THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS, PLATES, AND SHELLS

e-mail: jnreddy@tamu.edu **Texas A&M University College Station, TX 77843-3123 USA**

J. N. Reddy

and Shells Reddy I. N. Reddy ORC actine. An Introduction to Nonlinear Finite Element Analysis with applications to heat tran fluid mechanics, and solid mechanics I. N. REDDY

Theory and Analysis

of Elastic Plates

* This document contains a copy of the overheads used in the course. Much of the material used in the course comes from the instructor's book, *Mechanics of Laminated Composite Plates and Shells* (2nd ed., CRC [**Preside**04); other material comes from the research publications of the lecturer.

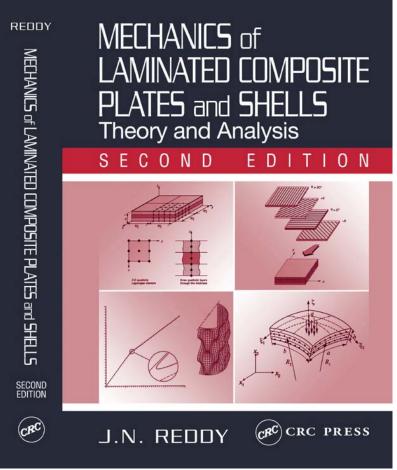
THEORY AND ANALYSIS OF LAMINATED COMPOSITE AND FUNCTINALLY GRADED BEAMS AND PLATES

CONTENTS

- Composite Materials: General Introduction
- Laminate Theories (CLPT and FSDT)
- Finite Element Models
- FGM Beams and Plates
- Nonlocal Elasticity of Eringen for Beams
- Modified Couple Stress Theory of Beams and Plates
- Strain Gradient Theory of Srinivasa and Reddy
- Summary of the Course and Closing Comments

COMPOSITE MATERIALS: General Introduction

- Composite Materials Definition
- > The Big Picture
- > The Role of Stress Analysis
- Classification of Composites
- > Advantages and Disadvantages of Composites
- > Use of Composite Materials in Aerospace Structures
- Study Areas in Composites
- Structural Analysis of Composite Structures
- Mechanical Characterization

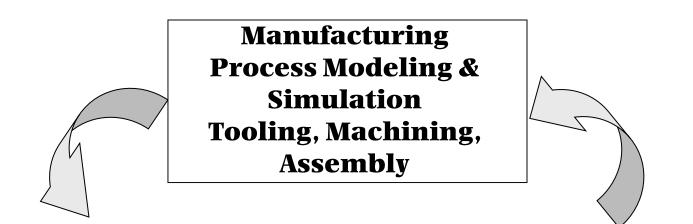

NOTE:

Minor changes are made here and there to the viewgraphs without adding any major new material.

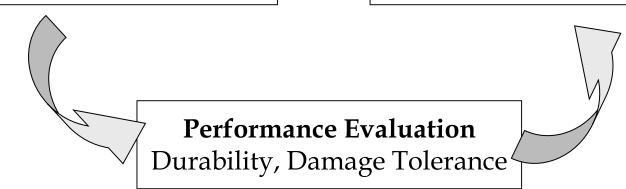
PRIMARY REFERENCE on mechanics of composite materials

J. N. Reddy, *Mechanics of Laminated Composite Plates and Shells*, 2nd ed., CRC Press, 2004 (introduction to the theory and analysis - analytical as well as FEM - of laminated composite plates and shells)

A list of papers authored by JN Reddy is provided at the end of this lecture notes. References to the works of many other authors can be found in *References* cited in the author's papers.

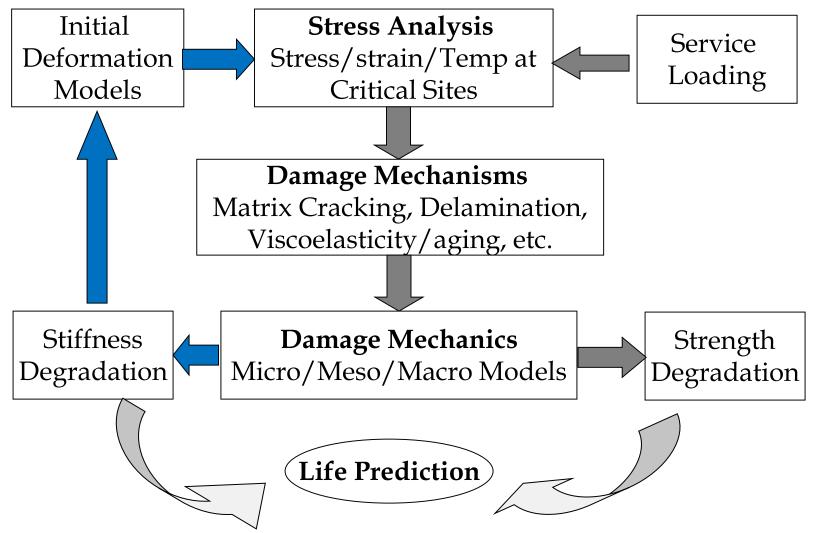


General Introduction 4


Definition: Two or more materials combined on a *macroscopic* scale to form a useful third material

Properties to be Improved: Strength, stiffness, weight, fatigue life, wear resistance, thermal insulation, thermal conductivity, corrosion resistance, acoustical insulation, etc.

THE BIG PICTURE



Materials Characterization Stiffness, Strength, Toughness **Cost Analysis** Cost/Performance, Trade-offs

General Introduction 6

THE ROLE OF STRESS ANALYSIS

JN Reddy

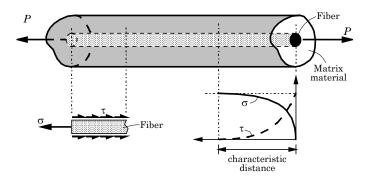
General Introduction 7

CLASSIFICATION OF COMPOSITE MATERIALS

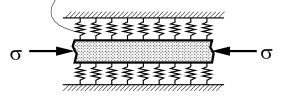
Fibrous composites:Fibers in a matrixParticulate composites:Particles in a matrixCombinations of above:Reinforced fiber-reinforced
composites

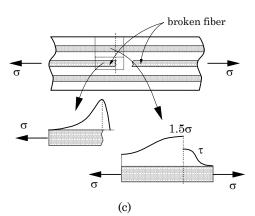
Woven composites

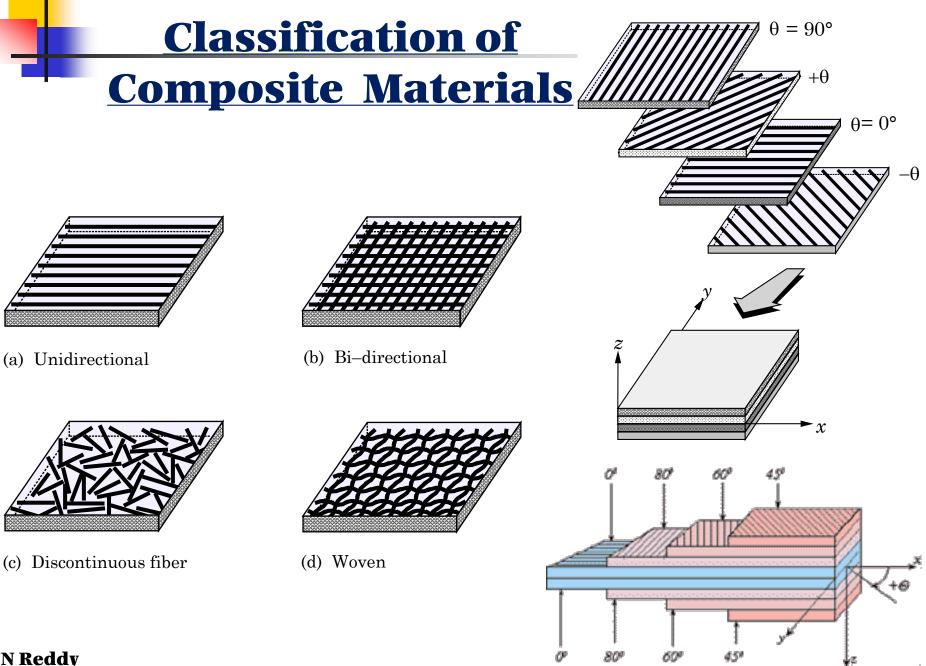
Braided composites

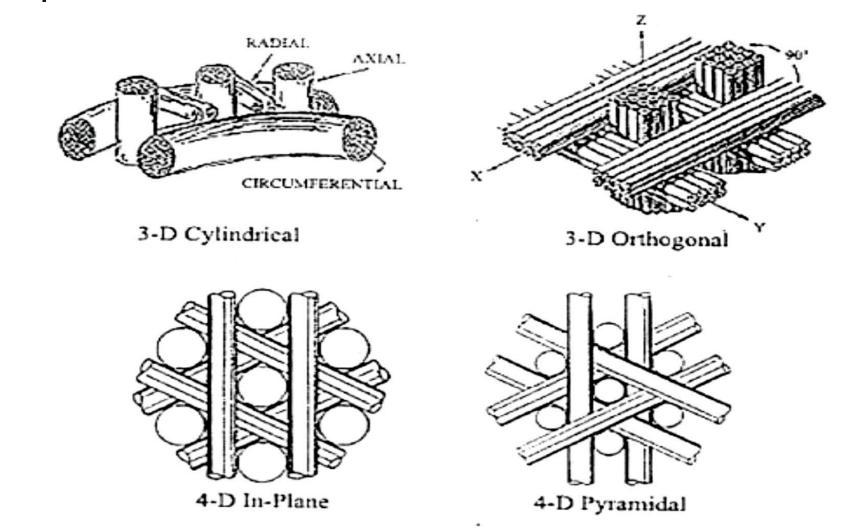

Laminated composites: Layers of various materials (nano-composites)

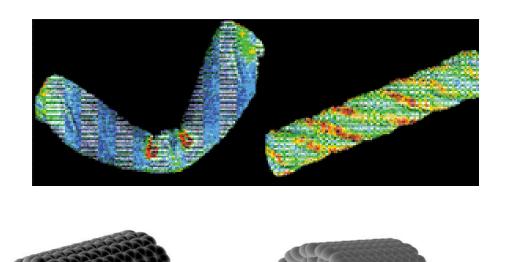
<u>Fiber-reinforced Composite</u> <u>Materials: Constituents</u>

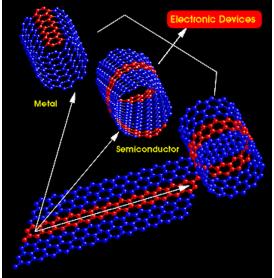

Fiber: Load-carrying agent

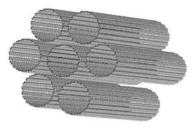

Matrix: Supports and protects fibers, and transfers load between broken fibers


Lamina: Basic building block; flat or curved arrangement of unidirectional or woven fibers in a matrix


springs represent the lateral restraint provided by the matrix

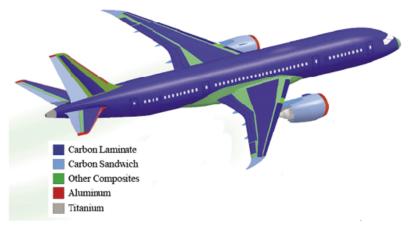



Woven Composites



Nanocomposites: Carbon Nanotubes

Carbon nanotubes can be viewed as a sheet of graphite that has been rolled in to a single tube. Carbon nanotubes can be single- or multi-walled.


General Introduction 12

Advantages/Disadvantages of Composites

Advantages	Disadvantages
 Weight reduction High strength or stiffness to weight ratio Tailorable properties Can tailor strength or stiffness in the load direction Longer life (no corrosion) Lower manufacturing costs because of less part count. Inherent damping. Increased (or decreased) thermal or electrical conductivity 	 Cost of raw material and fabrication Transverse properties may be weak. Matrix is weak, low toughness Reuse and disposal may be difficult Difficult to attach. Analysis is difficult. Matrix subjected to environment degradation.

Composites in Aerospace Structures

Boeing 787 – more than 50% structure is made of composites

Composite components are approximately 15% of structural weight for civil aircraft.

For military aircrafts and helicopters, it is 40% of structural weight.

Earlier use of fibrous composites in aerospace are because of the potential for lighter structures as it affects fuel consumption, performance, and payload **IN Reddy**

General Introduction 14

Design requirements and objective for

aerospace vehicles

Produc	t Structural item	Primary structural requirements	Primary design Objectives
<u>Aircraft</u> Airframe	Compressive strength Damage tolerance	Minimum weight	
	Joint strength Durability	Maximum service	
Rotor blades Helicopter Understructure	Tensile strength Stiffness	Minimum weight	
	Fatigue life	Maximum service life	
	Stiffness Energy absorption	Minimum weight	
			Crashworthiness
Reddy		(General Introduction

Design requirements and objective for aerospace and underwater vehicles

Product	Structural item	Primary structural requirements	Primary design Objectives
Rocket motor	Motor cases nozzles	Tensile strength Resistance to elevated temperature	Minimum weight Survivability at 2000 C
Satellite	Rotor blades	Stiffness Low thermal expansion	Minimum weight Dimensional stability
Marine (sub- mercibles)	Understructure	Compression strength and stability Joint integrity	Minimum weight Maximum depth
Reddy		Ge	eneral Introduction 16

CHOICE OF COMPOSITE MATERIALS

Reason for use	Material selected	Application/driver
Lower inertia, less deflection	High strength carbon/graphite- epoxy	Industrial rolls
Light weight, damage tolerance	High strength carbon/graphite, hybrids, epoxy	Trucks and buses to reduce environment pollutions
More reproducible complex surface	High strength or high modulus carbon, graphite epoxy	High special aircraft