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� A growing body of threshold models has been developed over the past two decades to capture
the nonlinear movement of financial time series. Most of these models, however, contain a single
threshold variable only. In many empirical applications, models with two or more threshold
variables are needed. This article develops a new threshold autoregressive model which contains
two threshold variables. A likelihood ratio test is proposed to determine the number of regimes
in the model. The finite-sample performance of the estimators is evaluated and an empirical
application is provided.

Keywords Bootstrapping; Likelihood ratio test; Misspecification; Threshold autoregressive model.

JEL Classification C22.

1. INTRODUCTION

A growing body of threshold models has been developed over the
past two decades to capture the nonlinear movement of financial time
series. Tong (1983) develops a threshold autoregressive (TAR) model and
uses it to predict stock price movements. A number of new models have
been proposed since the seminal work of Tong (1983), including the
smooth transition threshold autoregressive model (STAR) of Chan and
Tong (1986) and the functional-coefficient autoregressive (FAR) model of
Chen and Tsay (1993). Tsay (1998) develops a multivariate TAR model for
the arbitrage activities in the security market. Dueker et al. (2007) develop
a contemporaneous TAR model for the bond market.
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Theory and Applications of TAR Model 143

Most of the aforementioned models, however, contain a single
threshold variable only. In many empirical applications, a model with two
or more threshold variables is more appropriate. For example, Leeper
(1991) divides the policy parameter space into four disjoint regions
according to whether monetary and fiscal policies are active or passive.
Given these policy combinations, macroeconomic variables such as real
output, inflation, and unemployment have different dynamics. Tiao and
Tsay (1994) divide the U.S. quarterly real Gross National Product (GNP)
growth rate into four regimes according to the level and sign of the past
growth rate. Durlauf and Johnson (1995) split that cross-country GDP
growth rate into different regimes according to the level of per capita real
GDP and literacy rate. In modelling currency crises, Sachs et al. (1996),
Frankel and Rose (1996), Kaminsky (1998), and Edison (2000) argue that
the occurrence of currency crises hints at the values of fiscal reserves,
foreign reserves, and interest rate differential between home countries and
the United States. In these examples, TAR models with multiple threshold
variables can be used to describe the dynamics of different regimes.1

As the distributional theory is rather involved, no asymptotic result has
been developed for TAR models with multiple threshold variables.2 This
article contributes to the literature by developing estimation and inference
procedures for TAR models with two threshold variables. Our model is
applied to identify the regimes of the Hong Kong stock market. The case
of Hong Kong is of interest because of its rising role as a global financial
center. In 2006, Hong Kong became the world’s second most popular place
for Initial Public Offering (IPO) after London. In 2007, the Hong Kong
stock market ranked fifth in the world, while its warrant market ranks top
worldwide in terms of turnover. Using the historical prices of the Hang
Seng index and the market turnover as threshold variables, our estimation
shows that the stock market of Hong Kong can be classified into a high-
return stable regime, a low-return volatile regime, and a neutral regime.
This is different from the conventional bull–bear classification.

The remainder of the article is organized as follows: Section 2 presents
the model and discusses the estimation procedure. Section 3 derives
the limiting distribution of the threshold estimators. Section 4 proposes
a likelihood ratio test to determine the number of regimes. Monte
Carlo simulations are conducted, and the performance of the estimation
procedure is evaluated in Section 5. An empirical application is provided
in Section 6. Section 7 concludes the article.

1Threshold model with two threshold variables can also be applied to the cross-section of
financial data. For example, in the Fama and French (1992) model, one may use firm size and
book-to-market ratio as threshold variables to explain abnormal returns of a stock. Avramov et al.
(2006) also sort stocks into different categories according to historical returns and liquidity level.

2A related empirical study is the nested threshold autoregressive (NeTAR) models of Astatkie
et al. (1997).

D
ow

nl
oa

de
d 

by
 [

H
ai

qi
an

g 
C

he
n]

 a
t 0

3:
22

 0
7 

N
ov

em
be

r 
20

11
 



144 H. Chen et al.

2. TAR MODEL WITH TWO THRESHOLD VARIABLES

Consider the following TAR model with two threshold variables which
classifies the observations yt into four regimes:

yt =




�(1)
0 + �(1)

1 yt−1 + �(1)
2 yt−2, � � � ,+�(1)

p1 yt−p1 + ut , when z1t ≤ �01, z2t ≤ �02

�(2)
0 + �(2)

1 yt−1 + �(2)
2 yt−2, � � � ,+�(2)

p2 yt−p2 + ut , when z1t ≤ �01, z2t > �02

�(3)
0 + �(3)

1 yt−1 + �(3)
2 yt−2, � � � ,+�(3)

p3 yt−p3 + ut , when z1t > �01, z2t ≤ �02

�(4)
0 + �(4)

1 yt−1 + �(4)
2 yt−2, � � � ,+�(4)

p4 yt−p4 + ut , when z1t > �01, z2t > �02

,

(1)

where

zt
def= (z1t , z2t) are the threshold variables;

�0
def= (

�01,�
0
2

) ∈ �, where � = [�1, �1] × [�2, �2] is a strict subset of the support
of zt � �0 is the threshold parameter vector pending to be estimated;

pj (j = 1, 2, 3, 4) is the order in each regime;

�(j) def= (�
(j)
0 , �(j)

1 , �(j)
2 , � � � , �(j)

pj )
′ are the structural parameters and �(i) �= �(j)

for some i �= j .3

The model is a linear AR model within each regime.4 The threshold
variables z1 and z2 can be exogenous variables or functions of the lags of
yt .5 Given �yt , zt�

T
t=1, our objective is to estimate the threshold parameters

�0 and the structural parameters �(j). Without loss of generality, we let p =
max �p1, p2, p3, p4� , and �(j)

q = 0 when q > pj , j = 1, 2, 3, 4. The model can
be rewritten as

yt =
4∑

j=1

�
(j)
t

(
�0

)
(�

(j)
0 +

p∑
i=1

�
(j)
i yt−i + ut), (2)

3Restrictions on the structural parameters can be imposed so that there are less than four
regimes. For example, if �(1) = �(2) = �(3), the model will have two regimes only.

4An empirical example of the Model (1) is Tiao and Tsay’s (1994) four-regime TAR model
for quarterly U.S. real GNP growth rates yt :

yt =




−0�015 − 1�076yt−1 + �1t , yt−1 ≤ yt−2 ≤ 0

0�63yt−1 − 0�76yt−2 + �2t , yt−1 > yt−2, yt−2 ≤ 0

0�006 + 0�43yt−1 + �3t , yt−1 ≤ yt−2, yt−2 > 0

0�433yt−1 + �4t , yt−1 > yt−2 > 0

�

In their model, the process is divided into four regimes by z1t = yt−2 and z2t = yt−1 − yt−2, and
the threshold values are set to zero. In practice, we need to estimate the threshold values.

5The model is a Self-Exciting Threshold Autoregressive (SETAR) model if the threshold
variable is yt−d .
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Theory and Applications of TAR Model 145

where �
(j)
t

(
�0

)
is an indicator function which equals one when the

threshold condition is satisfied, and equals zero otherwise. Specifically,

�(1)
t

(
�0

) = I
(
z1t ≤ �01, z2t ≤ �02

)
,

�(2)
t

(
�0

) = I
(
z1t ≤ �01, z2t > �02

)
,

�(3)
t

(
�0

) = I
(
z1t > �01, z2t ≤ �02

)
,

�(4)
t

(
�0

) = I
(
z1t > �01, z2t > �02

)
�

For analytical reasoning, it is convenient to rewrite the model (2) in
the following matrix form:

Y =
4∑

j=1

Ij(�0)X�(j) + U , (3)

where

X = (x ′
T , x

′
T−1, � � � , x

′
p+1)

′ =




1, yT−1, yT−2, � � � , yT−p

1, yT−2, yT−3, � � � , yT−p−1

� � � �
1, yp , yp−1, � � � , y1




(T−p)×(p+1)

,

xt = (1, yt−1, � � � , yt−p)
′ for t = p + 1, � � � ,T �

Ij(�0) = diag
{
�

(j)
T

(
�0

)
,�(j)

T−1

(
�0

)
, � � � ,�(j)

p+1

(
�0

)}
,

Y = (yT , yT−1, � � � , yp+1)
′,

U = (uT ,uT−1, � � � ,up+1)
′�

We make the following assumptions:

(A1) yt is stationary ergodic and E(y4t ) < ∞�
(A2) �ut� is a sequence of independent and identical distributed (IID)

normal errors with zero mean and finite variance 	2.
(A3) The threshold variables z1t and z2t are strictly stationary and have

a continuous joint distribution F (�), which is differentiable with
respect to both variables. Let f (�) denote the corresponding joint
density function and fi(�) = 
F (�)


�i
. We assume that 0 < f (�) ≤ f <

∞; 0 < fi(�) ≤ fi < ∞ for i = 1, 2�

(A1) assumes that yt is stationary ergodic, which allows us to apply
the law of large number. A sufficient condition for (A1) to hold is
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146 H. Chen et al.

maxj
∑

i(|�(j)
i |) < 1.6 (A2) assumes that �ut� is a sequence of i.i.d. normal

errors with finite second moment.7 (A3) requires the stationarity of
the threshold variables. We also assume that the threshold variables are
continuous with positive density everywhere, so that it is dense near �0 as
the sample size increases. This assumption is needed for the consistent
estimation of threshold values.

Given � = (�1,�2), the conditional least square (CLS) estimator for �(j)

is defined as

�̂(j) (�) = (X
′
Ij(�)X )−1X

′
Ij(�)Y ,

(
j = 1, 2, 3, 4

)
, (4)

where

Ij(�) = diag
{
�

(j)
T (�) ,�(j)

T−1 (�) , � � � ,�
(j)
p+1 (�)

}
�

The residual sum of squares is

RSST (�) =
∥∥∥∥

4∑
j=1

Ij(�0)X�(j) + U −
4∑

j=1

Ij(�)X �̂(j) (�)

∥∥∥∥2

,

and we define the estimator of �0 as the value that minimizes RSST (�):

�̂ = argmin
�∈�

RSST (�) � (5)

The structural estimators evaluated at the estimated threshold values
are defined as

�̂(j)
(
�̂
) = (X ′Ij(�̂)X )−1X ′Ij(�̂)Y � (6)

Appendix 2 shows the consistency of the estimators (�̂, �̂(j)
(
�̂
)
).

3. LIMITING DISTRIBUTION OF
(
�̂1, �̂2

)

In this section, the asymptotic joint distribution of the least-squares
estimator �̂ is derived under the assumption that the magnitude of change
goes to zero at an appropriate rate. As pointed out by Hansen (2000), the
assumption of decaying threshold effect is needed in order to obtain an

6See Chan (1993) and Hansen (1997).
7In this article, we generalize the TAR model to the one with two threshold variables. The

error term ut is assumed to be i.i.d. normal in order to derive the asymptotic distribution of
the threshold estimators. We can relax this assumption and allow for heteroskedasticity of ut . The
estimators will still be consistent. See Hansen (1997) for more discussion on the heteroskedastic
errors.
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Theory and Applications of TAR Model 147

asymptotic distribution of �̂ free of nuisance parameters.8 For notational
simplicity, we rewrite Model (2) as

Y = X�(1) +
4∑

j=2

X (j)
�0
�(j) + U , (7)

where

X (j)
�0

= Ij
(
�0

)
X ,

(
j = 2, 3, 4

)
and

�(j) = �(j) − �(1),
(
j = 2, 3, 4

)
�

For any given �, we define

X (j)
� = Ij (�)X ,

(
j = 1, 2, 3, 4

)
�

Observe that X (i)′
� X (j)

� = 0 if i �= j , and X
′
X (j)

� = X (j)′
� X (j)

� �

Let X (j)
0 = X (j)

�0
, we have

X =
4∑

j=1

X (j)
0 =

4∑
j=1

X (j)
� �

We define the following conditional moment functionals:

D (�) = E
(
xtx ′

t | zt = �
)
, (8)

V (�) = E
(
xtx ′

t u
2
t | zt = �

)
� (9)

Let D = D(�0), V = V (�0). Under the assumption (A2), V = 	2D� We
define block diagonal matrices D∗ = diag �D,D� and V ∗ = diag �V ,V �.9 We
also need the following assumptions before the limiting distribution of �̂
can be obtained. These assumptions mainly follow Hansen (1997, 2000).

(A4) M > Mj(�) > 0 for all � ∈ �, where M = E
(
xtx ′

t

)
,Mj (�) =

E
(
xtx ′

t�
(j)
t (�)

)
, j = 1, 2, 3, 4�

(A5) �T = (�(2)
′
, �(3)

′
, �(4)

′
)

′ = cT −� = (c ′
2, c

′
3, c

′
4)

′T −�, 0 < � < 1
2 , c is a 3p-

dimensional constant vector and ci is a p-dimensional constant vector
for i = 2, 3, 4.

8This approach is first used in the literature of change points (Bai, 1997) and applied to the
threshold model by Hansen (2000).

9Note that D and V are p × p matrices and D∗ and V ∗ are 2p × 2p matrices.
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148 H. Chen et al.

(A6) D(�) and V (�) are continuous at � = �0�
(A7) d ′

1D
∗d1 > 0, d ′

2D
∗d2 > 0, where d1 = (c ′

2 − c ′
4, c

′
3)

′, d2 = (c ′
2, c

′
3 − c ′

4)
′�

(A4) is the conventional full-rank condition which excludes perfect
collinearity. � is restricted to be a proper subset of the support of z�

(
A5

)
assumes that the parameter change is small and converges to zero at a
slow rate when the sample size is large. Under this assumption, we are able
to make the limiting distribution of �̂ free of nuisance parameters (Chan,
1993). By letting �T go to zero, we reduce the rate of convergence of �̂
from Op(T −1) to Op(T −1+2�) and obtain a simpler limiting distribution of
�̂. (A6) requires the moment functionals to be continuous so that one can
obtain the Taylor expansion around �0� This condition excludes regime-
dependent heteroskedasticity. (A7) excludes the continuous threshold
model.10 Moreover, d ′

1D
∗d1 > 0 and d ′

2D
∗d2 > 0 impose the identification

condition for �01 and �02, respectively.
11

Theorem 1. Under assumptions (A1) to (A7), we have

T 1−2�T
(
(�̂1 − �01), (�̂2 − �02)

) = (r1, r2)

d→ argmax
−∞<r1<∞,−∞<r2<∞

[
−1
2

∣∣r1∣∣ + W1 (r1) − 1
2

∣∣r2∣∣ + W2(r2)
]
,

where

T =
(
(d ′

1D
∗d1)f 0

1

	2
,
(d ′

2D
∗d2)f 0

2

	2

)
,

and Wi(ri) is a two-sided Brownian motion on the real line defined as

Wi(ri) =



�i1(−ri) if ri < 0
0 if ri = 0
�i2(ri) if ri > 0

,

�i(ri), i = 1, 2, and j = 1, 2 are four independent standard Brownian motions on
[0,∞)�

Proof. See Appendix 3. �

10This article focuses on the discontinuous threshold effect. For continuous threshold models,
one is referred to Chan and Tsay (1998).

11Note that d1 = (c ′
2 − c ′

4, c
′
3)

′ measures the size of the threshold effect for the first threshold
variable z1, while d2 = (c ′

2, c
′
3 − c ′

4)
′ measures the size of the threshold effect for the second threshold

variable z2. When c2 = c4 �= 0 and c3 = 0, we obtain a single threshold model with only two regimes
separated by z2 = �02. In this case, �01 is not identified. When c2 = 0 and c3 = c4 �= 0, we have a
single threshold model with only two regimes separated by z1 = �01 and �02 is not identified.
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Theory and Applications of TAR Model 149

The result of Hansen (1997) is a special case of Theorem 1 with d1 = 0
or d2 = 0. One can also use Theorem 1 to simulate the confidence interval
of (�̂1, �̂2)� The parameter ratio T can be estimated by a polynomial
regression or kernel regression. See Hansen (1997, 2000).

4. TESTING FOR AND ESTIMATION OF THE THRESHOLD

To determine the number of regimes, we first consider the null
hypothesis of no threshold effect:

H0 : �(1) = �(2) = �(3) = �(4)�

Under the null hypothesis, there is only one regime. We define a
likelihood ratio test statistic as

JT = max
�∈�

(T − p)
	̃2 − 	̂2(�)

	̂2(�)
� (10)

(T − p )̃	2 is the residual sum of squares under the null hypothesis,
while (T − p)	̂2(�) is the residual sum of squares under the alternatives. If
H0 cannot be rejected, then the model is a simple AR model. Rejection of
the null hypothesis suggests the existence of more than one regimes. The
threshold estimator is defined as �̂ = argmin 	̂2(�) = argmax JT (�). Since
� is not identified under the null hypothesis, the asymptotic distribution
of JT (�̂) is not a standard �2� Hansen (1996) shows that the asymptotic
distribution can be approximated by the following bootstrap procedure.

Let u∗
t (t = 1, � � � ,T ) be i.i.d. N (0, 1), and set y∗

t = u∗
t . Next, we regress

y∗
t on xt = (1, y∗

t−1, y
∗
t−2, � � � , y

∗
t−p) to obtain the J ∗

T (�) = (T − p) 	̃
∗2−	̂∗2(�)
	̂∗2(�) and

J ∗
T = max�∈� J ∗

T (�)�
The distribution of J ∗

T converges weakly in probability to the
distribution of JT under the null hypothesis. Therefore, one can use the
bootstrap value of J ∗

T to approximate the asymptotic null distribution of JT �
The percentage of draws where the simulated statistic under H0 exceeds
the one obtained from the original sample is our bootstrapping p-value.
The null hypothesis will be rejected if the p-value is small.

Rejection of the null hypothesis implies the presence of threshold
effects. To determine the number of regimes, a general-to-specific
approach is adopted. First, a three-regime model is tested against a four-
regime model. Each of the following hypotheses

(I) H0 : �(1) = �(2);
(II) H0 : �(1) = �(3);
(III) H0 : �(1) = �(4);
(IV) H0 : �(2) = �(3);
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150 H. Chen et al.

(V) H0 : �(2) = �(4);
(VI) H0 : �(3) = �(4)�

is tested against the alternative hypothesis

H1 : there are four regimes�

A likelihood ratio test

JT (�̂) = (T − p)
	̂2
0(�̂) − 	̂2

1(�̂)

	̂2
1(�̂)

(11)

is used to test these pairs of hypotheses, where (T − p)	̂2
0(�̂) is the

residual sum of squares under H0, and (T − p)	̂2
1(�̂) is the residual sum

of squares under H1. A parametric bootstrap method is applied to obtain
the critical value. �̂ is the estimated value from the unrestricted model.
Let y∗

t = ∑4
j=1(�̂

(j)
0 + ∑p

i=1 �̂
(j)
i y∗

t−i)�
(j)
t (�̂) + u∗

t , where u∗
t are i.i.d. N (0, 1)

and �̂
(j)′
i s are estimated under the restricted model. We regress y∗

t on xt =
(1, y∗

t−1, y
∗
t−2, � � � , y

∗
t−p) to obtain J ∗

T (�̂) = (T − p) 	̂
∗2
0 (�̂)−	̂∗2

1 (�̂)

	̂∗2
1 (�̂)

, and repeat this
procedure a large number of times to calculate the percentage of draws for
which the simulated statistic exceeds the actual value. The null is rejected
if this p-value is too small.

Rejection of all the null hypotheses (I)–(VI) implies the existence of
four regimes. If any one of them is accepted, then there are less than four
regimes, and we proceed to test a two-regime model against a three-regime
model. For instance, if (I ) H0 : �(1) = �(2) is accepted, then there are at
most three regimes, and we proceed to test the two-regime model against
the three-regime model. The following three hypotheses are tested using
JT (�̂):

H0 : �(1) = �(2) = �(3);

H0 : �(1) = �(2) = �(4);

H0 : �(1) = �(2), �(3) = �(4)�

The alternative hypothesis is:

H1 : There are three regimes with �(1) = �(2)�

If all the above null hypotheses are rejected, we conclude that there are
three regimes. Otherwise, we conclude that the model has two regimes. In
empirical studies, one can estimate the autoregressive order, the threshold
value, and the coefficients of the TAR model via the following procedure.
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Theory and Applications of TAR Model 151

Step 1: First, a first-order TAR model is estimated:

yt =
4∑

j=1

(�̂
(j)
0 + �̂

(j)
1 yt−1)�

(j)
t (�) + ût ,

and the initial threshold estimate �̂T is obtained.
The first-order model is estimated for simplicity purposes (Chong,

2001). The initial threshold estimate will still be consistent even if the true
model is not of the first-order (Bai et al., 2008; Chong, 2003).12

Step 2: Given the threshold values obtained from step 1, we use
the Akaike Information Criterion (AIC) (Tsay, 1998) to select the
autoregressive order in each regime. In our case,

AICj(pj) = nj ln[RSSj(�̂T )/nj ] + 2(pj + 1), (12)

where

nj is the number of observations in the j th regime;
pj is the order of autoregression in the j th regime;
RSSj(�̂T ) is the residual sum of squares for the j th regime.

Define

p̂j = argmin
pj∈�1,2,���,Pmax�

AICj(pj), (13)

where Pmax is the maximum order considered in the model. The AIC for
the whole model can be written as

NAIC =
s∑

j=1

AICj(p̂j), (14)

where s is the number of regimes.

Step 3: Perform the sequential likelihood ratio test to determine the
number of regimes.

Step 4: Use the result obtained from step 3 to refine the threshold
values, and repeat steps 2 and 3 until all the estimates converge.

12The proof is available upon request.

D
ow

nl
oa

de
d 

by
 [

H
ai

qi
an

g 
C

he
n]

 a
t 0

3:
22

 0
7 

N
ov

em
be

r 
20

11
 



152 H. Chen et al.

5. SIMULATIONS

In the previous section, it is argued the threshold value can be
consistently estimated even if we start with a misspecified model in step
1. This result is obtained by Chong (2003) and Bai et al. (2008). The
following experiments examine the consistency of the threshold estimator
under model misspecifications.

The experiment is set up as follows:
Sample size: T = 200;
Number of replications: N = 500;
ut ∼ N (0, 1), �t ∼ N (0, 1), z1t ∼ N (0, 1);
Pmax = 10�
We consider two cases for z2t : (i) z2t ∼ N (0, 1), and (ii) z2t = z1t + �t �

The following data generating processes are examined:

DGP 1: yt = (0�3yt−1 + 0�3yt−2)I (z1t ≤ 0 or z2t ≤ 0) + (−0�3yt−1 − 0�3yt−2)I
(z1t > 0 and z2t > 0) + ut ;

DGP 2: yt = 0�3yt−1I (z1t ≤ 0 or z2t ≤ 0) − 0�3yt−1I (z1t > 0 and z2t > 0) + ut �

Three misspecified models are estimated:

Model A: yt = ∑4
j=1 �̂

(j)
1 yt−1�

(j)
t (�) + ût ;

Model B: yt = ∑4
j=1(�̂

(j)
1 yt−1 + �̂

(j)
2 yt−2)�

(j)
t (�) + ût ;

Model C: yt = �̂(1)
1 yt−11(z1t ≤ �1) + �̂(2)

1 yt−11(z1t > �1) + ût .

Model A underestimates the autoregressive order p, while Model B
overestimates the autoregressive order p� Both of them overestimate the
number of regimes. The estimation results are reported in Table 1. For all
misspecified estimated models, �̂1 and �̂2 converge to the true threshold
value 0. The results for models A and B suggest that the consistency of
the threshold estimators is unaffected by the misspecification of regressors.
Therefore, if the number of threshold variables is known, one can obtain
a preliminary and consistent threshold estimate using the simplest model
possible. The preliminary estimate of the threshold value can be used to
obtain the estimates of other parameters of interest. In the context of
our model, such a preliminary threshold value allows us to determine
the number of regimes, as well as the order and parameters of the
autoregressive model within each regime.

The results of Chong (2003) and Bai et al. (2008) apply to cases where
the threshold variables are correctly specified. Model C underspecifies the
number of threshold variables. The results for Model C show that the
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Theory and Applications of TAR Model 153

TABLE 1 The simulation results

DGP Estimated model z2t �̂1 Var (�̂1) �̂2 Var (�̂2)

1 A N (0, 1) 0�007 0�030 −0�002 0�025
1 A z1t + �t −0�002 0�036 −0�003 0�029
2 B N (0, 1) −0�001 0�025 −0�005 0�034
2 B z1t + �t −0�006 0�025 0�002 0�027
2 C N (0, 1) −0�015 0�68
2 C z1t + �t −0�19 0�28

estimators of the single threshold-variable model may not be consistent in
the presence of two dependent threshold variables.

6. EMPIRICAL APPLICATION

Our model is applied to the daily return series of the Hang Seng Index.
The Hong Kong stock market is studied because of its rising role as a
global financial center. In 2006, Hong Kong becomes the world’s second
most popular place for IPO after London. In 2007, the Hong Kong stock
market ranks fifth in the world, and its warrant market ranks first globally
in terms of turnover. Most of the previous studies in the literature use
the first lagged return as the threshold variable to identify the market
regimes. Such a classification method does not take investors’ sentiment
into account and does not consider the information of market turnover.
In this article, we use the past information of price and market turnover to
construct our threshold variables. Our sample period runs from January 3
1995 to January 13, 2005. The return series is defined as the log-difference
of the Hang Seng Index (HSI). There are over 2500 observations in our
sample. Figures 1 and 2 show the time series data for daily return and
market turnover.

The two threshold variables are analogous to those of Granville (1963)
and Lee and Swaminathan (2000). We define the first threshold variable
as

Rapt = PMA20t
PMA250t

, (15)

where

PMA250t =
∑250

j=1 pt−j

250
, PMA20t =

∑20
j=1 pt−j

20
�

PMA250t is the average price for the past 250 trading days.
PMA20t is the average price for the past 20 trading days.
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154 H. Chen et al.

FIGURE 1 Hand Seng index return series.

The variable is a ratio of two moving averages, which is similar to
that of Hong and Lee (2003). In particular, the 250-day moving average,
which is widely used by investors to define the market state, is employed.
If the price rises above (falls below) the 250-day moving average, an
average investor who has taken a long position in the previous year (about
250 trading days) has made a profit (loss), suggesting that the market
sentiment should be good (bad). To reduce noise, we use the crossing

FIGURE 2 Hand Seng index daily trading volume.
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Theory and Applications of TAR Model 155

of the 20-day and 250-day moving averages to help identify the market
regimes.

The second threshold variable contains the information of the market
turnover, which has been widely used to measure the liquidity of the
market, see Amihud and Mendelson (1986), Brennan et al. (1998),
and Amihud (2002) among others. Several studies have shown that
the autocorrelation in stock returns is related to turnover or trading
volume. For example, Campbell et al. (1993) find that the first-order daily
return autocorrelation tends to decline with turnover, and the returns
accompanied by high volume tend to be reversed more strongly. Llorente
et al. (2002) point out that intensive trading volume can help to identify
the periods in which shocks occur. Therefore, we define the second
threshold variable as

Ravt = log(turnovert−1) − MAVt−1, (16)

where

MAVt =
∑250

j=1 log(turnovert−j)

250
�

Figure 3 shows the two threshold variables Rapt and Ravt .

FIGURE 3 The two threshold variables.
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156 H. Chen et al.

TABLE 2a Results of the LR test for 4 regimes vs 3 regimes

H1 : s = 4 �(i) �= �(j) when i �= j

H0 : s = 3 �(2) = �(1) �(3) = �(2) �(4) = �(1) �(3) = �(1) �(2) = �(4) �(3) = �(4)

JT (�̂) 126�7 136�3 5�45 16�59 93�05 18�79
p-value < 0�01 < 0�01 > 0�05 < 0�05 < 0�01 < 0�05

TABLE 2b Results of the LR test for 3 regimes vs. 2 regimes

H1 : s = 3 �(4) = �(1)

H0 : s = 2 �(2) = �(3), �(4) = �(1) �(1) = �(2) = �(4) �(3) = �(4) = �(1)

JT (�̂) 107�9 159�5 18�77
p-value < 0�01 < 0�01 < 0�05

Our four-regime threshold model on the return series is

yt =
4∑

j=1

�
(j)
t

(
�0

)
(�

(j)
0 + �

(j)
1 yt−1 + �

(j)
2 yt−2 + · · · + �

(j)
p yt−pj ) + ut , (17)

where:

yt is the return series defined as the log-difference of the HSI;
�(1)

t

(
�0

) = I
(
Rapt ≤ �01, Ravt ≤ �02

)
;

�(2)
t

(
�0

) = I
(
Rapt ≤ �01, Ravt > �02

)
;

�(3)
t

(
�0

) = I
(
Rapt > �01,Ravt ≤ �02

)
;

�(4)
t

(
�0

) = I
(
Rapt > �01,Ravt > �02

)
.

The estimated threshold values from step 1 in Section 3 are �̂rap = 1�02
and �̂rav = 0�57. The results of the sequential likelihood ratio test are shown
in Tables 2a and 2b.

Note from Table 2a that the null hypothesis �(4) = �(1) cannot be
rejected since JT (�̂) has a p-value larger than 0�05�13 Next, we proceed
to test the 3-regime model against the 2-regime model. The results
from Table 2b suggest that the movement of the return series can be
approximated by a three-regime model.

Table 3 shows the final estimation results. The threshold estimates are
revised to �̂ = (1�02, 0�53)�

13In some cases, if two or more hypotheses cannot be rejected, we choose the one with the
largest p-value as the candidate model in the subsequent step.
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Theory and Applications of TAR Model 157

TABLE 3 The estimated TAR model

Regime Estimation results

I yt = 0�0003 + 0�065yt−1, if Rapt > 1�02 and Ravt ≤ 0�53
II yt = 0�0067 − 0�3yt−1 − 0�4yt−2 + 0�18yt−3 + 0�09yt−4 − 0�12yt−5 + 0�54yt−6

−0�5yt−7 − 0�18yt−8, if Rapt ≤ 1�02 and Ravt > 0�53
III yt = 0�00014 + 0�096yt−1 otherwise

Figure 4 plots the estimated residuals of the model.14

Using the Markov-switching model, Maheu and McCurdy (2000) divide
the stock market into a high-return stable regime and a low-return volatile
regime. From Table 3, we are able to classify the stock market of Hong
Kong into three regimes. Since high turnover is usually associated with
volatile returns Karpoff (1987); Foster and Viswanathan (1995), Regime
I generated by our model corresponds to the high-return stable regime,
while Regime II is the low-return volatile regime.15 Regime III is a neutral
regime. Table 4 shows a chronology of major events affecting the Hong
Kong stock market between 1996 and 2005.16

7. CONCLUSION

Conventional threshold models only allow for a single threshold
variable. In many applications, the use of multiple threshold variables is
needed. In this article, a new TAR model with two threshold variables is
developed. In addition, the consistency and limiting distribution of the
estimators are established. A likelihood ratio test is also constructed to
detect the threshold effect. Our model is applied to identify the regimes
of the Hong Kong stock market. The two threshold variables used in

14A Ljung–Box test has been conducted and the results suggest that the residuals are white
noise. The details of the test can be obtained from the authors upon request.

15Note that the first-order coefficient for Regime I is 0.065, which is positive as compared to
that of −0�3 for Regime II. This agrees with Campbell et al. (1993) that the first-order daily return
autocorrelation tends to decline when turnover increases.

16We associate the estimated regimes with these major events. For example, the establishment
of the Hong Kong Special Administration Region in July 1997 falls into Regime I. During the
Asian Financial Crisis, the crash of the stock market of Hong Kong and the burst of the property
market fall into Regime II. The market experiences a volatile year in the millennium. Driven by
the technology bubble and the accession of China to the World Trade Organization, the Hang
Seng Index reaches a record high of 18301 in March 2000. However, the burst of the bubble in
2000 brings the stock market back into Regime II again. The market enters Regime I at the end
of 2001. Note that the Hong Kong stock market is not seriously affected by the 911 incident. The
accession of China to the World Trade Organization in 2001 is a good news for Hong Kong. In
the beginning of 2003, the outbreak of the Severe Acute Respiratory Syndrome (SARS) threatens
the economy. The market switches from Regime I to Regime II during the SARS period, but it
rebounds sharply in the second half of the year. In June, China and Hong Kong sign the Closer
Economic Partnership Arrangement (CEPA), a free trade agreement between Hong Kong and
China which gives Hong Kong a preferential access to the Chinese market.
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158 H. Chen et al.

FIGURE 4 The residual series.

this article are analogous to those of Granville (1963) and Lee and
Swaminathan (2000). Unlike the conventional bull–bear classification, it
is shown that the Hong Kong stock market can be classified into three
regimes, namely, a high-return stable regime, a low-return volatile regime,
and a neutral regime. It should be mentioned that our model assumes a
single threshold for each threshold variable. It can be extended to allow
for the existence of multiple thresholds (Gonzalo and Pitarakis, 2002). For
example, if there are two threshold variables and each threshold variable
has two threshold values, then the model can have at most nine regimes.
One may also define the threshold condition as a nonlinear function of
the two threshold variables. Finally, one may relax the i.i.d. assumption
of the error term to allow for serial dependence and regime-dependent
heteroskedasticity. Such extensions, however, are beyond the scope of this
article and are left for future research.

TABLE 4 A Chronology of the Hong Kong stock market and the corresponding regimes

Date Event Regime

1997.7 The establishment of the Hong Kong Special Administration Region I
1997.10.23 Asian currency turmoil triggered by the floating of Thai Baht II
1998.1–1999.3 The burst of the property market III, II
1999.9–2000.3 Global technology stock boom and the admission of China into I, III

the World Trade Organization (WTO)
2000.4–2000.6 The burst of the high-tech bubble II, III
2001.9.11 The 911 incident I
2001.11.13 The accession of China to the WTO I
2003.2–2003.6 The outbreak of SARS I, II
2003.6.29 The launch of Closer Economic Partnership Arrangement with China I
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Theory and Applications of TAR Model 159

APPENDIX 1: LEMMAS

Throughout the appendix, let ‖A‖ = (tr (A′A))1/2 denote the Euclidean
norm of a matrix A� Let ‖A‖r = (E |A|r )1/r denote the Lr -norm of a random
matrix and ⇒ denote weak convergence with respect to the uniform
metric.

Let

xt = (1, yt−1, yt−2, � � � , yt−p)
′ for t = p + 1, p + 2, � � � ,T ,

X = (x ′
T , x

′
T−1, � � � , x

′
p+1)(T−p)×(p+1),

Y = (yT , � � � , yp+1)
′,

U = (uT ,uT−1, � � � ,up+1)
′,

Ij(�) = diag
{
�

(j)
T (�) ,�(j)

T−1 (�) , � � � ,�
(j)
p+1 (�)

}
,

where �
(j)
t (�) is defined in Section 2.

Let M and Mj(�) be moment functionals defined as

M = E
(
xtx ′

t

)
, Mj (�) = E

(
xtx ′

t�
(j)
t (�)

)
, j = 1, 2, 3, 4�

Lemma 1. Under assumptions (A1)–(A2), it can be shown that:

(a) 1
T X

′X
p→ M ;

(b) 1
T X

′U
p→ 0�

Proof. The proof is straightforward by applying the law of large number
for stationary ergodic processes. �

Lemma 2. For any � ∈ �, under assumptions (A1)–(A3), we have for j =
1, 2, 3, 4:

(a) 1
T X

′Ij(�)X
p→ Mj(�);

(b) 1
T X

′Ij(�)U
p→ 0;

(c) 1
T (X

′Ij(�)U )′(X ′Ij(�)U )
p→ E(xtx ′

t u
2
t �

(j)
t (�)) = 	2Mj(�)�

Proof. The proof of part (a) for j = 1 is similar to the proof of Lemma
A1 in Hansen (1996) by replacing �wt ≤ �� with �z1t ≤ �1, z2t ≤ �2�. For j =
2, we have 1

T X
′I2(�)X = 1

T

∑
xtx ′

t �z1t ≤ �1� − 1
T

∑
xtx ′

t �z1t ≤ �1, z2t ≤ �2�
p→

E
(
xtx ′

t �z1t ≤ �1�
) − E

(
xtx ′

t �z1t ≤ �1, z2t ≤ �2�
) = M2 (�). A similar proof can

be applied to the cases where j = 3 and 4. The proofs for (b) and (c) are
analogous and are therefore skipped. �
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160 H. Chen et al.

APPENDIX 2: CONSISTENCY OF ESTIMATORS

To prove the consistency of the estimator �̂ = argmin�∈� RSST (�), it
suffices to show that RSST (�) converges uniformly to a function b(�) which
is minimized at �0� For simplicity, denote �̂(j) = �̂(j)(�) for j = 1, 2, 3, 4. Let
Ŷ (�) = ∑4

j=1 Ij(�)X �̂(j). The residual sum of squares can be written as

RSST (�) = ‖Y − Ŷ (�)‖2 = Y ′Y − Ŷ (�)′Ŷ (�)

=
4∑

j=1

(
�(j)′X ′Ij(�0)X�(j) − �̂(j)′X ′Ij(�)X �̂(j)

)

+ 2
4∑

j=1

U ′Ij(�0)X�(j) + U ′U �

Next, we prove that RSST (�) has a unique minimum at � = �0. We
partition the threshold space into four regions.

Case 1: �1 ≤ �01 and �2 ≤ �02
Using Lemmas 1 and 2, and the facts that

I1(�)I1(�0) = I1(�), I1(�)Ij(�0) = 0 for j = 2, 3, 4,

I2(�)I1(�0) = I2(�) − I2(�1, �02), I2(�)I2(�0) = I2(�1, �02),

I2(�)Ij(�0) = 0, for j = 3, 4,

I3(�)I1(�0) = I3(�) − I3(�01, �2), I3(�)I2(�0) = 0,

I3(�)I3(�0) = I3(�01, �2), I3(�)I4(�0) = 0,

I4(�)I1(�0) = I1(�0) + I1(�) − I1(�01, �2) − I1(�1, �02),

I4(�)I2(�0) = 0, I4(�)I3(�0) = I4(�01, �2) − I4(�0), I4(�)I4(�0) = I4(�0),

it can be shown that

�̂(1) = (X ′I1(�)X )−1X ′I1(�)Y

= (X ′I1(�)X )−1X ′I1(�)
[ 4∑

j=1

Ij(�0)X�(j) + U
]

= �(1) + 1√
T

(
X ′I1(�)X

T

)−1(X ′I1(�)U√
T

)
p→ �(1),

�̂(2) = (X ′I2(�)X )−1X ′I2(�)Y
p→ M−1

2 (�)(M2(�) − M2(�1, �02))(�
(1) − �(2)) + �(2),
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Theory and Applications of TAR Model 161

�̂(3) = (X ′I3(�)X )−1X ′I3(�)Y
p→ M−1

3 (�)(M3(�) − M 0
3 (�

0
1, �2))(�

(1) − �(2))

+ M−1
3 (�)M3(�

0
1, �2)(�

(3) − �(2)) + �(2),

�̂(4) = (X ′I4(�)X )−1X ′I4(�)Y
p→ M−1

4 (�)
[
M4(�

0) − M4(�
0
1, �2) − M4(�1, �02) + M4(�)

]
(�(1) − �(2))

+ M−1
4 (�)M4(�

0)(�(4) − �(2))

+ M−1
4 (�)(M4(�

0
1, �2) − M4(�

0))(�(3) − �(2)) + �(2)�

Therefore,

1
T

(
RSST (�) − U ′U

)
= 1

T

4∑
j=1

(
�(j)′X ′Ij(�0)X�(j) − �̂(j)′X ′Ij(�)X �̂(j)

)
+ 2

T

4∑
j=1

U ′Ij(�0)X�(j)

=
4∑

j=1

�(j)′Mj(�
0)(�(j) − �(2))

−
[
�̂(1)′M1(�) + �̂(2)′(M2(�) − M2(�1, �02))

]
(�(1) − �(2))

+ �̂(3)′[M3(�) − M3(�
0
1, �2)](�(1) − �(2))

+ �̂(4)′[M4(�
0) − M4(�

0
1, �2) − M4(�1, �02) + M4(�)](�(1) − �(2))

−
[
�̂(3)′M3(�

0
1, �2) + �̂(4)′(M4(�

0
1, �2) − M4(�

0))
]
(�(3) − �(2))

− �̂(4)′M4(�
0)(�(4) − �(2)) + op(1)

= (�(1) − �(2))′[M1(�
0) − M1(�) − M−1

2 (�)(M2(�) − M2(�1, �02))
2

− M−1
3 (�)(M3(�) − M3(�

0
1, �2))

2

− M−1
4 (�)(M4(�

0) − M4(�
0
1, �2) − M4(�1, �02) + M4(�))

2] × (�(1) − �(2))

+ (�(3) − �(2))′[M3(�
0) − M−1

4 (�)(M4(�
0
1, �2) − M4(�

0))2

− M−1
3 (�)(M3(�

0
1, �2))

2](�(3) − �(2))

+ (�(4) − �(2))′ [M4(�
0) − M−1

4 (�)(M4(�
0))2

]
(�(4) − �(2)) + op(1)

= (�(1) − �(2))′Q1(�
(1) − �(2)) + (�(3) − �(2))′Q2(�

(3) − �(2))

+ (�(4) − �(2))′Q3(�
(4) − �(2)) + op(1)

= b1(�) + op(1)�
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162 H. Chen et al.

For any �1 ≤ �01 and �2 ≤ �02, it is obvious that Q3 is positive semidefinite
since M4(�) > M4(�

0)� Meanwhile, using the following results:

M1(�
0) − M1(�) = E

(
xtx ′

t�
(1)
t (�)

)
= E(xtx ′

t [�(2)
t (�) − �(2)

t (�1, �02) + �(3)
t (�)

− �(3)
t (�01, �2) + �(4)

t (�0) − �(4)
t (�01, �2)

− �(4)
t (�1, �02) + �(4)

t (�)])
= M2(�) − M2(�1, �02) + M3(�) − M3(�

0
1, �2)

+ M4(�
0) − M4(�

0
1, �2) − M4(�1, �02) + M4(�),

M3(�
0) = M4(�

0
1, �2) − M4(�

0) + M3(�
0
1, �2),

it can be shown that Q1 and Q2 are positive semidefinite. Thus, b1(�) ≥
b1(�0) = 0, and the equation holds if and only if � = �0�

By analogy, for the remaining three cases,

1
T

(
RSST (�) − U ′U

) = bj(�) + op(1) and

bj(�) ≥ bj(�0) = 0 for j = 2, 3, 4�

Define a non-stochastic function b(�) as bj(�) for the j th case, we have

sup
�∈�

∣∣∣∣ 1T (
RSST (�) − U ′U

) − b(�)
∣∣∣∣ = op(1)� (18)

Thus, b(�) is minimized if and only if � = �0. This implies that the limit
of 1

T RSST (�) is minimized at �0. By the superconsistency of �̂, �̂(j) will also
be consistent.

APPENDIX 3: THE LIMITING DISTRIBUTION OF �̂

To derive the limiting distribution of �̂ for shrinking break, we let � =
(�(2)′, �(3)′, �(4)′)′ = cT −�, 0 < � < 1

2 , c = (c ′
2, c

′
3, c

′
4)

′ is a 3p-dimensional vector
of constants. Define

�̂ = argmin
�∈�

RSST (�) = argmin
�∈�

[
RSST (�) − RSST

(
�0

)]
�

To obtain the limiting distribution of �̂, we first examine the
asymptotic behavior of RSST (�) − RSST

(
�0

)
in the neighborhood of the

true thresholds.
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Theory and Applications of TAR Model 163

Recall from Eq. (7) that the true model can be written as

Y = X�(1) +
4∑

j=2

X (j)
�0
�(j) + U = X�(1) + X0� + U ,

where X0 = (X (2)
�0

,X (3)
�0

,X (4)
�0

). Let

�̂(j) = �̂(j)(�), �̂
(j)
0 = �̂(j)(�0), for j = 2, 3, 4,

�̂(�) = (�̂(2)′, �̂(3)′, �̂(4)′)′ and �̂(�0) = (�̂(2)′0 , �̂(3)′0 , �̂(4)′0 )′�

For any �, define X� = (X (2)
� ,X (3)

� ,X (4)
� ). We have

�̂(1)(�) = (X (1)′
� X (1)

� )−1X (1)′
� Y

= �(1) + (X (1)′
� X (1)

� )X (1)′
� X0� + (X (1)′

� X (1)
� )−1X (1)′

� U ,

�̂(1)(�0) = (X (1)′
�0

X (1)
�0

)−1X (1)′
�0

Y

= �(1) + (X (1)′
�0

X (1)
�0

)−1X (1)′
�0

U �

Since �̂ is a consistent estimator, we study its asymptotic behavior in the
neighborhood of the true thresholds. Let �1 = �01 + �

T 1−2� , �2 = �02 + �
T 1−2� .

By Lemmas 1 and 2,

�̂(1)(�) − �̂(1)(�0) = (X (1)′
� X (1)

� )−1X (1)′
� X0� + (X (1)′

� X (1)
� )−1X (1)′

v U

− (X (1)′
�0

X (1)
�0

)−1X (1)′
�0

U

=
4∑

j=2

(X (1)′
� X (1)

� )−1X (1)′
� (X (j)

0 − X (j)
� )�

+ (X (1)′
� X (1)

� )−1(X (1)′
� U − X (1)′

�0
U )

+ (
(X (1)′

� X (1)
� )−1 − (X (1)′

�0
X (1)

�0
)−1

)
X (1)′

�0
U

= Op

(
1

T 1−2�

1
T �

)
+ Op

(
1

T 1/2−�

1
T 1/2

)
+ Op

(
1

T 1−2�

1
T 1/2

)

= Op

(
1

T 1−�

)
�

By the
√
T consistency of the Ordinary Least Square (OLS) estimator,

we have

�̂(1)(�0) − �(1) = Op

(
1

T 1/2

)
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164 H. Chen et al.

and

�̂(1)(�) − �(1) =
(
�̂(1)(�) − �̂(1)(�0)

)
+

(
�̂(1)(�0) − �(1)

)
= Op

(
1

T 1−�

)
+ Op

(
1

T 1/2

)
= Op

(
1

T 1/2

)
� (19)

Moreover, since

�̂(�) = (
X ′

�X�

)−1
X ′

�(X0� + U ) = (
X ′

�X�

)−1
X ′

�X0� + (
X ′

�X�

)−1
X ′

�U

and

�̂(�0) = (
X ′

0X0

)−1
X ′

0(X0� + U ) = � + (
X ′

0X0

)−1
X ′

0U ,

we have

�̂(�) − �̂(�0) = (
X ′

�X�

)−1
X ′

�(X0 − X�)� + (
X ′

�X�

)−1
X ′

�U − (
X ′

0X0

)−1
X ′

0U

= Op

(
1

T 1−2�
T −�

)
+ Op

(
1

T 1/2−�

1
T 1/2

)
+ Op

(
1

T 1−2�
T −1/2

)

= Op

(
1

T 1−�

)
�

We also have

�̂(�0) − � = (
X ′

0X0

)−1
X ′

0U = Op

(
1

T 1/2

)
�

Therefore,

�̂(�) − � =
(
�̂(�) − �̂(�0)

)
+

(
�̂(�0) − �

)
= Op

(
1

T 1−�

)
+ Op

(
1

T 1/2

)
= Op

(
1

T 1/2

)
� (20)

By (19) and (20), we have

RSST (�) − RSST
(
�0

)
=

(
Y − X �̂(1)(�) − X��̂(�)

)′ (
Y − X �̂(1)(�) − X��̂(�)

)
−

(
Y − X �̂(1)(�0) − X0�̂(�

0)
)′ (

Y − X �̂(1)(�0) − X0�̂(�
0)

)
=

(
Y − X �̂(1)(�) − X��̂(�)

)′ (
Y − X �̂(1)(�) − X��̂(�)

)
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Theory and Applications of TAR Model 165

−
(
Y − X �̂(1)(�) − X0�̂(�)

)′ (
Y − X �̂(1)(�) − X0�̂(�)

)
+ op(1)

= −2�̂(�)′(X� − X0)U + �̂(�)′(X� − X0)
′(X� − X0)�̂(�)

+ 2�̂(�)′(X� − X0)
′(X� − X0)(�̂

(1)(�) − �(1)) + op(1)

= �′(X� − X0)
′(X� − X0)� + 2�̂(�)′(X� − X0)

′(X� − X0)(�̂
(1)(�) − �(1))

− 2�̂(�)′(X� − X0)U + (� + �̂(�))′(X� − X0)
′(X� − X0)(�̂(�) − �) + op(1)

= T −2�c ′ (X� − X0

)′ (
X� − X0

)
c − 2T −�U ′(X� − X0)c + Op(T −1/2+�) + op(1)

= R1 + R2 + op(1),

where

R1 = T 1−2� [
(
X� − X0

)
c]′ (X� − X0

)
c

T

= T 1−2� 1
T

T∑
t=p+1

∥∥∥∥
4∑

j=2

c ′
j xt

(
�

(j)
t (�) − �

(j)
t

(
�0

)) ∥∥∥∥2

, (21)

and

R2 = −2T −�U ′(X� − X0)c

= −2T −�

4∑
j=2

T∑
t=p+1

x ′
t ut

(
�

(j)
t (�) − �

(j)
t

(
�0

))
cj � (22)

To examine the asymptotic behavior of RSST (�) − RSST
(
�0

)
, we study

the asymptotics of R1 and R2� We consider four different cases and provide
the proof for the case where v > 0 and � > 0. The proofs for the other 3
cases are analogous.

Case 1: v > 0 and � > 0:

c ′
2xt

(
�(2)

t (�) − �(2)
t

(
�0

))
= c ′

2xt
(
�(2)

t (�1, �2) − �(2)
t (�01, �2) + �(2)

t (�01, �2) − �(2)
t (�01, �

0
2)

)
= c ′

2xt
(
I (�01 ≤ z1t < �1, z2t > �2) − I (z1t ≤ �01, �

0
2 ≤ z2t < �2)

)
,

c ′
3xt

(
�(3)

t (�) − �(3)
t

(
�0

))
= c ′

3xt
(
�(3)

t (�1, �2) − �(3)
t (�01, �2) + �(3)

t (�01, �2) − �(3)
t (�01, �

0
2)

)
= c ′

3xt
(−I (�01 ≤ z1t < �1, z2t ≤ �2) + I (z1t > �01, �

0
2 ≤ z2t < �2)

)
,

D
ow

nl
oa

de
d 

by
 [

H
ai

qi
an

g 
C

he
n]

 a
t 0

3:
22

 0
7 

N
ov

em
be

r 
20

11
 



166 H. Chen et al.

c ′
4xt

(
�(4)

t (�) − �(4)
t

(
�0

))
= c ′

4xt
(
�(4)

t (�1, �2) − �(4)
t (�01, �2) + �(4)

t (�01, �2) − �(4)
t (�01, �

0
2)

)
= c ′

4xt
(−I (�01 ≤ z1 < �1, z2 > �2) − I (z1 > �01, �

0
2 ≤ z2 < �2)

)
�

Summing up the three terms, we have

4∑
j=2

c ′
j xt

(
�

(j)
t (�) − �

(j)
t

(
�0

))

= (c2 − c4)′xt I (�01 ≤ z1 < �1, z2 > �2) − c ′
2xt I (z1t ≤ �01, �

0
2 ≤ z2t < �2)

− c ′
3xt I (�

0
1 ≤ z1t < �1, z2t ≤ �2) + (c3 − c4)′xt I (z1 > �01, �

0
2 ≤ z2 < �2)�

Since the four terms are orthogonal, by Lemma 2, we have

1
T

T∑
t=p+1

∥∥∥∥
4∑

j=2

c ′
j xt

(
�

(j)
t (�) − �

(j)
t

(
�0

)) ∥∥∥∥2

p→ (c2 − c4)′(M2(�1, �2) − M2(�
0
1, �2))(c2 − c4)

+ c ′
2((M1(�

0
1, �2) − M1(�

0
1, �

0
2))c2 + c ′

3(M1(�1, �2) − M1(�
0
1, �2))c3

+ (c3 − c4)′(M3(�
0
1, �2) − M3(�

0
1, �

0
2))(c3 − c4)�

By the continuity of D (�) around �0, we can apply the first-order Taylor
approximation to the moment functionals and obtain the following results:

(c2 − c4)′(M2(�1, �2) − M2(�
0
1, �2))(c2 − c4)

= |�1 − �01|(c2 − c4)′Df 0
1 (c2 − c4) + o(1),

c ′
2((M1(�

0
1, �2) − M1(�

0
1, �

0
2))c2 = |�2 − �02|c ′

2Df
0
2 c2 + o(1),

c ′
3(M1(�1, �2) − M1(�

0
1, �2))c3 = |�1 − �01|c3′Df 0

1 c3 + o(1),

(c3 − c4)′(M3(�
0
1, �2) − M3(�

0
1, �

0
2))(c3 − c4)

= |�2 − �02|(c3 − c4)′Df 0
2 (c3 − c4)) + o(1),

where f 0
i = 
F (�)


�i
|�=�0 for i = 1, 2 and D = E

(
xtx ′

t |zt = �0
)
�

Thus,

R1 = T 1−2� 1
T

T∑
t=p+1

∥∥∥∥
4∑

j=2

c ′
j xt

(
�

(j)
t (�) − �

(j)
t

(
�0

)) ∥∥∥∥2

= T 1−2�(|�1 − �01|(c2 − c4)′Df 0
1 (c2 − c4) + |�2 − �02|c ′

2Df
0
2 c2
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Theory and Applications of TAR Model 167

+ |�1 − �01|c3′Df 0
1 c3 + |�2 − �02|(c3 − c4)′Df 0

2 (c3 − c4)) + op(1)

= |�|d ′
1D

∗f 0
1 d1 + |�|d2′D∗f 0

2 d2 + op(1), (23)

where D∗ = diag �D,D�, d1 = ((c2 − c4)′, c ′
3)

′, d2 = (c ′
2, (c3 − c4)′)′�

Next, we consider the asymptotic property of R2 for v > 0 and � > 0:

T −�

T∑
t=p+1

x ′
t ut

(
�(2)

t (�) − �(2)
t

(
�0

))
c2

= −2T −�

T∑
t=p+1

x ′
t ut

(
�(2)

t (�1, �2) − �(2)
t (�01, �2) + �(2)

t (�01, �2) − �(2)
t (�01, �

0
2)

)
c2

= −2T −�

T∑
t=p+1

x ′
t ut((�

0
1 ≤ z1t < �1, z2t > �2) − I (z1t ≤ �01, �

0
2 ≤ z2t < �2))c2

⇒ −2(B1(�) − B2(�))c2;

T −�

T∑
t=p+1

x ′
t ut

(
�(3)

t (�) − �(3)
t

(
�0

))
c3

= −2T −�

T∑
t=p+1

x ′
t ut

(
�(3)

t (�1, �2) − �(3)
t (�01, �2) + �(3)

t (�01, �2) − �(3)
t (�01, �

0
2)

)
c3

= −2T −�

T∑
t=p+1

x ′
t ut(−I (�01 ≤ z1t < �1, z2t ≤ �2) + I (z1t > �01, �

0
2 ≤ z2t < �2))c3

⇒ −2(−B3(�) + B4(�))c3;

T −�

T∑
t=p+1

x ′
t ut

(
�(4)

t (�) − �(4)
t

(
�0

))
c4

= −2T −�

T∑
t=p+1

x ′
t ut

(
�(4)

t (�1, �2) − �(4)
t (�01, �2) + �(4)

t (�01, �2) − �(4)
t (�01, �

0
2)

)
c4

= −2T −�

T∑
t=p+1

x ′
t ut(−I (�01 ≤ z1t < �1, z2t > �2) − I (z1t > �01, �

0
2 ≤ z2t < �2))c4

⇒ −2(−B1(�) − B4(�))c4�

Summing up the three terms, we have

R2 = −2T −�

4∑
j=2

T∑
t=p+1

x ′
t ut

(
�

(j)
t (�) − �

(j)
t

(
�0

))
cj

⇒ −2[B1(�)(c2 − c4) − B2(�)c2 − B3(�)c3 + B4(�)(c3 − c4)], (24)
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168 H. Chen et al.

where Bj (·) , j = 1, 2, 3, 4, are independent Brownian motion vectors
corresponding to the four disjointed regions. The covariance matrix of
Bj(·) is given by

E
(
Bj (1)Bj (1)′) = Vf 0

1 , for j = 1, 3,

E
(
Bj (1)Bj (1)′) = Vf 0

2 , for j = 2, 4,

where V = E
(
xtx ′

t u
2
t |zt = �0

) = 	2D and f 0
i = 
F (�)


�i
|�=�0 for i = 1, 2�

Let B∗
1 (�) = (B1(�),−B3(�)),B∗

2 (�) = (−B2(�),B4(�))� B∗
1 (�) and

B∗
2 (�) are two independent Brownian motion vectors with covariance

matrix E
(
B∗
1 (1)B

∗
1 (1)

′) = V ∗f 0
1 , E

(
B∗
2 (1)B

∗
2 (1)

′) = V ∗f 0
2 , respectively,

where V ∗ = diag �V ,V ��
Thus, (24) can be rewritten as

R2 ⇒ −2[B∗
1 (v)(c

′
2 − c ′

4, c
′
3)

′ + B∗
2 (�)(c

′
2, c

′
3 − c ′

4)
′]

= −2[B∗
1 (v)d1 + B∗

2 (�)d2]
= −2

(√
d ′
1V ∗d1f 0

1 W1(v) +
√
d ′
2V ∗d2f 0

2 W2(�)

)
, (25)

where W1(v) and W2(�) are independent standard Brownian motions.
Similarly, for the other three cases, we can show

R1 = |�|d ′
1D

∗f 0
1 d1 + |�|d2′D∗f 0

2 d2 + op(1),

R2 ⇒ −2(
√
d ′
1V ∗d1f 0

1 W1(v) +
√
d ′
2V ∗d2f 0

2 W2(�))�

Making the change-of-variables

� = d ′
1V

∗d1
(d ′

1D∗d1)2f 0
1

r1,

� = d ′
2V

∗d2
(d ′

2D∗d2)2f 0
2

r2,

and noting d ′
1V

∗d1 = 	2d ′
1D

∗d1 and d ′
2V

∗d2 = 	2d ′
2D

∗d2, we have

RSST (�) − RSST
(
�0

) p→ R1 + R2

⇒ 	2|r1| + 	2|r2| − 2	2W1(r1) − 2	2W2(r2)

= 	2(|r1| + |r2| − 2W1(r1) − 2W2(r2))�

Define

T =
(
(d ′

1D
∗d1)f 0

1

	2
,
(d ′

2D
∗d2)f 0

2

	2

)
�
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Theory and Applications of TAR Model 169

The asymptotic distribution can be expressed as

T 1−2�T
(
(�̂1 − �01), (�̂2 − �02)

)
= (r1, r2)

⇒ argmin
−∞<r1<∞,−∞<r1<∞

[(
1
2

∣∣r1∣∣ − W1 (r1)
)

+
(
1
2

∣∣r2∣∣ − W2 (r2)
)]

= argmax
−∞<r1<∞,−∞<r2<∞

[(
− 1

2

∣∣r1∣∣ + W1 (r1)
)

+
(

− 1
2

∣∣r2∣∣ + W2 (r2)
)]

�

(26)
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