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THEORETICAL ANALYSIS OF

FLUID FLOW AND ENERGY TRANSPORT

IN HYDROTHERMAL SYSTEMS

BY 

Charles R. Faust and James W. Mercer

ABSTRACT

A mathematical derivation for fluid flow and energy transport 

in hydrothermal systems is presented. Specifically, the mathematical 

model describes the three-dimensional flow of both single- and two-phase, 

single-component water and the transport of heat in porous media. The 

derivation begins with the point balance equations for mass, momentum, 

and energy. These equations are then averaged over a finite volume 

to obtain the macroscopic balance equations for a porous medium. The 

macroscopic equations are combined by appropriate constitutive 

relationships to form two simplified partial differential equations 

posed in terms of fluid pressure and enthalpy. A two-dimensional formulation 

of the simplified equations is also derived by partial integration in the 

vertical dimension.

vii
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To proceed any further with these equations, a constitutive relationship 

must be assumed for the two surface integrals and the divergence of the 

stress tensor. Such a relationship must describe the behavior

V-XC + p (V-v) + T: Vv - q'(U-fp/p)' = 0, (43)

+ V-phv + V-XC - q'h' - - v-Vp = 0. (46)
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The first two surface integrals in equation 53 represent transfer of 

internal energy due to phase changes between v/ater and steam, and rock and 

steam, respectively. Since it is assumed that no phase change occurs with 

the rock, the second surface integral may be "eliminated. The next two 

integrals in the equation represent the conductive energy flux between

the steam and water, and the steam and rock. The dot product of the phase
igvnci He ._Ls*yj J m o >^L^.ce ^ec)£jLk * 

velocity and tfcp j>ext two surface integrafsVrepresent the flux of pressure-

'. forces across the phase boundaries. In this development the surface
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Note that the heat of vaporization terms and the interphase conduction 

and pressure terms in equations 77 and 78 have been eliminated in equation 

85. This is the result of the jump energy balance at a phase interface 

(see Truesdell and Toupin, 1960, p. 610). If the mechanical energy is 

neglected, this balance requires that the thermal energy interface flux terms 

in the steam, water and rock eouations sum to zero. Finally, the last term

in equation 85 is the F rrc.sure M
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INTRODUCTION

The primary objective of this report is to present a rational 

mathematical description of fluid (liquid water and steam) flow and 

energy transport in porous hydrothermal systems. Specifically, we will 

first derive the macroscopic balance equations by suitably averaging the 

point balance equations for mass, momentum,and energy in porous media. 

This procedure will yield macroscopic balance equations that will then be 

combined with appropriate constitutive relationships resulting in simplified 

partial differential equations for fluid flow and energy transport in single- 

and two-phase hydrothermal systems. We will then present and discuss the 

consistent boundary and initial conditions required to solve these equations. 

Finally, we will derive the two-dimensional formulation of these equations 

by partial integration in the vertical dimension.

The simplified partial differential equations for hydrothermal systems 

are nonlinear and, in general, are not amenable to analytical solution. 

Numerical techniques have been employed to solve the two-dimensional formulations 

and are the subjects of other reports (Mercer and Faust, 1975; Faust and 

Mercer, 1976). In this report the mathematical derivation will be presented 

in much greater detail and rigor than given in our earlier hueristic description 

(Mercer, Faust, and Finder, 1974). This extension is necessary in order 

to more fully account for the explicit and implicit assumptions inherent 

in that derivation. The mathematical development presented in this report 

follows closely that given by Faust (1976); however, more attention is 

devoted in this report to interpretation.



We must emphasize that it is difficult to describe the behavior of 

hydrothermal systems without describing the coupled chemical and physical 

behavior. The mathematical model presented in this report is thus subject 

to certain limitations due to its assumption of pure water. This does not, 

however, invalidate the basic mathematical model which may be extended to 

describe chemical behavior if it becomes necessary and when required 

chemical data are available.

It should also be indicated that other mathematical models for multi­ 

phase flow in hydrothermal systems have been developed (Donaldson, 1968; 

Toronyi, 1974; Brownell, Garg, and Pritchett, 1975; Lasseter, Witherspoon, 

and Lippmann, 1975). In general, these models invoke the same basic 

assumptions as ours (Mercer and others, 1974) and mainly differ in the 

specification of the unknown dependent variables.



HYDROTHERMAL SYSTEMS AND GEOTHERMAL ENERGY

The ultimate source of all geothermal energy is the heat energy 

stored and generated within the earth. To be economically significant, a 

geothermal resource must have high temperatures and be located at shallow 

depths within the earth's crust. Since current technology does not permit 

economical extraction of heat directly from dry rock, geothermal resources 

must also contain a fluid (steam and/or water) to transfer heat from the 

geothermal reservoir to the surface. In addition, the reservoir must 

have sufficient volume, porosity, and permeability to yield adequate flow 

rates to wells, over a long enough time.

Hydrothermal systems are geothermal reservoirs that contain fluid, 

and are classified by the dominant fluid phase contained within the reservoir. 

White, Muffler, and Truesdell (1971) have described the characteristics of 

two types of systems: vapor-dcminated and hot-water. These two systems 

may be subdivided further on the basis of the geological conditions, the 

amount of dissolved species and non-condesable gases contained within the 

fluid, and the heat content (enthalpy) of the fluid.



Although geothermal fluids contain impurities, many reservoirs 

may be treated as pure water systems. Making this assumption, consider 

the pressure-enthalpy diagram for pure water in figure 1. Since all the known 

geothermal reservoirs exist at temperatures below the critical point of water 

(the temperature above which two phases cannot exist), this diagram may be 

divided into three regions. The first of these is the compressed water region, 

which is the condition existing in hot-water geothermal systems. The 

second is the two-phase (steam-water) region in which temperature is a 

function of pressure only. The third region contains super-heated steam. 

The vapor-dominated system described by White, Muffler, and Truesdell 

(1971) is believed to exist in the two-phase region, although the lower 

part of these systems may have a water table below which the fluid exists as 

compressed water. In the vapor-dominated systems, it is also possible^ 

especially when influenced by production, that portions of the system 

contain super-heated steam.

From the above description it is apparent that any mathematical 

model of fluid flow and energy transport in hydrothermal systems will 

be complex. It must account for the flow behavior of single- and two-phase 

fluids and heat transport in complex natural systems. The remainder of 

this report is an attempt to offer a simplified yet realistic description 

of this behavior subject to appropriate assumptions.
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MACROSCOPIC BALANCE EQUATIONS

Considering only the fluid phase, it is possible, in principle, 

to arrive at a complete set of equations describing an initial boundary 

value problem in which the boundaries are the surfaces separating the fluid 

and the rock matrix. The geometrical complexity of these surfaces, however, 

makes it impossible to define the boundary conditions, and thus impossible 

to solve the initial boundary value problem for the fluid on a size scale 

equivalent to the dimensions of pores. Therefore, as the first step in 

developing our mathematical model of hydrothermal systems the macroscopic 

balance equations for mass, momentum, and energy are derived for a single 

component, two-phase fluid (water and steam) in a porous medium. These 

equations are obtained by averaging the corresponding microscopic balance 

equations over a suitably defined averaging volume. The purpose of 

averaging is to increase the size scale of the volume element of interest 

in order to remove microscopic inhomogeneities at rock-fluid boundaries and 

to relate the thermodynauric variables to macroscopic, experimentally 

accessible quantities. It is also necessary to make sure that large-scale 

inhomogeneities in the porous media are not included within the enlarged 

volume element.



The application of averaging techniques to balance equations for 

porous media is not new; Whitaker (1969) and (1973), Bear (1972), Gray

(1975), Gray and O'Neill (1976), Blake and Garg (1976), and Carnahan

(1976) have demonstrated the use of averaging techniques for momentum and 

mass transport in porous media. Recently, Whiterspoon, Neumann, Sorey and 

Lippman (1975) and Lee, Gray, and Pinder (written communication, 1975) 

have applied averaging techniques to equations for energy transport in 

porous media.

Rules, Conventions, and Basic Theorems

The averaging procedure used in this derivation is basically the 

one that has been applied to the general transport equations for multi­ 

phase flow in porous media by Whitaker (1973). The first step of the 

analysis is to associate with every point in space an averaging volume, V. 

This volume must be large enough so that the average values of quantities 

(sealers, vectors, or tensors) are "well behaved". Whitaker (1969) has shown 

that an averaging procedure leads to meaningful .results if the characteristic 

length of the averaging volume is much less than the characteristic length 

of the entire porous medium, but also much greater than the characteristic 

length of the pores. The characteristic length of the sperical averaging 

volume illustrated in figure 2 would be the diameter. The volume shown in 

figure 2 is the sum of the volumes associated with the rock, liquid water, 

and steam, that is,



v = vr (t) + vs (t) + vw (t),

where V , V ,and V may be functions of time, t, even though the averaging
  5 W

volume, V, is constant.

Two types of averages are used in this analysis. The phase average 

is given by,

V J V
(2)

The quantity, i|> , represents the value of ip in the steam phase and is 

taken to be zero in the water and rock. Similar averages may be defined 

for the water and rock. The average, <if> >, is obtained by averaging if»
o o

over the entire volume, V, but since if> is zero in the other phases, 

integration is performed over only the volume of the steam phase contained 

in V. Darcy velocity is an example of the type of average that arises from 

equation 2.

A more convenient average for many phase properties (such as pressure, 

temperature, and density) is the intrinsic phase average, defined as,

<* > s = -J_. / 4, dV. (3)** yt) y Vs(t) *s
5The average <^> is obtained by averaging ^ over only the steam phase 

volume. Again, similar averagesmay be defined for the water and rock.



Figure 2.--Averaging volume for a two-phase fluid in a porous medium: 

r, rock; w, water; and s, steam.



Both <ij>>s and <fy > are defined everywhere in space. They 

represent functions evaluated at the point associated with the averaging 

volume, and they are assumed to be continuous functions of time and space 

The intrinsic phase average, <^S>S » is related to the phase average, by,

(4)

where es is the ratio, V (t)/V.

For "well behaved" averages the definition for the deviation of 

a quantity from its phase average is given by Gray (1975) as,

(5)

Just as the property, ty , is zero in the rock and water, so is its
/\ 

deviation, i|> , that is,

fy s ^ = o. (6)

Additionally,

s» /  » \<]b > - <]b > - 0. (7;

10



Other important relationships that may be derived are

) > s <ty > s + <^SYS > (8)

e f <\ ^  
55 5 / *% \

/\ /N

<Ye > + <lp Ye >   (1°)s s s

The term <^SYS> represents the covariance between ip and YS - In 

the development that follows similar covariance terms will arise 

frequently. It will often be desirable to neglect them whenever possible, 

This may occur in one of two ways. First, the variables, ty andyc
w j

may be uncorrelated, that is, fluctuations in <p are independent of
/N /N

fluctuations in j (in this case <ty Y > is zero). The covariance term
d W W * * 

may also be neglected if e <ip > <Y> is much greater than <ipcyc > .
W d w J J

This situation exists when fluctuations, ip and YS > a^e very small within 

the averaging volume.

An averaging theorem (Whi taker, 1969) that relates the average of a 

derivative to the derivative of the average is given as,

= V

A

] J ^s O s dA + 1 J

sw

n



where n is the outward normal vector to the steam phase and A
  w oW

and A are the steam-water and steam-rock interface surface areas,

respectively. Gray (1975) has derived a "modified averaging theorem" 

which is also useful. This theorem is written as,

= e s V <i|;s> + 1 / i?s n s dA + 1 / ifs n sdA. (12)

A A sw sr

The general transport theorem (see, for example, Slattery, 1972) is 

given as,

> , r , r
<§T> " -IT-7 J. *sSsw-5sdA -v7A Vsr'Ss". « 13)

sw sr

where w and w are the velocities of the steam-water and steam-rock  sw  sr

interfaces, respectively. These three theorems are important in the 

analysis that follows and will be used frequently.

Although the relationships and theorems given above are for the 

steam phase similar expressions hold for the water and rock. These 

expressions may also be easily extended for vector and tensor quantities

12



Mass Balance

The general, differential,microscopic mass balance equation (see for 

example, Bird, Stewart and Lightfoot, 1960) may be written for the steam 

phase as,

9PS

where p is the density, v is the velocity, and q' is the mass source rate. 

In the above equation the first term represents the time rate gain of 

mass per unit volume; the second term is the rate of mass input per unit 

volume due to convection; and the last term is the rate of mass supply 

per unit volume. 

The phase average of equation 14 is,

3p
W'> + < V '(PS-S )> " < qs>=

Application of the transport tneorem to the first term in equation 15 

yields,

3p s 3<V
<3T> 3 i>r-- v p s?sws- v p s*tf5s- (is)1 r 1- v J p s?sw!sdA - vy p s*tf5sdA -

Asw Asr

The averaging theorem permits the second term to be written as,

13



<V-(psys )> * v <psys > + 1 f p s Ys -ns dA +| p s ys .nsdA. {17)

A Asr

Substituting equations 16 and 17 into equation 15 gives,

V- < PSVS >
 ^ / 

Asw

1 
V

Asr

The velocity of the steam, ys , and velocity of the steam-rock 

interface, w , normal to the interface are assumed to be equal and thus 

the second surface integral in equation 18 vanishes. The first surface 

integral, in general, is nonzero and represents the mass transfer due to 

vaporation of liquid water to steam. The second term in equation 18 

may be expanded using equation 10. With that substitution and the 

elimination of the second integral, we obtain,

s ^ * 11' ~ ^U,v.(<ys><ps> +< y$psss $s _
sw

<qs >

14



where the density is expressed as an intrinsic phase average, <PS>S » 

and the velocity is expressed as a phase average, <y >.
i ~*^

For the liquid-water phase the analogous mass balance may be written as ?

<PW>"

A MWS

(20)

For the rock,

  -     + V» ( <V ><D > + <V rt "* ^ a ft * '
3t v -r r -r

where both surface integrals vanish and no mass source is specified.
/N /S /S /S /S /\

If it is assumed that the covariance terms <vc p >, <v..p > and <vrp > *s s "*w w   i r

are uncorrelated then these terms may be neglected in equations 19,20, and 

21. The surface integral terms in 19 and 20 are equivalent but with opposite 

signs, because the mass of steam gained by vaporization in the steam phase 

is equal to the mass of liquid lost to vaporization in the water phase. 

Representing the mass vaporization terms by (dv) and neglecting the 

convariance terms, one has,

15



<p >S 

%tS + V- (<ys> <ps>S ) - dv - <q' s> = 0, (22)

<p>w
'-fir + V- (<v > <p >w ) + dv - <q' > = 0 , (23)
0 L W W W

and ,

<p >r
+ V (<v > <p >r ) = 0. (24)3t % -r

Momentum Balance

The microscopic momentum balance equation (see for example Slattery, 

1972)for the steam phase may be written as,

|^ +V. (pevvj -V-a -psfb -q'v; =0,3t ^s^-s-s' _s

16



where g is the partial stress tensor and f, is the body force vector. In

this equation the first term represents the rate of increase in momentum 

per unit volume; the second term is the rate of momentum gain per unit volume 

due to convection; the third term is rate of momentum gain by viscous 

transfer and pressure forces per unit volume; the fourth term is the 

momentum gain due to body forces; and the final term is the time rate 

supply of momentum per unit volume. If the first two terms are expanded, the 

above equation may be given as,

9P,
q s

- V- gs - ps fb = 0. (26)

Substitution of the microscopic mass balance equation into the first

term in equation 26 eliminates this term. The second term may be neglected

if it is assumed that the velocity of the source is the same as that of

the fluid. The thfrd term represents the inertia! forces. Polubarinova-

Kochina (1962) has shown that the inertia! forces tend towards zero

very rapidly after the onset of motion, and thus may be justifiably neglected

for many applications. If it is also assumed that the only body force

17



acting on the steam is gravity, g, then equation 26 reduces to,

The partial stress tensor, g , for the steam phase may be expressed in 

terms of the extra stress tensor, i , and the thermodynamic phase pressure 

Ps » as,

I" Ie » (28)

where 6 is the identity tensor. Equation 26 may then be given as,

VPS - V- i- pg » 0. (29)

The phase average of equation 29 is,

If the gravity term is assumed to be constant, the modified averaging 

theorem (equation 12) is applied to the first term, and the averaging

18



theorem (equation 11) is applied to the second term; then,

s

Asw Asr

  \ f V*sdA -7 / Is'5sdA -?es <ps >S = °' (31)

Asw Asr

The gravity vector, g, may be expressed in terms of the sealer potential, 

D, as,

g = gvo, (32)

where g is the gravitational acceleration constant. This relationship 

can be used to simplify equation 31, that is,

esV<ps > r-1 J

Asw

1 f
- TT / (T .-PS <S) -ncdA - V- < T > =0

* «r . _ * a = -S S
  ^ f ^ « 

(33)

19



For the water phase, a similar momentum balance may be derived, that is,

£w V < PW >W -V <iPw >W VD

(34)
A wr

To proceed any further with these equations, a constitutive relationship 

must be assumed for the two surface integrals and the divergence of the 

partial stress tensor. Such a relationship must describe the behavior 

of the material (steam and water) and must be independent of the observer, 

Raats and Klute (1968) have suggested relationships for liquid and gas 

phases in porous media. Using the notation specified in this report, 

these relationships for steam and water are:

7 J (V MJ '2sdA + 7 f

y s>- <vr> ), (< vs > - <vw> ), ps> t] , (35)

20



and,

T / (VP>-VA+ v

V

V ' <^r> j (< V  <vs >

that is, the surface integrals and the divergence of <T > are equal 

to ft which is a function of the relative velocity terms (<v > - <v >), 

the fluid particle reference, P, and time; all of which are independent 

of the observer. Dependency upon the particle references and time 

includes the effect of the variations in porous-medium and fluid properties

To be useful, a constitutive assumption must be correlated with 

observed behavior. The constitutive relationships that have received the 

most experimental verification are simpler than those given above. They 

are of the form,

- <vr>), p s§ t] f (37) 

and,

(38)

21



Raats and Klute (1968) discussed the alternative constitutive expressions 

and pointed out the theoretical discrepancies in equations 37 and 38. 

Unfortunately, expressions such as equations 35 and 36 have not been 

sufficiently correlated with observed behavior.

For any practical purposes it is necessary to use the simplified 

constitutive relationships (of the form given in equations 37 and 38) 

such as those suggested by Wykoff and Botset (1936) and Muskat and Meres 

(1936). These may be expressed as,

« (39)
-S

and

. ,-1 Vw
(40)

where k is the local intrinsic permeability tensor, k is the 

dimension!ess relative permeability, and u is the dynamic viscosity. 

If it is assumed that the rock velocity is negligible, equations 39 and 

40 may be substituted into equations 33 and 34 to obtain,

22
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Energy Balance

The general, differential, microscopic thermal energy balance 

equation in terms of internal energy (see for example, Bird, and others, 

1960) is given as,

V-vU + V-AC + p (V-v) + T: Vv - q'(U+p/p)' = 0, (43)

where U is the internal energy and A is the conduction vector. In this
^ w

equation the first term represents the time rate gain of internal energy 

per unit volume. The second and third terms are the rate of energy gain 

per unit volume by convection and conduction, respectively. The fourth 

term is sometimes called the compressible work term, which stands for the 

reversible rate of internal energy increase per unit volume by compression 

The fifth term represents the irreversible rate of internal energy 

increase per unit volume by viscous dissipation. The last term represents 

the rate of energy supply from external sources per unit volume.

Noting that internal energy is related to enthalpy by,
U = h - p/p , (44)

permits the thermal energy equation to be written as,

24



+ V-pvh + V-X + T:VV - q'h 1 - £ - Wp = 0. (45)
- -C ss   Ot -

If it is assumed that the viscous dissipation term in equation 45 

is small in comparison to the other terms, then,

+ V-phv + V-A - q'h 1 - & - v-Vp = 0. (46)

Brownell, Garg, and Pritchett (1975) demonstrated by using nondimensional 

analysis that for properties typical of liquid-dominated hydrothermal 

systems the viscous dissipation term is neglible. Further, if one uses 

appropriate values for steam in the analysis of Brownell and others, 

this term is also negligible for typical vapor-dominated flow problems. 

For the steam phase equation 46 may be written as,

<; 
v-X - q^h; - ^ - ys .vps = 0 . (47)

The phase average of the above equation is,

25



3(p-h ) 3p.
- SJL-> + <VPvh> + <V'A> - <q'h> -< S>-<v'Vp> = 0. (48)

The transport theorem (equation 13) may be applied to the first and 

fifth terms to yield,

> 9<p > , rL-> - w^~ - v L
A

3<p e h e > 9<pt
(p -p h )w «n dA

C C C «CUf    C O O <3 OW w'sw

(\ 
sr

The averaging theorem permits the second term in equation 48 to be 

written as,

<V-psv s h s> - V.<psys h s > + 1 f
(50) 

Asw

Likewise the averaged conduction term is,

-s 

Asw

. n.dA + TT I X.' n^dA (51)
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If it is assumed that the correlation between the phase velocity, 

y , and the gradient of the phase pressure,Vp$ , is negligible, then,

'V' 17/A PS^+T/A Ps Oc dA l- (52) 
 ^ sw J sr

Combining all the terms gives,

3<p.h> 3<P >
-Sp- - at-5-*7 ' 'VsV + *

 /A ./ qw 
sr sw

s /I /" 1 /" - \
<v > -7<p > + <v >   (4-1 A P«;Os dA + \T/A Pcnc dA j

J J "~J \» I  " ..I 3 J » lt\_   O~O /

V- <XCS> - <q^h^> = 0. (53)

The first two surface integrals in equation 53 represent transfer of 

internal energy due to phase changes between water and steam, and rock and 

steam, respectively. Since it is assumed that no phase change occurs with 

the rock, the second surface integral may be 'eliminated. The next two 

integrals in the equation represent the conductive energy flux between 

the steam and water, and the steam and rock. The dot product of the phase 

velocity and the last two surface integrals represents the flux of pressure- 

work forces across the phase boundaries. In this development the surface
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Integrals, wm not be evaluated, so let,

Qsw = 7j (V "sV tew'^'Ds*' (54)
SW

sw

and,

Equation 53 may then be given as,

,h > 3<P >
LJ_ . _JL_ + v . <p$ vshs> -

Q + Q 1 + Q 1 - Q" - Q" - <q'h'> = 0 
vsw vsw wsr ^sw ^sr H s s

sw

^cs-Ds dA ' (57) 
sr

TjT Ps ns dA. (58) 
sr
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To eliminate the average of the product in the time derivative, equation. 

8 may be used. This yields,

S > 9(cs <Ps >S <hs > S ) 3(s s<ps h's > s ) (60)

jTt~~ = at + at "

For the product average in the convective term it is necessary to 

expand the product as follows:

<ps-sV = <(< -s> + 

Then using equation 8 yields,

<psys^> = <vs>s <ps hs> + es <v s ps hs> . (62) 

It follows that,

s\ /S y\ /\

<psvs hs> = <v s> <ps>s <hs>s + <y s> <ps h s>s + es<Xs ps hs >S - (63)

Substituting equations 60 and 63 into equation 59 gives,

9 ssa ~^a
du S S s OL S S S 9t S S *

 * /X ^ A

  v« <y > <p h > + v«e <Y 5 p<.h.> S - <y >«V<p > s+v«<X

= 0- (64)
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>\ /\ -

Although the covariance e <pc h > is certainly not zero, it is reasonable
5 S S

to assume that in comparison to es<Ps>S <ns>S i* 1S small. This

assumption may be used to eliminate the second and fourth terms in

s<ys
"> S

equation 61. This leaves two terms, V-<X > and V-e <y p h > , that

require further evaluation.

Fourier's law is used as the constitutive expression for the conductive 

flux, that is,

Xcs = - Kcs -VTs . (65)

It then follows that,

<ics> = * <£CS -VTS> - - <Kcs>S<VTs> + ES ^ vTs>s . (66) 

If it is assumed that the covariance, e <K VT >s , is negligible, then,,

<ACS > - -e$ <KCS>S -7 <TS >s - <_KCS>S J

Asw

-s - $  (67) 
flsr
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where the two surface integrals represent the decreased conduction 

rate due to the tortuosity of the system. These integrals, for 

convenience, may be represented by a tortuosity vector defined as,

WA + ? / VDS«)   }
Asr

Gray (1975) has defined a similar tortuosity vector for species transport

for porous media, containing a single fluid phase. Bean (1972) has

pointed out that for energy transport in porous media (where heat conduction

in the solid phase occurs) the tortuosity effect is not important.
* * s 

The term, V«e <v p h > , may be expanded using equation 44, so that,
j   S S 5

If it is assumed that the phase pressure and velocity are not correlated,

then the second part of the above term may be neglected.
* ^ s 

The term, V-e <v p U > , represents the divergence of the dispersion
d   ̂  5 d

vector. A constitutive relationship for the dispersion vector may be 

obtained by assuming that dispersion is mathematically equivalent to a 

diffusion process (see Bear, 1961; Scheidegger, 1961; Gray, 1975; 

Witherspoon and others, 1975). This relationship may be expressed,
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Substituting equations 67 thru 69 into equation 64 and neglecting the
/s /s _

covariance, e <p h > , yields,
o o o

(e s <P s> :s )+V-<ys><p s> s <h s > s

' V ' (es=ds' V<Ts>S) ' < vs > ' v<Ps>S

' V " [es ^cs>S ' (V<Ts>S + -s )]

+ Q +Q 1 +Q 1 - Q" -Q» - <q'h'> = 0. (70) 
ysw ysw ysr ysw ysr H s s v '

The similar equation for the water phase is given as,

Ft ( WW <hw>W > - ft (SW<PW > W )+ v- <V <P/<VW - v ' ^w^dw' 7 <Tw

- <v > «V<p >w -w Hw

+ Q +Q 1 +0' -0" -Q" - <q'h'> = 0. (71) xws vws vwr *ws y wr Hw w v '
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For the rock, the velocity and the source term are assumed to be negligible, 

so that,

<p ><h >r ) - V« [e <K >« (V <T >r + 8 
r Hr r r =cr v r r

Q -V 0 = 0 . xrw xrs

33



GENERAL EQUATIONS AND CONSTITUTIVE RELATIONSHIPS

The phase balance equations derived in the previous section serve as 

the starting point for the general mathematical model presented in this 

section. These equations can be combined with appropriate assumptions 

(constitutive relationships) to yield two simplified equations posed in 

terms of fluid pressure and enthalpy. Formulation of the final equations 

in terms of pressure and enthalpy permits one set of equations to be used 

for both single- and two-phase hydrothermal systems.

Balance Equations

The mass balance equations given by equations 22 and 23 may be 

written as,

3(4>S p ) (73)-sr1-* 7-^ -qs - dv = 0 >
and

) (74)
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where $ is the porosity and S is the volume saturation,and the brackets 

representing the averaged terms have been removed. Recall that velocity 

is represented by a phase average while other quantities are represented 

by intrinsic phase averages. Furthermore, ((>S and <J>S are substituted
W d

for e and e , respectively. The rock mass balance equation is neglected 

in this development. The implicit assumption is that rock velocity is very 

small. The major effect of the small velocity, however, is incorporated 

in an approximation relating porosity to the pressure in the fluid phases. 

The momentum balance equations (equations 41 and 42) may be rearranged 

to give:

and

i< _ ** rw

- p sgVD)   (75)

(76) 
w

where the averaging brackets have been removed.

If the averaging brackets are removed, and $S_, <frS , and (!-<{>)s w

substituted for e , e e in equations 70, 71, and 72 respectively, one s w, r
has,

35



a 3(*S P h )
ft<*Ss Ps )-VV ps+ 3tSSs +7.(ps hs vs ) - V.USs Kds -VTs ) (77)

V-[d>S K .(VT -I-0 )] + Q +Q 1 +Q' -Q" -Q" -q'h' = 0, 
LV s=cs v s s' J vsw vsw vsr vsw vsr M s s '

a 3(*S p h )
|r(*S p )-v -Vp +   " w + V'(p h v )- V-(*S K, -VT ) (78) 3t y wrw -w rw 3t w w-w vy w=ds w

-V- [<(>S K -(VT +9 )] + Q +Q 1 -i-Q -Q" -Q" -q'h 1 = 0, 
LV w=cw v w w ;j vws vws vwr vws vwr Vw

and

3[(1-4>)prnr]
  3 ^ - v-[(i-(d)Kcr -v Tr] + Q;S+Q;W = o. (79)

Constitutive Relationships

The balance equations (equations 73 thru 79) are not sufficient to 

describe the system and consequently additional relationships are required, 

These are in the form of constitutive relationships that are formulated 

under the following basic assumptions of the model:
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1. Capillary pressure effects are negligible.

2. Temperature equilibrium exists among the steam, water and rock.

3. The reservoir fluid is single-component pure water consisting of either 

one or two phases.

4. Relative permeability is a function of water saturation.

5. Viscosities are considered as functions of temperature.

6. Porosity is a function of space and pressure.

7. Reservoir thickness, rock density, and intrinsic permeability are 

functions of space.

8. Rock enthalpy is a function of temperature.

Capillary Pressure 

An expression relating phase pressures is given by,

Pc « Ps - Pw > (80)

where p is the capillary pressure. Capillary pressure has the effect 

of lowering the vapor pressure of water. Ramey, Kruger, and Raghavan 

(1973) point out that vapor-pressure data found in steam tables (Meyer, 

McClintock, Silvestri, and Spencer, 1967; Keenan, Keyes, Hill, and Moore, 

1969) are based on flat steam-water interfaces, whereas the interface in 

porous media is curved. The amount the vapor-pressure curve is lowered
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in a geothermal reservoir is not completely understood. The work of 

Calhoun, Lewis, and Newman (1949) on consolidated rock does show a lowering 

of the vapor-pressure curve with decreased fluid saturation. The efforts 

of Cady (1969) and Bilhartz (1971), however, indicate no significant vapor 

pressure lowering in their experiments using unconsolidated sands. An 

important difference in the two results is that the experiments of 

Calhoun, and others were made at a temperature of 36°C, and those conducted 

by Cady and Bilhartz ranged from approximately 121°C to 240°C. Further work 

on the importance of capillary pressure in geothermal reservoirs is 

required. For this development capillary pressure is assumed negligible, 

which implies that fluid pressures in the steam and water phase are equal. 

With these assumptions, equations 73 and 74 may be combined,

-.v-q-, (81) 

where p is the density of the total steam-water mixture, defined as,

p = Vw + Ssps' (82) 

and the volume saturations are defined so that they sum to one,

S s + Sw = 1 - (83)
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Temperature Equilibrium

The movement of steam and water through porous media is sufficiently 

slow, and the surface areas of all phases are sufficiently large, so 

that it is reasonable to assume local thermal equilibrium among phases 

is achieved instantaneously. This assumption permits the energy equations 

for rock, steam, and water to be combined and the medium conduction- 

dispersion term to be posed in terms of one temperature, T, for all 

three phases. In this development the lumped conduction-dispersion term 

is greatly simplified; the combined conduction^dispersion term is defined as,

V'USJC^-V T ) + V (4,5 K, -VT UV-foS K -(VT +6,J], , w=dw w' vy s=ds s Ly w=cw v w w

(84)

where the medium conduction-dispersion coefficient, K , is isotopic. 

In addition to the limitation of combining the effects of conduction and 

dispersion, equation 84 neglects the important effect of temperature on 

thermal conductivity. In this regard, Somerton, Keese and Chu (1974) point 

out that the thermal conductivity of a porous medium is a function of tempe­ 

rature, porosity, and water saturation. This effect may be important in a 

purely conductive system, however, in this study these effects are 

neglected.
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Invoking these assumptions concerning thermal equilibrium and dispersion, 

the energy balance equations may be combined, yielding,

(l-*)prh r ] + V.(ps hs ys ) + V-(pwhwyw )

(85)

in which, h, is the enthalpy of the steam-water mixture defined as,

K Ssps h s * Swpwhw . (86)
rt 3 .     »! i i  !!       ii HMI»-^^  i mmmmm*

P

Note that the heat of vaporization terms and the interphase conduction 

and pressure terms in equations 77 and 78 have been eliminated in equation 

85. This is the result of the jump energy balance at a phase interface 

(see Truesdell and Toupin, 1960, p. 610). If the mechanical energy is 

neglected, this balance requires that the thermal energy interface flux terms 

in the steam, water and rock equations sum to zero. Finally, the last term 

in equation 85 is the compressible-work term. Moench (1976) points out 

that this term is negligible except for conditions of low water 

saturation.
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Thermodynamic Properties

As previously indicated it is assumed that the hydrothermal fluid is 

virtually pure water. Just how restrictive this assumption can be is 

demonstrated in figure 3. In this figure the effect of a NaCl concentration 

is shown in the pressure-enthalpy phase diagram. This effect is seen as an 

enlargment of the two-phase region (data from Haas, 1975a, Mass, 1975b). 

It is apparent that with weight concentrations greater^than 2 percent a pure 

water assumption would not be valid. Although geothermal reservoirs contain 

other dissolved solids in addition to NaCl, in a qualitative sense, the 

effects would be similar for other impurities. For geothermal reservoirs 

such as those at Wairakei, New Zealand, Larderello, Italy, and Geysers, 

Calif, in which the salinities are about 1 percent or less (Koenig, 1973), the 

effects of dissolved solids would be small.

Relationships expressing the thermodynamic properties of pure water 

and steam as functions of enthalpy and pressure may be determined from 

data in steam tables such as Meyer and others (1967) or Keenan and others 

(1969). The necessary relationships for this development are as follows:

1. Steam enthalpy, h , and water enthalpy, h , are treated ass w

functions of pressure.

2. Temperature is treated as a function of pressure and enthalpy 

for the compressed-water and superheated-steam regions.
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3. Total density, P, steam and water densities, p and p ,
o W

are considered functions of pressure and enthalpy.

4. Phase saturations are functions of enthalpy and pressure.

Water saturation in the compressed water region is assumed one, and 

in the superheated steam region zero. In the steam-water region 

saturations are obtained using

Pr (h -h) ° S (87)
h(pw-p s )-(hw pw-h s p s)

and S is determined using equation 83.

5. Viscosities, u , and \i , are considered functions of temperature, s w
Additional relationships required for treating problems involving 

two-phase flow in porous media include:

6. Relative permeability is treated as a function of saturation and 

relationships similar to those in Corey (1954) may be used.

7. Porosity, <}>, is a function of pressure.

Finally, two important properties of the rock that appear in the 

balance equations are rock density, p , and enthalpy, h . For this study:
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8. Rock density is assumed to be a function of space only.

9. Rock enthalpy is a function of temperature and may be described 

using relationships similar to those presented in Dew and Martin 

(1965).

Combined Equations

With the assumptions of capillary pressure and thermal equilibrium the 

number of balance equations was reduced to four (equation 75,76,81 and 85). 

These can be further reduced by substituting equations 75 and 76 into equations 

81 and 85 to yield the following:

kk p
- v- F-a-tt-to - Pwgvo)] - q; - q - = o, (88)

and

0-4>)prh r] - v- [s rfs S -(VP- P s gvD)]

kk P h
V- r   W W -(Vp - PW 9VD)]- V 

w

- + (vs + vw ) -Vp] = 0 (89)
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where for convenience, we have not substituted for velocity in the 

compressible-work term. The temperature derivative in the conduction- 

dispersion term in equation 89 can be expressed in terms of the unknown 

dependent variables, pressure and enthalpy,by using the chain rule of 

differentiation yielding,

kk Pe h_
= S - Ps

. v . [.(vp . pwgVD)] . v . ^ ( vp 
M

(f'p vh]

Also, employing the chain rule of differentiation the time derivatives 

in equations 88 and 90 can be expanded in terms of pressure and enthalpy 

to give,

  i>£* 

fck^
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and,

WW

(92) 

« 0.

Equations 91 and 92 describe the two-phase flow of heat in a steam-water- 

rock system; however, with minor modification, these equations also describe 

the flow of heat in a water-rock or a steam-rock system. When either steam 

or water is absent, the saturation of the absent phase is zero and that for 

the existing phase is one. Further, it is assumed that the relative 

permeability of the absent phase is zero and that for the existing phase
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is one. Therefore, equations 91 and 92 reduce to the appropriate equations 

for either the compressed-water region or the superheated-steam region. 

A solution for these equations will determine whether a specified location 

contains compressed water, a steam-water mixture or super-heated steam.

Source Terms

Mass and energy source terms appear in the combined equations (equations 

91 and 92). These represent the amount of mass and heat lost (or gained) 

to wells. In the two-phase region, the amount of mass rate lost to a well 

is defined as,

< 93 >

and the total heat rate lost to the well as,

«h = hs hs + W'

where a negative rate indicates a loss from the reservoir. The steam 

production rate may be determined by the fractional flow of the steam phase 

on a mass transport basis as follows:

-- (95)
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where

W

Since h' and h' are known functions of pressure and the total mass flux, s w

q', is specified, q' is calculated using equation 95, and q/ is calculated HI o n
using equation 94.

Boundary Conditions

The combined mass and energy equations 91 and 92 together comprise 

a pair of nonlinear, second-order, partial-differential equations. As 

such, two boundary conditions (one in terms of pressure and one in terms of 

enthalpy) are required at the boundaries. For both variables three types 

of boundary conditions are admissible. These are as follows:

1) Pressure or enthalpy may be specified at the boundary surface.

2) Spatial derivatives of pressure or enthalpy may be specified at 

the boundary. These boundary conditions incorporate the flux terms 

for mass and energy.

3) Certain combinations of pressure and enthalpy and their respective 

spatial derivatives may be specified at the boundary. This is the 

so-called mixed boundary condition.
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Only a few types of the above boundary conditions are necessary 

for actual reservoir simulation problems. Perhaps the most common of these 

is the specification of fluxes at the boundaries. Frequently the flux 

is specified as zero. For specification of a mass flux,

. (96)

where q* is the specified mass flux at the boundary. If a mass flux 

is specified,a convective energy flux must also be specified according 

to an equation analogous to equation 94,

q* = q*n* + q*n* (97)

where h*, and h* are the pressure-dependent saturated water and steam enthalpies 

and q* and q* are the fractional steam and water fluxes at the boundary. The 

total energy flux for the general case consists of two parts,

q*h = q£ + q- , (98)
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where q?* represents the conductive heat flux at the boundary and is 

determined by

(99) 
boundary

A constant pressure boundary condition may also be encountered. 

Since this implies a mass flux at the boundary, it also implies a 

convective-energy flux. To determine the convective-energy flux, the mass 

flux is calculated from equation 96 and used in equation 97.
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TWO-DIMENSIONAL FORMULATION OF THE GENERAL EQUATIONS

In this section the three-dimensional combined flow and combined 

energy equations (equations 88 and 90) are partially integrated in the 

z-dimension. The resulting two-dimensional equations are defined in 

terms of quantities averaged in the z-dimension. This rigorous development 

is necessary in order to gain insight into the nature and the adequacy 

of the assumptions used to obtain the simplified two-dimensional equations.

Basic Rules and Conventions

A quantity averaged in the z-dimension, for the analysis in this section, 

is given by,

(TOO)

where z] = z^x.y.t) is the bottom of the reservoir, z2 = z2 (x,y,t) is 

the top, b = b(x,y,t) s 22 - z] is the thickness, and the brackets, < >, 

signify a quantity averaged in the z-dimension.

In the development that follows Leibnitz 1 rule is frequently 

used to reverse the order of integration and differentiation. This 

rule has the form,
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udz + u(x,y,z,t)
r  l

r- - u(x,y,z,t)
3z2 .

(101)

Reynolds' operational rule for defining the average, <ip>,and deviation,

ip sof a quantity, ip, is given as,
/\ 

<p = <ip> + ip . (102)

Throughout the rest of this report the brackets,< > , and superscript, ~» 

will refer to quantities averaged in the z-dimension and their deviations 

defined by equations 100 and 102. A graphical illustration of these quantities 

is provided in figure 4. It then follows that,

- <ip>)dz = 0. (103)

Given these definitions, other useful relationships that may be 

derived are,

(104)

(105)

(106)
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Figure 4.-Graphical representation of typical quantity, 4,, as a 
function of the z-dimension showing the average value, 

and the deviation, .
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and,

007)

Development of the General Two- Dimensional. Equations

If the Cartesian coordinate system is aligned with the principle 

directions of the permeability tensor, ^, and if the conduction-dispersion, 

K. is assumed to be isotropic, equations 88 and 90 may be written as

3(4>p) 3 / 3p 3D HJt " ax w

3 
3Z

3D

3D
008)

and

f]

«V * «cp ) f

Jhgz 3z J " 3x
/ x . 3z" (wch 3z~} " qh = (109)
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where for the x-direction (terms for the y- and z-directions are similar)

k« kv«.A, KA.P 
"x - x rvrw + x rs^s ,

kx krwPwhw , kx krs ps h s 
 hx p w

. t 
V v

hgx uw

wcp m ^8p'h
and, ST

= \f (°JL\^ch Km 4h j p

AT so,note that for this development we have assumed that the compressible- 

work term is negligible.

Flow Equation 

Equation 108 may be integrated in the z-dimension to give,

1 Z2

-1? K H - i} - Si3 dz = 0- (no)
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Applying Leibnitz 1 rule to the first term in the integral yields,

az1
3F 1

(111)

which in terms of averaged quantities becomes,

f Z2^ 
L 3t at 3t

3Z, 
3t"

Integration of the x-component term in equation 110 gives,

(112)

3Z 1 / 3p 3Dx    i ii\  ^~   ii\  ) az. 
W (113)

The first term on the right side of equation 113 may be expanded by 

using equation 106 to yield,

f ] dz '

3D<
gx3x x3x 3x

3z2 .
3x

Similarly, the integrated y-component in equation 110 may be 

written as,

(114)
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32i

For the z-component term, integration leads to,

gyay

30
J zl

Finally, the mass source term may be given as,
'Z2 

21f,

(115)

(116)

(117)

With all terms in equation 108 considered, the integrated flow equation 

is,

3Z

3D ~ 30^ 
Jgx>< 3oT " "^gxSx"'

3Z-

3x

30
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32,

3p 3D>03 -r11 - 03 -T )
z3z gz3z ; - b<q;> = o,

where the circled numbers above the major terms will be used later in 

this development for easy reference.

Energy Equation

The integrated combined energy equation (equation 109) is 

written as,

J

(118)

3
37

r/ . 
32 [(u)hz + ' " 3D-1 

hgzsl1

3h\ 3 3h\ 3 / 3h\ § \j_ _) ' q}dz "

Application of Leibnitz 1 rule allows the first term in equation 119 

to be given as,

(119)

"!_ 
at Vhr]= b(<4>ph> + <p

'I r r
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- <J>)pA.] - [<j>ph 3Z

The averaged x-components are given by,

 Zo

[
3x

3Z2
Sx »

i: hgx3x
30\^, 3 fu/^ ^3D. , s 3°ol ,^)dz = ^ Lb ( <tohgx><55: > + ^gxlx >}J

1 3D 
3x hgx3x

3Z 

3x

(120)

(121)

(122)

and

J,

IT

3z, a
_1 . oj ^£

P 3x cp3x 3x

_ 3

3h 
Jch3x

az,
3x"

Similar expressions for the y-components are,

3h 3z

(123)

(124)
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i;
Ill IE
3y " Why3y 3y (125)

I;
and

I

3D 3 29.
hgy9y

.
cp9y

IE

fy

ch9y «3y ch3y
9Z 

37
2 .

For the z-components,

J, = u IE 
hzaz

j 2E 
Jhz9z

(126)

(127)

(128)

(129)
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I 3 / 3Dx , 3D 3D
_ " ^hgzSz Z2

(130)

Jcp3z
j 2B 
cp3z

and

J
3 / 3h<

1

. 5tL 
Jch3z

The averaged source term is given by,

f 

J

Combining all terms yields

3t
<o h : nrr

(131)

(132)

(133)

r r- at

- [<t>ph rhr :
3z 

IT
2i 3

dX

3D 8Z2 3 - -   r
3x 3y L

Vsy5* " <U)hgy3y> ' ^ " ^hy3y " ^hgySy^
3y
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3D

cp3x' cp3x 3x

(w 6- + a) v cp3x ch3x
3z,

cp3y

3p . 3h\ 
p3y Wch3y^

/M IB. M 3°^ " (o)hzat -

3p . 3hxd) -sr^  *  0) .-r~)
cp3z ch3z ;

3p . 3h% ) -sr^  *  0) i_Tr~) 
cp3z ch3z y ^> = 0,

(134)

where the major terms are numbered for later reference
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Analysis of the General Two-Dimensional Equations

In order to apply the general, two-dimensional equations developed in 

the preceding section, it is necessary to specify the boundary conditions 

at the top and base of the reservoir and make certain assumptions 

concerning the variations in flow, reservoir properties, and thermodynamic 

properties normal to the bedding plane.

Boundary Conditions at Top and Base of the Reservoir

The boundary conditions that require evaluation in the flow and 

energy equations (equations 118 and 134) concern the flux of mass and 

energy from the confining strata and the change in mass and energy due 

to the moving boundaries of the confining beds. The terms numbered 2 in 

equations 118 and 134 account for the changes in mass and energy due 

to the moving boundaries of the confining beds. In the flow equation the 

terms numbered 4, 7, and 10 represent the mass flow terms at the base of 

the reservoir. The x- and y-flow terms (4 and 7) account for the slope of 

the reservoir bedding and the spatial change in reservoir thickness. 

The tenth term is the mass flux in the z-direction. Also in equation 118 

the terms numbered 5, 8 and 9 are the corresponding mass flux terms at 

the top of the reservoir.
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In the general two-dimensional energy equation (equation 134) energy 

boundary fluxes occur due to two distinctly different physical processes, 

conductive and convective transport. The terms numbered 4, 7, 16, and 10,13, 

18 represent, respectively, the convection and conduction boundary conditions 

at the base of the reservoir. For the top of the reservoir terms 5, 8, 15 

and 11, 14, 17 are the corresponding convection and conduction boundary 

conditions. As with the flow equation the x- and y-components (4, 5, 10, 

11; 7, 8, 13 and 14) account for the fluxes due to the slope and spatial 

variations in thickness of the reservoir. If we expand the time derivative 

in equation 118 and recall that b = z« - z,, we obtain,

= b - (4>P)
2
] (135)

The first term to the right of the equal sign in this equation is much 

larger than the other terms, for example if,

b = 100 ft. p_L = 0.05 (steam)
24>. = 0.2

p. = 0.8 g/cm3 p I - 0.8 (water)
1 *» L n

At - 1 year
Ab = 1 ft.
Acj) = 0.01 < p > = 0.2 (S = 0.2)
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then,

b a£ (<cf>p>) (0-2 x °- 8 - °-19 x 0-2) - 12.2

and

3Z, 

9T ] = (0.19 X 0.2 - 0.19 X .05) = 0.0285 Z2 l

The last two terms in 135 are very small and may be neglected. The 

analogous terms in 134 may also be neglected, thus our equations become,

b <q'> + v 
m

- v  V (z-zj = 0, (136)
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where

hv  / > /  vtz-z,) =- (« ' "
hgx 3x

I IP 
 Ky 37

3z-
to., ft * «z i hgz

(140)

and

hv  v(z-z2 ) - - (o)hx ^ - uhgx 3x

(141)

and

CD_ ^ + w«u ^ I ^x~"3

Jcp 3y

3z-
(142)
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and finally,

-m  V(z-z2 ) = - 3x"

/ 9p , 9hx . 2 , / 3p , 3h (<»~~ ^t7 + ^ , T-) I ^7T- + (w.
cp cp (143)
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Averaged Reservoir and Thermodynamic Properties

Equations 136 and 139 are our final equations, however, to be applied, 

it is necessary to evaluate the vertically integrated terms. In general, 

these terms may be evaluated under two conditions: (1) the fluids have no 

segregation, and (2) the fluids are completely segregated.

If the fluids are not segregated, then their properties are uniform 

throughout the thickness of the reservoir. This implies that the covariance
s>.

terms (the average of the product of deviations, such as ~ &£ ) are zeroW

and therefore the average value <w -> is equal to the quantity <u >

Also, for this condition, laboratory relative permeability and capillary 

pressure curves may be used in the area! calculation. Thus, this leads to 

the easiest evaluation of the vertically integrated terms, but for two-phase 

systems it is also a very restrictive assumption, being limited to very thin 

reservoirs. However, for single phase reservoirs the uniform property 

assumption is normally the one used. For such systems equations 136 and 139 

(with covariance .terms set to zero) offer a good approximation for variable 

thickness, sloping reservoirs.

A less restrictive condition, and one that conforms with our assumption 

concerning the absence of significant capillary pressure, is that of complete 

segregation. Under this condition, it is common to assume vertical equilibrium, 

This concept was first introduced in the petroleum literature by Coats, 

Nielsen, Terhune, and Weber (1967) for reservoirs having a large capillary 

transition zone. It was later modified by Coats, Dempsey, and Henderson
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(1971) for reservoirs with a small transition zone, similar to our condition 

of complete segregation. Details of the vertical equilibrium concept are 

given in these references and only a brief outline is presented here.

It is assumed when applying the concept of vertical equilibrium that 

the fluid potentials (p- gD) are uniform throughout the reservoir thickness. 

This corresponds to a gravity segregated fluid distribution with the 

potential of each fluid being uniform in the portion of the column occupied 

by that fluid. This condition requires that the reservoir have good vertical 

communication (that is, an infinite vertical flow rate). Using this assumption, 

vertically averaged liquid saturations are related to pressure at some 

reference level by employing pseudo capillary pressure and pseudo relative 

permeability curves. Basically, the pseudo function approach gives 

equaivalent results to those that would be obtained if vertically averaged 

pressures were used.

For our problem, many of our thermodynamic properties are strongly- 

dependent functions of pressure, and, an analogous approach would require many 

pseudo functions. Instead, we use the concept of vertical equilibium to 

vertically integrate the terms in equations 136 and 139.

For the vertical integration, we need to make certain a priori 

assumptions on the vertical characteristics of the variables. As exploitation 

of a reservoir progresses, steam will form in the reservoir. Based on our 

previous assumptions, the steam and water will separate by gravity segrega­ 

tion producing a steam cap with a water saturation equal to the residual 

water saturation; below will be water with a water saturation of 1.0 

(see figure 5).
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Since the pressure varies hydrostatically in each phase, the vertically 

a/eraged pressure distribution is,

= C<PW>

which is shown graphically in figure 6. In equation (144) the vertically 

averaged pr< 

defined by,

averaged pressure in the saturated region (below the interface at z ),<p >,c w

<PW> = Pz + Pw9zc/2 » (145) 
c

and the vertically averaged pressure in the two-phase region (above the 

interface at z )»<p > is defined by,
C SW

<PSW> - Pz - Px9(b-zc )/2, (146)

where p is the density in the two-phase region defined by,
/\ *

Px =Ps (l-Swr)+PwSwr . (147)

Note that the steam and water densities in equations 145-147 are considered

functions of the interface pressure, p .
c
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Figure 6. Pressure profile through idealized reservoir; p z 
is the pressure at the steam-water contact.

<h > <h w sw

Figure 7. Enthalpy profile through idealized reservoir, showing 
average water enthalpy, <h >, and average steam cap
enthalpy, <h >. sw

w
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The vertically averaged enthalpy distribution is shown in figure 7 

and is defined as,

[<hw> zc + <hsw> (b-zc )]/b, (148) .'-

where <h >is the vertically averaged enthalpy in the saturated region and w
is a function of the interface pressure. The vertically averaged enthalpy 

in the two-phase region is defined by,

<hs >. .., (149)
sw ps (1 - Swr } + pwSwr

where the water and steam densities and enthalpies in equation (149) are 

considered functions of <PSW> -

The assumptions concerining the vertical distribution of pressure and 

enthalpy expressed explicitly in equations 144-149 permit the determination 

of all pressure and enthalpy dependent parameters in equations 136 and 

139. The procedure used to obtain these parameters is straight forward. 

Equations 144-149 are solved simultaneously (by Newton-Raphson iteration, 

for example) to obtain the elevation of the interface contact, z , and the
w

fluid pressure, p , at the contact as functions of x-y space. Required for
c 

these calculations are the average pressure, <p>, and enthalpy, <h>, and the

top, z«» and bottom, z.., elevations of the reservoir also as functions of x-y 

space. With this information, <p > is computed using equation 146;
o w
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<p > is computed using equation 144; p is computed using equation 145; w zc

<h > is computed using equation 149; and z is computed using equation 148, sw c

If steam is not present at a point (x,y), the averaged pressure and 

enthalpy are used to calculate the thermodynamic properties. 

Finally, relative permeabilities are given by,

<krw> = CVzll /b ' (150)

where krs(S ) is the rock relative permeability of steam at the 

residual water saturation.
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CONCLUSIONS

The theoretical analysis of fluid flow and energy transport in 

hydrothermal systems presented in this report serves two general purposes. 

Mainly, it provides a better understanding of the implicit and explicit 

assumptions that are necessary to derive tractable governing equations 

that describe hydrothermal systems. But as it emphasizes these assumptions 

it also reveals the need for further work to eliminate weak assumptions.

For two-phase hydrothermal systems the need for experimental data is 

most evident. Essentially, no suitable experimental work has been done on 

thermal dispersion in steam-water porous systems. Although some very limited 

data for relative permeability of steam and water are available they are less 

than sufficient for general applications. Additional studies of capillary 

pressure effects and thermal effects on intrinsic permeability also would 

be useful.

From practical considerations it is necessary to keep the mathematical 

models as simple (yet realistic) as possible. It is apparent that general 

analytical solutions to the multiphase equations for hydrothermal systems are 

not likely to be obtained due to their complex nonlinear nature. Numerical 

solutions are also difficult. For three-dimensional problems the expense 

of numerical solutions is often excessive. A rigorous two-dimensional 

treatment also requires more study. Specifically, alternative assumptions 

for averaging quantities in the vertical dimension must be investigated and 

the significance of covariance terms that arise in the partial integration 

must be determined.
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Upper Case Roman Letters 

A

Asw' Awr' Asr

tn 
p

Q , Q ^sw' yws

0" , Q" , 0" , Q" ysw ysr yws xwr

T 

U 

V

Lower Case Roman Letters

b 

c 

dv

fb

g>9

NOMENCLATURE

= area

= interphase surface areas

= depth

= thermal conductivity tensor

= medium thermal conductivity and dispersion

= particle reference vector

= interphase vaporization energy terms

= interphase conduction terms

= interphase pressure-work terms

= volume saturation

= residual volume saturation(water and steam)

= temperature

= internal energy

= volume

= reservoir thickness 

= heat capacity 

= mass vaporization term 

= body force vector

= gravitational acceleration constant and 

gravitational force vector
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h SB enthalpy

h 1 = injected fluid enthalpy

k SB local intrinsic permeability tensor

k = relative permeability

n - unit outward normal vector

p = pressure

q 1 = mass source term

q^ = energy source term

qm = total mass source term

q£ - conductive-boundary, energy source term

qf* SB convective-boundary, energy source term

q*, = total boundary energy source term

q 1 - vertical conductive energy source term

r = radial dimension

t = time

y SB phase-average velocity

w w w SB interphase surface velocities

x SB horizontal dimension

y = horizontal dimension

z = vertical dimension

z^ = elevation of steam-water contact c
Z-, = base of the reservoir

z« = top of the reservoir
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Upper Case Greek Letters

9

Lower Case Greek Letters

X

Subscripts

= resistance function

= steam mobility ratio 

= vertical reservoir compressibility 

= example variable 

= identity tensor

= ratio of phase volume to total volume 

= thermal conduction vector 

= thermal dispersion vector 

= dynamic viscosity 

= density 

= stress tensor 

= extra stress tensor 

= porosity 

= example variable

= various lumped parameters used in vertical 

integration

x,y, and z

summation indices

rock

stream

water

coordinate directions
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Subscripts (cont.)

Superscripts

vector quantity 

tensor quantity

rock

steam

water

average

deviation

Other Notation

gradient operator 

dot product 

double dot product

80



SELECTED REFERENCES

Bear, Jacob, 1961, On the tensor form of dispersion: Jour. Geophys. Research,

v. 66, no. 4, p. 1185-1197. 

        1972, Dynamics of fluids in porous media: New York, American

Elsevier, 764 p. 

Bilhartz, H. L., Jr., 1971, Fluid production from geothermal steam reservoirs:

Stanford, Calif., Stanford Univ., M.S. Report, 48 p. 

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1966, Transport phenomena:

New York, John Wiley and Sons, Inc., 780 p. 

Blake, T. B., and Garg, S. K., 1976, On the species transport equation for

flow in porous media: Water Resources Research, v. 12, p. 745-750. 

Brownell, D. H., Jr., Garg, S. K., and Pritchett, J. W., 1975, Computer

simulation of geothermal reservoirs, in_ Society of Petroleum Engineers

of AIME, 45th Ann. California Regional Mtg., Ventura, Calif., April 3-4,

Proc.: Soc. Petroleum Engineers, Paper SPE-5381, 9 p. 

Cady, G. V., 1969, Model studies of geothermal fluid production, Stanford,

Calif., Stanford Univ., Ph.D. thesis, 82 p. 

Calhoun, J. C., Lewis, Maurice, Jr., and Newmann, R. C., 1949, Experiments on

the capillary properties of porous solids: Soc. Mining Engineers Trans.,

v. 186, p. 189-196. 

Carnahan, C. L., 1976, Non-equilibrium thermodynamics of ground-water flow

systems: symmetry properties of phenomenological coefficients and

considerations of hydrodynamic dispersion: Jour. Hydrology, v. 31,

p. 125-150. 

Coats, K. H., Dempsey, J. R., and Henderson, J. H., 1971, The use of vertical

equilibrium in two-dimensional simulation of three-dimensional reservoir

performance: Soc. Petroleum Engineers Jour., v. 11, p. 63-71.

81



Coats, K. H., Nielson, R. L., Terhune, M. H., and Weber, A. G., 1967,

Simulation of three-dimensional, two-phase flow in oil and gas

reservoirs: Soc. Petroleum Engineers Jour., v. 7, p. 377-388. 

Combs, James, and Muffler, L. J. P., 1973, Exploration for geothermal

resources, j£ Kruger, Paul, and Otte, Care!, eds., Geothermal energy

Stanford, .Calif., Stanford Univ. Press, p. 95-128. 

Corey, A. T., 1954, The interrelation between gas and oil relative

permeabilities: Producers Monthly, v. 19, p. 38-41. 

Dew, J. N., and Martin, W. L., 1965, Air requirements for forward combustion

Petroleum Engineer, v. 37, no. 1, p. 82-85. 

Donaldson, I. G., 1968, The flow of steam water mixtures through permeable

beds - a simple simulation of a natural undisturbed hydrothermal region:

New Zealand Jour. Sci., v. 11, p. 3-23. 

Faust, C. R., 1976, Numerical simulation of fluid flow and energy transport

in liquid- and vapor-dominated hydrothermal systems: University Park,

Pa., Pennsylvania State Univ., Ph.D. thesis, 163 p. 

Faust, C. R., and Mercer, J. W., 1976, An analysis of finite-difference and

finite-element techniques for geothermal reservoir simulation, in

Numerical simulation of reservoir performance, Society of Petroleum

Engineers of AIME, 4th Symposium, Los Angeles, Calif., Feb. 19-20, T976,

Proc.: Soc. Petroleum Engineers, Paper SPE-5742, p. 337-354. 

Gray, W. G., 1975, A derivation of the equations of multiphase transport:

Chem. Eng. Sci., v. 30, p. 229-233. 

Gray, W. G., and O'Neill, Kevin, 1976, On the general equations for flow in

porous media and their reduction to Darcy's law: Water Resources

Research, v. 12, p. 148-154.

82



Haas, J. L., Jr., 1975a, Preliminary "steam tables" for boiling Nad solutions; 

physical properties of the coexisting phases and thermochemical properties 

of the H«0 component: U.S. Geol. Survey open-file rept. 75-674, 71 p.

        1975b, Preliminary "steam tables" for boiling NaCl solutions; 

thermophysical properties of the coexisting phases and thermochemical 

properties of the NaCl component: U.S. Geol. Survey open-file rept. 

75-675, 73 p.

Hearn, C. L., 1971, Simulation of stratified waterflood by pseudo relative 

permeability curves: Jour. Petroleum Technology, p. 805-813.

Jacks, H. H., Smith, 0. J. E., and Mattax, C. C., 1973, The modeling of three- 

dimensional reservoir with two-dimensional reservoir simulator - the use 

of dynamic pseudo functions: Soc. Petroleum Engineers Jour., v. 13, 

p. 175-185.

Keenan, J. H., Keyes, F. G., Hill, P. G., and Moore, J. G., 1969, Steam tables: 

London, John Wiley and Sons, Inc., 162 p.

Koenig, J. B., 1973, Worldwide status of geothermal resources, jn_ Kruger, Paul, 

and Otte, Care!, eds., Geothermal energy: Stanford, Calif., Stanford Univ. 

Press, p. 15-58.

Lasseter, T. J., Witherspoon, P. A., and Lippman, M. J., 1975, The numerical 

simulation of heat and mass transfer in multidimensional two-phase 

geothermal reservoirs, in Proceedings of the Second United Nations 

Symposium on the development and use of geothermal resources, San Francisco, 

Calif., May 20-29, 1975: United Nations, v. 3, p. 1715-1724.

Martin, J. C., 1968, Partial integration of equations of multiphase flow: 

Soc. Petroleum Engineers Jour., v. 8, p. 370-380.

83



Mercer, J. W., and Faust, C. R., 1975, Simulation of water- and vapor- 

dominated hydrothermal reservoirs, jn_ Society of Petroleum Engineers 

of AIME, 50th Ann. Fall Mtg., Dallas, Tex., Sept. 28 - Oct. 1, 1975, 

Proc.: Soc. Petroleum Engineers, Paper SPE-5520, 16 p.

Mercer, J. W., Faust, C. R., and Pinder, G. F., 1974, Geothermal reservoir 

simulation, rn_ Conference on research for the development of geothermal 

energy resources, sponsored by National Science Foundation, Pasadena, 

Calif., Sept. 23-25, 1974, Proc.: Nat!. Sci. Found. Rept. RA-N-74-159, 

p. 256-267.

Meyer, C. A., McClintock, R. B., Silvestri, G. J., and Spencer, R. C., 1967, 

ASME steam tables: New York, American Society of Mechanical Engineers, 

2d ed., 328 p.

Moench, A. F., 1976, Simulation of steam transport in vapor-dominated geothermal 

reservoirs: U.S. Geol. Survey open-file rept. 76-607, 43 p.

Muskat, Morris, and Meres, M. W., 1936, The flow of heterogeneous fluids 

through porous media: Physics, v. 7, p. 346-363.

Polubarinova-Kochina, P. Ya., 1962, Theory of ground-water movement: Princeton, 

N.J., Princeton Univ. Press, 613 p.

Raats, P. A. C., and Klute, Arnold, 1968, Transport in soils: The balance of 

momentum: Soil Sci. Soc. America Proc., v. 32, p. 452-456.

Ramey, J. H., Jr., Kruger, Paul, and Raghaven, Raj, 1973, Explosive stimulation 

of hydrothermal reservoirs, rn_ Kruger, Paul, and Otte, Carel, eds., 

Geothermal energy: Stanford, Calif., Stanford Univ. Press, p. 231-249.

Scheidegger, A. E., 1961, General theory of dispersion in porous media: Jour. 

Geophys. Research, v. 66, p. 3278.

Slattery, J. C., 1972, Momentum, energy, and mass transfer in continua: 

New York, McGraw-Hill, 679 p.



Somerton, W. H., Keese, J. A., and Chu, S. L., 1974, Thermal behavior of

unconsolidated oil sands: Soc. Petroleum Engineers Jour., v. 14,

p. 512-521. 

Toronyi, R. M., 1974, Two-phase, two-dimensional simulation of a geothermal

reservoir and the wellbore system: University Park, Pa., Pennsylvania

State Univ., Ph.D. thesis, 222 p. 

Toronyi, R. M., and Farouq Ali, S. M., 1975, Two-phase, two-dimensional

simulation of geothermal reservoir and the wellbore system, in Society

of Petroleum Engineers of AIME, 50th Ann. Fall Mtg. , Dallas, Tex.,

Sept. 28 - Oct. 1, 1975, Proc.: Soc. Petroleum Engineers, Paper SPE-5521,

26 p. 

Truesdell, C., and Toupin, R. A., 1960, The classical field theories, in

Flugge, S., ed., Encyclopedia of Physics III: Berlin, Springer Verlag,

p. 226-793. 

Whitaker, Stephen, 1969, Advances in theory of fluid motion in porous media:

Indus. Engineering Chemistry, v. 12, p. 14-28. 

        1973, The transport equations for multiphase systems: Chem.

Eng. Sci., v. 28, p. 139-147. 

White, D. E., Muffler, L. P. J., and Truesdell, A. H., 1971, Vapor-dominated

hydrothermal systems compared with hot-water systems: Econ. Geology,

v. 66, p. 75-97. 

Witherspoon, P. A., Neuman, S. P., Sorey, M. L., and Lippmann, M. J., 1975,

Modeling geothermal systems: Berkeley, Calif., Univ. of Calif.,

Lawrence Berkeley Lab. Rept. 3263, 68 p. 

Wyckoff, R. D., and Botset, H. G., 1936, The flow of gas-liquid mixtures

through unconsolidated sands: Jour. Appl. Physics, v. 7, p. 325-345.

85


