Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ. .)

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof Statement

Reason

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof Statement

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof Statement

Reason

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof Statement

Reason

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof
Reason
Statement

1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
2. Given

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof
Statement
Reason

1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
2. Given
3. Ref.

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof
Statement
Reason

1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
2. $\overline{\mathrm{BC}} \cong \overline{\mathrm{BC}}$
3. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACB}$
4. Given
5. Ref.
6. SSS

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Given: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
Prove: $\angle B \cong \angle C$

Proof
Statement

1. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
2. $\overline{\mathrm{BC}} \cong \overline{\mathrm{BC}}$
3. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACB}$
4. $\angle B \cong \angle C$

Reason

1. Given
2. Ref.
3. SSS
4. CPCTC

Theorem 21: If two angles of a triangle are congruent, the sides opposite the angles are congruent. (If Δ, then \star.)

Theorem 21: If two angles of a triangle are congruent, the sides opposite the angles are congruent. (If Δ, then Δ.)

Given: $\angle B \cong \angle C$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$

Proof Statement

Theorem 21: If two angles of a triangle are congruent, the sides opposite the angles are congruent. (If Δ, then Δ.)

Given: $\angle B \cong \angle C$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$

Proof
Statement

1. $\angle \mathrm{B} \cong \angle \mathrm{C}$
2. $\overline{\mathrm{BC}} \cong \overline{\mathrm{BC}}$
3. $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACB}$ 4. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$

Reason

1. Given
2. Ref.
3. ASA
4. СРСТС

The two theorems tell us:

If at least two sides of a triangle are congruent, the triangle is isosceles.

If at least two angles of a triangle are congruent, the triangle is isosceles.

> Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

The inverse of Theorem 20 is true: If two sides of a triangle are not congruent, then the angles opposite them are not congruent, and the larger angle is opposite the longer side. (If \notin, then Δ.)

Theorem 21: If two angles of a triangle are congruent, the sides opposite the angles are congruent. (If Δ, then A.)

The inverse of Theorem 21 is true: If two angles of a triangle are not congruent, then the sides opposite them are not congruent, and the longer side is opposite the larger angle. (If Δ, then $\#$.)

The median to the base of an isosceles triangle bisects the vertex angle.

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

Reason

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

Reason

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

Reason

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

Reason

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

1. Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$

Reason

1. Given

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

1. Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$

Reason

1. Given
2. Legs of isos. Δ are \cong.

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle \mathrm{BAD} \cong \angle \mathrm{CAD}$
Proof
Statement

1. Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
(A) 3. $\angle B \cong \angle C$

Reason

1. Given
2. Legs of isos. Δ are \cong.
3. If A, then Δ.

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

```
Prove: \(\angle B A D \cong \angle C A D\)
Proof
```

Statement
Reason

1. Isosceles $\triangle \mathrm{ABC}$
2. Given
with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
3. Legs of isos. Δ are \cong.
4. If A, then Δ.
5. Given

The median to the base of an isosceles triangle bisects the vertex angle.
Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle B A D \cong \angle C A D$
Proof
$\frac{\text { Statement }}{\text { 1. Isosceles } \triangle \mathrm{ABC}}$
 with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
(A) 3. $\angle B \cong \angle C$
4. $\overline{\mathrm{AD}}$ is a median
5. D is mdpnt. of $\overline{\mathrm{AD}}$
2. Legs of isos. Δ are \cong.
3. If A, then Δ.
4. Given
5. Def. of median

The median to the base of an isosceles triangle bisects the vertex angle.

Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle B A D \cong \angle C A D$ Proof Statement

$\frac{\text { Statement }}{\text { 1. Isosceles } \triangle \mathrm{ABC}}$
with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
(A) 3. $\angle B \cong \angle C$
4. $\overline{\mathrm{AD}}$ is a median
5. D is mdpnt. of $\overline{\mathrm{AD}}$
(S) $6 . \overline{\mathrm{BD}} \cong \overline{\mathrm{CD}}$
2. Legs of isos. Δ are \cong.
3. If A, then Δ.
4. Given
5. Def. of median
6. Def. of midpoint

The median to the base of an isosceles triangle bisects the vertex angle.

Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

Prove: $\angle B A D \cong \angle C A D$ Proof

Statement1. Isosceles $\triangle \mathrm{ABC}$(S) 2. $^{\text {with vertex } \triangle \mathrm{A}} \cong \overline{\mathrm{AC}}$(A)3. $\angle \mathrm{B} \cong \angle \mathrm{C}$4. $\overline{\mathrm{AD}}$ is a median5. D is mdpnt. of $\overline{\mathrm{AD}}$(S) 6. $\overline{\mathrm{BD}} \cong \overline{\mathrm{CD}}$7. $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$	

Reason

1. Given
2. Legs of isos. Δ are \cong.
3. If A, then Δ.
4. Given
5. Def. of median
6. Def. of midpoint
7. SAS

The median to the base of an isosceles triangle bisects the vertex angle.

Given: Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$ and median $\overline{\mathrm{AD}}$

```
Prove: \(\angle B A D \cong \angle C A D\)
    Proof
```

Statement

1. Isosceles $\triangle \mathrm{ABC}$ with vertex $\angle A$
(S) 2. $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}$
(A) 3. $\angle B \cong \angle C$
2. $\overline{\mathrm{AD}}$ is a median
3. D is mdpnt. of $\overline{\mathrm{AD}}$
(S) 6. $\overline{\mathrm{BD}} \cong \overline{\mathrm{CD}}$
4. $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
5. $\angle \mathrm{BAD} \cong \angle C A D$

Reason

1. Given
2. Legs of isos. Δ are \cong.
3. If A, then Δ.
4. Given
5. Def. of median
6. Def. of midpoint
7. SAS
8. СРСТС

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Theorem 20: If two sides of a triangle are congruent, the angles opposite the sides are congruent. (If A, then Δ.)

Theorem 21: If two angles of a triangle are congruent, the sides opposite the angles are congruent. (If Δ, then \star.)

