
www.sti-innsbruck.at © Copyright 2008 STI INNSBRUCK www.sti-innsbruck.at

Intelligent Systems

Theorem Proving,
Description Logics, and

Logic Programming

Dieter Fensel and Florian Fischer

www.sti-innsbruck.at

Where are we?

2

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Theorem Proving, Description Logics and Logic Programming

5 Search Methods

6 CommonKADS

7 Problem Solving Methods

8 Planning

9 Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Exam Preparation

www.sti-innsbruck.at

Agenda

•  Motivation
•  Technical Solution

–  Introduction to Theorem Proving
–  Resolution
–  Description Logics
–  Logic Programming

•  Summary

3

www.sti-innsbruck.at

MOTIVATION

4

www.sti-innsbruck.at

Motivation

•  Basic results of mathematical logic show:
–  We can do logical reasoning with a limited set of simple

(computable) rules in restricted formal languages like First-
order Logic (FOL)

–  Computers can do reasoning

•  FOL is interesting for this purpose because:
–  It is expressive enough to capture many foundational theorems

of mathematics (i.e. Set Theory, Peano Arithmetic, ...)
–  Many real-world problems can be formalized in FOL
–  It is the most expressive logic that one can adequately approach

with automated theorem proving techniques
–  Subsets of it can be used for more specialized applications

5

www.sti-innsbruck.at

TECHNICAL SOLUTIONS
Theorem Proving, Description Logics, and Logic Programming

6

www.sti-innsbruck.at

THEOREM PROVING

7

www.sti-innsbruck.at

Modelling
(automated)

Deduction

Introduction - Logic and Theorem Proving

Real-world description
in natural language.
Mathematical Problems
Program + Specification

Syntax (formal language).
First-order Logic,
Dynamic Logic, …

Valid
Formulae

Provable
Formulae

Formalization

Semantics
(truth function)

Calculus
(derivation / proof)

Correctness

Completeness

Diagram by Uwe Keller

www.sti-innsbruck.at

Introduction – Logic and Theorem Proving

•  Recall from last lecture: A Model is
–  An interpretation S = (U,I) is called a model of a statement s iff valS(s) = t

•  What does it mean to infer a statement from given premisses?
–  Informally: Whenever our premisses P hold it is the case that the statement holds

as well
–  Formally: Logical Entailment

•  For every interpretation S which is a model of P it holds that S is a model of
S as well

–  Logical entailment in a logic L is the (semantic) relation that a calculus C
aims at formalizing syntactically (by means of a derivability relation)!

–  Logical entailment considers semantics (Interpretations) relative to a set of
premisses or axioms!

www.sti-innsbruck.at

Introduction – Basic Notions

•  A proof system is collection of inference rules of the form:
P1 … Pn

 name
C

 where C is a conclusion sequent, and Pi‘s are premises sequents .
–  If an infererence rule does not have any premises (called an axiom), its

conclusion automatically holds.
–  Example: Modus Ponens: From P, P --> Q infer Q, Universal instantiation:

From (A x)p(x) infer p(A)

•  Logical theory:
–  An underlying logic
–  And a set of logical expressions that are taken to be true (axioms)

•  Theorems:
–  Expressions that can be derived from the axioms and the rules of inference.

10

www.sti-innsbruck.at

Introduction – Basic Notions

•  Consistency:
–  A theory is consistent if you can’t conclude a contradiction
–  If a logical theory has a model, it is consistent

•  Independence:
–  Two axioms are independent if you can’t prove one from the

other
–  To show two axioms are independent, show that there is a model

in which one is true and the other is not true

•  Soundness:
–  All the theorems of the logical theory are true in the model

•  Completeness:
–  All the true statements in the model are theorems in the logical

theory

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 12	

 Resolution - Principle

•  Resolution refutation proves a theorem by:
1.  Negating the statement to be proved
2.  Adding this negated goal to the set of axioms that are known to be true.
3.  Use the resolution rule of inference to show that this leads to a contradiction.
→  Once the theorem prover shows that the negated goal is inconsistent with

the given set of axioms, it follows that the original goal must be consistent.

•  Detailed steps in a resolution proof
–  Put the premises or axioms into clause normal form (CNF)
–  Add the negation of the to be proven statement, in clause form, to the set of

axioms
–  Resolve these clauses together, producing new clauses that logically follow

from them
–  Derive a contradiction by generating the empty clause.
–  The substitutions used to produce the empty clause are those under which

the opposite of the negated goal is true

www.sti-innsbruck.at

Normal Forms

•  Resolution requires sentences to be in clause normal form

•  Why are normal forms interesting in general?
–  Conversion of input to a specifc NF my be required by a calculus (e.g.

Resolution)
–  Preprocessing step
–  Theorem proving itself can be seen as a conversion in a NF

•  Normalforms in First-Order Logic
–  Negation Normal Form
–  Standard Form
–  Prenex Normal Form
–  Clause Normal Form

•  There are logics where certain NF do not exist, like CNF in a
Dynamic First-order Logic
–  Certain calculi then can not be applied in these logics!

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 14	

Converting to Clause Normal Form

•  Step 1: Eliminate the logical connectives → and ↔
–  a ↔ b = (a → b) ∧ (b → a)
–  a → b = ¬a ∨ b

•  Step 2: Reduce the scope of negation
–  ¬(¬a) = a
–  ¬(a ∧ b) = ¬a ∨ ¬b
–  ¬(a ∨ b) = ¬a ∧ ¬b
–  ¬(∃X) a(X) = (∀X) ¬a(X)
–  ¬(∀X) b(X) = (∃X) ¬b(X)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 15	

Converting to Clause Normal Form

•  Step 3: Standardize by renaming all variables so that variables
bound by different quantifiers have unique names

–  (∀X) a(X) ∨ (∀X) b(X) = (∀X) a(X) ∨ (∀Y) b(Y)

•  Step 4: Move all quantifiers to the left to obtain a prenex normal
form

•  Step 5: Eliminate existential quantifiers by using skolemization

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 16	

Converting to Clause Normal Form

•  Step 6: Drop all universal quantifiers
•  Step 7: Convert the expression to the conjunction of disjuncts

form
(a ∧ b) ∨ (c ∧ d)
= (a ∨ (c ∧ d)) ∧ (b ∨ (c ∧ d))
= (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d)

•  step 8: Call each conjunct a separate clause
•  step 9: Standardize the variables apart again. Variables are

renamed so that no variable symbol appears in more than
one clause.
 (∀X)(a(X) ∧ b(X))=(∀X)a(X) ∧ (∀ Y)b(Y)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 17	

Converting to Clause Normal Form

•  Skolemization
–  Skolem constant

•  (∃X)(dog(X)) may be replaced by dog(fido) where the name fido
is picked from the domain of definition of X to represent that
individual X.

–  Skolem function
•  If the predicate has more than one argument and the

existentially quantified variable is within the scope of universally
quantified variables, the existential variable must be a function
of those other variables.

•  (∀X)(∃Y)(mother(X,Y)) ⇒ (∀X)mother(X,m(X))
•  (∀X)(∀Y)(∃Z)(∀W)(foo (X,Y,Z,W))
	

 	

⇒ (∀X)(∀Y)(∀W)(foo(X,Y,f(X,Y),w))

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 18	

Converting to Clause Normal Form

•  Example of Converting Clause Form

(∀X)([a(X) ∧ b(X)] ⇒ [c(X,I) ∧ (∃Y)((∃Z)[C(Y,Z)] ⇒ d(X,Y))]) ∨ (∀ X)(e(X))
–  step 1: (∀X)(¬[a(X) ∧ b(X)] ∨ [c(X,I) ∧ (∃Y)(¬(∃Z)[c(Y,Z)] ∨ d(X,Y))]) ∨ (∀x)(e(X))
–  step 2: (∀X)([¬a(X) ∨ ¬b(X)] ∨ [c(X,I) ∧ (∃Y)((∀Z)[¬c(Y,Z)] ∨ d(X,Y))]) ∨ (∀x)(e

(X))
–  step 3: (∀X)([¬a(X) ∨ ¬b(X)] ∨ [c(X,I) ∧ (∃Y)((∀Z)[¬c(Y,Z)] ∨ d(X,Y))]) ∨ (∀W)(e

(W))
–  step 4: (∀X)(∃Y)(∀Z)(∀W)([¬a(X) ∨ ¬b(X)] ∨ [c(X,I) ∧ (¬c(Y,Z) ∨ d(X,Y))]) ∨ (e(W))
–  step 5: (∀X)(∀Z)(∀W)([¬a(X) ∨ ¬b(X)] ∨ [c(X,I) ∧ (¬c(f(X),Z) ∨ d(X,f(X)))]) ∨ (e(W))
–  step 6: [¬a(X) ∨ ¬b(X)] ∨ [c(X,I) ∧ (¬c(f(X),Z) ∨ d(X,f(X)))]) ∨ e(W)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 19	

Converting to Clause Normal Form

•  Example of Converting Clause Form(continued)

–  step 7: [가 ∨ 나] ∨ [다 ∧ (라 ∨ 마)] ∨ 바
 = [가 ∨나 ∨ 다 ∨ 바] ∧ [가 ∨ 나 ∨ 라 ∨ 마 ∨ 바]

 [¬a(X) ∨ ¬b(X) ∨ c(X,I) ∨ e(W)] ∧	

 [¬a(X) ∨ ¬b(X) ∨ ¬c(f(X),Z) ∨ d(X,f(X)) ∨ e(W)]

–  step 8: (i) ¬a(X) ∨ ¬b(X) ∨ c(X,I) ∨ e(W)
 (ii) ¬a(X) ∨ ¬b(X) ∨ ¬c(f(X),Z) ∨ d(X,f(X)) ∨ e(W)
–  step 9: (i) ¬a(X) ∨ ¬b(X) ∨ c(X,I) ∨ e(W)

 (ii) ¬a(U) ∨ ¬b(U) ∨ ¬c(f(U),Z) ∨ d(U,f(U)) ∨ e(V)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 20	

Resolution - Example

•  (Nearly) Classical example: Prove “Fido will die.” from the
statements

–  “Fido is a dog.”
–  “All dogs are animals.”
–  “All animals will die.”
–  Changing premises to predicates

•  ∀(x) (dog(X) → animal(X))
•  dog(fido)

–  Modus Ponens and {fido/X}

•  animal(fido)
•  ∀(Y) (animal(Y) → die(Y))

–  Modus Ponens and {fido/Y}

•  die(fido)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 21	

Resolution - Example

•  Equivalent proof by Resolution

–  Convert predicates to clause normal form

 Predicate form Clause form
	

1. ∀(x) (dog(X) → animal(X)) ¬dog(X) ∨ animal(X)
 2. dog(fido) dog(fido)
	

3. ∀(Y) (animal(Y) → die(Y)) ¬animal(Y) ∨ die(Y)

–  Negate the conclusion

	

4. ¬die(fido) ¬die(fido)

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 22	

Resolution - Example

Resolution proof for the “dead dog” problem

¬dog(X) ∨ animal(X) ¬animal(Y) ∨ die(Y)

¬dog(Y) ∨ die(Y) dog(fido)

die(fido) ¬die(fido)

{Y/X}

{fido/Y}

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 23	

Binary Resolution Proof Procedure

•  Binary Resolution Step
–  For any two clauses C1 and C2, if there is a literal L1 in C1

that is complementary to a literal L2 in C2, then delete L1 and
L2 from C1 and C2 respectively, and construct the disjunction
of the remaining clauses. The constructed clause is a
resolvent of C1 and C2.

•  Examples of Resolution Step
–  C1=a ∨ ¬b, C2=b ∨ c

•  Complementary literals : ¬b,b
•  Resolvent: a ∨ c

–  C1=¬a ∨ b ∨ c, C2=¬b ∨ d

•  Complementary literals : b, ¬b
•  Resolvent : ¬a ∨ c ∨ d

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 24	

Binary Resolution Proof Procedure

•  Justification of Resolution Step
–  Theorem

•  Given two clause C1 and C2, a resolvent C of C1 and C2
is a logical consequence of C1 and C2.

–  Proof
•  Let C1= L ∨ C1’, C2 = ¬L ∨ C2’, and C = C1’ ∨ C2’, where

C1’ and C2’ are disjunction of literals.
•  Suppose C1 and C2 are true in an interpretation I.
•  We want to prove that the resolvent C of C1 and C2 is

also true in I.
•  Case 1: L is true in I

–  Then since C2 = ¬L ∨ C2’ is true in I, C2’ must be true in I, and
thus C=C1’ ∨ C2’ is true in I.

•  Case 2: L is false in I
–  Then since C1 = L ∨ C1’ is true in I, C1’ must be true in I. Thus,

C=C1’ ∨ C2’ must be true in I.

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 25	

Binary Resolution Proof Procedure

•  Resolution on the predicate calculus
–  A literal and its negation in parent clauses produce a

resolvent only if they unify under some substitution σ.
–  σ Is then applied to the resolvent before adding it to the

clause set.

–  Example:
–  C1 = ¬dog(X) ∨ animal(X)

 C2 = ¬animal(Y) ∨ die(Y)
 Resolvent : ¬dog(Y) ∨ die(Y) {Y/X}

www.sti-innsbruck.at Resolu'on	
 Theorem	
 Proving	
 26	

Strategies for Resolution

•  Order of clause combination is important
–  N clauses → N2 ways of combinations or checking to see whether

they can be combined
–  Search heuristics are very important in resolution proof

procedures

•  Strategies
–  Breadth-First Strategy
–  Set of Support Strategy
–  Unit Preference Strategy
–  Linear Input Form Strategy

www.sti-innsbruck.at

Concrete System: Vampire

•  First-Order theorem prover
–  Developed at University of Manchester
–  Homepage: http://www.voronkov.com/vampire.cgi
–  Newest versions are unluckily not open source or free for use
–  Winner of several CASC competitions in a row (World Cup” of theorem proving)

•  Works with TPTP
–  FOL language, “standardized”
–  Large library of test problems for theorem proving

•  Core of system builds on binary resolution as inference method
–  Extended with superposition calculus to handle equality
–  Employes different reasoning strategies for specific input problems

•  Classification according to syntactic properties (Horn formulas, presenence of equality etc.)
•  Classification according to specific kinds of axioms (set theoretic axioms, associativity, etc.)
•  Every class of problems is assigned a fixed schedule consisting of a number of kernel

strategies called one by one with different time limits

27

www.sti-innsbruck.at

Theorem Proving Summary

•  Logical entailment / validity can be checked
–  By reduction to unsatisfiabiliy of a set of formulae
–  Done by finding suitable finite (counter)-examples for the quantfied

variables such that a contradiction arises
•  Basically this is what all ATP procedures do
•  FOL theorem proving is complete, but semi-decidable

–  Inference will return in finite time if formula entailed
–  May run forever if a formula is not entailed

•  Complexity of logical entailment, validity and satisfiability in detail:
–  For classical FOL Logical entailment / validity / satisfiability is

undecidable
–  Set of valid formulae is semi-decidable (recursively enumerable)
–  Set of satisfiable formulae is not recursively enumerable

28

www.sti-innsbruck.at

Theorem Proving Summary

•  FOL still has a number of limitations:
–  E.g.: No known tools for automated reasoning in full FOLwith support for transitive

closure
–  In fact a a recursively enumerable axiomatization of TC is provably impossible

•  Example: Graph reachability
–  It is possible to express “Vertices A and B are connected by a path of length 3”
–  It is impossible to express “Vertices A and B are connected by a path of any length”
–  It is impossible to express that a graph G is connected

•  Due to its complexity and remaining limitations FOL is often not
suitable for practical applications

•  Often restricted formalisms or formalisms with different expressivity
are more suitable:

–  Description Logics
–  Logic Programming

www.sti-innsbruck.at

DESCRIPTION LOGICS

30

www.sti-innsbruck.at

Description Logic

•  Most Description Logics are based on a 2-variable fragment of First
Order Logic

–  Classes (concepts) correspond to unary predicates
–  Properties correspond to binary predicates

•  Restrictions in general:
–  Quantifiers range over no more than 2 variables
–  Transitive properties are an exception to this rule
–  No function symbols (decidability!)

•  Most DLs are decidable and usually have decision procedures for key
reasoning tasks

•  DLs have more efficient decision problems than First Order Logic
•  We later show the very basic DL ALC as example

–  More complex DLs work in the same basic way but have different expressivity

31

www.sti-innsbruck.at

Description Logic Basics

•  Concepts/classes (unary predicates/formulae with one free variable)
–  E.g. Person, Female

•  Roles (binary predicates/formulae with two free variables)
–  E.g. hasChild

•  Individuals (constants)
–  E.g. Mary, John

•  Constructors allow to form more complex concepts/roles
–  Union ⊔: Man ⊔ Woman
–  Intersection ⊓ : Doctor ⊓ Mother
–  Existential restriction ∃: ∃hasChild.Doctor (some child is a doctor)
–  Value(universal) restriction ∀: ∀hasChild.Doctor (all children are doctors)
–  Complement /negation¬: Man ⊑ ¬Mother
–  Number restriction ≥n, ≤n

•  Axioms
–  Subsumption ⊑ : Motherr ⊑ Parent

32

www.sti-innsbruck.at

Description Logic Basics - Concepts

•  Classes/concepts are actually a set of individuals
•  We can distinguish different types of concepts:

–  Atomic concepts: Cannot be further decomposed (i.e. Person)
–  Incomplete concepts (defined by ⊑)
–  Complete concepts (defined by ≡)

•  Example incomplete concept defintion:
–  Man ⊑ Person ⊓ Male
–  Intended meaning: If an individual is a man, we can conclude that it is a person and

male.
–  Man(x) ⇒ Person(x) ∧ Male(x)

•  Example complete concept definition:
–  Man ≡ Person ⊓ Male
–  Intended meaning: Every individual which is a male person is a man, and every man is

a male person.
–  Man(x) ⇔ Person(x) ∧ Male(x)

33

www.sti-innsbruck.at

Description Logic Basics - Roles

•  Roles relate two individuals to each other
–  I.e. directedBy(Pool Sharks, Edwin Middleton), hasChild(Jonny, Sue)

•  Roles have a domain and a range
•  Example:

–  Domain(directedBy, Movie)
–  Range(directedBy, Person)
–  Given the above definitions we can conclude that Pool Sharks is a movie and

that Edwin Middleton is (was) a person.

•  Additionally we can associate certain features with roles

•  Functional Roles
–  Roles which have exactly one value
–  Usually used with primitive datavalues
–  A special case of (unqualified) number restriction ≤1 R

34

www.sti-innsbruck.at

Description Logic Basics - Roles

•  Transitive Roles
–  Example: hasAncestor

 Simple in a rule language: hasAncestor(X,Z) :- hasAncestor(X,Y), hasAncestor
(Y,Z).

–  Requires more than one variable!
–  Transitivity can be captured in DLs by role hierarchies and transitive roles:

•  Symmetric Roles
–  Roles which hold in both directions
–  I.e. hasSpouse, hasSibling

•  Inverse Roles
–  Roles are directed, but each role can have an inverse
–  I.e. hasParent ≡ hasChild

 hasParent(X,Y) ⇔ hasChild(Y,X)

35

www.sti-innsbruck.at

Description Logic Knowledge Bases

•  Typically a DL knowledge base (KB) consists of two components
–  Tbox (terminology): A set of inclusion/equivalence axioms denoting the

conceptual schema/vocabulary of a domain
•  Bear ⊑ Animal ⊓ Large
•  transitive(hasAncestor)
•  hasChild ≡ hasParent

–  Abox (assertions): Axioms, which describe concrete instance data and
holds assertions about individuals

•  hasAncestor(Susan, Granny)
•  Bear(Winni Puh)

•  From a theoretical point of view this division is arbitrary
•  But it is a useful simplification

36

www.sti-innsbruck.at

A basic Description Logic - ALC

•  Smallest propositionally closed DL is ALC
–  Only atomic roles
–  Concept constructors: ⊔ , ⊓, ¬
–  Restricted use of quantifiers: ∃, ∀

•  “Propositionally closed” Logic in general:
–  Provides (implicitly or explicitly) conjunction, union and negation of class

descriptions

•  Example:
–  Person ⊓ ∀hasChild.(Doctor ⊔ ∃hasChild.Doctor)

37

www.sti-innsbruck.at

A basic Description Logic - ALC

•  What can we express in ALC?
•  ALC concept descriptions can be constructed as following:

38

www.sti-innsbruck.at

A basic Description Logic - ALC

•  Individual assertions :
–  a ∈ C
–  Mary is a Woman.

•  Role assertions:
–  〈a, b〉 ∈ R
–  E.g. Marry loves Peter.

•  Axioms:
–  C ⊑ D
–  C ≡ D, because C ≡ D ⇔ C ⊑ D and D ⊑ C
–  E.g.: A Dog is an animal. A man is a male Person.

39

www.sti-innsbruck.at

The Description Logic Family

•  Description Logics are actually a family of related logics
–  Difference in expressivity and features, as well as complexity of inference

•  Description Logics follow a naming schema according to their
features

–  ALC = Attributive Language with Complements
–  S often used for ALC extended with transitive roles

•  Additional letters indicate other extensions, e.g.:
–  H for role hierarchy
–  O for nominals, singleton classes
–  I for inverse roles (e.g., isChildOf ≡ hasChild–)
–  N for number restrictions
–  Q for qualified number restrictions
–  F for functional properties
–  R for limited complex role inclusion axioms, role disjointness
–  (D) for datatype support

40

www.sti-innsbruck.at

Description Logic Semantics

•  Semantics follow standard FOL model theory
–  Description Logics are a fragment of FOL

•  The vocabulary is the set of names (concepts and roles)
used
–  I.e. Mother, Father, Person, knows, isRelatedTo, hasChild, …

•  An interpretation I is a tuple
–  is the domain (a set)
–  is a mapping that maps:

•  Names of objects (individuals) to elements of the domain
•  Names of unary predicates (classes/concepts) to subsets of the domain
•  Names of binary predicates (properties/roles) to subsets of

41

www.sti-innsbruck.at

Description Logic Semantics - ALC

•  As an example consider the semantics of ALC
–  We first need to take a look at the interpretation of the basic syntax

•  Interpretation I =

42

www.sti-innsbruck.at

Description Logic Semantics

•  The semantics of DL are based on standard First Order Model
theory

•  A translation is usually very straightforward, according to the
following correspondences (for ALC):
–  A description is translated to a first-order formula with one free variable
–  An individual assertion is translated to a ground atomic formula
–  An axiom is translated to an implication, closed under universal

implication

•  More complex DLs can be handled in a similar way

43

www.sti-innsbruck.at

Description Logic Semantics

•  Mapping ALC to First Order Logic:

44

www.sti-innsbruck.at

Description Logic Reasoning

•  Main reasoning tasks for DL systems:
–  Satisfiability: Check if the assertions in a KB have a model
–  Instance checking: C(a) ? Check if an instance belongs to a

certain concept
–  Concept satisfiability: C ?
–  Subsumption: B ⊑ A ? Check if A subsumes B (if every

individual of a concept B is also of concept A)
–  Equivalence: A ≡ B?

•  A ≡ B ⇔ B ⊑ A and A ⊑ B
–  Retrieval: Retrieve a set of instances that belong to a certain

concept

45

www.sti-innsbruck.at

Description Logic Reasoning

•  Reasoning Task are typically reduced to KB satisfiability
sat(A) w.r.t. to a knowledge base A
–  Instance checking: instance(a,C, A) ⇔¬sat(A ⋃ {a: ¬ C})
–  Concept satisfiability: csat(C) ⇔ sat(A ⋃ {a: ¬ C})
–  Concept subsumption: B ⊑ A ⇔ A ⋃ {¬B ⊓ C} is not satisfiable ⇔ ¬sat(A
⋃ {¬B ⊓ C})

–  Retrieval: Instance checking for each instance in the Abox

•  Note: Reduction of reasoning tasks to one another in
polynomial time only in propositionally closed logics

•  DL reasoners typically employ tableaux algorithms to
check satisfiability of a knowledge base

46

www.sti-innsbruck.at

Concrete System: FaCT++

•  Description Logic reasoner supporting majory of OWL 2 spec
–  Developed at University of Manchester
–  Homepage: http://owl.man.ac.uk/factplusplus/
–  Freely available as open-source project

•  Implements a tableaux decision procedure for the SROIQ description
logic, with additional support for datatypes

•  Employes a wide range of performance optimizations
•  Operates in several steps:

–  Loading and normalisation of knowledge base (syntactic re-writing)
–  Classifcation, i.e. computation and caching of partial subsumption ordering (taxonomy)

•  Optimizations: Order in which concepts are processed to reduce number of
subsumption tests

–  Classifier uses a KB satisfiability checker in order to decide subsumption problem for a
pair of concepts

•  This checker is a core component in the system and highly optimized

47

www.sti-innsbruck.at

DL Summary

•  Basic syntactic building blocks
–  Concepts
–  Roles
–  Individuals

•  Limited constructs for building complex concepts, roles
•  Many different Description Logics exist, depending on choice of

constructs
•  Set-based term descriptions
•  Implicit knowledge can be inferred automatically

–  Main reasoning task: Subsumption
–  Usually reasoning tasks in DLs can all be reduced to satisfiablity checking

•  Efficient Tbox (schema) reasoning
•  ABox reasoning (query answering) do not scale so well

48

www.sti-innsbruck.at

LOGIC PROGRAMMING

49

www.sti-innsbruck.at

Logic Programming

•  What is Logic Programming?
•  Various different perspectives and definitions possible:

–  Computations as deduction
•  Use formal logic to express data and programs

–  Theorem Proving
•  Logic programs evaluated by a theorem prover
•  Derivation of answer from a set of initial axioms

–  High level (non-precedural) programming language
•  Logic programs do not specifcy control flow
•  Instead of specifying how something should be computed, one states what

should be computed
–  Procedural interpretation of a declarative specification of a problem

•  A LP systems procedurally interprets (in some way) a general declarative
statement which only defines truth conditions that should hold

50

www.sti-innsbruck.at

Logic Programming Basics

•  Logic Programming is based on a subset of First Order Logic called
Horn Logic

•  Horn Logic can serve as a simple KR formalism and allows to
express

–  IF <condition> THEN <result> rules

•  Such rules can be evaluated very efficiently

•  Under certain restrictions reasoning over knowledge bases based
on such rules is decideable (in contrast to general ATP within First
Order Logic)

51

www.sti-innsbruck.at

Logic Programming Basics – Horn Logic

•  Syntactically a LP rule is a First Order Logic Horn Clause
•  However the semantics of LP are different form the standard Tarski

style FOL semantics → Minimal model semantics

•  A FOL Horn clause is a disjunction of literals with one positive
literal, with all variables universally quantified:

–  (∀) ¬C1 ∨ … ∨ ¬Cn ∨ H

•  This can be rewritten to closer correspond to a rule-like form:
–  (∀) C1 ∧ … ∧ Cn → H

•  In LP systems usually the following (non First Order Logic) syntax is
used:

–  H :- C1,...,Cn

52

www.sti-innsbruck.at

Logic Programming Syntax

•  The LP vocabulary consists of:
–  Constants: b, cow, “somestring”
–  Predicates: p, loves
–  Function symbols: f, fatherOf
–  Variables: x, y

•  Terms can be:
–  Constants
–  Variables
–  Constructed terms (i.e. function symbol with arguments)

•  Examples:
–  cow, b, Jonny,
–  loves(John)

53

Here	
 loves	
 is	
 used	
 as	
 func0on	

symbol,	
 and	
 refers	
 to	
 an	
 object	

in	
 the	
 domain!	

www.sti-innsbruck.at

Logic Programming Syntax

•  From terms and predicates we can build atoms:
–  For n-ary predicate symbol p and terms t1, ..., tn, p(t1, ..., tn) is an atom
–  A ground atom is an atom without variables

•  Examples:
–  p(x)
–  loves(Jonny, Mary), worksAt(Jonny, SomeCompany)
–  worksAt(loves(Mary), SomeCompany)

•  Literals
–  A literal is a an atom or its negation
–  A positive literal is an atom
–  A negative literal is a negated atom
–  A ground literals is a literal without variables

54

Note	
 the	
 difference	
 of	
 loves	

as	
 func0on	
 symbol	
 and	

predicate!	

www.sti-innsbruck.at

Logic Programming Syntax

•  Rules
–  Given a rule of the form H :- B1,...,Bn we call

•  H the head of the rule (its consequent)
•  B1 …. Bn the body of the rule (the antecedent or conditions)

–  The head of the rule consists of one positive literal H
–  The body of the rule consists of a number of literals B1, ..., Bn
–  B1, …, Bn are also called subgoals

•  Examples:
–  parent(x) :- hasChild(x,y)
–  father(x) :- parent(x), male(x)
–  hasAunt(z,y) :- hasSister(x,y), hasChild(x,z)

55

www.sti-innsbruck.at

Logic Programming Syntax

•  Facts denote assertions about the world:
–  A rule without a body (no conditions)
–  A ground atom

•  Examples:
–  hasChild(Jonny, Sue)
–  Male(Jonny)).

•  Queries allow to ask questions about the knowledge base:
–  Denoted as a rule without a head:

•  ?- B1,...,Bn.

•  Examples:
–  ? - hasSister(Jonny,y), hasChild(Jonny , z) gives all the sisters and children of

Jonny
–  ? - hasAunt(Mary,y) gives all the aunts of Mary
–  ?- father(Jonny) ansers if Jonny is a father

56

www.sti-innsbruck.at

Logic Programming – Semantics

•  There are two main approaches to define the semantics of LP
1.  Model theoretic semantics
2.  Computional semanitcs

•  Model-theoretic semantics
–  Defines the meaning of a model in terms of its minimal Herbrand model.

•  Computational semantics (proof theoretic semantics)
–  Define the semantics in terms of an evaluation strategy which describes how to

compute a model

•  These two semantics are different in style, but agree on the minimal
model

•  LP semantics is only equivalent to standard FOL semantics
–  Concerning ground entailment
–  As long as LP is not extended with negation

•  Otherwise LP semantics go beyond FOL in terms of expressivity

57

www.sti-innsbruck.at

Logic Programming – Semantics

•  In First Order Logic there are many different interpretations for a
program

•  Idea: We are only interested in particular First Order interpretations
–  Herbrand Interpretation
–  A very simple interpretation

•  Herbrand Interpretation
–  Fix the domain to the set of ground terms (called the Herbrand universe)
–  Interpret ground terms as themselves

•  We are in turn also only interested in one particular model
–  The minimal model, which is basically the intersection of all models

58

www.sti-innsbruck.at

Logic Programming – Semantics

•  Recall:
–  Terms not containing any variables are ground terms
–  Atoms not containing any variables are ground atoms

•  The Herbrand Universe U is the set of all ground terms which can be
formed from

–  Constancts in a program
–  Function symbols in a program

•  Example: a, b, c, f(a)
•  The Herbrand Base B is the set of all ground atoms which can be built

from
–  Predicate symbols in a program
–  Ground terms from U

•  Example: p(a), q(b), q(f(a))

59

www.sti-innsbruck.at

Logic Programming – Semantics

•  A Herbrand Interpretation I is a subset of the Herbrand
Base B for a program

•  A Herbrand Model M is a Herbrand Interpretation which
makes every formula true, so:
–  Every fact from the program is in M
–  For every rule in the program: If every positive literal in the body is in M,

then the literal in the head is also in M

•  The model of a Logic Program P is the least Herbrand
Model
–  This least Herbrand Model is the inersection of all Herbrand Models
–  This model is uniquely defined for every Program

→  A very intuitive and easy way to capture the sematnics of LP

60

www.sti-innsbruck.at

Logic Programming - Negation

•  How do we handle negation in Logic Programs?
•  Horn Logic only permits negation in limited form

–  Consider (∀) ¬C1 ∨ … ∨ ¬Cn ∨ H

•  Special solution: Negation-as-failure (NAF):
–  Whenever a fact is not entailed by the knowledge base, its negation is entailed
–  This is a form of “Default reasoning”
–  This introduces non-monotonic behavior (previous conclusions might need to be

revised during the inference process)

•  NAF is not classical negation and pushes LP beyond classical First
Order Logic

•  This allows a form of negation in rules:
–  (∀) C1 ∧ … ∧ Ci ∧ not Cn → H
–  H :- B1, … Bi, not Bn

61

www.sti-innsbruck.at

Logic Programming - Recursion

•  In general Logic Programs can also contain recursion
•  I.e. consider

–  I.e. the classical example „hasAncestor“:
 ancestor (x,y) :- hasParent(x, y)
 ancestor(x,z) :- ancestor(x,y), ancestor(y,z).

•  It is useful to consider this using a dependency graph
–  A predicate is a node in the graph
–  There is a directed edge between predicates q and p if they occur in a rule where

q occurs in the head and p in the body.I

•  f the dependency graph contains a cycle then the program is
recursive

•  This is a problem as soon as negation is allowed

62

www.sti-innsbruck.at

Logic Programming - Subsets

•  Full Logic Programming
–  Allows function symbols
–  Does not allow negation
–  Is turing complete

•  Full Logic Programming is not decideable
–  Prolog programs are not guaranteed to terminate

•  Several ways to guarantee the evaluation of a Logic Program
–  One is to enforce syntactical restrictions
–  This results in subsets of full logic programming
–  Datalog is such a subset

63

www.sti-innsbruck.at

Logic Programing - Datalog

•  Datalog is a syntactic subset of Prolog
–  Originally a rule and query language for deductive databases

•  Considers knowledge bases to have two parts
–  Extensional Database (EDB) consists of facts
–  Intentional Database(IDB) consists of non-ground rules

•  Restrictions:
1.  Datalog disallows function symbols
2.  Imposes stratification restrictions on the use of recursion + negation
3.  Allows only range restricted variables (safe variables)

•  Safe Variables:
–  Only allows range restricted variables, i.e. each variable in the conclusion of a

rule must also appear in a not negated clause in the premise of this rule.
–  This limits evaluation of variables to finitely many possible bindings

64

www.sti-innsbruck.at

Logic Programming - Datalog

•  Stratification:
–  As soon as negation is allowed, cycles in a dependency graph

become problematic.
–  E.g.: What is the meaning of win(x) :- not win(x) ?
–  In order to evaluate Datalog programs we mark edges with

negation in the dependency graph
–  We separate predicates which are connected through a positive

edge in a individual stratum
–  Strata can be (partially) ordered
–  If each predicate occurs only in one stratum, then the program is

called stratifiable
•  Each stratum can be evaluated as usual and independently from

other strata

65

www.sti-innsbruck.at

Logic Programming - Reasoning Tasks

•  The typical reasoning task for LP systems is query
answering
–  Ground queries, i.e. ?- loves(Mary, Joe)
–  Non-ground query, i.e. ?- loves(Mary, x)

•  Non-ground queries can be reduced to a series of
ground queries
–  ?- loves(Mary, x)
–  Replace x by every possible value

•  In Logic Programming ground queries are equivalent to
entailment of facts
–  Answering ?- loves(Mary, Joe) w.r.t. a knowledge base A is equivalent

to checking
 A ⊧ loves(Mary, Joe)

66

www.sti-innsbruck.at

Concrete Logic Programming System: IRIS

•  Java based Datalog reasoner
–  Developed at STI Innsbruck
–  Freely available open source project
–  Homepage: http://www.iris-reasoner.org/

•  Extensions:
–  Stratified / Well-founded default negation
–  XML Schema data types
–  Various built-in predicates (Equality, inequality, assignment, unification,

comparison, type checking, arithmetic, regular expressions,...)
•  Highly modular and includes different reasoning strategies

–  Bottom-up evaluation with Magic Sets optimizations (forward-chaining)
–  Top-down evaluation by SLDNF resolution (backward-chaining)

67

www.sti-innsbruck.at

Concrete Logic Programming System: IRIS

•  An example of a concrete combination of
components within IRIS:

–  Program Optimization
•  Rewriting techniques from deductive DB

research (e.g. Magic sets rewriting)
–  Safety Processing & Stratification

•  Ensure specific syntactic restrictions
–  Rule Re-ordering

•  Minimize evaluation effort based on
dependencies between expressions

–  Rule Optimizations
•  Join condition optimization
•  Literal re-ordering

–  Rule compilation
•  Pre-indexing
•  Creation of „views“ on required parts of

information

68

www.sti-innsbruck.at 69

LP - Summary

•  In combination with deduction procedures machines can process
such knowledge and automatically infer new information

•  Logic Programming (without negation) is equivalent to Horn subset
of First Order Logic

•  Logic Programming has various uses, i.e. as programming language
but also for knowledge representation

•  Full Logic Programming is not decidable

•  Datalog is a syntactic restriction of LP, with desirable computational
properties

•  Negation-as-failure introduced non-monotonic behavior and pushes
LP outside of First Order Logic

www.sti-innsbruck.at

REFERENCES

70

www.sti-innsbruck.at

References and Further Information

•  [1] Uwe Schöning, Logic for Computer Scientists (2nd edition), 2008,
Birkhäuser (Chapter 2 & 3)

•  [2] Alan Robinson and Andrei Voronkov, Handbook of Automated
Reasoning, Volume I (Chapter 2)

•  [3] Michael Huth and Mark Ryan, Logic in Computer Science(2nd
edition) , 2004, Cambridge University Press

•  [4] M. Fitting: First-Order Logic and Automated Theorem Proving, 1996
Springer-Verlag New York (Chapter 5)

•  [5]A. Voronkov. The Anatomy of Vampire: Implementing Bottom-Up
Procedures with Code Trees Journal of Automated Reasoning v. 15 (2),
1995

71

www.sti-innsbruck.at

Next Lecture

72

Title
1 Introduction

2 Propositional Logic

3 Predicate Logic

4 Theorem Proving, Description Logics and Logic Programming

5 Search Methods

6 CommonKADS

7 Problem Solving Methods

8 Planning

9 Agents

10 Rule Learning

11 Inductive Logic Programming

12 Formal Concept Analysis

13 Neural Networks

14 Semantic Web and Exam Preparation

www.sti-innsbruck.at 73

Questions?

