reserved
Pointer to pool

header
0

Attempt to free pool that

was already freed

0x08 Current IRQL Pool type
Size of

allocation

Attempt to allocate pool

at an invalid IRQL

0x09 Current IRQL Pool type
Address of

pool

Attempt to free pool at an

invalid IRQL

0x40 Starting address
Start of system

address space
0

Attempt to free Kernel

pool at user-mode

address

0x41 Starting address
Physical page

frame

Highest

physical page

frame

Attempt to free a

nonallocated nonpaged

pool address

0x50 Starting address

Start offset in

pages from

beginning of paged

pool

Size of paged

pool, in bytes

Attempt to free a

nonallocated paged pool

address

0x99 Address being freed 0 0

Attempt to free pool with

invalid address (or

corruption in pool header)

Table

Bugcheck 0xC5 DRIVER_CORRUPTED_EXPOOL

A driver has probably corrupted the system pool.

Parameter Description

1 Memory referenced

2 IRQL at time of reference

3 0: Read

 1: Write

4 Address that referenced memory

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xC6 DRIVER_CAUGHT_MODIFYING_FREED_POOL

A driver attempted to access a freed memory pool.

Parameter Description

1 Memory referenced

2 0: Read

 1: Write

3 0: Kernel mode

 1: User mode

4 4

Table

Bugcheck 0xC7 TIMER_OR_DPC_INVALID

A kernel timer or delayed procedure call (DPC) object was freed

while it was still queued for activation.

Parameter Description

1 0: Timer object

 1: DPC object

 2: DPC routine

2 Address of object

3
Beginning of memory range

checked

4 End of memory range checked

Table

Bugcheck 0xCA PNP_FATAL_ERROR

The PnP

Manager

encountered a

severe error,

probably as a

result of a

flawed Plug

and Play driver.

Parameter 1 Parameter 2
Parameter

3
Parameter 4 Description

0x01
Address of newly

reported PDO

Address of

older PDO

which has

been

duplicated

Reserved

Duplicate PDO. A

specific instance of a

driver has

enumerated multiple

PDOs with identical

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

device and unique

IDs.

0x02
Address of purported

PDO
Reserved Reserved

Invalid PDO. An API

that requires a PDO

has been called with

random memory, an

FDO, or a PDO

which hasn't been

initialized.

0x03
Address of purported

PDO
Reserved Reserved

Invalid PDO. An API

that requires a PDO

has been called with

random memory, an

FDO, or a PDO that

hasn't been

initialized.

0x04

Address of PDO with

DOE_ DELETE_

PENDING set

Address of

ID buffer

1: DeviceID

2: UniqueID

3:

HardwareIDs

4:

Compatible

IDs

Invalid ID. An

enumerator has

returned an ID that

contains illegal

characters or isn't

properly terminated.

(IDs must contain

only characters in

the ranges 0x20 to

0x2B and 0x2D to

0x7F.)

0x05 Address of PDO Reserved Reserved

PDO freed while

linked in devnode

tree. The object

manager reference

count on a PDO

dropped to zero

while the devnode

was still linked in the

tree. (This usually

indicates that the

driver is not adding a

reference when

returning the PDO in

a query IRP.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xCB DRIVER_LEFT_LOCKED_PAGES_IN_PROCESS

A driver failed to release locked pages after an

I/O operation.

Parameter Description

1 Calling address in driver that locked the pages

2
Caller of the calling address in driver that locked the

pages

3 Pointer to MDL containing the locked pages

4 Guilty driver's name (pointer to Unicode string)

Table

Bugcheck 0xCC PAGE_FAULT_IN_FREED_SPECIAL_POOL

The system has referenced memory that was earlier

freed.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

Table

Bugcheck 0xCD PAGE_FAULT_BEYOND_END_OF_ALLOCATION

The system accessed memory beyond the end of

some driver's pool allocation.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xCE DRIVER_UNLOADED_WITHOUT_CANCELLING_PENDING_OPERATIONS

A driver failed to cancel

pending operations before

unloading.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

Table

Bugcheck 0xCF TERMINAL_SERVER_DRIVER_MADE_INCORRECT_MEMORY_REFERENCE

A driver has been

incorrectly ported to the

terminal server.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

Table

Bugcheck 0xD0 DRIVER_CORRUPTED_MMPOOL

A driver has corrupted the system pool.

Parameter Description

1 Memory referenced

2 IRQL at time of reference

3 0: Read

 1: Write

4 Address that referenced memory

Table

Bugcheck 0xD1 DRIVER_IRQL_NOT_LESS_OR_EQUAL

A driver attempted to access pageable memory at a process

IRQL that was too high.

Parameter Description

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1 Memory referenced

2 IRQL at time of reference

3 0: Read

 1: Write

4 Address that referenced memory

Table

Bugcheck 0xD3 DRIVER_PORTION_MUST_BE_NONPAGED

A driver has incorrectly marked code or data as

pageable.

Parameter Description

1 Memory referenced

2 IRQL at time of reference

3 0: Read

 1: Write

4 Address that referenced memory

Table

Bugcheck 0xD4 SYSTEM_SCAN_AT_RAISED_IRQL_CAUGHT_IMPROPER_DRIVER_UNLOAD

A driver did not cancel

pending operations

before unloading.

Parameter Description

1 Memory referenced

2 IRQL at time of reference

3 0: Read

 1: Write

4 Address that referenced memory

Table

Bugcheck 0xD5 DRIVER_PAGE_FAULT_IN_FREED_SPECIAL_POOL

A driver has referenced memory that was

earlier freed.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xD6 DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION

A driver accessed memory beyond the

end of its pool allocation.

Parameter Description

1 Memory address referenced

2 0: Read

 1: Write

3 Address that referenced memory (if known)

4 Reserved

Table

Bugcheck 0xD7 DRIVER_UNMAPPING_INVALID_VIEW

A driver is trying to unmap an address that was not mapped.

Parameter Description

1 Virtual address to unmap

2 0: system is not terminal server

 1: system is terminal server

3 0

4 0

Table

Bugcheck 0xD8 DRIVER_USED_EXCESSIVE_PTES

There are no remaining system page

table entries.

Parameter Description

1 Pointer to the guilty driver's name (Unicode string), or 0

2
Number of PTEs used by the guilty driver (if Parameter 1 is

nonzero)

3 Total free system PTEs

4 Total system PTEs

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xDB DRIVER_CORRUPTED_SYSPTES

An attempt was made to touch memory at an invalid IRQL,

probably due to corruption of system PTEs.

Parameter Description

1 Memory referenced

2 IRQL

3 0: read

 1: write

4
Address in code which referenced

memory

Table

Bugcheck 0xDC DRIVER_INVALID_STACK_ACCESS

A driver accessed a stack address that lies below the stack

pointer of the stack's thread.

Parameter Description

1 – 4 Reserved

Table

Bugcheck 0xDE POOL_CORRUPTION_IN_FILE_AREA

A driver corrupted pool memory used for holding pages

destined for disk.

Parameter Description

1 – 4 Reserved

Table

Bugcheck 0xE1 WORKER_THREAD_RETURNED_AT_BAD_IRQL

A worker thread completed and returned at IRQL

DISPATCH_LEVEL or above.

Parameter Description

1 Address of the worker routine

2 IRQL (should have been 0)

3 Work item parameter

4 Work item address

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Bugcheck 0xE2 MANUALLY_INITIATED_CRASH

The user deliberately initiated a crash dump from either the kernel

debugger or the keyboard.

Parameter Description

1–4 Reserved

Table

Bugcheck 0xE3 RESOURCE_NOT_OWNED

A thread tried to release a resource it did not own.

Parameter Description

1 Address of resource

2 Address of thread

3 Address of owner table (if it exists)

4 Reserved

Table

Bugcheck 0xE4 WORKER_INVALID

An Executive worker item was found in memory that must not contain such

items.

Parameter Description

1 Code position indicator

2 Address of worker item

3 Start of pool block

4 End of pool block

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Appendix C. Building Drivers

CHAPTER OBJECTIVES

The Build Utility

Using Visual Studio to Build Drivers

There is nothing magical about the build process for a driver. Like any piece of "real" (i.e.,

noninterpreted) code, it must be compiled and linked into a binary file before it can be used.

The issues that arise when building drivers concern notifying the build tools (compiler and

linker) that the environment for the code being generated is that of kernel mode.

Although it sometimes may appear otherwise, Microsoft supplies a single compiler and linker.

Whether the tools are invoked from a command-line prompt or from an elaborate Integrated

Development Environment (IDE) such as Visual Studio, the resulting binary files are the same. In

many ways, Visual Studio is merely a GUI interface for the build and editing tools. Clicking on the

menu option for Project, then Settings, provides a convenient dialog-based interface to the tool

switches.

The DDK provides a utility, BUILD, that is convenient for batch and production builds of device

drivers (as well as other production-level binaries). With proper environment settings, however, the

driver author may successfully use Visual Studio. Indeed, it may be appropriate to use Visual Studio

throughout the development phase and introduce BUILD during the later release stages of the

project.

The purpose of this appendix is to provide background material on the BUILD utility, as well as

provide the Visual Studio settings necessary for successful driver builds.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

The Build Utility

The DDK-supplied BUILD utility is ideal for production releases because it works from a single "makefile" concept to

batch-build a variety of targeted binaries. For example, a single set of source files can be used to generate driver

binaries for both Intel x86 platforms and Alpha platforms. Similarly, both the retail (free) and checked (debug)

versions can be built from a single procedure.

What BUILD Does

The BUILD utility is just an elaborate wrapper around NMAKE. (NMAKE is Microsoft's attempt at the Unix make

utility.) A batch file of instructions provides a recipe for the construction of one or more target configurations (e.g.,

checked and free).

Using a set of keywords, a source file list, and miscellaneous switches, BUILD constructs an appropriate makefile

and then invokes NMAKE to actually perform the build to produce one or more BUILD products. Figure C.1 shows

how this process works.

BUILD itself is actually a rather simple-minded program. Most of the build process is controlled by a set of standard

command files that BUILD passes to NMAKE. These files contain all the platform-specific rules and option settings

needed to create a BUILD project. By separating the rules from the utilities, there is less version interdependency.

Figure c.1. The BUILD utility process.

BUILD uses several command files (located in the DDK's binary directory, \BIN:).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

MAKEFILES.DEF is the master control file. It references other files to perform its work.

MAKEFILE.PLT selects the platform for a build operation.

i386MK.INC, ALPHAMK.INC, and ia64mk.inc contain platform-specific compiler and linker switches for Intel,

Alpha, and 64-bit Intel Itanium processors, respectively.

BUILD helps manage multiplatform projects by separating binary files according to their platform type. To do this, it

uses different directories for different platforms. So long as cross-hosted compilers and linkers are available, a single

BUILD process can generate binaries for all the supported platforms. The directory structure for the output files takes

the form shown in Figure C.2.

Notice that BUILD uses separate directories for the checked and free versions of the generated binaries. The DBG

symbol is defined as 1 when performing the checked build.

How to Build a Driver with BUILD

Once the source code is ready for compilation, the use of the BUILD utility requires that the following steps be

followed:

In the source file directory, create a file called SOURCES that identifies the components that comprise the

driver. A description of the format of this file follows in the next section.

Figure c.2. Directory structure for BUILD product.

1.

In the source directory, create a file called MAKEFILE that contains only the following line:

!INCLUDE $(NTMAKEENV)\MAKEFILE.DEF

2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This stub invokes the standard makefile needed by all drivers created with BUILD. Do not add source files to

this makefile. Instead, use the SOURCES file.

Use Windows Explorer or the MKDIR command to set up the directory tree for the BUILD products. Refer to

Figure C.2.

3.

In the Program Manager group for the Windows 2000 DDK, select either the Checked Build Environment or

the Free Build Environment. A command window appears with the appropriate BUILD environment

variables set.

4.

Navigate (using the CD command) to the source file directory for the driver.5.

Run the BUILD utility (i.e., type BUILD) to create the driver executable.6.

The binary output is created in the CHECKED or FREE directory of the appropriate platform. Any on-screen errors

are also written to the BUILD log file.

Writing a SOURCES File

The BUILD operation is controlled by a series of keywords. These keywords specify the type of driver to be

generated, the source files that comprise the product, and the directories for various files. While some keywords can

be passed as command-line options to BUILD, the more useful procedure is to place the keywords into the

SOURCES file. The following general rules apply to the SOURCES file:

The filename must be SOURCES (no extension).

The file contents are of the form

keyword=value

A single BUILD command can be extended over multiple lines by using the backslash (\) character at then

end of a line.

The value of a BUILD keyword must be simple text. BUILD itself does little processing of NMAKE macros

and does not handle conditional statements.

Ensure that there is no white space between a BUILD keyword and the equal sign (=) character. White

space after the equal sign is acceptable.

Comments in a SOURCE file line start with a sharp (#) character.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table c.1. Common BUILD Utility Keywords

Common BUILD Keywords

Keyword Meaning

INCLUDES List of paths containing header files

SOURCES List of source files making up BUILD product (required)

TARGETPATH Top-level directory for BUILD product tree (required)

TARGETNAME Name of BUILD product, sans extension

TARGETEXT File extension for the BUILD product

TARGETTYPE

Case sensitive keyword describing BUILD

DRIVER

GDI_DRIVER

MINIPORT

LIBRARY

DYNLINK (for DLLs)

TARGETLIBS List of libraries to be linked with driver

LINKER_FLAGS Linker switches of the form -flag.value

PRECOMPILED_INCLUDE File containing precompiled #include directives

Table C.1 lists the common SOURCES keywords for building drivers. The DDK includes additional keywords and

details regarding these keywords.

The following is an example of a minimal SOURCES file for building a kernel-mode driver:

TARGETNAME= DRIVER

TARGETTYPE= DRIVER

TARGETPATH= .

SOURCES= init.c dispatch.c driver.c \

 pnp.c

Log Files Generated by BUILD

In addition to screen output, the BUILD utility generates several text files that can be used to determine the status of

a BUILD product.

BUILD.LOG

lists the commands invoked by NMAKE.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

BUILD.WRN

contains warnings generated during the build.

BUILD.ERR

contains a list of errors generated during the build.

BUILD generates these files in the same directory as the SOURCES files. The warning and error files appear only if

needed.

Recursive BUILD Operations

BUILD can be used to maintain an entire source code tree by creating a file called DIRS. This file is placed in a

directory containing other subdirectories. Each subdirectory can be a source directory (containing a SOURCES file)

or the root of another source tree (containing another DIRS file). When BUILD runs from the topmost DIRS directory,

it creates all the BUILD products described in the now linked SOURCES files.

The rules for writing a DIRS file are the same as those for a SOURCES file, with the restriction that only two

keywords are allowed.

DIRS

lists subdirectories that should always be built. Entries in the list are separated by spaces or tabs.

OPTIONAL_DIRS

lists subdirectories that should be built only if they are named on the original BUILD command line.

Besides performing multiplatform builds, the recursive BUILD feature can be used to generate a kernel-mode and

user-mode component at the same time.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK NEXT >

[oR]

Using Visual Studio to Build Drivers

Although Visual Studio is quite obviously promoted as an application development tool for C++ (and

several other languages), it is nonetheless an IDE for the standard compiler and linker. Therefore,

using the proper compile and link switch settings, the tool can be used to build kernel-mode device

drivers.

The DDAppWiz Tool

The CD that accompanies this book includes an App Wizard that conveniently provides the

necessary compile and link switch settings for Visual Studio to build a device driver. The file,

DDAppWiz.AWX, must be copied into the Visual Studio path: ...\Microsoft Visual

Studio\Common\MSDev98\Template. Thereafter, a new Project type appears in the New Project

dialog box: W2K Device Driver.

The use of the App Wizard is straightforward and described in Chapter 6. This section lists the

Visual Studio environment settings modified or added by the wizard.

Preprocessor Symbols Modification

The table below shows the compiler preprocessor symbols removed from the standard Win32

project, normally generated by Visual Studio.

Table

Preprocessor Symbol Modification Reason

WIN32 Deleted Driver is not a Win32 application

_WINDOWS Deleted Driver is not a Windows application

_MBCS Deleted Driver uses Unicode, not multibyte character set

_DEBUG Deleted Driver is not Win32 debug target

DBG Added
Driver's standard debug symbol definition (1=checked,

0=free)

X86 Added DDAppWiz produces driver for Intel platform

WIN32_WINNT=0x500 Added Version of Windows 2000

Compiler Switch Modifications

Several compile switches are required for driver builds, as shown in the following table:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Compiler Switch Modification Reason

/GX and -GX Deleted Do not enable synchronous exception handling

/GZ Deleted Do not attempt to catch release build errors

-Gz Added Use __stdcall calling convention

Compiler Include Directories

The Device Driver App Wizard adds two include directories to the set of compiler options (-I switch).

The paths are listed below.

\NTDDK\inc and

\NTDDK\inc\ddk

These may require modification, depending upon choices specified when the DDK is installed.

Link Modifications

All of the standard Win32 libraries are removed from linker input and replaced with the following list

of libraries:

int64.lib

ntoskrnl.lib

hal.lib

The /nodefaultlib linker option is selected. Depending on the configuration (Debug or Release), a

library path is added of either

/libpath:\NTDDK\libchk\i386 or

/libpath:\NTDDK\libfre\i386

Either of these link settings may require manual modification based on where the DDK is actually

installed.

The remaining linker switch modifications are as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Table

Link Option Modification Reason

/subsystem:windows Deleted Driver is not a Win32 application

-driver Added Link for kernel-mode driver

-subsystem:NATIVE,5.00 Added Required for driver build

-base:0x10000 Added Drivers specify load of 0x10000, kernel relocates

-entry:DriverEntry Added Entry point for all drivers

No MFC

To ensure that the driver project is not MFC based (for obvious reasons), the option is removed by

the App Wizard.

< BACK NEXT >

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Jerry Lozano, Art Baker

ART BAKER, founder of Cydonix Corporation, has spent 30 years writing device-control software. For 15 years, he has trained

professional developers to write device drivers.

JERRY LOZANO is an Electrical Engineer and has been writing low-level device and OS code since 1976. For several years,

he has been training and consulting on Microsoft system tools and development.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

< BACK

[oR]

Bibliography

AndersonDon . FireWire System Architecture. Reading, Masschusetts, Addison-Wessley, 1999.

ISBN 0-201-48535-4

SolomonDavid . Inside Windows NT—Second Edition. Redmond, Washington, 1998. ISBN

1-57231-677-2

RichterJeffrey . Advanced Windows. Redmond, Washington, Microsoft Press, 1997. ISBN

1-57231-548-2

BrainMarshall . Win32 System Services. Upper Saddle, New Jersey, Prentice Hall PTR, 1995. ISBN

0-13-324732-5

AndersonDon Mindshare Inc. Universal Serial Bus System Architecture. Reading, Massachusetts,

Addison Wesley Longman 1997. ISBN 0-201-46137-4

IEEE 1394 Specifications and white papers. (http://www.1394ta.org)

USB Specifications and white papers (http://www.usb.org)

Windows 2000 DDK (http://www.microsoft.com/ddk)

Windows 2000 Platform SDK (http://msdn.microsoft.com/library/psdk/portals/mainport.htm)

Windows 2000 IFS Kit (http://www.microsoft.com/ddk/IFSKit)

< BACK

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.1394ta.org
http://www.usb.org
http://www.microsoft.com/ddk
http://msdn.microsoft.com/library/psdk/portals/mainport.htm
http://www.microsoft.com/ddk/IFSKit

	Cover
	Table of Contents
	Foreword
	Preface
	What You Should Already Know
	What's Covered
	What's Not
	About the Sample Code
	History of this Book
	Training and Consulting Services
	Acknowledgments

	Chapter 1. Introduction to Windows 2000 Drivers
	Overall System Architecture
	Kernel-Mode I/O Components
	Special Driver Architectures
	Summary

	Chapter 2. The Hardware Environment
	Hardware Basics
	Buses and Windows 2000
	Hints for Working with Hardware
	Summary

	Chapter 3. Kernel-Mode I/O Processing
	How Kernel-Mode Code Executes
	Use of Interrupt Priorities by Windows 2000
	Deferred Procedure Calls (DPCs)
	Access to User Buffers
	Structure of a Kernel-Mode Driver
	I/O Processing Sequence
	Summary

	Chapter 4. Drivers and Kernel-Mode Objects
	Data Objects and Windows 2000
	I/O Request Packets (IRPs)
	Driver Objects
	Device Objects and Device Extensions
	Controller Objects and Controller Extensions
	Adapter Objects
	Interrupt Objects
	Summary

	Chapter 5. General Development Issues
	Driver Design Strategies
	Coding Conventions and Techniques
	Driver Memory Allocation
	Unicode Strings
	Interrupt Synchronization
	Synchronizing Multiple CPUs
	Linked Lists
	Summary

	Chapter 6. Initialization and Cleanup Routines
	Writing a DriverEntry Routine
	Code Example: Driver Initialization
	Writing Reinitialize Routines
	Writing an Unload Routine
	Code Example: Driver Unload
	Writing Shutdown Routines
	Testing the Driver
	Summary

	Chapter 7. Driver Dispatch Routines
	Announcing Driver Dispatch Routines
	Writing Driver Dispatch Routines
	Processing Read and Write Requests
	Code Example: A Loopback Device
	Extending the Dispatch Interface
	Testing Driver Dispatch Routines
	Summary

	Chapter 8. Interrupt-Driven I/O
	How Programmed I/O Works
	Driver Initialization and Cleanup
	Writing a Start I/O Routine
	Writing an Interrupt Service Routine (ISR)
	Writing a DpcForIsr Routine
	Some Hardware: The Parallel Port
	Code Example: Parallel Port Loopback Driver
	Testing the Parallel Port Loopback Driver
	Summary

	Chapter 9. Hardware Initialization
	The Plug and Play Architecture: A Brief History
	The Role of the Registry for Legacy Drivers
	Detecting Devices with Plug and Play
	The Role of Driver Layers in Plug and Play
	The New WDM IRP Dispatch Functions
	Device Enumeration
	Device Interfaces
	Code Example: A Simple Plug and Play Driver
	Summary

	Chapter 10. Power Management
	Hot Plug Devices
	OnNow Initiative
	Wake Requests
	Power Management Issues
	Summary

	Chapter 11. Timers
	Handling Device Timeouts
	Code Example: Catching Device Timeouts
	Managing Devices without Interrupts
	Code Example: A Timer-Based Driver
	Summary

	Chapter 12. DMA Drivers
	How DMA Works under Windows 2000
	Working with Adapter Objects
	Writing a Packet-Based Slave DMA Driver
	Code Example: A Packet-Based Slave DMA Driver
	Writing a Packet-Based Bus Master DMA Driver
	Writing a Common Buffer Slave DMA Driver
	Writing a Common Buffer Bus Master DMA Driver
	Summary

	Chapter 13. Windows Management and Instrumentation
	WMI: The Industry Picture
	The WMI Architecture
	WMI Summary
	Conventional Driver Event Logging
	Summary

	Chapter 14. System Threads
	Definition and Use of System Threads
	Thread Synchronization
	Using Dispatcher Objects
	Code Example: A Thread-Based Driver
	Summary

	Chapter 15. Layered Drivers
	An Overview of Intermediate Drivers
	Writing Layered Drivers
	Writing I/O Completion Routines
	Allocating Additional IRPs
	Writing Filter Drivers
	Code Example: A Filter Driver
	Writing Tightly Coupled Drivers
	Summary

	Chapter 16. Driver Installation
	Installation of a Driver
	Auto-Install Using INF Files
	Using a Driver INF File
	Controlling Driver Load Sequence
	Digital Signing of a Driver
	Summary

	Chapter 17. Testing and Debugging Drivers
	Guidelines for Driver Testing
	Why Drivers Fail
	Reading Crash Screens
	An Overview of WinDbg
	Analyzing a Crash Dump
	Interactive Debugging
	Writing WinDbg Extensions
	Code Example: A WinDbg Extension
	Miscellaneous Debugging Techniques
	Summary

	Appendix
	Appendix A. The Driver Debug Environment
	Hardware and Software Requirements
	Debug Symbol Files
	Enabling Crash Dumps on the Target System
	Enabling the Target System's Debug Client

	Appendix B. Bugcheck Codes
	Appendix C. Building Drivers
	The Build Utility
	Using Visual Studio to Build Drivers

	About the Autors
	Bibliography

