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Abstract

We analyze 432 online display ad field experiments on the Google Display Network.
The experiments feature 431 advertisers from varied industries, which on average in-
clude 4 million users. Causal estimates from 2.2 billion observations help overcome the
medium’s measurement challenges to inform how and how much these ads work. We
find that the campaigns increase site visits (p < 10−212) and conversions (p < 10−39)
with median lifts of 17% and 8% respectively. We examine whether the in-campaign lift
carries forward after the campaign or instead only causes users to take an action earlier
than they otherwise would have. We find that most campaigns have a modest, positive
carryover four weeks after the campaign ended with a further 6% lift in visitors and
16% lift in visits on average, relative to the in-campaign lift. We then relate the base-
line attrition as consumers move down the purchase process—the marketing funnel—to
the incremental effect of ads on the consumer purchase process—the ‘ad effectiveness
funnel.’ We find that incremental site visitors are less likely to convert than baseline
visitors: a 10% lift in site visitors translates into a 5-7% lift in converters.
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1 Introduction

Since their inception in 1994, online display ads have grown to a $32 billion industry in the

United States including mobile and video ads (eMarketer, 2016). In 2016, online display

supplanted search as the largest contributor to the largest ad spending category: digital

advertising. Much remains to be learned about the effectiveness of online display advertising.

However, the medium’s effects are tiny relative to the variation in marketing outcomes, which

poses two measurement challenges. First, observational methods fail to recover experimental

estimates (Gordon et al., 2017), so experiments represent the gold standard in measurement

(Lavrakas, 2010). Second, ad effectiveness measurement suffers from an extreme statistical

power problem, which limits what can be learned from individual campaigns (Lewis & Rao,

2015). The median field experiment in Lewis & Rao (2015) requires 3.3 million exposed

consumer observations to differentiate between break-even and ineffective campaigns, and

1.3 billion observations to detect a 5% difference in marketing outcomes. These challenges

pose a quandary for marketers: experiments are critical for learning ad effectiveness, yet

little can be learned due the power problem.

We use a unique data set of 2.2 billion observations across 432 field experiments to explore

the effectiveness of online display advertising. The experimental ad campaigns include 431

advertisers across varied industries all using the Google Display Network (GDN). GDN is one

of the largest online display ad platforms, encompassing 2 million websites and reaching over

90% of global users (Google, 2015). On average, these experiments reach over 4 million users

and last 20 days. Google did not share with us any data about the advertisers, campaigns,

creatives, or exposed users beyond the experimental lift in order to protect advertiser’s

privacy. We begin by providing novel, broad-based evidence that online display ads increase

user site visits and conversions for the advertiser—by a median of 17% and 8% respectively.

We find modest carryover in ad effectiveness four weeks after the campaign. Finally, we find

that incremental changes in a proxy outcome (site visits) overstate incremental changes in

user conversions.
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Recent studies by Blake et al. (2015) and Shapiro (2016) engender skepticism about the

effectiveness of advertising, as they document cases where advertisers spent millions of dollars

without finding statistically or economically significant ad effects. We demonstrate with

exceptionally strong statistical evidence that online display advertising changes consumer

behavior online. We observe when users visit the advertiser’s website for 347 studies. The

median lift in visits is 16.6%, but the 90%-interquantile range of [-1.1%, 213.6%] reveals much

dispersion. 195 of these 347 studies demonstrate a significantly positive lift (p = .025, one-

sided). A binomial collective significance test rejects at the p < 10−212 level that 195 of these

347 studies are significant by random chance alone. Moreover, we show that the strength of

this collective evidence exceeds that of past meta-studies of ad field experiments—regardless

of media or outcomes. We observe conversion outcome data in 184 studies, with a median lift

of 8.1% and a 90%-interquantile range of [-8.9%, 83.4%]. 53 of these 184 studies demonstrate

significantly positive lift, which is collectively significant at the p < 10−39 level by the same

criterion.

We further leverage our data to address two challenges that marketers face. First, many

marketers evaluate a campaign’s effectiveness based on its short-run performance during the

campaign alone. After all, the long run effect is not yet observed when managers end a

campaign, and the statistical power problem is even worse for measuring long run rather

than short run effects (Lewis et al., 2015). However, this myopic approach ignores any

effect of the ads—positive or negative—that carries over after the campaign ends. If these

carryover effects are significant and positive, a myopic marketer would undervalue their

previous campaigns and underinvest in future campaigns. Second, many firms lack data

that connect advertising exposures to purchase outcomes, and so they instead rely on proxy

metrics such as survey responses, clicks, ad engagements, online search volume, or site visits.

Marketers often employ a rule-of-thumb to translate the relative lift in a proxy metric into

a corresponding change in purchases. However, if the users who incrementally increase

the proxy metric are less (more) likely to purchase than baseline users, then the marketer
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would over-(under-)invest in advertising. Below, we evaluate and propose models for these

challenges.

Our data enable us to study the carryover effect of advertising after the campaign ends.

The dominant model of carryover in marketing is the Koyck or ad-stock model (see e.g.

Nerlove & Arrow 1962). This model posits that the sign of the carryover effect is positive

and that the magnitude decays geometrically over time. Formally, the effect of Adt j periods

later is given by δj ·Adt−j for some δ > 0. Much past work takes this assumption for granted.

This assumption underpins time series work on ad effectiveness, which employs distributed

lag model regressions for marketing outcomes on advertising (see Sethuraman et al. 2011

for a summary). We critically examine the ad stock model by evaluating the model’s fit,

its generalizability and its implied carryover parameter (δ). This extends efforts using field

experiments to test the sign (Lodish et al., 1995b; Simester et al., 2009) and functional form

(Sahni, 2015) implications of the ad stock model.

We measure the economic importance of the carryover effect and use the time path of

carryover estimates to evaluate the ad stock model. We find that carryover is modest four

week after the average campaign. For site visits, the lift increases on average a further 16.4%

above the lift during the campaign and a further 2.9% on median. On the extensive margin,

the average carryover for visitors is 6.2%, but the median campaign has no carryover (0.0%).

When we examine the time path of the carryover estimates across campaigns, three broad

categories emerge. 58% of campaigns exhibit positive carryover in visits. A geometric model

improves fit over a linear model in half of those cases. When the geometric model performs

significantly better, the median carryover coefficient is δ = 0.77 per day. In 32% of cases,

the carryover is negative—falling by a median of 1.2% daily. Lastly, 10% of campaigns show

no significant evidence of non-zero carryover. Thus, substantial heterogeneity in carryover

exists, which requires both richer ad models and marketer-specific learning.

Our study of proxy outcomes builds on the canonical concept of the marketing funnel

(Strong, 1925). The marketing funnel describes the attrition as consumers move through
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stages along the path to purchase. Our related notion of the ad effectiveness funnel de-

scribes the incremental effect of ads at different stages of the purchase funnel. We expect

an incremental lift in upper funnel outcomes to translate into some incremental lift in lower

funnel outcomes. A crucial but under-explored question is: how much? For instance, con-

sider a campaign that causes 0.1% of exposed users to visit a website where 20% of site

visitors typically convert. In the absence of conversion data, a manager may assume that

0.02%=0.1%*20% of exposed users will incrementally convert. Whether this assumption

is reasonable hinges on whether incremental visits are more or less likely to convert than

baseline visits. Understanding how incremental effects of ads propagate down the marketing

funnel is useful for imputing bottom line outcomes when marketers lack this information.

Much academic research too relies on upper funnel metrics to measure marketing success.

Furthermore, when multiple outcomes are present, we can learn more from a campaign by

pooling information while leveraging the relationship between incremental outcomes.

We provide a first look at the ad effectiveness funnel using a large number of experiments

with both upper funnel (i.e., site visit) and lower funnel (i.e., conversion) outcomes. We

propose a simple proportional relationship between the relative lifts in the lower and upper

funnel outcomes. We find that incremental site visits are less likely to convert than baseline

site visits. On median, a 10% lift in visits leads to a 5.1% lift in conversions and a 10%

lift in visitors leads to an 5.8% lift in converters. Indeed, the relative lift in site visits

exceeds the relative lift in conversions in over 70% of the campaigns. This means that most

marketers—when assuming a proportional lift throughout the marketing funnel—would over-

invest in advertising.

Meta-studies play an important role within the larger marketing literature on how ad-

vertising works (see e.g. Vakratsas & Ambler 1999 for a summary). Meta-studies provide a

wide view of causal ad effect estimates, and pool information across studies to overcome the

statistical power problem. Table 1 summarizes meta-studies of ad field experiments in the

marketing literature. These meta-studies cover three ad media: television (e.g. Lodish et al.,
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1995a), online search (e.g. Kalyanam et al., 2015), and online display. Among online dis-

play ad studies, the largest meta-studies demonstrate the medium’s effectiveness for stated

preference outcomes (Goldfarb & Tucker, 2011a; Bart et al., 2014). We provide broad-based

evidence that online display ads lift site visits and conversions, which had been limited to

a search platform (Sahni, 2015) and Facebook (Gordon et al., 2017). Though some meta-

studies in Table 1 include more studies (Goldfarb & Tucker, 2011a) or larger average sample

sizes (Gordon et al., 2017), the present meta-study has the largest subject-study combination

(2.16 billion users across 432 studies) of all those we review.

The ad stock model has received limited scrutiny in ad field experiments. Lodish et al.

(1995b) find positive carryover two years only after successful year-long television ad cam-

paigns, which is directionally consistent with an ad stock model. Zantedeschi et al. (2014)

applies the ad stock model to field experiment panel data to show that catalogs have longer

lasting effects than emails. However, Sahni (2015) shows an effect of ad spacing, which sug-

gests a richer carryover model founded on psychological theories of memory. Finally, Simester

et al. (2009) provide an example of negative carryover in catalog advertising, which suggests

an alternative mechanism: advertising causes consumers to purchase earlier than they would

have otherwise. Our contribution undermines the generalizability of the ad stock model as

few studies exhibit a positive, geometrically decaying carryover and many campaigns appear

to only shift user visits forward in time. These efforts contribute to an emerging literature

that tests the functional forms implied by marketing theory using ad field experiments (see

also Lewis, 2014; Sahni, 2016).

To the best of our knowledge, we are the first to explore the relationship between incre-

mental lifts in multiple marketing funnel outcomes across a large number of field experiments.

Past work in this spirit uses proxy measures like survey outcomes to predict baseline pur-

chase behavior (Dyson et al., 1996). This relationship between baseline outcomes is then

extrapolated to conclude that display ads lift sales based on incremental survey evidence

alone (Briggs, 1997). Other researchers instead document heterogeneous ad effects by user’s
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funnel stage prior to the experiment (e.g. Hoban & Bucklin, 2015). Broad-based field

experiments that include multiple funnel outcomes to date only exist for paid search adver-

tising (Sahni, 2015; Dai & Luca, 2016). We make novel use our study-level lift estimates to

model the relationship between incremental funnel outcomes. Our incremental funnel and

our carry-over estimates can then serve as rules of thumb to help marketers evaluate their

campaigns with limited data.

The next section describes our methodology for measuring ad effectiveness in field exper-

iments. Section 3 describes our sample of ad studies. Section 4 presents the distribution of

ad effectiveness estimates, the carryover estimates, and the ad effectiveness funnel elasticity

estimates. Section 5 concludes.

2 Methodology

In Section 2.1, we lay out the logic of an ad effectiveness experiment. We describe our default

Predicted Ghost Ad methodology in Section 2.2 and the meta-study’s fallback Intent-to-Treat

method in Section 2.3. For a detailed discussion of these methodologies and the assumptions

that underpin them, see Johnson et al. (2016).

2.1 Experimental ad effectiveness measurement

Online marketers wish to measure the effect of their advertising campaigns on user out-

comes. Online marketers wish to know: how do the users who are exposed to my campaign

react compared to if I had not advertised? A holdout experiment answers this question by

randomly selecting users for a control group who are held out from exposure to the focal

campaign.

In an experiment, users can be classified into four types by their treatment assignment and

potential exposure to the focal campaign. Formally, user i is assigned treatment—denoted

by Zi—to either treatment (Zi = T ) or control (Zi = C). Potential exposure Di classifies
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user i by whether i would be exposed (Di = 1) or would not be exposed (Di = 0) to the focal

ad campaign if i were assigned to the treatment group. The matrix below summarizes the

four user types:

Treatment Control

Would be exposed Z = T,D = 1 Z = C,D = 1

Would not be exposed Z = T,D = 0 Z = C,D = 0

Viewed this way, the marketer wishes to compare outcomes among exposed users (Z =

T,D = 1) to those among counterfactual exposed users (Z = C,D = 1), which correspond

to the top-left and top-right groups in the above matrix. In other words, the marketer must

compute the Average Treatment Effect on the Treated (ATET) for outcome y which is given

by:

ATET = E [y|Z = T,D = 1]− E [y|Z = C,D = 1] . (1)

Whereas the exposed users (Z = T,D = 1) are readily identifiable as those users in the

treatment group who see one of the focal ads, the counterfactual exposed users (Z = C,D = 1)

cannot be distinguished in this way. Johnson et al. (2016) discuss three solutions: control

ads, Intent-to-Treat, and the Ghost Ad and related methodologies. Below, we describe the

Predicted Ghost Ad and Intent-to-Treat approaches implemented at GDN.

2.2 Predicted Ghost Ads

Our meta-study’s experiments apply the Predicted Ghosts Ad (PGA) methodology intro-

duced by Johnson et al. (2016) and implemented by GDN. The basic idea behind PGA is

to approximate potential exposure D by predicting both the exposed and counterfactual

exposed users. PGA’s predicted exposed users are denoted by D̂ which approximates D. If

D̂ is statistically independent from the treatment assignment Z, then D̂ enables a symmet-

ric comparison between the treatment and control groups. In particular, the experimental
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difference among predicted exposed users is then a ‘locally’ valid ad effectiveness estimator

for those predicted exposed users. To the extent that D̂ predicts the exposed users D, the

PGA estimator will closely approximate ATET.

To construct D̂, Johnson et al. (2016) suggest simulating the ad platform’s ad allocation

mechanism. Online display ad platforms usually employ a complicated auction to select an

ad among many competing ads. Both treatment and control users enter a simulated ad

auction that selects an ad among a set of eligible ads that include the focal ad. Predicted

ghost ad impressions are those instances when the simulated auction selects the focal ad,

which the ad platform records in a database. The predicted ghost ad impressions in this

database define the binary variable D̂ which approximates D. The treatment and control

users then enter the real auction to select which ad the ad platform will deliver, where the

real auction only includes the focal ad in the set of eligible ads for treatment users. The

outcome of the simulated auction has no bearing on the real auction. By construction, PGA

is therefore independent from treatment assignment.

The Predicted Ghost Ad estimator is a Local Average Treatment Effect (LATE, see

Imbens & Angrist 1994) estimator given by:

LATEPGA =
E
[
y|D̂ = 1, Z = T

]
− E

[
y|D̂ = 1, Z = C

]
Pr
[
D = 1|D̂ = 1, Z = T

] . (2)

In words, the numerator is the experimental difference between those treatment and control

group users who are predicted to be exposed. The denominator scales up the experimental

difference by the inverse conditional probability that treatment users are exposed given that

they are predicted to be exposed. This probability is 0.999 in Johnson et al. (2016) whose

application also uses the GDN’s PGA platform.

The LATEPGA estimator is ‘local’ in the sense that it excludes users who are exposed

to ads but are not predicted to be exposed. Thus, we can relate ATET and LATEPGA as
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follows

ATET = LATEPGA · Pr
[
D̂ = 1|D = 1, Z = T

]
+ ε (3)

where ε captures the treatment effect arising from users who are not predicted to be exposed.

Provided that D̂ = 1 captures almost all cases where D = 1, ε is small. In Johnson et al.

(2016), GDN’s predicted exposure excludes only 3.2% of exposed users and 0.2% of the

campaign’s ad impressions, so LATEPGA approximates ATET well.

2.3 Intent-to-Treat

Intent-to-Treat (ITT) serves as the backstop methodology in our meta-study. The ITT

approach provides valid ad effectiveness estimates as long as treatment assignment is random.

ITT compares all eligible users in the treatment and control groups regardless of exposure.

The ITT estimator is given by

ITT = E [y|Z = T ]− E [y|Z = C] . (4)

Imbens & Angrist 1994 tells us that ITT and ATET are related in expectation by

ATETITT =
ITT

Pr [D = 1|Z = T ]
. (5)

The intuition here is that the causal effect of the campaign arises only among exposed users

(ATET), so that ITT will be the same in expectation after we rescale it by the inverse

probability of exposure. However, the ATETITT estimator is less precise than the direct

ATET estimator (see Lemma 2 in Johnson et al. 2016). Now, by combining equations (5)

and (3), we have
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ITT

Pr [D = 1|Z = T ]
= LATEPGA · Pr

[
D̂ = 1|D = 1, Z = T

]
+ ε. (6)

In Section 3, we use equation (6) to validate GDN’s implementation of PGA. In Appendix A,

we detail how we derive our ITT estimates and standard errors from the advertiser website’s

total activity.

3 Data

In this section, we describe our sample of experiments, the outcome variables, and a valida-

tion test of the Predicted Ghost Ad estimates.

3.1 Sample of Experiments

The experiments in this meta-study come from advertisers opting to use the Google Display

Network’s (GDN) experimentation platform. This experimentation platform has been in

an ‘alpha’ development stage since it was launched in 2014. Google does not advertise

the platform on the GDN webpage nor does Google make this platform available to all

advertisers. To use the experimentation platform, an advertiser must interact with GDN’s

salesforce. The only criterion for participating is that the advertiser must have a medium-

or large-sized budget. In view of the power problems described in Lewis & Rao (2015), we

felt that small advertisers would find the experimental results too imprecise to be helpful.

The advertisers in our sample are a diverse and self-selected group that is interested in

ad measurement and experimentation. Unfortunately, we were unable to obtain data from

Google on the advertisers, the campaigns or the exposed users. Thus, we are unable to

correlate ad effectiveness with advertiser, campaign, or user attributes.

The GDN experiments randomized treatment assignment at the user level. A user is

identified as a unique cookie on a browser-device combination. GDN uses this cookie to
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track a user’s exposures to ads across publishers and—with the aid of advertisers—track

the user’s subsequent interactions with the advertiser’s website. A consumer may have

multiple cookies corresponding to multiple devices, which attenuates ad estimates if users

take incremental actions on another device than the device where they see the ad. Also,

some users will be assigned to multiple treatment groups if the same campaign could reach

them on different devices, which also attenuates ad effectiveness estimates (Coey & Bailey,

2016). Nonetheless, marketers must use cookies as the unit of analysis if the ad platform

does not track logged-in users (see e.g. Bleier & Eisenbeiss 2015; Hoban & Bucklin 2015;

Lambrecht & Tucker 2013).

Our sample only includes experiments where we expect 100 or more users in the treatment

group to trigger an outcome under the null hypothesis that the ads are ineffective.1 By

restricting our sample in this way, we avoid tests with few users, advertisers with very low

baseline activity, narrowly defined outcome variables, and potential outliers in the relative

lift estimates. Our meta-study includes 432 experiments, out of the 606 experiments in the

sample collection period. On occasion, we will refer to the subsample of powerful studies,

which we define as those experiments which exceed our statistical power threshold. We set

this threshold such that a 5% (one-sided) test should reject a zero ad effect 95% of the time

when the alternative hypothesis is a 100% increase over the control group baseline. This

threshold means that the control group’s outcome must be at least 3.3 times larger than the

standard error of the experimental difference estimate.

Our study pulls experiments after a major update of GDN’s experimentation platform

that improved performance. Johnson et al. (2016) describe the ‘auction isolation’ feature

that underlies this update. Our sample collection begins on June 10, 2015 and ends on

September 21, 2015. 28% of the experiments were still in progress on September 21 and

are cut short. The experiments in our sample last an average of 20 days and range from 1

to 102 days long. Experiments include an average of 4 million predicted-exposed users (in
1The control group establishes the no ad effect baseline. Given the 70/30 split between treatment and

control, 100 users triggering an outcome corresponds to 43 (100*3/7) actual occurrences in the control group.
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the treatment and control groups) with tests ranging from 21 thousand to 181 million users.

The experiments assign 70% of users to the treatment group and 30% to the control group.

In this three month sample, only one advertiser had two experiments and the remaining

experiments are unique to individual advertisers.

3.2 Outcomes

Our outcome variables are site visits and conversions as defined and set-up by the advertisers

themselves. These outcomes are recorded using tiny images called pixels that allow the

advertiser and the platform to know which users visit which parts of the advertiser’s website.

To do this, the advertiser places pixels on some or all of the advertiser’s webpages to capture

user visits and designates ‘conversion’ pixels that record key pageviews. Conversions may

include purchases, sign-ups, or store location lookups. In half of the studies, the advertiser

tracks multiple outcome variables using groups of pixels, but these pixel outcomes are not

clearly labeled on the ad platform side. We choose a single site visit and conversion outcome

for each test according to some rules. We select the outcome with the greatest number of

baseline users who trigger the outcome in order to find the most broadly applied site visit or

conversion pixel. We break ties with the largest number of triggered pixel outcomes in the

baseline. By selecting a single pixel outcome, our absolute ad effectiveness estimates will be

conservative both because they might exclude some site visits and conversions and because

the campaign’s goal may not correspond to the selected outcomes. Also, selecting a single

pixel outcome avoids the risk of double-counting outcomes if we were to instead sum them

up. We drop the site visit pixel outcome whenever it duplicates a conversion pixel. Note

that some studies have either a site visit or a conversion outcome, but not both.

Following Johnson et al. (2017), we refine the outcome variables in the PGA estimates

by omitting realized outcomes that occur prior to the first predicted exposure. The logic

here is that the campaign cannot affect a user before the user has been exposed to the first

ad. Johnson et al. (2017) show that post-exposure filtering improves the precision of the
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standard errors of their experimental estimates by 8%.

3.3 Validation of PGA Implementation

We test the performance of GDN’s implementation of PGA by comparing our LATEPGA

estimates to our unbiased ITT estimates using equation (6) for site visits and conversions.

We use a Hausman test which evaluates the consistency of the PGALATE estimator compared

to the consistent, but less efficient ITT estimator. The Hausman test could reject if the

predicted ghost ads (D̂) are not independent of treatment assignment Z or if under-prediction

(ε in eq. 6) is too large. In 95% of the experiments, the Hausman test does not reject the

null hypothesis that the LATEPGA and ITT estimates are identical at the 5% level.2 The 5%

failure rate here is consistent with false positives. Nonetheless, we fall back on ITT estimates

in our analysis whenever the Hausman test rejects.

4 Meta-Analysis Results

In the three subsections below, we respectively examine the overall results across all tests,

the carryover effect of advertising, and the elasticity of the ad effectiveness funnel.

4.1 Overall Treatment Effects

Recent case studies call into question the effectiveness of advertising (Blake et al., 2015;

Shapiro, 2016), arguing that naive observational estimates may lead managers to overesti-

mate the true effect of advertising. Most prior evidence showing that online display ads work

is arises from stated rather than revealed preference outcomes (Goldfarb & Tucker, 2011b;

Bart et al., 2014). We begin by presenting the the ad effectiveness estimates from 432 tests,

for which we observe site visits for 347 tests and conversions for 184 tests.
2Since a small fraction of eligible users are typically exposed, ITT estimates can have as much as 10 times

higher variance than the PGA-LATE estimates in this setting (Johnson et al., 2016), which makes for a
weaker test.
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We normalize each test’s lift by the baseline outcome, which is established by the con-

trol group. This helps compare across tests that vary in many dimensions including the

campaign’s duration and reach. For our default PGA estimator, the relative lift is given by

y∆ ≡
E
[
y|Z = T, D̂ = 1

]
− E

[
y|Z = C, D̂ = 1

]
E
[
y|Z = C, D̂ = 1

] .

The relative ITT lift estimator is similar (see Appendix A). This normalization means

that the relative lift can be very large when the denominator is small, for instance for new

advertisers or narrowly defined outcome measures (Section 3.2). For this reason, we restrict

attention to studies where we expect the baseline to register at least 100 occurrences of the

outcome variable (Section 3.1).

Table 2 summarizes the lift estimates across all experiments. We see a median increase

of 16.6% in site visits with a 10%-90% interquantile range of [-1.1%, 215.6%]. The simple

average and the reach-weighted average are high at about 1200% and 800% due to influential

outliers3. The lift in conversions is smaller with a median increase of 8.1% and a 10%-90%

interquantile range of [-8.9%, 83.4%]. The average and weighted average conversions are

a more modest 19.9% and 25.3%. On the extensive margin, we see a median of 21.8%

incremental visitors and 7.9% incremental converters.

Figures 1 and 2 illustrate the variability of the incremental visit and conversion point

estimates across tests as well as the variability of the estimates themselves. The 95% con-

fidence whiskers are wide in tests with small samples or tests that employ the ITT rather

than LATEPGA estimator. As the histograms in the sidebars illustrate, the majority of the

point estimates are positive for both visits (85%) and conversions (74%). The estimates are

so variable that they give rise to negative point estimates and even cases that are negative

and individually significant. Fewer that 2.5% of tests are negative and significant at the

2.5%, one-sided level, which is consistent with false positives. As Table 2 shows, the overall
3Within the 339 powerful studies (defined in Section 3), the unweighted and weighted average lifts plum-

met to 75% and 113%.

15



weight of evidence suggests a positive and jointly significant effect of advertising. Of 347

site-visit tests, 202 are significantly different from zero at the 5% two-sided level, and only

7 of those point estimates are negative. Of the 184 conversion tests, 57 are significant, and

only 4 point estimates are negative.

This meta-study represents strong collective evidence that ads affect online consumer

behavior. We use a binomial test to evaluate the joint statistical significance of the findings.

Table 2 shows that 195 of the 347 site visit lift estimates are significant at the α = 0.025

one-sided level. The binomial test compares these 195 successes out of 347 trials to the null

hypothesis of a 2.5% success rate for meeting that p-value threshold due to random chance.

The binomial test returns a p-value of 7.4∗10−213 for visits and p = 2.93∗10−40 for conversions.

The extensive margin evidence is even stronger with, a p-value of p = 1.43∗10−296 for visitors

and 6.11 ∗ 10−49 for conversions.

Returning to Table 1, we see that the collective significance of our findings compares

favorably with prior meta-studies of ad field experiments. The Lodish et al. (1995a) split

cable television experiments find that only 115 (39%) of the 292 weight tests are significant

for sales at the p ≤ 0.2 one-sided level. An analogous binomial test in the last column of

Table 1 shows the collective significance of these results is high at p = 2.35∗10−14. Follow-up

studies by Hu et al. (2007, 2009) are bolstered by including matched-market tests yielding

collective significance of p = 4.31 ∗ 10−62 and p = 8.25 ∗ 10−21 respectively. To be clear,

these comparisons do not mean that online display ads ‘work’ better than TV ads, rather

our lift estimates are more precisely estimated because our sample sizes average 4 million

users rather than under 20,000 households. In online display ads, we compute analogous

joint significance statistics of p = 1.99 ∗ 10−13 for purchase intention in Bart et al. (2014),

and p = 2.55 ∗ 10−13 for conversions in Gordon et al. (2017). Our collective evidence for

the lift in site visits exceeds all the ad studies we review in Table 1 and the evidence for

conversions exceeds all but the Hu et al. (2007) television studies.

This strong evidence is somewhat surprising given that our sample is constructed in such
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a way that the outcomes we examine do not necessarily correspond with the objectives of the

campaign. In some cases, the objective was brand-building measured by brand favorability

in user surveys, so the lift in site visits and conversions was incidental. One potential concern

is that non-human traffic (bots) can bias online outcomes. However, the conversion evidence

mitigates this concern in that bots do not trigger many conversion outcomes like making

purchases. Non-human traffic is also a small portion of online users though may contain

outliers with many site visits; thus, our extensive margin evidence for visitors and converters

further mitigates the concern that bots drive these results.

4.2 Carryover Effects

We measure the carryover effect of online display advertising after the campaigns end. Our

data has a combination of features, which enables a novel exploration of online display

ad carry-over: its importance to the median firm, its variance across advertiser campaigns

and its evolution over time. First, we observe an end date for for the experiment after

which additional exposure—if any—should be identical across campaigns. We then directly

observe the carryover effect without needing to separate this from the contemporaneous ad

effect as in past work (e.g. Dubé et al. 2005). Second, our data have a daily panel structure,

which reveals how carryover evolves. While past work often imposes the geometric decay

assumption of the ad stock/goodwill model, our panel data provide a novel opportunity to

test this assumption. Third, some studies are statistically powerful, which ameliorates the

ad carryover measurement challenge. Fourth, our large collection of studies provides a broad

view of carryover.

To begin, we denote the cumulative outcome y (τ) from the beginning of the campaign

to τ days after the end of the campaign. The cumulative absolute lift estimator after τ days

is then

∆y (τ) ≡ E
[
y (τ) |Z = T, D̂ = 1

]
− E

[
y (τ) |Z = C, D̂ = 1

]
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for the default PGA estimator. The fallback ITT estimator only conditions on treatment

assignment (see eq. 4). The cumulative nature of the outcome means that the cumulative

absolute lift estimator ∆y (τ) = ∆y (0) + (∆y (τ)−∆y (0)) can be decomposed into the

in-campaign absolute lift ∆y (0) and absolute carryover ∆y (τ)−∆y (0), which is the post-

campaign lift. We define the relative carryover, which normalizes the absolute carryover by

the in-campaign absolute lift, as

Carryoverτ ≡
∆y (τ)−∆y (0)

∆y (0)
=

∆y (τ)

∆y (0)
− 1. (7)

Thus, Carryoverτ > 0 would be in line with ad stock models (see e.g. Nerlove & Arrow

1962) which posit a positive carryover; whereas Carryoverτ < 0 means that the ads cause

users to substitute their online site visits forward in time.

Estimating the carryover effect of a campaign presents a statistical power problem. Lewis

& Rao (2015) ad effects are small relative to the variance in marketing outcomes, so that

ad estimates will be imprecise even in large samples. Lewis et al. (2015) elaborate that this

problem is compounded for measuring carryover because the absolute value of the carryover

effect is plausibly smaller than the during-campaign effect—for a given time period. In other

words, the lift in the outcome is smaller after the campaign but the noise in the outcome

variable is unchanged after the campaign. Consequently, our carryover estimates contain

much sampling variation. We therefore pool across studies to better understand carryover.

Due to the statistical power problem, we focus on the outcomes with greater effect size

and more study observations: site visits and site visitors. We also restrict our sample in

several ways. We begin with the 339 tests that meet out power threshold (see Section 3).

To eliminate deactivated pixels from the data, we drop cases where the number of visits and

visitors does not change in a week for either the treatment or control groups. We measure

the campaign lift up to 28 days after the campaign, so we only examine the 128 experiments

in our sample that include at least 28 days of post-experiment data. Next, we require that
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the in-campaign lift ∆y (0) satisfy the significance threshold that the t-statistic > 1. Until

now, we avoided restricting the studies based on their estimated lift in order to ensure that

the results are representative. Since ∆y (0) is the the denominator in eq. (7), ∆y (0) close

to 0 will make Carryoverτ very large and give it undue influence in the average. Also,

restricting attention to positive in-campaign lift estimates also allows for a straightforward

interpretation of the relative carryover: the relative carryover will have the same sign as the

absolute carryover. Requiring t > 1 is analogous to passing a one-sided test with α = 0.159,

stricter than the α = 0.20 criterion used in Lodish et al. (1995a). We impose the t > 1

restriction on both the site visits (drops 36 studies) and visitors (drops 29 studies) since the

two have substantial overlap (39 studies). These restrictions reduce our sample to 89 studies.

We are interested in both the sign and magnitude of the relative carryover. In Figures 3

and 4, we see the distribution of the relative carryover 28 days after the campaign for both site

visitors and site visits. The relative carryover estimates are heterogeneous and skew towards

the positive side for visits, but the visitor carryover estimates are balanced between positive

and negative carryover. Among all 89 studies, the relative carryover is weakly positive 49%

of the time for visitors and 65% of the time for site visits. Like in Section 4.3, we test the

null hypothesis that carryover is zero using a t-test. Table 3 presents the average carryover

for both visitors and visits and for 7, 14, 21 and 28 days after the campaign. We restrict

attention to the 83 studies in the 95% interquantile range of the Carryoverτ variable to avoid

influential outliers. All estimates suggest a positive carryover that is highly significant for

visits (t-statistics> 2.88) but less so for visitors (t-statistics between 1.18 and 2.00). After 7

days, the average carryover is 2.6% (t=1.93) for visitors and 6.3% (t=3.05) for visits. After

28 days, the average carryover is 6.2% (t=2.00) for visitors and 16.4% (t=2.88) for visits.

Table 4 presents the percentiles of the relative carryover across weeks. We see that the

median carryover estimates are more modest: 0.0% for visitors and 2.9% for visits 28 days

after the campaigns. The median advertiser should therefore expect little or no carryover

after the campaign. The upper and lower quantiles reveal carryover of opposite sign that
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diverges over time. The 10% quantile for the relative carryover for visitors falls from -8.3%

after one week to -24.4% after four weeks; whereas, the 90% quantile rises from 20.8% to

52.6% over that period. The relative carryover in visits diverges even more: -20.0% after one

week to -46.9% after four weeks in the 10% quantile and 34.2% to 97.1% in the 90% quantile.

In other words, the during campaign lift is twice the total lift inclusive of carryover for the

10% quantile and half the total lift for the 90% quantile.

Our relative carryover estimates suggest a more modest effect than the split-cable TV

studies in the second meta-study by Lodish et al. (1995b). They focus on 42 studies that

demonstrate a significant lift during the campaign at the one-sided α = 0.2 level. They esti-

mate an average of about a 100% relative carryover. Nonetheless, they consider a longer time

horizon: the 2-year post campaign lift from a 1-year television campaign. Many differences

could explain the differences in performance. For instance, online display ads may receive less

attention from consumers and the medium may be less conducive to brand-building. Still,

Sahni (2015) suggests much higher carryover effect in search ads for restaurants: the ad effect

decays exponentially at a rate of about 0.90 per week. Though our estimates are noisy, they

suggest that some campaigns may have had a negative carryover, which we explore using

panel data on the carryover effect below.

Carry-over time path [preliminary]

We leverage our data’s daily panel structure to examine the evolution of carryover. We show

the time path of each campaign’s carryover, which reveals persistent patters obscured in the

cross-campaign data above. We then use this data to test the dominant goodwill or ad stock

model in marketing, which assumes ad carryover is positive and decays geometrically.

We begin by non-parametrically estimating the time path of carryover. Figure 5a and

5b illustrate the evolution of each campaign’s cumulative carry-over for visits and visitors

respectively during the 28 days after the campaign. These are daily lift estimates that we

do not smooth. The confidence intervals on these estimates show both the challenge of
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measurement precision but also the opportunity that the most statistically powerful studies

provide. The confidence intervals for the visitor estimates are narrower because that outcome

is binary, and is less variable. Despite the noise, many studies demonstrate either persistent

positive (e.g. study #439) or negative (e.g. #676) trends.4 In general, a study’s visitor

trend follows its visit trend, though visitor trends are more negative. This happens because

the visitor outcome by definition reduces the pool of potential new visitors over time among

(predicted) exposed users. Study #268 is then notable in that its visit and visitor trends

move in opposite directions: an additional lift of about 20% in visits but -10% in visitors

after four weeks. The persistent trends exhibited by several studies suggest that the cross-

campaign carryover heterogeneity observed in Figure 4 reflects fundamental differences in

the sign and magnitude of carryover by advertiser rather than sampling variation alone.

We sort the studies into three groups based on whether their time-series data exhibit

significantly positive, negative, or neither trend in cumulative carryover. To do so, we fit the

cumulative carryover data in Figure 5 to linear models and test the null hypothesis of zero

carryover trend at the 5%, two-sided level. We then sort the campaigns by visit and visitor

carryover as follows:

Linear trend Visits Visitors

Positive, significant 58% 38%

Negative, significant 32% 45%

Insignificant 10% 17%

The goodwill model posits a positive carryover, so it cannot explain the 32% of studies with

negative trends for site visits. Even more visitor estimates are negative again because the

pool of new visitors shrinks over time. The 38% of studies with positive trends in visitors

thus suggest that some campaigns can have important lasting effects.
4A few studies (notably #175) appear to show no initial carry-over followed by a sharp increase in ad

lift. These patters are surprising and we are gathering additional data to determine whether the advertiser
began a second experiment that was not recorded in our initial data. Until then, we include all studies in
the interest of completeness and transparency.
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Finally, we fit our carryover estimates to a goodwill model of advertising. We condition

on the 58% of studies with positive linear trends in visits as we expect the goodwill model

will perform poorly otherwise. We fit the panel data of daily post-campaign lift estimates

(not cumulative) to the ad stock model below:

E
[
yiτ |D̂i = 1, Zi = T

]
− E

[
yiτ |D̂i = 1, Zi = C

]
Pr
[
Di = 1|D̂i = 1, Zi = T

] = βiδ
τ
i + εiτ

for advertiser campaign i and post-campaign day τ . βi represents the lift from the cumulative

ad stock as campaign i ends, which depreciates at rate δi on subsequent days. Note that βi

does not equal the in-campaign lift or the additional lift on the last day of the campaign as

these include both the carryover effect as well as the contemporaneous effect of advertising.

As such, βi is estimated from the post-campaign lift data alone.

Even among positive studies, a linear model often improves fit over an ad-stock model.5

For visits, the ad-stock model performs better 56% of the time based on the Akaike infor-

mation criterion and 48% of the time based on the Bayesian information criterion. In those

cases, the median estimates for δi are 0.84 and 0.77 respectively. These rates imply that 90%

of the cumulative carryover effect occurs in the first 13.1 and 8.8 days respectively.

Discussion

Our results suggest that the carryover effects of online display advertising should be thought

of as the net effect of competing positive (goodwill) effects and negative (inter-temporal

substitution) effects. Moreover, advertisers vary considerably by which force dominates.

However, most past literature only emphasizes the positive carry-over effects of advertising.

In particular, the ad-stock/goodwill model is broadly used in marketing as an identifying

assumption to estimate the effect of advertising from observational data using distributed
5The gradual decay of the ad stock model is realistic and simplifies the long run ad effect calculation.

The linear model does not share these features, but it is simple. In the future, we intend to consider a wider
class of carryover models (Huang et al., 2012).
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lag models (Sethuraman et al., 2011 reviews 56 such studies). This approach is now applied

in online display advertising (e.g. Braun & Moe, 2013; Bruce et al., 2017). Our novel data

provide new evidence that the ad stock model is limited in its generalizability for online

display advertising.

Some caveats apply to our carryover results. Cookie churn will attenuate our carryover

estimates as users who delete their cookies can no longer be connected to their later outcomes

on the advertiser’s site. Our data is limited to the experiments the advertisers ran in this

time period. Some advertisers may have run subsequent non-experimental campaign and

any cross-campaign interaction effects would create differences between the treatment and

control group beyond the carryover. The direction of this bias would depend on whether

the experimental and non-experimental campaigns are net complements of substitutes in the

second period.

4.3 Ad Effectiveness Funnel Elasticity

We wish to relate the relative incremental lift in upper-funnel outcomes to the relative

incremental lift in lower-funnel outcomes. The marketing funnel describes the consumer

journey from awareness to purchase and the attrition that arises as consumers move through

the stages along this journey. Here, we consider site visits as our upper-funnel outcome

and conversions as our lower-funnel outcome. We explore this relationship because it will

help practitioners and academics use the upper-funnel lift estimates to learn from campaigns

when lower-funnel outcomes are unavailable or too noisy.

In Figure 6, we distinguish between the baseline and the incremental marketing funnel.

The baseline funnel describes the attrition along the user’s path to purchase in the absence

of the focal campaign. Here, the baseline funnel is identified by the control group users’

site visit yUC and conversion yLC outcomes. The incremental funnel describes the attrition

along the purchase funnel for those incremental outcomes that are caused by the ads. The

incremental funnel is identified by the experimental difference in user site visits, yUT − yUC ,
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and conversions, yLT − yLC ,between the treatment and control groups. The conversion rate in

the baseline funnel is rC ≡ yLC/y
U
C whereas the conversion rate in the incremental funnel is

r∆ ≡
(
yLT − yLC

)
/
(
yUT − yUC

)
.

The elasticity of the ad effectiveness funnel (denoted by ε∇) relates the proportional lift

in the upper funnel outcome to the proportional lift in the lower funnel outcome. That is,

ε∇ ≡
yL∆
yU∆

=
yLT − yLC
yLC

/
yUT − yUC
yUC

. (8)

Figure 6 illustrates this relationship. The elasticity can also be interpreted as the ratio of

the baseline conversion rate and the incremental conversion rate, as ε∇ =
yLT−y

L
C

yUT −y
U
C
/
yLC
yUC

= r∆
rC
.

Note that ε∇ is an elasticity in that it relates the percent change in the two lifts. However,

ε∇ does not refer to a lever that the firm can pull as is the case with the price or advertising

elasticity of demand. Nonetheless, ε∇ can be thought of as the ratio between elasticities: the

elasticity of advertising with respect to site visits and with respect to conversions in our case.

When ε∇ is elastic (ε∇ > 1), then the incremental site visits convert more often than those

in the baseline funnel. When ε∇ is inelastic (ε∇ < 1), then the incremental site visits convert

less often than those in the baseline funnel. Since both the baseline and incremental users

who visit the advertiser’s website are self-selected, whether ε∇ will be elastic or inelastic is

unclear. Indeed, the literature provides conflicting evidence for the ad effectiveness funnel

elasticity: search ads were inelastic in one setting (Dai & Luca, 2016) but elastic in another

(Sahni, 2015). Since the interpretation of ε∇ depends on the direction that it differs from 1,

we seek to reject the null hypothesis H0 : ε∇ = 1 by running a t-test.

The heterogeneity in outcome data requires that we filter the studies to meaningfully

estimate ε∇. First, we limit our analysis to the 92 experiments for which we have distinct

site visit and conversion outcome data and for which site visitors exceed converters. All the

studies satisfying this first step satisfy our power condition from Section 3.1. Second, we

require that the lift in the upper-funnel outcome as before satisfy the significance threshold

24



that the t-statistic > 1. Again, this is analogous to passing a one-sided test with p = 0.159

following Lodish et al. (1995b) who use a one-sided p = 0.20 criterion. Moreover, requiring

yU∆ to be positive ensures that ε∇ will have the same sign as yL∆, so that the sign of ε∇ is

easier to interpret. These restrictions for both site visitors and visits reduce our sample to

69 experiments.

We find that the ad effectiveness funnel is most often inelastic. Table 5 presents our

average estimates for ε∇ and t-tests for ε∇ = 1 for different interquantile ranges of ε∇ from

100% down to 80% to avoid influential outliers. Examining all studies, we find that the

average ε∇ = −0.967 (t = −0.05) when comparing incremental site visitors to incremental

converters. As the data window narrows, the average ε∇ becomes significantly different from

0 with ε∇ = 0.694 (t=-2.30) for the 95% interquantile range and ε∇ = 0.569 (t=-5.57) for

the 80% interquantile range. Similarly, we find the average ε∇ = 0.568 (t=-0.57) when

comparing incremental visits and conversions for all studies. As the data window narrows,

the average ε∇ again significantly deviates from ε∇ = 1 with ε∇ = 0.671 (t=-1.88) for the

95% interquantile range and ε∇ = 0.596 (t=-4.75) for the 80% interquantile range. ε∇ is

thus consistently between 0.6 and 0.7 when we ignore outliers. In other words, an advertiser

with a 10% lift in site visits should expect on average to find a 6% or 7% lift in conversions.

Figures 7 and 8 illustrate the distribution of the funnel elasticity separately at the ex-

tensive and overall margins. We see that ε∇ < 1 the majority of the time; however, we

see heterogeneity in the average funnel elasticity even within the 95% interquantile range of

elasticities and after filtering out many experiments. Table 6 summarizes the heterogeneous

distribution of elasticities for the individual tests: the median of ε∇ is 0.51 for visitors to

converters and 0.58 for visits to conversions.

More research is needed to extend this finding to more ad media and more funnel out-

comes. Still, this finding calls into question the assumption that incremental effect on the

funnel outcomes is proportional and suggests a more conservative managerial takeaway from

upper funnel lift outcomes. The interpretation of ε∇ < 1 is that incremental users are less
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likely to progress down the funnel. Our evidence in Table 2 that the median lift in visitors

(21.8%) exceeds the lift in visits (16.6%) supports this interpretation as it means incremental

visitors are less active on the advertiser’s website. Still, a more mundane explanation could

be that incremental site visitors include bots, which are less likely to convert. Alternately,

ε∇ < 1 could result from a potential mismatch between the goal of the campaign and our

conversion outcome.

5 Conclusion

In this paper, we present strong evidence that online display ads increase site visits and

conversions. While we see heterogeneity in relative ad effectiveness throughout our study,

the median lift is 17% for visits and 8% for conversions. We also find heterogeneity when we

measure the carryover effect and the elasticity of the ad effectiveness funnel. Nonetheless,

we suggest rules of thumb for online display ad campaigns: the average four-week carryover

effect is 6% for visitors and 16% for visits and the incremental upper-funnel lift on average

mean a less-than-proportional lower-funnel lift (elasticity of roughly 0.5-0.7). These rules of

thumb should help marketers make better use of their ad effectiveness estimates.

This meta-analysis provides a big-picture view of ad effectiveness measurements. How-

ever, a key theme here is the heterogeneity in ad effects and relationships that caution

against a single theory. This heterogeneity is a natural consequence of different advertisers

from different industries, choosing different advertising goals, and measuring different out-

comes. This suggests that individual advertisers will find repeated experimentation helpful

for identifying regularities in the effectiveness of their own ads.
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Figures & Tables

Figure 1: Incremental site visits across all 347 experiments with 95% confidence intervals
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Figure 2: Incremental conversions across all 184 experiments with 95% confidence intervals
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Figure 3: Relative carryover: visitors
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Figure 5: Time path of cumulative carryover by campaign

(a) Site visits

780 788 791 794 796 800 808 820

681 682 687 703 706 714 762 765 770 772

585 597 599 601 602 629 654 657 667 676

485 518 525 527 528 540 542 545 555 582

401 407 409 430 435 439 456 466 469 480

268 296 298 303 328 335 348 358 371 384

194 202 203 218 244 249 250 253 261 265

113 117 118 120 124 130 170 175 187 190

2 6 13 14 38 73 78 80 96 107

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28
−1

0
1
2
3

−3
−2
−1

0
1
2

−0.5
0.0
0.5
1.0
1.5

−2

−1

0

1

−0.2

0.0

0.2

−0.25

0.00

0.25

−1

0

−2

0

2

0

1

2

−2.5

0.0

2.5

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.3

0.0
0.3
0.6

−0.1
0.0
0.1
0.2
0.3
0.4

−0.5

0.0

0.5

−1
0
1
2

−3
−2
−1

0
1
2

−0.2
−0.1

0.0
0.1
0.2

0
1
2
3
4

−1.5
−1.0
−0.5

0.0
0.5
1.0

−0.2
0.0
0.2
0.4
0.6

−0.5
0.0
0.5
1.0

−0.05

0.00

0.05

−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3

−0.05
0.00
0.05
0.10

−0.5
0.0
0.5
1.0
1.5

−0.1

0.0

0.1

−0.1

0.0

0.1

0.0
0.4
0.8
1.2

−0.4
0.0
0.4
0.8
1.2

−0.1
0.0
0.1
0.2
0.3

−2
−1

0
1
2

−0.4

0.0

0.4

0.8

−2.5

0.0

2.5

−0.01
0.00
0.01
0.02
0.03

−0.1

0.0

0.1

0.2

0.00
0.05
0.10
0.15

−5.0

−2.5

0.0

2.5

−0.3
−0.2
−0.1

0.0
0.1
0.2

−0.5
0.0
0.5
1.0
1.5

−0.75
−0.50
−0.25

0.00
0.25
0.50

−1

0

1

−2
−1

0
1

−2
−1

0
1

−3
−2
−1

0
1
2

0

2

4

−0.05

0.00

0.05

−0.25
0.00
0.25
0.50

−0.4
−0.2

0.0
0.2
0.4

−0.5

0.0

0.5

−0.5

0.0

0.5

−1

0

1

2

−0.5
0.0
0.5
1.0

−0.6
−0.3

0.0
0.3

−1

0

1

2

−0.5

0.0

0.5

1.0

−1.5
−1.0
−0.5

0.0
0.5
1.0

−2
0
2
4
6

−1.0
−0.5

0.0
0.5
1.0

0

5

10

15

−0.4
0.0
0.4
0.8

−0.8

−0.4

0.0

−0.4

−0.2

0.0

0.2

−4

−2

0

2

−0.04

0.00

0.04

0.08

−0.25
0.00
0.25
0.50

−1.5
−1.0
−0.5

0.0
0.5
1.0

−2
0
2
4

−0.5

0.0

0.5

1.0

−4
−2

0
2

0
1
2
3
4

−0.10
−0.05

0.00
0.05

−0.5
0.0
0.5
1.0
1.5

−0.025
0.000
0.025
0.050

−0.25

0.00

0.25

0.50

−3
−2
−1

0
1
2

−2.5

0.0

2.5

−0.2
−0.1

0.0
0.1

0

1

2

−2
−1

0
1
2
3

−0.2
−0.1

0.0
0.1
0.2

0

1

2

−2
−1

0
1

0.00
0.05
0.10
0.15
0.20

−1.0
−0.5

0.0
0.5
1.0

−1

0

1

−3
−2
−1

0
1

−2.5

0.0

2.5

5.0

−0.4
−0.2

0.0
0.2

Days after test

R
el

at
iv

e 
ca

rr
y−

ov
er

(b) Site visitors

780 788 791 794 796 800 808 820

681 682 687 703 706 714 762 765 770 772

585 597 599 601 602 629 654 657 667 676

485 518 525 527 528 540 542 545 555 582

401 407 409 430 435 439 456 466 469 480

268 296 298 303 328 335 348 358 371 384

194 202 203 218 244 249 250 253 261 265

113 117 118 120 124 130 170 175 187 190

2 6 13 14 38 73 78 80 96 107

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28

0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28 0 7 14 21 28
−0.5

0.0
0.5
1.0
1.5

−0.1
0.0
0.1
0.2
0.3

−0.50
−0.25

0.00
0.25
0.50

−0.2
−0.1

0.0
0.1
0.2

−0.1

0.0

0.1

−0.10
−0.05

0.00
0.05

−0.4

−0.2

0.0

−1.0
−0.5

0.0
0.5
1.0

0.0
0.3
0.6
0.9

−2

0

2

4

−0.25
0.00
0.25
0.50

−0.4
−0.2

0.0
0.2

−0.05

0.00

0.05

0.0
0.1
0.2
0.3

−1

0

1

2

−0.2

0.0

0.2

−0.2
−0.1

0.0
0.1
0.2

0
1
2
3

−1

0

1

0.0

0.1

0.2

−0.5

0.0

0.5

1.0

−0.025

0.000

0.025

−0.2
−0.1

0.0
0.1
0.2

−0.05

0.00

0.05

0.10

−0.2

0.0

0.2

−0.15
−0.10
−0.05

0.00
0.05
0.10

−0.10
−0.05

0.00
0.05
0.10

−0.1
0.0
0.1
0.2

−0.2

0.0

0.2

0.4

−0.1

0.0

0.1

−0.1
0.0
0.1
0.2

−0.3
−0.2
−0.1

0.0
0.1

−0.5

0.0

0.5

−0.02

−0.01

0.00

0.01

−0.05

0.00

0.05

−0.025
0.000
0.025
0.050

−3
−2
−1

0
1

−0.2
−0.1

0.0
0.1

0.00
0.25
0.50
0.75

−0.10
−0.05

0.00
0.05
0.10

−0.75
−0.50
−0.25

0.00
0.25
0.50

−0.6
−0.4
−0.2

0.0
0.2
0.4

−1.0
−0.5

0.0
0.5
1.0

−1

0

1

0

1

2

−0.06
−0.03

0.00
0.03

−0.25
0.00
0.25
0.50

−0.1

0.0

0.1

−0.6
−0.4
−0.2

0.0
0.2
0.4

−0.2
−0.1

0.0
0.1
0.2

−0.5
0.0
0.5
1.0

−0.10

−0.05

0.00

0.05

−0.50
−0.25

0.00
0.25

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

−1

0

1

2

−1.0
−0.5

0.0
0.5
1.0

0

2

4

−0.4

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.05

0.00

0.05

0.10

−0.4
−0.2

0.0
0.2

0.00

0.05

−0.2
0.0
0.2
0.4

−0.5

0.0

0.5

−2
−1

0
1
2

−0.1

0.0

0.1

−1.0
−0.5

0.0
0.5

0

1

2

3

−0.050
−0.025

0.000
0.025

−1.0
−0.5

0.0
0.5
1.0

−0.03

0.00

0.03

0.06

−0.2
0.0
0.2
0.4

−1

0

1

−1.0
−0.5

0.0
0.5

−0.2

−0.1

0.0

0.1

−1.0
−0.5

0.0
0.5
1.0

−0.25

0.00

0.25

−0.15
−0.10
−0.05

0.00
0.05
0.10

−2

0

2

−1

0

1

−0.10

−0.05

0.00

−0.4
−0.2

0.0
0.2

−0.4

−0.2

0.0

0.2

−0.25
0.00
0.25
0.50

−0.5
0.0
0.5
1.0

−0.2
−0.1

0.0
0.1
0.2

Days after test

R
el

at
iv

e 
ca

rr
y−

ov
er

34



Figure 6: Ad effectiveness funnel elasticity: Relating lower funnel to upper funnel outcomes

Figure 7: Extensive ad effectiveness funnel: Incremental visitors to converters
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Notes: Includes 65 studies in the 95% interquantile range of the funnel elasticity.
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Figure 8: Ad effectiveness funnel: Incremental visits to conversions
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Notes: Includes 65 studies in the 95% interquantile range of the funnel elasticity.
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Table 2: Overall lift across 432 predicted ghost ad experiments

Visits Visitors Conversions Converters

Median lift estimate 16.6% 21.8% 8.1% 7.9%
[.10, .90]-quantile [-1.1%, 213.6%] [-0.2%, 284.4%] [-8.9%, 83.4%] [-7.2%, 67.5%]

[.025, .975]-quantile [-8.1%, 780.9%] [-4.8%, 830.3%] [-29.5%, 258.8%] [-26.2%, 252%]

Average lift estimate 1189.2% 699.7% 19.9% 19.8%
Standard error (1098.9%) (596.1%) (10.8%) (8.5%)

Weighted average lift estimate†† 836.4% 534.9% 25.3% 34.4%
Standard error (705.7%) (384.1%) (14.6%) (20%)

Individual significance tests
Reject 5% two-sided 202 249 57 65
Reject 2.5% one-sided (Lift <0) 7 8 4 5
Reject 2.5% one-sided (Lift >0) 195 241 53 60
Collective significance††† 7.38 ∗ 10−213 1.43 ∗ 10−296 2.93 ∗ 10−40 6.11 ∗ 10−49

N. of Experiments 347 347 184 184
Notes: ††Lift estimates are weighted by the number of treatment-ad exposed users in the test.
†††The collective significance test uses a binomial test for the realized number of studies with

positive lift that reject a 2.5% one-sided lift versus a null of 2.5%.
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Table 3: Average relative carryover

Visitors
τ (days) ∆y(τ)

∆y(0)
− 100% Std. Err. t-statistic

7 2.6% 1.3% 1.93
14 2.0% 1.7% 1.18
21 5.5% 2.7% 2.00
28 6.2% 3.1% 2.00

Visits
τ (days) ∆y(τ)

∆y(0)
− 100% Std. Err. t-statistic

7 6.3% 2.1% 3.05
14 8.9% 2.8% 3.21
21 13.9% 4.4% 3.16
28 16.4% 5.7% 2.88

Notes: We include the powerful studies for which we observe 28 days of activity post-campaign and for which t-stats>1 for
both visits and visitors. To avoid influential outliers, we only examine the 83 of 89 studies in the 95% interquantile range of
the outcome ∆y(τ)

∆y(0)
.

Table 4: Distribution of relative carryover

Visitors: Relative Carryover Quantiles
τ (days) 10% 25% 50% 75% 90%

7 -8.3% -1.7% 0.5% 6.8% 20.8%
14 -18.6% -3.3% 0.8% 7.3% 24.9%
21 -17.6% -5.1% 0.3% 8.8% 34.5%
28 -24.4% -5.9% 0.0% 8.6% 52.6%

Visits: Relative Carryover Percentiles
τ (days) 10% 25% 50% 75% 90%

7 -20.0% -1.5% 3.6% 12.9% 34.2%
14 -23.1% -3.2% 4.7% 22.2% 54.4%
21 -34.4% -5.7% 3.9% 27.2% 76.6%
28 -46.9% -8.6% 2.9% 30.7% 97.1%

Notes: We include the 89 powerful studies for which we observe 28 days of

activity post-campaign and for which t-stats>1 for both visits and visitors.
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Table 5: Average ad effectiveness funnel elasticity

Visitors to Converters
Interquantile range Elasticity (ε∇) St. Err. t of H0 : ε∇ = 1 Studies

80% 0.569 0.077 -5.57 55
90% 0.627 0.096 -3.88 61
95% 0.694 0.133 -2.30 65
100% 0.967 0.724 -0.05 69

Visits to Conversions
Interquantile range Elasticity (ε∇) St. Err. t of H0 : ε∇ = 1 Studies

80% 0.596 0.085 -4.75 55
90% 0.622 0.119 -3.18 61
95% 0.671 0.175 -1.88 65
100% 0.568 0.756 -0.57 69

Notes: Includes at most 69 powerful studies with both visit & conversion outcomes & for which t-stats on the upper

funnel lift>1 for both visits and visitors.

Table 6: Distribution of ad effectiveness funnel elasticity

Visitors to Converters
Quantiles of Elasticity (ε∇)

Min 10% 25% 50% 75% 90% Max.
-26.743 -0.367 0.061 0.509 0.880 2.199 31.547

Visits to Conversions
Quantiles of Elasticity (ε∇)

Min 10% 25% 50% 75% 90% Max.
-40.197 -0.515 0.045 0.580 1.064 2.148 26.272
Notes: Includes 69 powerful studies with both visit & conversion outcomes &

for which t-stats on the upper funnel lift>1 for both visits and visitors.
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Appendix

A ITT Estimator

As we discuss in Section 2.3, Intent-to-treat (ITT) requires that we can delineate users who

are eligible for exposure and track outcomes among eligible users. In some field experi-

ments, the subjects are a list of users defined prior to the campaign (see e.g. the database

match campaign in Johnson et al., 2017). Here, no such list exists. To resolve this, we use

our deterministic user randomization algorithm to sort all the advertiser’s site visitors into

treatment and control eligible users. Effectively, we define eligibility as all N Internet users

who could visit the site and sum the N�0 such users with non-zero outcomes, which suffices

to measure the sum
∑N

i=1 yi =
∑N �0

i=1 y�
0
i . Given that the experiments all assign 70% of users

to the treatment group and 30% to control, our ITT estimator computes the total campaign

effect as

Total ITT =

NT∑
i=1

yi,T −
7

3

NC∑
i=1

yi,C

Without knowing N , we cannot compute the exact standard errors of the total ITT

estimator. We instead use a conservative approximation of the variance V ar(
∑N

i=1 yi) ≈∑N �0
i=1

(
y�0i

)2

following Appendix B of Johnson et al. (2016) who note that

V ar(
N∑
i=1

yi) =
N∑
i=1

y2
i −

1

N

(
N∑
i=1

yi

)2

≤
N∑
i=1

y2
i =

N �0∑
i=1

(
y�0i

)2

One challenge in meta-studies is to normalize the estimated lifts across studies in such

a way that they are comparable. This challenge is magnified when we use two different

treatment effect estimators. For comparability, we normalize the test’s lift estimates to be

the relative lift over the baseline outcomes in the control group rather than the absolute

lift. However, while the total lifts between the LATEPGA and ITT estimates are the same

in expectation whenever PGA does not under-predict treated users (see eq. 6), the baseline
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total outcome in ITT will be higher than LATEPGA because ITT outcomes include outcomes

from users who would not see a focal ad. Consequently, the relative lift for ITT estimates

would be unfairly low relative to LATEPGA. To remedy this, we use the baseline outcomes

among the predicted-exposed control group users for both the LATEPGA and ITT estimates.

Since the Hausman test rejections indicate that the PGA predicted-exposed control group

sample may not match the treatment group sample, this approach may bias our results. We

examine the ITT studies by hand to eliminate any obviously flawed studies. Otherwise, we

think our approach picks the best among imperfect options.
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