
The Xen Hypervisor and its IO
Subsystem

virtualizing a machine near you

Muli Ben-Yehuda, Jon D. Mason

muli@il.ibm.com, jdmason@us.ibm.com

IBM Haifa Research Lab, IBM Linux Technology Center

Systems and Storage Seminar 2005 – p.1/40

Table of Contents

The Xen Hypervisor
Quick Overview
Full vs. Para-Virtualization
Virtualizing IO

Xen IO
Frontends and Backends
Driver Domains
Direct Hardware Access

DMA

IOMMUs
Introduction
Software IOMMUs
Hardware IOMMUs

Systems and Storage Seminar 2005 – p.2/40

The Xen Hypervisor

Systems and Storage Seminar 2005 – p.3/40

Quick Overview

Open source hypervisor (aka virtual machine monitor),
licensed under the GPL

Provides secure isolation, resource control and QoS

Requires minimal operating systems changes, and no
userspace changes

Supports x86, x86-64, ia64 and PPC in varying degrees
of maturity

Supports Linux, NetBSD, FreeBSD, OpenSolaris, ...

Close to native performance!

Supports live migration of VMs

Widespread hardware support, including direct access

Xen 3.0.0 just released!
Systems and Storage Seminar 2005 – p.4/40

Quick Overview of Xen cont’

Developed and maintained at the Cambridge University
Systems Research Group, by Ian Pratt, Keir Fraser, lots
of others.

Contributions from Intel, AMD, HP, IBM, others.

Commercial backing available from
http://www.xensource.com/, others.

Read about it: http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

Get the source: http://xenbits.xensource.com/

Systems and Storage Seminar 2005 – p.5/40

http://www.xensource.com/
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/
http://xenbits.xensource.com/

Bibliography

Papers and presentations are available from
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/architecture.html

Xen and the Art of Virtualization, Paul Barham et al,
SOSP 2003

Xen and the Art of Repeated Research, Brian Clark
et al, FREENIX 2004

Safe Hardware Access with the Xen Virtual Machine
Monitor, Keir Fraser et al, OASIS ASPLOS 2004
workshop

Live Migration of Virtual Machines, Christopher Clark
et al, to be published at NSDI 2005

Systems and Storage Seminar 2005 – p.6/40

http://www.cl.cam.ac.uk/Research/SRG/netos/xen/architecture.html

Full Virtualization

Full virtualization refers to running an unmodified OS on
a virtual machine (e.g. VMWare). There are many ways
to do this - for example binary rewriting of the running
OS image.

Hardware support makes full virtualization much easier.

x86 is notoriously difficult to virtualize because some
privileged instructions simply fail silently, rather than
raising a trap.

Newer Intel CPUs include virtualization support (VMX,
VTx, VTi). AMD’s comparable Pacifica technology will
debut in Q1 2006.

Systems and Storage Seminar 2005 – p.7/40

Para-Virtualization

Para-virtualization refers to modifying the OS to make
virtualization faster - modifying the OS to run on the
virtualized environment rather than on bare metal.

Easy to do when you have the source

Can be combined with full virtualization techniques -
para-virtualize where you can, use full-virtualization
techniques where you can’t avoid it.

XenoLinux - a port of Linux to run under the Xen
hypervisor.

The bulk of the work is replacing privileged instructions
(e.g. cli, hlt, write to cr3) with hypervisor calls.

Core concept: modify the OS to the virtualized
environment, but expose some details of the hardware
for optimization.

There are other ways to do this: afterburner does it at
compile time.

Systems and Storage Seminar 2005 – p.8/40

Virtualizing IO

Instead of providing physical devices, provides virtualized
views of them.

The full-virtualization way: emulate real devices (many
ways to do this, most common is a software
implementation of the hardware state machine)

The para-virtualization way: class drivers and devices

Why not expose physical devices? can’t do it securely, and
can’t do sharing, unless the device knows how to do it
(PCI-SIG IOV group is working on it)

Systems and Storage Seminar 2005 – p.9/40

Virtualizing IO - The Xen way

When Xen boots up, it launches dom0, the first
privileged domain - currently has to be Linux 2.6, but in
theory can be any other OS that has been properly
modified

dom0 is a privileged domain that can touch all hardware
in the system (long term goal is to move all hardware
handling to dom0, we’re three quarters of the way there)

dom0 exports some subset of the the devices in the
system to the other domains, based on each domain’s
configuration

The devices are exported as “class devices”, e.g. a
block device or a network device, not as a specific HW
model.

Systems and Storage Seminar 2005 – p.10/40

Xen IO

Systems and Storage Seminar 2005 – p.11/40

Frontends and Backends

dom0 runs the backend of the device, which is
connected to each domain’s frontend for that device

netback, netfront for network devices (NICs)
blockback, blockfront for block devices

backends and frontends communicate at a high level
device abstraction - block class, network class, etc. The
domain doesn’t care what kind of block device it’s
talking to, only that it looks like a block device.

domains other than dom0 may be granted physical
device access, securely [as secure as the architecture
allows, anyway]. This used to work in 2.0 but is
currently broken in 3.0 and the unstable tree

Systems and Storage Seminar 2005 – p.12/40

Frontends and Backends cont’

Ultimately, all communication between frontends and
backends happens in memory. Xen provides several
mechanisms to make life interesting - err, easy - for driver
developers:

shared memory, and

producer consumer rings, together with

virtual interrupts,

give us event channels...

... but what about bulk data transfers? grant tables to
the rescue!

how do we we tie it all up together?

Systems and Storage Seminar 2005 – p.13/40

Driver Domains

we already saw that Xen gives one domain, dom0,
access to all HW devices and other domains perform IO
through it

what if we could have multiple dom0’s? each with its
own devices and its own consumers (other domains
that are accessing the hardware through it)

with Xen 2.0, we can. In a sense, we run multiple
drivers each in its own domain - hence “driver domains”.

driver domains require the ability to hide PCI devices
from dom0 and expose them to other domains.

unfortunately some of the changes to move hardware
initialization out of the hypervisor to dom0 during the
3.0 development cycle broke this functionality, and it’s
waiting for a volunteer to fix it...

Systems and Storage Seminar 2005 – p.14/40

Direct Hardware Access

One of the main selling points of virtualization is machine
consolidation. So let’s assume for a second that you put
your database virtual machine and your web server virtual
machine on the same physical machine. Your database
needs fast disk access; your web server, fast network
access.

Xen supports the ability to allocate different physical devices
to different domains (multiple “driver domains”). However,
due to architectural limitations of most PC hardware, this
cannot be done securely. In effect, any domain that has
direct hardware access has to be considered “trusted”.

Systems and Storage Seminar 2005 – p.15/40

The Problem with Direct Access

The reason why is that all IO is done in physical addresses.
Consider the following case:

domain A is mapped in 0-2GB of physical memory

domain B is mapped in 2-4GB of physical memory

domain A has direct access to a PCI NIC

domain A programs the NIC to DMA in the 2-4GB
physical memory range, overwriting domain B’s
memory. Ooops!

The solution is a hardware unit known as an “IOMMU” (IO
Memory Management Unit).

Systems and Storage Seminar 2005 – p.16/40

DMA

Systems and Storage Seminar 2005 – p.17/40

DMA - Overview

Direct memory access (DMA) is the hardware mechanism
that allows peripheral components to transfer their I/O data
directly to and from main memory without the need for the
system processor to be involved in the transfer.

From "Linux Device Drivers, 2nd Edition" By Alessandro
Rubini & Jonathan Corbet

Systems and Storage Seminar 2005 – p.18/40

DMA - How it works

Device Driver programs the adapter with physical
memory address to DMA to/from.

Adapter performs DMA on given address

Adapter signals device driver via interrupt that DMA is
complete

Systems and Storage Seminar 2005 – p.19/40

DMA - Problems?

DMA limited to address the device can address (ie,
32bit devices can only access 32bits of memory)

Devices can DMA anywhere they want.....

Systems and Storage Seminar 2005 – p.20/40

IOMMUs

Systems and Storage Seminar 2005 – p.21/40

Introduction

An I/O Memory Management Unit (IOMMU) are hardware
constructs that can be emulated in software.

IOMMUs provides two main functions: Translation and
Device Isolation

The IOMMU translates memory addresses from “IO
space” to “physical space” to allow a particular device to
access physical memory potentially out of its range. It
does this translation by providing an "in range" address
to the device and either translates the DMA access
from the "in range" address to the physical memory
address on the fly or copies the data to the physical
memory address.

Also, IOMMUs can limit the ability of devices to access
memory, used for restricting DMA targets.

Systems and Storage Seminar 2005 – p.22/40

Why do we need an IOMMU?

Pros
32bit DMA capable, non-DAC, devices can access
physical memory addresses higher than 4GB.
IOMMUs can be programmed so that the memory
region appears to be contiguous to the device on the
bus (SG coalescing).
Device Isolation and other RAS features.

Cons
TANSTAAFL, "there ain’t no such thing as a free
lunch." Remapping adds a performance hit to the
transfer (can be mitigated by a TLB).

Systems and Storage Seminar 2005 – p.23/40

The Main Advantage - Isolation

But, the one we care the most about for virtualization is
isolation. For isolation, it is not enough to translate -

we need a translation to be available to a given device,
but not to some other device

we also need to restrict which domain can program
which device

Unfortunately, not many of today’s IOMMUs can actually do
isolation.

Systems and Storage Seminar 2005 – p.24/40

Types of IOMMUs

Software
Linux’s swiotlb
Xen’s grant tables

Hardware
AMD GART (translation only)
IBM TCEs (translation and isolation)
AMD Pacifica (translation and isolation)

Systems and Storage Seminar 2005 – p.25/40

swiotlb

Linux includes swiotlb which is a software
implementation of the translation function of an IOMMU.
Or we can just call it “bounce buffers”.

Linux always uses swiotlb on IA64 machines, which
have no hardware IOMMU, and can use it on x86-64
when told to do so or when the machine has too much
memory and not enough IOMMU.

As of 3.0.0, Xen always uses swiotlb in dom0, since
swiotlb provides machine contiguous chunks of memory
(required for DMA) unlike the rest of the kernel memory
allocation APIs when running under Xen.

Using swiotlb (or any other IOMMU) is completely
transparent to the drivers - everything is implemented in
the architecture’s DMA mapping API implementation.

Systems and Storage Seminar 2005 – p.26/40

swiotlb WIP

At the moment, Xen has its own hacked-up copy of
swiotlb. We are working on patches to generalize
x86-64’s dma-mapping code and merge Xen’s swiotlb
back into the stock swiotlb.

The swiotlb code is wasteful in memory, since it requires
a large physically contiguous memory aperture for the
bounce buffers. The size of the aperture is configurable
and ranges from several to hundreds of megabytes.

Implementing support for multiple apertures will
alleviate the need for pre-allocating so much memory.

Systems and Storage Seminar 2005 – p.27/40

Grant Tables

Grant tables are a way to share and transfer pages of
data between domains. They give (or "grant") other
domains access to pages in the system memory
allocated to the local domain. These pages can be
read, written, or exchanged (with the proper permission)
for the purpose of providing a fast and secure method
for domains to receive indirect access to hardware.

They are faster because driver domains are able to
DMA directly into pages in the local domain’s memory,
instead of having to DMA locally and copying or flipping
the page to the domain. However, it is only possible to
DMA into pages specified within the grant table.

Of course, this is only significant for non-privileged
domains (as privileged domains could always access
the memory of non-privileged domains).

Systems and Storage Seminar 2005 – p.28/40

Grant Tables and IOMMUs

Grant tables, like swiotlb, are a software implementation
of certain IOMMU functionality. Much like how swiotlb
provides the translation functionality of an IOMMU,
grant tables provide the isolation and protection
functionality. Together they provide (in software) a fully
functional IOMMU.

Why not allow hardware acceleration if it currently
exists?

It should be possible to replace certain one or both of
them with their hardware accelerated counterpart. For
example, replacing swiotlb with AMD GART for
translation, and still having grant tables to provide the
protection. Unfortunately, the current infrastructure in
Xen does not apply itself well to this and will require a
re-write.

Systems and Storage Seminar 2005 – p.29/40

How Grant Tables Work - Shared Pages

A driver in the local domain’s kernel will advertise a
page to be shared (via the
gnttab_grant_foreign_access system call). This call
notifies the hypervisor that this page can be accessed
by other domains. The local domain then passes a
grant table reference ID to the remote domain it is
"granting" access to this page. Once the remote domain
is done, the local domain removes the grant (via the
gnttab_end_foreign_access call).

This is used by block devices (and any other device that
receives data synchronously).

Systems and Storage Seminar 2005 – p.30/40

Transferred Pages

Also known as "Page flipping"

Used by network devices (and any other device that
receives data asynchronously)

A driver in the local domain’s kernel will advertise a
page to be transferred (via the
gnttab_grant_foreign_transfer call). This call notifies the
hypervisor that this page can be received by other
domains. The local domain then transfers the page to
the remote domain and takes a free page (via
producer/consumer ring).

Systems and Storage Seminar 2005 – p.31/40

Shared vs. Transfer, Why the difference?

Block devices already know which domain requested
data to be DMA’ed.

Incoming network packets need to be inspected before
it can be transferred.

Newer networking technology (such as RDMA NICs
and Infiniband) have the ability to DMA directly into
domUs, and will not need to transfer pages.

Systems and Storage Seminar 2005 – p.32/40

AMD GART

AMD Graphical Aperture Remapping Table (GART)
provides a basic, translation only, IOMMU

Implimented in the on-chip memory controller

Physical memory window and list of pages to be
translated

Addresses outside the window are not translated

Fully supported in Linux; Xen support is WIP

Systems and Storage Seminar 2005 – p.33/40

Pacifica IOMMU

Pacifica IOMMU also provides translation and isolation.

Translation is done via the AMD GART and isolation is
provided via the Pacifica northbridge. Northbridge
verifies DMAs against the DEV (Device Exclusion
Vector) defining the access permissions for the device.
If it fails, it returns all 1s for a read or suppresses the
store on a write and returns a Master Abort.

Each "protection domain" has a device exclusion vector
(DEV) that specifies the per-page access rights of the
devices in that domain. Each bit in the DEV
corresponds to one 4kB page in physical memory.

DEV checks are applied before the addresses are
translated via GART.

Pacifica IOMMU is very similar to Calgary TCEs.
Systems and Storage Seminar 2005 – p.34/40

Calgary TCEs

Calgary’s Translation Control Entry (TCE) provides
functionality to translate and isolate

Provides a Unique I/O Address space to all devices
behind each PCI Host Bridge (PHB)

Rather than allowing DMA devices to access memory
directly, I/O translation uses DMA address as indexes
into a system controlled translation table in memory.
Anything not in this table can not be accessed. This
gives it the ability to protect domains from errant or
hostile DMA requests.

Currently implemented in IBM’s pSeries servers.

Systems and Storage Seminar 2005 – p.35/40

Summary

At the moment, Xen does not support any HW IOMMU.

We are working on it!

Due to Xen’s architecture, a large chunk of the work is
actually in Linux’s dom0 kernel, e.g. to support multiple
IOMMUs on x86-64 cleanly.

And we have a few open questions, too:

How do we squeeze the most performance out of
systems with IOMMUs? what are the right interfaces?

How can we design better IOMMUs?

Systems and Storage Seminar 2005 – p.36/40

Questions?

Systems and Storage Seminar 2005 – p.37/40

Backup

Systems and Storage Seminar 2005 – p.38/40

Direct Hardware Access

One of the main selling points of virtualization is machine
consolidation. So let’s assume for a second that you put
your database virtual machine and your web server virtual
machine on the same physical machine. Your database
needs fast disk access; your web server, fast network
access.

Xen supports the ability to allocate different physical devices
to different domains (multiple “driver domains”). However,
due to architectural limitations of most PC hardware, this
cannot be done securely. In effect, any domain that has
direct hardware access has to be considered “trusted”.

Systems and Storage Seminar 2005 – p.39/40

The Problem with Direct Access

The reason why is that all IO is done in physical addresses.
Consider the following case:

domain A is mapped in 0-2GB of physical memory

domain B is mapped in 2-4GB of physical memory

domain A has direct access to a PCI NIC

domain A programs the NIC to DMA in the 2-4GB
physical memory range, overwriting domain B’s
memory. Ooops!

The solution is a hardware unit known as an “IOMMU” (IO
Memory Management Unit).

Systems and Storage Seminar 2005 – p.40/40

	Table of Contents
	The Xen Hypervisor
	Quick Overview
	Quick Overview of Xen cont'
	Bibliography
	Full Virtualization
	Para-Virtualization
	Virtualizing IO
	Virtualizing IO - The Xen way
	Xen IO
	Frontends and Backends
	Frontends and Backends cont'
	Driver Domains
	Direct Hardware Access
	The Problem with Direct Access
	DMA
	DMA - Overview
	DMA - How it works
	DMA - Problems?
	IOMMUs
	Introduction
	Why do we need an IOMMU?
	The Main Advantage - Isolation
	Types of IOMMUs
	swiotlb
	swiotlb WIP
	Grant Tables
	Grant Tables and IOMMUs
	How Grant Tables Work - Shared Pages
	Transferred Pages
	Shared vs. Transfer, Why the difference?
	AMD GART
	Pacifica IOMMU
	Calgary TCEs
	Summary
	Questions?
	Backup
	Direct Hardware Access
	The Problem with Direct Access

