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Combinatorial proofs for topological theorems

Brouwer’s fixed point theorem

Proof: Sperner’s lemma

Hairy ball theorem

Proof: generalized Sperner’s lemma

Corollary: fixed points on spheres

Borsuk–Ulam theorem

Proof: Tucker’s lemma

Corollary: Lusternik–Schnirelmann theorem

Corollary: ham sandwich theorem
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Brouwer’s fixed point theorem

Theorem (Brouwer, 1910)

Every continuous mapping from an n-dimensional ball into itself
has a fixed point.
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Brouwer’s fixed point theorem

Theorem (Brouwer, 1910)

Every continuous mapping from an n-dimensional ball into itself
has a fixed point.

For n = 1, it easily follows from the intermediate value theorem.
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Brouwer’s fixed point theorem

Theorem (Brouwer, 1910)

Every continuous mapping from an n-dimensional ball into itself
has a fixed point.

n = 2: if we crumple up the tablecloth and put it back on the
table, one point ends up in its original position.
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Brouwer’s fixed point theorem

Theorem (Brouwer, 1910)

Every continuous mapping from an n-dimensional ball into itself
has a fixed point.

n = 3: if we stir a cocktail and let it rest, one point in the liquid
ends up in its initial position.
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Sperner’s lemma

Start from a triangulated triangle.
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Sperner’s lemma

Color the vertices red, green and blue.
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Sperner’s lemma

Color each vertex on an edge with one of the two colors of the
endpoints of that edge.
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Sperner’s lemma

Color the internal vertices red, green or blue, arbitrarily.
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Sperner’s lemma

Lemma (Sperner, 1928)

There exists at least a triangle with vertices of all three colors.
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Sperner’s lemma: proof

The red-green edges are permeable.
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Sperner’s lemma: proof

Let us enter the triangulation from a red-green edge. We may exit
from another red-green edge...
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Sperner’s lemma: proof

...But, because the external red-green edges are odd, an odd
number of paths end inside the triangle.
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Sperner’s lemma: proof

When the path ends, a 3-colored triangle has been found.
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Sperner’s lemma: proof

There may be other 3-colored triangles, which are endpoints of
internal paths. In total, the 3-colored triangles are odd.
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Sperner’s lemma: proof

Another example.
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Sperner’s lemma: proof

The proof generalizes to n-dimensional simplices and n + 1 colors.
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Sperner’s lemma: proof

By inductive hypothesis, a face contains an odd number of
3-colored simplices.
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Sperner’s lemma: proof

We enter from one of them, and we keep walking through 3-colored
triangles. We either exit from another 3-colored triangle...
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Sperner’s lemma: proof

...Or we end up in a 4-colored tetrahedron. The 4-colored
tetrahedra are again odd.
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Brouwer’s fixed point theorem: proof

x y

z

)p(fp

Consider the convex hull of (1, 0, 0), (0, 1, 0), (0, 0, 1), and a
continuous function f from this set to itself.
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Brouwer’s fixed point theorem: proof

x y

z

)p(fp
.x)p(p.x > f

If f strictly decreases the x-coordinate of p, color p red.
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Brouwer’s fixed point theorem: proof

x y

z

)p(f

p

.y)p
(

p.y > f

Otherwise, if f strictly decreases the y -coordinate of p, color p
green.
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Brouwer’s fixed point theorem: proof

x y

z

)p(f

p

.z)p(p.z > f

Otherwise, if f strictly decreases the z-coordinate of p, color p
blue.
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Brouwer’s fixed point theorem: proof

x y

z

Suppose that f has no fixed points. Then (1, 0, 0) is red, (0, 1, 0)
is green, and (0, 0, 1) is blue.
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Brouwer’s fixed point theorem: proof

x y

z

Triangulate the triangle.
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Brouwer’s fixed point theorem: proof

x y

z

The points with x = 0 cannot be colored red, and similarly for y
and z .
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Brouwer’s fixed point theorem: proof

x y

z

The coloring of the vertices satisfies the hypotheses of Sperner’s
lemma.
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Brouwer’s fixed point theorem: proof

x y

z

Hence there is a 3-colored triangle.

Theorems with Balls



Brouwer’s fixed point theorem: proof

x y

z

1z 1y

1x

Hence there is a 3-colored triangle.
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Brouwer’s fixed point theorem: proof

x y

z

Construct a finer triangulation.
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Brouwer’s fixed point theorem: proof

x y

z

Again, Sperner’s lemma yields a smaller 3-colored triangle.
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Brouwer’s fixed point theorem: proof

x y

z

2z

2y

2x

Again, Sperner’s lemma yields a smaller 3-colored triangle.
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Brouwer’s fixed point theorem: proof

x y

z

2z

2y

2x

1z 1y

1x

Again, Sperner’s lemma yields a smaller 3-colored triangle.
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Brouwer’s fixed point theorem: proof

x y

z

2z

2y

2x

1z 1y

1x

3z

3y

3x 4z

4y

4x

Proceeding in this fashion, we obtain a sequence of 3-colored
triangles with vanishing edge lengths.
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Brouwer’s fixed point theorem: proof

x y

z

9x

8x
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4x3x

2x

1x

Consider the sequence of the red vertices of such triangles.
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Brouwer’s fixed point theorem: proof

x y

9ix
8ix
7ix
6ix

5ix
4ix3ix

2ix

1ix
p

z

By the Bolzano–Weierstrass theorem, this sequence has a
subsequence that converges to a point p in the triangle.
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Brouwer’s fixed point theorem: proof

x y

z

p

)p(f

Since p is a limit of red points and f is continuous, f (p).x 6 p.x .
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Brouwer’s fixed point theorem: proof

x y

z

p

)p(f

9iy8iy7iy6iy
5iy

4iy
3iy

2iy
1iy

The corresponding subsequence of green vertices must also
converge to p, because their distances to the red vertices vanish.
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Brouwer’s fixed point theorem: proof

x y

z

p

)p(f

Hence f (p).y 6 p.y .
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Brouwer’s fixed point theorem: proof

x y

z

p

)p(f

9iz8iz7iz6iz5iz4iz
3iz

2iz

1iz

The sub-sequence of blue vertices also converges to p.
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Brouwer’s fixed point theorem: proof

x y

z

p

Hence f (p).z 6 p.z .
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Brouwer’s fixed point theorem: proof

x y

z

)p(f=p

Because x + y + z = 1 for every point in the triangle, it follows
that p is a fixed point of f .
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Hairy ball theorem

Theorem (Brouwer, 1912)

An even-dimensional sphere does not admit any continuous field of
non-zero tangent vectors.
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Hairy ball theorem

Theorem (Brouwer, 1912)

An even-dimensional sphere does not admit any continuous field of
non-zero tangent vectors.

It is impossible to comb a hairy ball flat without creating cowlicks.
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Hairy ball theorem

Theorem (Brouwer, 1912)

An even-dimensional sphere does not admit any continuous field of
non-zero tangent vectors.

Given at least some wind on Earth, there must at all times be a
cyclone somewhere.
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Generalized Sperner’s lemma

Lemma

In any 3-colored triangulation with a different number of red-green
and green-red outer edges, there is a 3-colored triangle.
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Hairy ball theorem: proof

)p(fp

Assume that f (x) is continuous and nowhere zero. Let p be any
point on the sphere.
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Hairy ball theorem: proof

p

)x(g

Overlay the vector field g(x), which is continuous everywhere
except in p.
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Hairy ball theorem: proof

p

)x(f

By the continuity of f in p, there is a neighborhood of p in which
f varies by at most 1◦ from f (p).
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Hairy ball theorem: proof

p

The angle between f (x) and g(x) makes two complete turns as x
moves around the circle.
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Hairy ball theorem: proof

3-color the sphere (minus p) according to the angle between f (x)
and g(x).
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Hairy ball theorem: proof

p

Because f (x) is almost constant, the colors of the points around
the circle must follow a precise order.
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Hairy ball theorem: proof

p

If we pick enough points on the circle and follow them ccw, we
have more red-green transitions than green-red transitions.
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Hairy ball theorem: proof

p

Triangulate the part of the sphere not containing p.
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Hairy ball theorem: proof

p

Triangulate the part of the sphere not containing p.
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Hairy ball theorem: proof

p

The generalized Sperner’s lemma applies, and a 3-colored triangle
is found.
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Hairy ball theorem: proof

p

q

There exists a vanishing sequence of 3-colored triangles. By the
Bolzano–Weierstrass theorem, we can extract sequences of all
three colors that converge to the same point q.
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Hairy ball theorem: proof

p

q

The angle between f (q) and g(q) belongs to the intersection of
[0◦, 120◦], [120◦, 240◦] and [240◦, 360◦], which is empty.
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.

p

p−

p−=6)p(f

Suppose that f (x) is continuous and no point is mapped onto its
antipodal point.
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.

p

p−

p−=6)p(f

Then there is a unique geodesic between p and f (p).
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.

p

p−

p−=6)p(f

)p(g

If f (p) 6= p, let g(p) be the vector tangent to the geodesic at p.
Otherwise, let g(p) = 0.
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.

p

p−

p−=6)p(f

)p(g

) = 0q(g

q

g(x) is a continuous field tangent to the sphere, hence it has a
zero in q due to the hairy ball theorem.
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Hairy ball theorem: corollary

Corollary (Brouwer, 1912)

Any continuous function that maps an even-dimensional sphere
into itself has either a fixed point or a point that is mapped onto
its own antipodal point.

p

p−

p−=6)p(f

)p(g

) = 0q(g

)q(f=q

Therefore q is a fixed point of f .
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Borsuk–Ulam theorem

Theorem (Borsuk–Ulam, 1933)

Every continuous function from an n-dimensional sphere into Rn

maps some pair of antipodal points into the same point.
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Borsuk–Ulam theorem

Theorem (Borsuk–Ulam, 1933)

Every continuous function from an n-dimensional sphere into Rn

maps some pair of antipodal points into the same point.

At any moment there is a pair of antipodal points on the Earth’s
surface with equal temperature and pressure.
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Tucker’s lemma

Start from a triangulated polygon with a centrally symmetric
boundary.
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Tucker’s lemma

Color the external vertices so that opposite vertices have the same
color and opposite sign.
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Tucker’s lemma

Color the internal vertices arbitrarily.
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Tucker’s lemma

Lemma (Tucker, 1946)

There are adjacent vertices with the same color and opposite sign.
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Tucker’s lemma: proof

On the boundary, there is either a monochromatic +− edge, or
there is an odd number of bi-chromatic ++ edges.
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Tucker’s lemma: proof

The bi-chromatic ++ edges are permeable.
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Tucker’s lemma: proof

If we enter from a bi-chromatic ++ edge, we may exit from
another bi-chromatic ++ edge...
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Tucker’s lemma: proof

...Or we get stuck in a triangle with a monochromatic +− edge.
This happens at least once, because the entrances/exits are odd.
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Borsuk–Ulam theorem: proof

x

x−

′x

Project x on the horizontal disk, and let g(x ′) = f (x)− f (−x).
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Borsuk–Ulam theorem: proof

)x(g

Color x ′ according to the value of g(x ′).
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Borsuk–Ulam theorem: proof

By construction, g(−x) = −g(x).
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Borsuk–Ulam theorem: proof

Triangulate the disk. The coloring satisfies the hypotheses of
Tucker’s lemma.
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Borsuk–Ulam theorem: proof

By Tucker’s lemma, there are two adjacent vertices with the same
color and opposite sign.
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Borsuk–Ulam theorem: proof

Repeat with finer triangulations to get a vanishing sequence of
monochromatic pairs with opposite signs.
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Borsuk–Ulam theorem: proof

At least one of the colors appears infinitely often in the sequence.
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Borsuk–Ulam theorem: proof

′x

Due to the Bolzano–Weierstrass theorem, a sequence of +’s and a
sequence of −’s of the same color converge to a point x ′.
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Borsuk–Ulam theorem: proof

)′x(g

By continuity, g(x ′) belongs to the closure of both areas. Hence
g(x ′) = 0.
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Borsuk–Ulam theorem: proof

x

x−

′x

But g(x ′) = f (x)− f (−x), hence f (x) = f (−x).
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Corollary: Lusternik–Schnirelmann theorem

Theorem (Lusternik–Schnirelmann, 1930)

If the n-dimensional sphere is covered by n + 1 closed sets, one of
them contains a pair of antipodal points.

x

x−
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Corollary: Lusternik–Schnirelmann theorem: proof

p)p(1d

)p(2d

Let d1(p) be the distance from the first set, and d2(p) be the
distance from the second. d1 and d2 are continuous functions.
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Corollary: Lusternik–Schnirelmann theorem: proof

p)p(1d

)p(2d

By the Borsuk–Ulam theorem, there is x such that d1(x) = d1(−x)
and d2(x) = d2(−x).
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Corollary: Lusternik–Schnirelmann theorem: proof

= 01d

= 01d

x−

x

If d1(x) = d1(−x) = 0, both x and −x belong to the first set
(because it is closed).
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Corollary: Lusternik–Schnirelmann theorem: proof

= 02d

= 02d

x−

x

If d2(x) = d2(−x) = 0, both x and −x belong to the second set
(because it is closed).
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Corollary: Lusternik–Schnirelmann theorem: proof

0>2, d1d

0>2, d1d
x−

x

If all distances are positive, both x and −x belong to the third set.
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Corollary: ham sandwich theorem

Theorem (Steinhaus–Banach, 1938)

Given n measurable sets in Rn, there exists a hyperplane dividing
each of them in two subsets of equal measure.
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Corollary: ham sandwich theorem: proof

Let three measurable sets be given in R3.
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Corollary: ham sandwich theorem: proof

For any given direction, consider the orthogonal plane that divides
the third set in two parts of equal measure.
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Corollary: ham sandwich theorem: proof

If an interval of parallel planes is eligible, take the middle plane.
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Corollary: ham sandwich theorem: proof

)x(1V

)x(2V

x

Let V1(x) and V2(x) be the measures of the parts of the first and
second set that lie in the positive half-space determined by x .
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Corollary: ham sandwich theorem: proof

′x

′x−

)′x(1V

)′x(2V

)′x−(2V

)′x−(1V

V1(x) and V2(x) are continuous. By the Borsuk–Ulam theorem,
there is a direction x ′ such that V1(x ′) = V1(−x ′), and similarly
for V2. The plane determined by x ′ equipartitions the three sets.
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