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T
his story begins with a cryptic letter

written by a dying genius, the clues

of which inspired scores of mathemati-

cians to embark on an adventure which

resembles an Indiana Jones movie. It

is reminiscent of the quest for the Holy Grail, in

which skillful knights confront great obstacles. But

these knights are mathematicians, and the Grail is

replaced by a mathematical “Rosetta Stone” that

promises to reveal hidden truths in new worlds.

The Saga
Our drama begins on March 27, 1919, the date

of Srinivasa Ramanujan’s triumphant, but bit-

tersweet, Indian homecoming. Five years earlier,

accepting an invitation from the eminent British

mathematician G. H. Hardy, the amateur Ramanu-

jan had left for Cambridge University with the

dream of making a name for himself in the

world of mathematics. Now, stepping off the ship

Nagoya in Bombay (now Mumbai), the two-time

college dropout, who had intuited unimaginable

formulas, returned as a world-renowned number

theorist. He had achieved his goal. At the young

age of thirty-one, Ramanujan had already made

important contributions to a mindboggling array

of subjects:1 the distribution of prime numbers,

hypergeometric series, elliptic functions, modular

forms, probabilistic number theory, the theory of

partitions, and q-series, among others. He had

published over thirty papers, including seven with

Hardy. In recognition of these accomplishments,

Ramanujan was named a Fellow of Trinity College,
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and he was elected a Fellow of the Royal Society
(F.R.S.), an honor shared by Sir Isaac Newton.

Sadly, theoccasionofRamanujan’shomecoming
was not one of celebration. He was a very sick man;
he was much thinner than the rotund Ramanujan
his Indian friends remembered. One of the main
reasons for his declining health was malnutrition.
He had been adhering to a strict vegetarian diet
in a time and place with no adequate resources to
support it. He also struggled with the severe change
in climate. Accustomed to the temperate weather
of south India, he did not have or did not wear
appropriate clothing to protect him from the cool
and damp Cambridge weather. These conditions
took their toll, and he became gravely ill. He was

diagnosed2 with tuberculosis, and he returned to
India seeking familiar surroundings, a forgiving
climate, and a return to good health. Tragically,
Ramanujan’s health declined over the course of
the following year, and he passed away on April
26, 1920, in Madras (now Chennai), with his wife
Janaki by his side.

Ramanujan’s Last Letter

Amazingly, in spite of his condition, Ramanujan
spent his last year working on mathematics in
isolation.

…through all the pain and fever,…Ramanujan,
lying in bed, his head propped up on pillows, kept
working. When he required it, Janaki would give
him his slate; later she’d gather up the accumu-
lated sheets of mathematics-covered paper …and
place them in the big leather box which he brought
from England (see p. 329 of [29]).

Janaki would later remember these last days
(see p. 91 of [38]):

He was only skin and bones. He often complained
of severe pain. In spite of it he was always busy

2The diagnosis of tuberculosis is now believed to be incor-

rect. D. A. B. Young examined the evidence pertaining to

Ramanujan’s illness, and he concluded that Ramanujan

died of hepatic amoebiasis [42].
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doing his mathematics. …Four days before he died

he was scribbling.

In a fateful last letter to Hardy, dated January

12, 1920, Ramanujan shared hints (see p. 220 of

[7]) of his last theory.

I am extremely sorry for not writing you…I dis-

covered very interesting functions recently which I

call “Mock” theta functions.…they enter into math-

ematics as beautifully as the ordinary theta func-

tions. I am sending you with this letter some exam-

ples.

This mysterious letter set off a great adventure:

the quest to realize the meaning behind these last

words and to then unearth the implications of

this understanding. These words exposed, in an

unexplored territory of the world of mathematics,

a padlocked wooden gate, beyond which was the

promise of unknown mathematical treasures.

The Early Years

The letter, roughly four typewritten pages, consists

of formulas for seventeen strange power series and

a discussion of their asymptotics and behavior near

the boundary of the unit disk. There are no proofs

of any kind. Ramanujan also grouped these series

based on their “order”, a term he did not define.

As a typical example, he offered

f (q) =
∞∑

n=0

af (n)q
n(1.1)

:=
∞∑

n=0

qn
2

(1+ q)2(1+ q2)2 · · · (1+ qn)2

= 1+ q − · · · + 17503q99 + . . . ,
which he called a third-order mock theta function.

He then miraculously claimed that

(1.2) af (n) ∼ (−1)n−1

2
√
n − 1

24

· eπ
√
n
6− 1

144 .

Obviously Ramanujan knew much more than he

revealed.

G. N. Watson was the first mathematician to

take on the challenge. He worked for years, and on

November 14, 1935, at a meeting of the London

Mathematical Society, he celebrated his retirement

as president of the Society with his now famous

address [40]:

It is not unnatural that [one’s] mode of ap-

proach to the preparation of his valedictory

address should have taken the form of an in-

vestigation into the procedure of his similarly

situated predecessors….I was, however, deterred

from this course…[Ramanujan’s last] letter is the

subject which I have chosen…; I doubt whether

a more suitable title could be found for it than

the title used by John H. Watson, M.D., for what

he imagined to be his final memoir on Sherlock

Holmes.

Watson chose the title The Final Problem: An

Account of the Mock Theta Functions.
He proceeded to describe his findings, a

medley of identities and formulas. Using
“q-hypergeometric series”, he reformulated

Ramanujan’s examples. For f (q) he proved:

(1.3) f (q) = 2∏∞
n=1(1− qn)

·
∑
n∈Z

(−1)nq(3n
2+n)/2

1+ qn .

He also proved identities relating the mock theta

functions to Mordell integrals, such as

(1.4)

∫∞
0
e−3πx2 · sinhπx

sinh 3πx
dx = 1

e2π/3
√

3

×
∞∑
n=0

e−2n(n+1)π

(1+ e−π)2(1+ e−3π)2 · · · (1+ e−(2n+1)π)2
.

He concluded by entrusting the quest to the next

generation of mathematicians.
Ramanujan’s discovery of the mock theta func-

tions makes it obvious that his skill and ingenuity
did not desert him at the oncoming of his untimely

end. …To his students such discoveries will be a
source of delight and wonder until the time shall

come when we too shall make our journey to that
Garden of Proserpine [Persephone] …

Mathematicians continued the pursuit. In the
late 1930s A. Selberg, as a high school student,

published his first two mathematical papers on
the subject. In the 1950s and 1960s, G. E. Andrews

and L. Dragonette, employing Watson’s results, fi-
nally confirmed Ramanujan’s claimed asymptotic

(1.2).3 Many mathematicians, among them B. C.
Berndt, Y.-S. Choi, B. Gordon, and R. McIntosh, pro-

gressed further along the lines set by Watson. After
many technical calculations that run on for pages,

these mathematicians mastered the asymptotics
of Ramanujan’s examples, amassed identities such

as (1.3), and obtained analytic transformations
relating these examples to integrals such as (1.4).

Mathematicians now had a grasp of the padlock
which secured the wooden gate. But they still did

not know the meaning behind Ramanujan’s last
words. Mathematicians had gathered a box full of

formulas, but there would be little progress for the
next ten years.

The “Lost Notebook"

In the spring of 1976, while searching through

archived papers from Watson’s estate in the Trinity
College Library at Cambridge University, Andrews

discovered the “Lost Notebook” [2]. The notebook,
consisting of over 100 pages of Ramanujan’s last

works, was archived in a box among assorted
papers collected from Watson’s estate.

…the notebook and other material was discov-
ered among Watson’s papers by Dr. J. M. Whittaker,

3K. Bringmann and the author have obtained an exact

formula for af (n) [12].
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The five pages of Ramanujan’s last letter to Hardy... (above and following pages)

who wrote the obituary of Professor Watson for the

Royal Society. He passed the papers to Profes-

sor R. A. Rankin of Glasgow University, who, in

December 1968, offered them to Trinity College

so that they might join the other Ramanujan

manuscripts…[2].

Janaki presumably sent Hardy the large leather

box, the one filled with Ramanujan’s last papers.

Hardy passed it on to Watson in turn.

Although never truly lost, the sheaf of papers

had survived the long journey from India only to

then lie forgotten in the Trinity College Library. The

journey was indeed extraordinary, for the manu-

script almost met a catastrophic end. Whittaker,

the son of Watson’s famous coauthor E. T. Whit-

taker, recalled, in a letter to G. E. Andrews dated

August 15, 1979, the scene of Watson’s study at

the time of his death in 1965 (see p. 304 of [7]):

…papers covered the floor of a fair sized room

to the depth of about a foot, all jumbled together,

and were to be incinerated in a few days. One could

only make lucky dips [into the rubble] and, as Wat-

son never threw away anything, the result might

be a sheet of mathematics, but more probably a re-

ceipted bill or a draft of his income tax return for

1923. By an extraordinary stroke of luck one of my

dips brought up the Ramanujan material.

The Lost Notebook allowed mathematicians to

escape the seemingly eternal morass. In addition

to listing some new mock theta functions, the

scrawl contained many valuable clues: striking

identities and relations, recorded without proofs

of any kind. Thanks to these clues, mathemati-

cians found many applications for the mock theta

functions: L-functions in number theory, hyperge-

ometric functions, partitions, Lie theory, modular

forms, physics, and polymer chemistry, to name a

few.

The Lost Notebook notably surrendered new

sorts of identities that, as we shall see, go on to

play a crucial role in the quest. Andrews proved

identities [3] relating mock theta functions to
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indefinite binary quadratic forms. For example, he
proved:

(1.5)

f0(q) :=
∞∑
n=0

qn
2

(1+ q) · · · (1+ qn) =
1∏∞

n=1(1− qn)

·



∑

n+j≥0
n−j≥0

−
∑

n+j<0
n−j<0


 (−1)jq

5
2
n2+ 1

2
n−j2

.

D. Hickerson confirmed [26] identities in which
sums of mock theta functions are infinite products.
For example, for f0(q) and the mock theta function
Φ(q), he showed that

f0(q)+ 2Φ(q2) =
∞∏
n=1

(1− q5n)(1− q10n−5)

(1− q5n−4)(1− q5n−1)
.

As indefinite binary quadratic forms and infinite
products appear in modular form theory, these
identities finally provided evidence linking mock
theta functions to modular forms, the “ordinary
theta functions” of Ramanujan’s last letter.

A modular form is a holomorphic function

on the upper half complex plane H which is

tamed by Möbius transformations γτ := aτ+b
cτ+d for

γ =
(
a b
c d

)
∈ SL2(Z). Loosely speaking,4 a weight

k modular form on a subgroup Γ ⊂ SL2(Z) is a

holomorphic function f : H→ C that satisfies

(1.6) f (γτ) = (cτ + d)kf (τ)
for all γ ∈ Γ and is meromorphic “at the cusps”.

Despite this evidence, the essence of Ramanu-

jan’s theory continued to elude mathematicians.

The problem was that the Lost Notebook is merely

a bundle of pages that “…contains over six hun-

dred mathematical formulae listed one after the

other without proof5…there are only a few words

scattered here and there…” (p. 89 and p. 96 of [2]).

Instead of furnishing the missing key, the Notebook

4If k is not an integer, then (1.6) must be suitably

modified.
5Almost all of the results on q-series in the Lost Notebook

have now been proved [4].
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provided a hammer in the form of countless identi-

ties. So armed, mathematicians burst through the

wooden gate, only to find a long dusty hallway

lined with locked iron doors. When the dust set-

tled, they could read the signs on the doors, and

with this knowledge they finally understood the

widespread scope of the mock theta functions. At

the Ramanujan Centenary Conference in 1987, F.

Dyson eloquently summed up the dilemma [21]:

The mock theta-functions give us tantalizing

hints of a grand synthesis still to be discovered.

Somehow it should be possible to build them into

a coherent group-theoretical structure, analogous

to the structure of modular forms which Hecke

built around the old theta-functions of Jacobi. This

remains a challenge for the future. My dream

is that I will live to see the day when our young

physicists, struggling to bring the predictions of

superstring theory into correspondence with the

facts of nature, will be led to enlarge their analytic

machinery to include mock theta-functions…

Zwegers’s Thesis

By the late 1990s little progress had been made.

Then in 2002, in a brilliant Ph.D. thesis [45] written
under D. Zagier, S. Zwegers made sense of the mock

theta functions. By understanding the meaning
behind identities such as (1.3–1.5) and by notably

making use of earlier work of Lerch and Mordell,

he found the answer: real analytic modular forms.
In the solution, one must first “complete” the

mock theta functions by adding a nonholomorphic

function, a so-called “period integral”.
For the mock theta functions f (q) (see (1.1)) and

ω(q) =
∞∑
n=0

aω(n)q
n

(1.7)

:=
∞∑
n=0

q2n(n+1)

(1− q)2(1− q3)2 · · · (1− q2n+1)2
,

Zwegers [44] defined the vector-valued mock theta

function (here q := e2πiτ )

F(τ) = (F0(τ), F1(τ), F2(τ))
T

:= (q− 1
24 f (q), 2q

1
3ω(q

1
2 ), 2q

1
3ω(−q 1

2 ))T .

Then using theta functions g0(z), g1(z), and g2(z),
where

g0(z) :=
∞∑

n=−∞
(−1)n

(
n+ 1

3

)
e3πi(n+ 1

3 )
2
z

(g1(z) and g2(z) are similar), he defined the vector-

valued nonholomorphic function

G(τ) = (G0(τ), G1(τ), G2(τ))
T

(1.8)

:= 2i
√

3

∫ i∞
−τ

(g1(z), g0(z), −g2(z))T√
−i(τ + z) dz.

He completed F(τ) to obtainH(τ) := F(τ)−G(τ),
and he proved that [44]

H(τ + 1) =
(
ζ−1

24 0 0

0 0 ζ3

0 ζ3 0

)
H(τ)

and

H(−1/τ) =
√
−iτ ·

(
0 1 0
1 0 0
0 0 −1

)
H(τ),

whereζn := e2πi/n. As SL2(Z) = 〈
(

1 1
0 1

)
,
(

0 −1
1 0

)〉, this

gives a vector version of (1.6), and so the vector-
valued mock theta function F(τ) is the holomorphic

part of the vector-valued real analytic modular
form H(τ).

Generalizing identities such as (1.3), in which

mock theta functions are related to “Appell-Lerch”
series, Zwegers also produced infinite families of

mock theta functions that eclipse Ramanujan’s list.

For τ ∈ H and u, v ∈ C \ (Zτ + Z), he defined the
function

(1.9) µ(u, v;τ) := z1/2

ϑ(v;τ)
·
∑
n∈Z

(−w)nqn(n+1)/2

1− zqn ,
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where z := e2πiu, w := e2πiv , q := e2πiτ and

ϑ(v;τ) := ∑
ν∈Z+ 1

2
eπiνwνqν

2/2. Using a function

R(u − v;τ) which resembles the components of

(1.8), he then defined

µ̂(u, v;τ) := µ(u, v;τ)(1.10)

+ i

2
R(u− v;τ).

He proved that µ̂(u, v;τ) is a nonholomorphic

Jacobi form, a function whose specializations at
“torsion points” give weight 1/2 real analytic mod-

ular forms. This function satisfies transformations

that imply (1.6) for these specializations; for exam-

ple, if γ =
(
a b
c d

)
∈ SL2(Z), then there is an explicit

root of unity χ(γ) for which

µ̂

(
u

cτ + d ,
v

cτ + d ;
aτ + b
cτ + d

)

= χ(γ)−3(cτ + d) 1
2 e−πic(u−v)

2/(cτ+d) · µ̂(u, v;τ).

Exploring New Worlds
Armed with Zwegers’s landmark thesis, mathe-
maticians have begun to explore [36, 43] the worlds

behind the iron doors. Here we sample some of

the discoveries that this author has obtained with

his collaborators.

Harmonic Maass Forms

The mock theta functions turn out to be holomor-

phic parts of distinguished real analytic modular
forms, the harmonic Maass forms, which were re-

cently introduced by J. H. Bruinier and J. Funke

[16].

Loosely speaking, a weight k harmonic Maass
form is a smooth function M : H → C satisfying

(1.6)and∆k(M) = 0, whichalso has (atmost)6 linear
exponential growth at cusps. Here the hyperbolic

Laplacian ∆k, where τ = x+ iy ∈ H with x, y ∈ R,

is given by

∆k := −y2

(
∂2

∂x2
+ ∂2

∂y2

)
+ iky

(
∂

∂x
+ i ∂
∂y

)
.

The Fourier expansions of these forms have been

the object of our explorations. In terms of the in-

complete gamma function Γ(α;x) :=
∫∞
x e

−t tα−1 dt ,
every weight 2 − k harmonic Maass form M(τ),
where k > 1, has an expansion of the form

M(τ) =
∑

n≫−∞
c+M(n)q

n(2.11)

+
∑
n<0

c−M(n)Γ(k− 1,4π|n|y)qn.

Obviously, M(τ) naturally decomposes into two
pieces, a holomorphic part

M+(τ) :=
∑

n≫−∞
c+M(n)q

n

6In this paper we use a slightly stronger condition; we

assume the existence of “principal parts” at cusps.

and its complement M−(τ), the nonholomorphic

part. The mock theta functions and Zwegers’s
µ-function give holomorphic parts of weight 1/2
harmonic Maass forms.

Harmonic Maass forms are generalizations of

modular forms; a modular form is a harmonic
Maass formM(τ) whereM−(τ) = 0. Because mod-
ular forms appear prominently in mathematics,

one then expects the mock theta functions and
harmonic Maass forms to have far-reaching impli-
cations. Our first forays in the long dusty hallway
have been profitable, and we have obtained results

[12, 13, 14, 15, 17, 32, 36, 37] on a wide array of
subjects: partitions and q-series, Moonshine, Don-
aldson invariants, Borcherds products, and elliptic
curves, among others. We now describe some of

these results.

Partitions

A partition of a nonnegative integer n is any

nonincreasing sequence of positive integers that
sum to n. If p(n) denotes the number of partitions
of n, then Ramanujan famously proved that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In an effort to provide a combinatorial expla-
nation of these congruences, Dyson defined the

rank of a partition to be its largest part minus the
number of its parts. For example, the table below
includes the ranks of the partitions of 4.

Partition Rank Rank mod 5

4 4− 1 = 3 3
3+ 1 3− 2 = 1 1
2+ 2 2− 2 = 0 0

2+ 1+ 1 2− 3 = −1 4
1+ 1+ 1+ 1 1− 4 = −3 2

Based on numerics, Dyson [20] made the following
conjecture whose truth provides a combinatorial
explanation of Ramanujan’s congruences modulo

5 and 7.

Conjecture ( Dyson). The partitions of 5n+4 (resp.

7n+ 5) form 5 (resp. 7) groups of equal size when
sorted by their ranks modulo 5 (resp. 7).

In 1954 A. O. L. Atkin and H. P. F. Swinnerton-Dyer

proved [5] Dyson’s conjecture.7

There is now a robust theory of partition con-
gruences modulo every integer M coprime to 6

[1, 34], and typical congruences look more like

p(48037937n + 1122838) ≡ 0 (mod 17).

One naturally asks: what role, if any, do Dyson’s
original guesses play within this theory?

7A short calculation reveals that the obvious generaliza-

tion of the conjecture cannot hold for 11.

December 2010 Notices of the AMS 1415



K. Bringmann and the author [13] investigated
this question, and in their work they related
N(r, t ;n), the number of partitions of n with
rank congruent to r (mod t), to harmonic Maass
forms. They essentially proved that

∞∑

n=0

(
N(r, t ;n)− p(n)

t

)
qn

is the holomorphic part of a weight 1/2 harmonic
Maass form. This result, combined with Shimura’s
theory of half-integral weight modular forms and
the Deligne-Serre theory of Galois representations,
implies that ranks “explain” infinite classes of
congruences.

Theorem 2.1 (Th. 1.5 of [13]). If Q ≥ 5 is prime
and j ≥ 1, then there are positive integers t and
arithmetic progressions An+ B such that

N(r, t ;An+ B) ≡ 0 (mod Qj)

for every 0 ≤ r < t . In particular, we have that
p(An+ B) ≡ 0 (mod Qj).

Moonshine

In the late 1970s J. McKay and J. Thompson [39]
observed that the first few coefficients of the
classical elliptic modular function

j(z)− 744

= q−1 + 196884q + 21493760q2

+ 864299970q3 + · · ·
are certain linear combinations of the dimen-
sions of the irreducible representations of the
Monster group. For example, the degrees of the
four “smallest” irreducible representations are: 1,
196883, 21296876, and 842609326, and the first
few coefficients are:

1 = 1

196884 = 196883 + 1

21493760 = 21296876 + 196883 + 1

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1.

J. Conway and S. Norton [18] expanded on these
observations, and they formulated a series of deep
conjectures, the so-called Monstrous Moonshine
Conjectures. These conjectures have now been set-
tled, and thanks to the work of many authors,
most notably R. E. Borcherds [9], there is a beauti-
ful theory, involving string theory, vertex operator
algebras, and generalized Kac-Moody superalge-
bras, in which connections between objects like
the j-function and the Monster are revealed.

In the 1980s, in the spirit of Moonshine, V. G.
Kac and D. H. Peterson [27] established the modu-
larity of similar characters that arise in the study
of infinite-dimensional affine Lie algebras. As a
generalization of this work, ten years ago Kac
and M. Wakimoto [28] computed characters of the
affine Lie superalgebras gℓ(m,1)∧ and sℓ(m,1)∧.
These characters are not modular, and Kac asked

Ramanujan passport photo.

whether they might

be related to

harmonic Maass
forms. Bringmann

and the author
have confirmed

[14] this spec-

ulation; these
characters are

pieces of nonholo-

morphic modular
functions. We con-

sider the character
for the sℓ(m,1)∧

modules L(Λ(s)),
where L(Λ(s)) is
the irreducible

sℓ(m,1)∧ mod-
ule with highest

weight Λ(s). If

m ≥ 2 and s ∈ Z,
then the work of

Kac and Wakimoto implies that

trL(Λ(s))q
L0 = 2q

m−2−12s
24 · η(2τ)

2

η(τ)m+2

(2.12)

·
∑

k=(k1,k2,...,km−1)∈Zm−1

q
1
2

∑m−1
i=1 ki(ki+1)

1+ q|k|−s ,

where |k| := ∑m−1
i=1 ki and η(τ) := q1/24

∏∞
n=1(1 −

qn) is Dedekind’s eta function. Using the function

R in (1.10), Bringmann and the author defined the
function

Tm,s(τ) := trL(Λ(s))qL0

(2.13)

− 2m−1q
m−2
24
η(2τ)2m

η(τ)2m+1
R(−sτ; (m− 1)τ),

and they showed that

η(τ)2m+1

η(2τ)2m
· trL(Λ(s))qL0

is (up to a power of q) a mock theta function. As a

consequence, they proved:

Theorem 2.2 (Th. 1.1 of [14]). If m ≥ 2 and s ∈ Z,

then Tm,s(τ) is (up to a power of q) a nonholomor-
phic modular function.

Donaldson Invariants

In recent work with A. Malmendier [32], it is shown

that the mock theta function

M(q) := q− 1
8

×
∞∑

n=0

(−1)n+1q(n+1)2 (1− q)(1− q3) · · · (1− q2n−1)

(1+ q)2(1+ q3)2 · · · (1+ q2n+1)2

is a “topological invariant” for CP2. This claim per-

tains to the differentiable topology of 4-manifolds.
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In the early 1980s S. Donaldson proved (for ex-
ample, see [19]) that the diffeomorphism class
of a compact, simply connected, differentiable
4-manifold X is not necessarily determined by
its intersection form. In his work, he famously
defined the Donaldson invariants, diffeomorphism
invariants of X obtained as graded homogeneous
polynomials on the homology ring with integer
coefficients.

There are two families of invariants correspond-
ing to the SU(2) and the SO(3) gauge theories.
The author and Malmendier considered the SO(3)
case for the simplest manifold, the complex pro-
jective plane CP2 with the Fubini-Study metric.
The invariants are difficult to work out even in
this case; indeed, they were not computed until
the work of L. Göttsche [22] in 1996, assuming the
Kotschick-Morgan Conjecture. Göttsche, H. Naka-
jima, and K. Yoshioka have recently confirmed
[23] this provisional description of the Donaldson
“zeta-function”

(2.15) Z(p, S) =
∑
m,n

φmn · p
mSn

m!n!
.

In the mid-1990s G. Moore and E. Witten con-
jectured [33] “u-plane integral” formulas for this
zeta function. Their work relies on the following
identifications:

u-plane integrals ←→ Donaldson invariants for CP2

l
elliptic surface

Here the rational elliptic surface is the universal
curve for the modular group Γ0(4), which can be
identified with CP1 minus 3 points with singular
fibers. In addition, the rational elliptic surface is
endowed with an analytical marking such that the
generic fibers correspond to elliptic curves that are
parameterized by C-lattices 〈ω,τω〉 in the usual
way. Then the u-plane zeta function is given as a
“regularized” integral

ZUP (p, S) := − 8√
2π
·
∫ reg
UP

du∧ du√
Imτ

(2.16)

· dτ
du
· ∆

1
8

ω
1
2

· e2up+S2T̂ · η(τ)3.

Here ∆ is the discriminant of the correspond-

ing elliptic curves, and T̂ is defined by the
renormalization flow on the elliptic surface.

The Moore-Witten Conjecture in this case is that
Z(p, S) = ZUP (p, S). Using (2.16), the author and
Malmendier reformulated this conjecture in terms
of harmonic Maass forms arising from M(q), and
they then used Zwegers’s µ-function to prove the
following theorem.

Theorem 2.3 (Th. 1.1 of [32]). The Moore-Witten
Conjecture for the SO(3)-gauge theory on CP2

is true. In particular, we have that Z(p, S) =
ZUP (p, S).

Borcherds Products

Recently R. E. Borcherds provided [10, 11] a strik-
ing description for the exponents in the infinite
product expansion of many modular forms with

a Heegner divisor. He proved that the exponents
in these expansions are coefficients of weight

1/2 modular forms. As an example, the classical
Eisenstein series E4(τ) factorizes as

E4(τ) = 1+ 240

∞∑

n=1

∑

d|n
d3qn

= (1− q)−240(1− q2)26760 · · · =
∞∏

n=1

(1− qn)c(n),

where the c(n) are the coefficients b(n2) of a
weight 1/2 meromorphic modular form

G(τ) =
∑
n≥−3

b(n)qn

= q−3 + 4− 240q

+ 26760q4 + · · · − 4096240q9 + · · · .
Bruinier and the author [17] have generalized

this phenomenon to allow for exponents that
are coefficients of weight 1/2 harmonic Maass

forms. For brevity, we give examples of generalized
Borcherds products that arise from the mock theta

functions f (q) and ω(q). To this end, let 1 < D ≡
23 (mod 24) be square-free, and for 0 ≤ j ≤ 11 let

Hj(τ)

(2.17)

=
∑

n≫−∞
C(j ;n)qn

:=




0 if j = 0,3,6,9,(
j
3

)
q−1f (q24) if j = 1,5,7,11,(

j
3

)
2q8

(
ω(q12)−ω(−q12)

)
if j = 2,10,

(−1)
j
4 2q8

(
ω(q12)+ω(−q12)

)
if j = 4,8.

If e(α) := e2πiα and
(
−D
b

)
is the Jacobi-Kronecker

quadratic residue symbol, then define

(2.18) PD(X) :=
∏

b mod D

(1− e(−b/D)X)(−Db ).

Using this rational function, we then define the
generalized Borcherds product ΨD(τ) by

(2.19) ΨD(τ) :=
∞∏

m=1

PD(q
m)C(m;Dm2).

The exponents come from (2.17), and m is the
residue class of m modulo 12.

Theorem 2.4 (§8.2 of [17]). The function ΨD(τ) is a

weight 0 meromorphic modular form on Γ0(6) with
a discriminant −D Heegner divisor (see §5 of [17]

for the explicit divisor).

This theorem has an interesting consequence
for the parity of the partition function. Very little
is known about this parity; indeed, it was not even

known that p(n) takes infinitely many even and
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odd values until 1959 [30]. Using Theorem 2.4 and

the fact that

f (q) :=
∞∑
n=0

qn
2

(1+ q)2(1+ q2)2 · · · (1+ qn)2

≡
∞∑
n=0

p(n)qn (mod 4),

the author proved the following result for the

partition numbers evaluated at the values of certain

quadratic polynomials.

Theorem 2.5 (Corollary 1.4 of [37]). If ℓ ≡ 23

(mod 24) is prime, then there are infinitely many

m coprime to 6 for which p
(
ℓm2+1

24

)
is even. More-

over, the first such m is bounded by 12h(−ℓ) + 2,

where h(−ℓ) is the class number of Q(
√
−ℓ).

Elliptic Curve L-Functions

If E/Q is an elliptic curve

E/Q : y2 = x3 +Ax+ B,
then E(Q), its Q-rational points, forms a

finitely generated abelian group. The Birch
and Swinnerton-Dyer Conjecture, one of the Clay

millennium prize problems, predicts that

ords=1(L(E, s)) = Rank of E(Q),

where L(E, s) is the Hasse-Weil L-function

for E. There is no known procedure for

computing ords=1(L(E, s)). Determining when
ords=1(L(E, s)) ≤ 1 for elliptic curves in a family

of quadratic twists already requires the deep the-

orems of Kohnen [31] and Waldspurger [41], and

of Gross and Zagier [24]. These results, however,

involve very disparate criteria for deducing the
analytic behavior at s = 1.

Using generalized Borcherds products [17], Bru-

inier and the author have produced a single device

that encompasses these criteria. We present a spe-

cial case of these results. Suppose that E has prime
conductor, and suppose further that the sign of

the functional equation of L(E, s) is −1. If ∆ is

a fundamental discriminant of a quadratic field,

then let E(∆) be the quadratic twist elliptic curve

E(∆) : ∆y2 = x3 +Ax+ B.
Using harmonic Maass forms and their generalized

Borcherds products, the author and Bruinier show

that the coefficients of certain harmonic Maass

forms encode the vanishing of central derivatives
(resp. values) of the L-functions for the elliptic

curves E(∆).
Theorem 2.6 (Th. 1.1 of [17]). Assuming the hy-

potheses above, there is a weight 1/2 harmonic

Maass form

ME(τ)=
∑

n≫−∞
c+M(n)q

n+
∑

n<0

c−M(n)Γ(1/2; 4π|n|y)qn,

and a nonzero constant α(E) that satisfies:

(1) If ∆ < 0 is a fundamental discriminant for

which
(
∆
p

)
= 1, then

L(E(∆),1) = α(E) ·
√
|∆| · c−M(∆)2.

(2) If ∆ > 0 is a fundamental discriminant for

which
(
∆
p

)
= 1, then L′(E(∆),1) = 0 if and

only if c+M(∆) is algebraic.

The Path Ahead
As we have seen, Ramanujan’s deathbed letter

set into motion an implausible adventure, one

whose first act is now over. It was about the

theory of harmonic Maass forms and its implica-

tions for many subjects: partitions and q-series,

Moonshine, Donaldson invariants, mathematical

physics, Borcherds products, and L-functions of

elliptic curves, to name a few. This theory has

provided satisfying answers to the first challenges:

to understand the meaning behind Ramanujan’s

last words and to realize the expectation that this

understanding would reveal and open new doors

in the interconnected world of mathematics.

Every step along the way has evoked wonder—

the enigmatic letter, the Lost Notebook, and the

work of many minds. If the past is the road map

to the future, then the yet unwritten acts promise

forays, by intrepid mathematicians of today and

tomorrow, into new worlds presently populated

with seemingly unattainable mathematical truths.
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