
Theory and practical strategies for e�cient

alpha-beta-searches in computer chess

Johannes Buchner

17th August 2005

Bachelorarbeit

Betreuer: Prof. Dr. Raúl Rojas

Fachbereich Mathematik/Informatik

Freie Universität Berlin

1

Abstract

The aim of this work is to give an overview of the theory of e�cient alpha-beta-searches
in computer chess and to explain the practical strategies implemented in the FUSc# chess
program ([6]). The main focus is put on two topics: the �rst one is e�cient move genera-
tion with a technique called �rotated bitboards� ([10]), and the second one is how to carry
out e�cient alpha-beta-searches by optimizing the move-ordering with static and dynamic
heuristics. Practical experiments with FUSc# are used to verify the theoretical results in
both questions.

In the �rst part, a short introduction to the basics of computer chess will help the reader
to understand the structure of the FUSc# chess program. This includes a part explaining the
�rotated bitboards� that are used for board-representation in Fusc#, as they are crucial for
e�cient move generation. In the second part, an overview of the theory of search algorithms
used in computer chess is given. Many of the ideas still used in current chess programs date
back to the very beginnings of computer science. This is shown by making references to
the famous paper �Programming a Computer for Playing Chess� ([19]) by Claude Shannon,
which was written as early as in 1950. However, there were also important improvements of the
theoretical foundations of computer chess since then, the alpha-beta-algorithm beeing one of
them. Although it has been subject to intensive studies since its discovery in the late 1950s,
there has still been some relevant progress in the mid-90s, especially in understanding the
relationship of alpha-beta (which is �depth-�rst�) and �best-�rst�-algorithms like SSS* ([16]).
An overview of these astonishing results is given, as they proove the traditional views on the
subject to be quite wrong: It can be shown that SSS* is actually a special case of alpha-beta!
After that follows a section on move ordering. One of the primary aims is to understand the
in�uence of the move-ordering on the e�ciency of alpha-beta searches, and additionally the
idea behind some heuristics (static/dynamic) used for achieving a good move-ordering are
explained.

The third part deals with the concrete implementation of some of the parts of our chess-
program FUSc#. This includes a part on e�cient move-generation using bitboards, and
one which endables the reader to understand how the di�erent heuristics for move-ordering
(static/dynamic) are implemented in FUSc# as strategies in order to achieve e�cient alpha-
beta-searches. The forth part covers the practical experiments carried out with FUSc# in
order to verify the theoretical results of part 2 and 3. A technique for verifying the correctness
of move-generators in chess programm is presented and it is shown that the move-generator
of FUSc# (that is based on �rotated-bitboards�) works 100% correct. After that, the results
of our experiments evaluating the di�erent heuristics for achieving a good move-ordering
are presented, and it is shown that those heuristics greatly improve the e�ciency of the
alpha-beta-searches carried out by FUSc#. In an outlook the current state-of-the-art of the
FUSc#-chess program is described, and some ideas for further reseach projects are developed.

2

Contents

1 Basics of Computer Chess - Understanding the Structure of the FUSc#-
Chess-Program 5
1.1 Introduction: Computer Chess as the Drosophilia for AI 5
1.2 The Internals of the Fusc# chess program . 5

1.2.1 Project History . 5
1.2.2 The Structure of a Computer Chess Program 6
1.2.3 Board Representation . 7
1.2.4 Search Algorithms . 9
1.2.5 Other Aspects . 10
1.2.6 Fusc#-Server . 11

2 Theoretical aspects of alpha-beta-searches 11
2.1 Foundations of Tree-Searching Algorithms in Computer Chess 11
2.2 Minimax and Alpha-Beta . 11

2.2.1 Minimax . 11
2.2.2 Alpha-Beta . 12

2.3 Depth First vs. Best-First . 12
2.3.1 Traditional View on Best-First-Algorithms 12
2.3.2 SSS* as a Special Case of Alpha-Beta 13

2.4 The In�uence of the Move-Ordering . 13
2.4.1 Alpha-Beta (Worst Case) . 13
2.4.2 Alpha-Beta (Best Case) . 13
2.4.3 Minimal Trees . 14

2.5 Heuristics for Achieving a Good Move-Ordering 14
2.5.1 Static Move Ordering . 14
2.5.2 The Killer Heuristic . 15
2.5.3 The History Heuristic . 15
2.5.4 The Refutation Heuristic . 16

3 Practical strategies for e�cient alpha-beta-searces - The FUSc# Source
Code in Detail 16
3.1 Prerequisites: E�cient Move Generation . 16

3.1.1 Overview of Move Generation in FUSc# 16
3.1.2 Pawns . 17
3.1.3 Non-Sliding pieces . 18
3.1.4 Sliding pieces . 18

3.2 Dynamic Move-Ordering in Fusc# . 19
3.2.1 Killer Heuristic . 20
3.2.2 History Heuristic . 20
3.2.3 Refutation Heuristic . 21

4 Practical Experiments with FUSc# 21
4.1 Verifying the Move-Generator of Fusc# . 21

4.1.1 The �perft�-Idea . 21
4.1.2 Test Positions . 22
4.1.3 Results of Crafty and FUSc# . 23

4.2 Status of the Fusc#-Search-Algorithm before the Search-Experiments 23
4.2.1 Getting it Deterministic . 23
4.2.2 Introducing a Framework for Conducting the Experiments 24
4.2.3 Move Ordering in DarkFusc# 0.9 . 24

4.3 Measuring the In�uence of the Di�erent Heuristics 25
4.3.1 General Experimental Setup . 25
4.3.2 Experiment 1 . 25
4.3.3 Experiment 2 . 28
4.3.4 Experiment 3 . 30

4.4 Interpretation of the Results of the three Search Experiments 31

3

5 Conclusion/Future research 31

6 Appendix 32
6.1 Rotated bitboards in detail . 32

6.1.1 The normal bitboard . 32
6.1.2 The �ipped bitboard (�l90�) . 32
6.1.3 The a1h8 bitboard . 33
6.1.4 The a8h1 bitboard . 33

6.2 �perft�-output for FUSc# and Crafty . 33
6.2.1 FUSc# . 33
6.2.2 Crafty . 35

6.3 Detailed Result of the Experiments . 35
6.3.1 Experiment 1 . 36
6.3.2 Experiment 2 . 37
6.3.3 Experiment 3 . 38

4

1 Basics of Computer Chess - Understanding the Structure
of the FUSc#-Chess-Program

1.1 Introduction: Computer Chess as the Drosophilia for AI

Computer chess was the �drosophilia for AI� (e.g. according to [17]) till the mid-90s, after the
defeat of world champion Kasparov in 1996 the interest has declined. Nevertheless, there is still
a great interest in computer chess among the AI community as well as chess players in general.
From a scienti�c point of view, the interest has shifted from the basic search algorithms to more
advanced topics like machine learning, integration of perfect knowledge etc. ([9]). However,
there were also some important improvements of the theoretical foundations of computer chess,
concerning the alpha-beta-algorithm that forms the basis for nearly if not all successful chess
programms, and especally in understanding the relationship between �best-�rst� algorithms like
SSS* and alpha-beta ([16]).

In the �rst part of this work, a short introduction to the basics of computer chess will help the
reader to understand the structure of the FUSc# chess program. This includes a part explaining
the �rotated bitboards� that are used for board-representation in Fusc#, as they are crucial for
e�cient move generation, which is a necessary condition for e�cient searches.

1.2 The Internals of the Fusc# chess program

1.2.1 Project History

FUSc# is the chess program developed by the �AG Schachprogrammierung� at the Free University
in Berlin ([6]). It is written in C# and runs on the Microsoft .NET Framework ([12]). Here is an
overview of the project history:

Date Project Milestones

14th of october 2002 Foundation of the AG: decision for C#, .NET and OpenSource

1st of march 2003 �rst version (V 1.03): quiescent search, hashtables, heuristics, iterative search

1st of june 2003 �rst version playing on the internet (V 1.06) better evaluation

11th of june 2003 �rst o�cial online-tournament: �rst victory!

14th of june 2003 Lange Nacht der Wissenschaften (V 1.07): documentation

January 2004 DarkFUSc#, version 0.1, rotated bitboards

July 2004 DarkFUSc#: new evaluation (incl. automatic classi�cation of di�erent types of chess positions)

July 2005 Lange Nacht der Wissenschaften (DarkFusc# 0.9): e.g. pondering

August 2005 DarkFusc# 1.0: better move ordering, more e�cient search algorithm

The lack of performance of the old (pre-2004) FUSc# versions let us take the decision to do a
complete rewrite of the FUSc#-Code in January 2004. The board-representation was changed to
�rotated bitboards�, which lead to a considerable performance boost (factor 2-3 according to some
tests we did at that time). How this technique works is explained in detail in section 1.2.3.2.

However, still FUSc# is not as strong as other chess engines available. FUSc# is written in
C# and runs on Microsoft Framework .NET, which means that the source-code of FUSc# is not
compiled into machine language directly, but into the �Microsoft Intermediate Language� (MSIL),
which is translated into machine language by the JIT-compiler (�Just in Time�) of the .NET-
Framework at execution time. Most other engines, on the contrary, are written in C/C++ or
other langugages that are directly compiled into machine language. The compilers make intensive
use of optimizations at compiling time (like gcc, see [13]), which o�ers much better possibilities
for implementing more complex optimization. That's why a big part of the di�erence in perfor-
mance can be explained by the use of di�erent programming frameworks - .NET was not made
for low-level high-performance applications in the �rst place, but for distributed computing, web
services etc., and the .NET-Framework is also quite new on the market (version 1.1 is the most

5

recent stable one, with 2.0 beeing in beta planned to be released in autumn 2005), which let us
hope that there will be better performance in the future.

Additionally, FUSc# was in the past mainly a research project to experiment with new ideas
in chess programming like machine learning, neuronal networks (see [1], for example). That's
why it is understandable that it can not compete with professional programs that were developed
and tuned for many years by professional programmers and/or chess players, as our aim was not
the �ne-tuning of the move-generator or the search function in the �rst place. Nevertheless, the
performance and chess skill of FUSc# have improved steadily over the last three years although
the development of FUSc# was done by students in their free time, the team was changing often
etc. It is has successfully playing at the FUSc#-servers for move than one year now, and has all
features of modern uci1-engines as well as some interesting additions like a self-learning opening
book. In the summer term 2005, the FUSc#-Team also organized a seminar on chess programming
(lead by Marco Block and Prof. Raúl Rojas), where some of the techniques used in Fusc# as well
as general chess programming topics were covered.

1.2.2 The Structure of a Computer Chess Program

As early as 1950, Claude Shannon published a much referenced paper on algorithms for playing
chess ([19]). In this paper, many of the concepts that still form the basis of todays chess programs
are developed. Shannon descibes the basic components of a chess program as follows (quote from
[19], chapter 5):

The complete program [...] consists on nine subprograms which we designate T_0, T_1,

..., T_8 and a master program T_9. The basic functions of these programs are as follows:

• T_0 - Makes move (a, b, c) in position P to obtain the resulting position.

• T_1 - Makes a list of the possible moves of a pawn at square (x, y) in position

P.

• T_2, ..., T_6 - Similarly for other types of pieces: knight, bishop, rook, queen

and king.

• T_7 - Makes list of all possible moves in a given position.

• T_8 - Calculates the evaluating function f(P) for a given position P.

• T_9 - Master program; performs maximizing and minimizing calculation to determine

proper move.

Thus, a computer chess program consists of the following 3 major parts:

• a move generator (T_7, including T_1 - T_6)

• a search function (T_9, in the process of �minimaxing�, there will be calls to T_0)

• an evaluation function (T_8)

As chess programming got much attention in the history of arti�cial intelligence research, a wide
variety of literature is available on the subject, both introductionary as well as covering more
advanced topics. There are many good texts available descibing the detailed architecture of
di�erent chess programms (see e.g.[17]), and the aim of the following section is not to repeat the
well-known facts on how chess programs work in general. Instead, we focus on the points that are
important to understand the parts of the Fusc# chess program that will be used in our practical
experiments in part 4:

1�unversal chess interface�, the standard protocol for communicating with a chess engine and the successor of
the older �winboard�-protocol

6

• the board representation (based on �rotated bitboards�, which forms the basis for move-
generation)

• the search algorithm (which will be tuned later on using di�erent move-ordering heuristics,
see 4.3)

1.2.3 Board Representation

All of the parts of a chess program descibed above are closely dependent on the way the chess-
board is represented in the computer:

There exist several techniques for representing the chess board inside the computer in chess pro-
gramms. The straight-forward-approach of just maintaining an array representing the 64 squares
on a chessboard works �ne, but has several drawbacks in move-generation as well as evaluation,
which are frequently used in modern chess programs. Thus, the chess programming community has
developed more advanced board representations, one of them beeing the bitboard representation.

1.2.3.1 The basic idea of bitboard representations The idea for the bitboard represen-
tation of the chessboard is based on the observation that modern CPUs are 64bit-processors, i.e.
the length of a word in machine language is nowadays often 64bit. Those 64bit-words will corre-
spond to the 64 squares on the chess board, and those �bitboards� (the name that is used for an
unsigned int64) are used to represent various information about the position on the chessboard.
The advantage of this representation lies in the availibility of very fast bit-manipulating operations
on modern CPUs: On 64bit-machines, operations like AND, OR, NOT etc. can be executed on
a 64bit �bitboard� in only one cycle. It is therefor to construct very e�cient chess programms on
the basis of the bitboard-approach, because, roughly speaking, the CPU operates on all 64bit �in
parallel�. Details how this works exactly will be given in sections 1.2.3.2 and 1.2.3.3.

In the history of computer chess, there were several authors who used variants of the bitboard-
representation in their chess engines. As early as in the seventies, Slate and Atkin described the
idea of using bitboards in their program �CHESS 4.5� (see [8], chapter 4). Another prominent
programms that used this technique successfully is the former computer chess champion �Cray
Blitz�, written by Robert Hyatt, who continues to develop the program as an open-source project
called �Crafty� ([3]). A third world-class chess engine using bitboards is DarkThought, developed
at the university of Karlsruhe in the late 90s. Crafty and DarkThought were also the �rst programs
that used an important re�nement of the bitboard-representation called �rotated bitboards� (see
section 1.2.3.3.4) . The author of DarkThought, Ernst A. Heinz, gives an overview of rotated
bitboards as used in DarkThought (see [10]), which inspired much of our own developments.

1.2.3.2 Bitboards to represent a chess positions In each bitboard, a special informa-
tion/property of the position can be encoded, where a �1� in the bitboard means the property is
true for the given square, while a �0� means the property is not true. As an example, consider a
bitboard �w_occ� that contains the information which square is occupied by a white piece - all
squares corresponding to a �1� are occupied by a white piece, the others are not.

7

In order to represent a chess position, one �bitboard� is of course not enough - only the combi-
nation of several bitboards can contain the complete information of a position. Let's consider the
following bitboards:

• one bitboard for each type of piece: �pawns�, �knights�, �bishops�, �rooks�, �queens�, �kings�

• two bitboards �w_occ� and �b_occ� indicating which squares are occupied by what color

• a collection of bitboards encoding the occupied squares in a �rotated� manner (see 1.2.3.3.4)

In this representation, the white pawns can be obtained by �ANDing� the �pawns�-bitboard (in
which the pawns of both colors are encoded) with the �w_occ�-bitboard:

white_pawns = pawns AND w_occ

Another example is computing the empty squares. For this, the white and black pieces are
�ANDed�, and then the bitwise complement (�NOT�) is formed:

empty_squares = NOT (w_occ AND b_occ)

By following this idea and using the bitwise operations �AND�, �OR�, �NOT� etc., many more
interesting information can be computed from the bitboards very e�ciently.

1.2.3.3 The bitboard-approach towards move-generation The move-generation is used
many times during the search-algorithms used in chess programs. Therfor, an e�cient move-
generation is needed. Based on the bitboard-approach, there exist di�erent strategies for each of
the piece-types in chess. One important concept is to compute bitboards of all possible moves (e.g.
of a knight) from all the squares beforehand during the initialisation of the program, and store
this information in a data-structure that provides e�cient access to these pre-computed moves
during the move-generation. For non-sliding pieces, this approach works straighforward, but for
sliding-pieces some more tricks are needed. which are explained in the next section (1.2.3.3.4).
But let's start with looking at generating moves for pawns, which uses a di�erent but very elegant
way of using the bitboard-representation.

1.2.3.3.1 Pawns The idea for generating pawn moves using bitboards is based on the
�shift�-operations that exist on all microprocessors: by shifting the bitboard containing the white
pawns to the left by 8 positions, the non-capturing moves of all (up to 8) white pawns can be
generated simultaneously (this shifted bitboard has to be �ANDed� with the empty_squares in
order to be valid)! For pawn captures, just shift to the left by 7 and 9 respectively, and �AND�
with the black pieces. Although this looks amazingly fast on �rst sight, in practice some of the
advantage of the parallel generation is lost when the moves must be put into a move list seperately
(see section 3.1.2 for details). Maybe this could be avoided in some cases, and there are some ideas
for future developments (see [2] for details).

1.2.3.3.2 Non-sliding pieces For non-sliding pieces like knight or king all possible moves
from all the squares of a chess board are computed during the initialisation of the program and
stored in arrays indexed by the from-�eld, i.e. there exist 2 arrays:

• knight_moves[from-�eld]

• king_moves[from-�eld]

In knight_moves[c1], for example, a bitboard that contains all possible �to-squares� for a knight
standing on �eld �c1� is stored. During move generation, this bitboard can be �ANDed� with
a bitboard containing the �elds that are not occupied by own pieces (i.e. NOT(own_pieces))

8

to produce all knight moves from c1. But there are more possibilities: if knight_moves[c1] is
�ANDed� with the opponents pieces, only capture-moves will be produced (this is needed very
often e.g. during quiescence search). In general, very advanced move generation schemes are
possible, e.g. �moves that attack the region of the opponent king� could be genrated by �ANDing�
the possible to-squares with a bitboard that encode the �elds near to the opponent king. These
examples show the �exibility of the bitboard-approach.

Although this technique works �ne for non-sliding pieces, there are di�culties when starting to
think about sliding pieces, which will be covered in the next section.

1.2.3.3.3 Sliding pieces Computing �all possible moves from all squares� for sliding pieces
is not as easy as for non-sliding pieces, because the possible moves for a sliding piece will depend on
the con�guration of the line/�le/diagonal it is standing. For example, on a compleatly empty chess-
board, a bishop standing in one of the corners will have plenty of moves, but in other positions with
own pieces standing next to it and blocking its diagonal, there might be not even one move possible
for the bishop. Therfor, the idea for bitboard-move-generation for sliding pieces is to compute
all the possible moves for all squares and all con�gurations of the involved ranks/�les/diagonals!
For example, the rank-moves for a rook standing on a1 on an otherwise empty chessboard will be
stored in �rank_moves[a1][00000001]�, with the second index of the array beeing the con�guration
of the involved rank (i.e. 8 bits, with only �a1� beeing occupied as the rook is standing there
itself). This works �ne for rank-moves, because the necessary 8 bits for the respective rank can
be easily obtained from the bitboard of the occupied pieces (this bitboard consists of 8 byte, and
each of those corresponds to one rank). For �le-moves of rooks and queens, and especially for the
diagonal moves of bishops and queens, things turn out to be much more di�cult: the necessary
bits about the respective �les/diagonals are spread all over the �occupied�-bitboard, they are not
�in order�, as they are for rank-moves. Here the idea of rotated bitboards helps out.

1.2.3.3.4 Rotated bitboards The idea of rotated bitboards is to store the bitboards that
represents the �occupied squares� not only in the �normal� way, but also in a �rotated� manner.
Therfor, the necessary bits representing �les/diagonals are �in-order� in those rotated bitboards,
as needed by the move-generation (see previous section). The �rotated bitboards� are updated
incrementally during the search, i.e. when a move is done or undone. The following bitboards are
maintained:

• board.occ, which represents the occupied squares in the�normal� representation

• board.occ_l90, the board �ipped by 90◦ (for �le moves)

• board.occ_a1h8, for diagonal moves in the direction of the a1h8-diagonal

• board.occ_a8h1, for diagonal moves in the direction of the a8h1-diagonal

A detailed description how these bitboards are used during move-generation can be found in
sections 3.1.4. See the Appendix (6) for details about how the di�erent rotated bitboards look
like.

1.2.4 Search Algorithms

For the search in computer chess, Shannon ([19]) descibes 2 possibilities:

• type A strategy: seaching all possible moves from a position up to a given depth

• type B strategy: search only the �reasonable� moves, but with the possibility to search
deeper, cause the tree is smaller

9

In the early days of computer chess, much hope was put into the �type B� strategy, but in practice,
the �type A� programs (with some modi�cations) prooved to be more successful. It was just too
hard to construct a good �plausible move generator� that generates only �reasonable� moves. (see
e.g. [8], p.69-73). On the other hand, most chess programs today use some selective �forward
pruning�2 techniques (like nullmoves etc, see below), which one can argue lets them stop beeing
a pure �type A�-program, but moves them a bit in direction of the �type B� programs. This
combination of a basic full-width search, with several extensions and some selected forward pruning
techniques has turned out to be most successful in practice and is also used in Fusc#. Concretely
search algorithm in Fusc# uses the following techniques:

1. an alpha-beta search with an �aspiration window�

2. a basic quiescence search (assuring that the evaluation function is only applied in quiescent
positions)

3. iterative deepening

For more details about �Aspiration window Alpha-Beta�3 (AAB), please refer to [14].
For move ordering in Fusc#, static as well as dynamic heuristics are used. The following

dynamic move ordering heuristcs have been implemented in the course of this work:

1. the killer heuristic

2. the history heuristic

3. the refutation heuristic

How these work exactly in FUSc# is constituting a major part of this work. For an explaination of
the theory behind it see section 2.5. For an explanation of the concrete implementation in FUSc#
please refer to section 3.2.

1.2.5 Other Aspects

Additionally to the ones described above, the following concepts are used in FUSc#:

• transposition tables (see [4])

• an evolutionary evaluation function (see [1])

• an evolutionary opening-book

• nullmove pruning

Some of the papers referenced above were written in the course of the seminar �Schachprogram-
mierung� (lead by Marco Block and Prof. Raúl Rojas in the summer term 2005 at the Free
University Berlin) and can be downloaded from the appropriate section of the FUSc#-Homepage
([6]).

2this term is the complement to the �backward pruning� that is done by the alpha-beta algorithm described
below

3the idea behind the aspiration window is that when doing interative deepening, the value of the bestmove for the
next iternation is likely to be close to the value of the last iteration. By starting the alpha-beta-search at the root
not with the normal bounds of alpha set to minus in�nity and beta set to plus in�nity, but with expected_value-
100 and expected_value+100, for example, the search will be more e�cient due to the better bounds provided.
However, if the computed value falls outside this �alpha-beta-window�, a re-search has to be done in order to obtain
the correct value.

10

1.2.6 Fusc#-Server

There exists an online-server ([7]) where people can play against FUSc#. This server can also be
used for testing-purposes of di�erent versions of FUSc#, as it has been the case in the work �Ver-
wendung von Temporale-Di�erenz-Methoden im Schachmotor FUSc#,� written by the FUSc#-
Team member Marco Block. See [1] for more details on that topic.

2 Theoretical aspects of alpha-beta-searches

This section is not meant as an introduction to people completely new in the �eld of tree seaching
in arti�cial intelligence (see [15] for a good book as an introduction to both the theoretical as well
as the practical aspects of arti�cial intelligence, which is even containing an interesting part of
the philosophical background of AI). In particular, this section does not provide an introduction
to the alpha-beta algorithm. This has been done many times, and there exist excellent papers
on the subject. A good overview is found in the article �Tree Seaching Algorithms� by H.Kaindl
(see [14]). The aim of this section is to give a concise review of the state-of-the-art in chess
programming theory. Both the historical roots as well as recent research is referenced, ranging
from the beginnings of the 1950s till the end of the 1990s.

2.1 Foundations of Tree-Searching Algorithms in Computer Chess

In terms of mathematical game theory, chess is a �two player zero sum� game with �perfect infor-
mation�. Let us have a look at the parts of this de�nition:

• �two player� means there is a �xed number of two players (i.e. black and white in chess)

• �zero sum� means that a gain for one player equals the loss of the other (i.e. �both winning�
is not possible, an advantage for white always means a disadvantage for black)

• �perfect information� means that both players have the complete relevant information of the
game (i.e. the con�guration of the board) available at all times of the game - there is no
random or chance factor like e.g. in card games

Games like chess have always been an important application area for heuristic algorithms. The
basic idea of such a heuristic search algorithm is to construct a tree (the �game tree�) of possible
moves for each player and �nd the best move by traversing this tree. As this tree grows exponen-
tially, only for very simple games like �tic-tac-toe�, it is possible to compute the whole tree and
thus play perfectly. In computer chess it is not possible in practice to search the game tree until a
��nal� position (i.e. mate or stalemate) is reached, instead the search must terminate at a certain
depth (the �horizon�) and use a heuristical evalutation function in order to estimate of the value of
the position. As early as 1950, Claude Shannon published a much referenced paper on algorithms
for playing chess ([19]). In this paper, many of the concepts that still form the basis of todays
chess programs are developed (also see section 1.2.2).

2.2 Minimax and Alpha-Beta

2.2.1 Minimax

We quote Shannon descibing the process of computing the minmax-value of a position. In the
follwing lines, f(P) should denote the heuristical evaluation function (i.e. an integer) of a position
P.

�A strategy of play based on f(P) and operating one move deep is the following.

Let M_1, M_2, M_3, ..., M_s be the moves that can be made in position P and let M_1P,

M_2P, etc. denote symbolically the resulting positions when M_1, M_2, etc. are applied

to P. Then one chooses the M_m which maximizes f(M_mP).

11

A deeper strategy would consider the opponent's replies. Let M_i1, M_i2, ..., M_is

be the possible answers by Black, if White chooses move M_i. Black should play to

minimize f(P). Furthermore, his choice occurs _after_ White's move. Thus, if White

plays M_i Black may be assumed to play the M_ij such that f(M_ijM_iP) is a _minimum_.

White should play his first move such that f is a maximum after Black chooses his

best reply. Therefore, White should play to maximize on M_i the quantity min f(M_ijM_iP)

M_ij �

The key assumption is that in a game between two players, MAX and MIN, MAX on the move
always selects the maximum of the values for its children whereas MIN always takes the mini-
mum. Applying this rule recursively over the entire game tree, a minimax value can be computed.
However, this computation turns out to be very complex even for relatively small search depths.
Assume a constant branching factor of w, then the tree for a depth d has as much as wdnodes.
In the game of chess, there is an average branching factor of about 40 ([8], p.61), which lets the
tree grow extremely quickly (for middle-game positions, minimax searches of more than a few
plies are beyond the computational power of todays computers). However, there were numerous
improvements of classic minimax, one of the most important beeing the alpha-beta algorithm.

2.2.2 Alpha-Beta

The basic idea of the alpha-beta is to prune away �irrelevant� parts of the tree that will have
no in�uece on the outcome of the search anyway. As minimax examines the whole game tree,
it spends much time on searching compleately irrelevant positions. The Alpha-Beta-algorithms
saves time by using the following idea: if it is already known that a certain move is worse than
the current bestmove, do not spend time to compute exactly how much it is worse but continue
with the next move in order to check it this one is better. Thus, big parts of the search-tree of
minimax can be pruned away by obtaining so-called �alpha-cuto�s� and �beta-cuto�s�. For more
details and a descrition of the di�erent �avours of alpha-beta-algorithms used in chess programms,
a good overview can be found in the article �Tree Seaching Algorithms� by H.Kaindl (see [14]).

The e�ciency of the alpha-beta-algorithm is depends heavily on the order in which it examines
the moves (see section 2.4).

2.3 Depth First vs. Best-First

Minimax as well as the alpha-beta algorithm described above are depth-�rst algorithms, i.e. they
search the game tree by exploring the �rst branch until the the deepest level (the horizon) is
reached, and continue in a rigid left-to-right order. However, there exist other possibilities to
compute the minimax-value of a position, like the �best-�rst�-strategy.

2.3.1 Traditional View on Best-First-Algorithms

The basic idea of the �best-�rst�-strategy is to search nodes that look most promising �rst. There-
for, the whole game tree is kept in memory (i.e. the storage requirements are higher than for
plain alpha-beta), and the search uses all information avalailable to decide which path is most
interesting to search next. The tree is not searched in a rigid left-to-right order, but the search
�jumps� between di�erent parts of the tree that are searched according to the prediction which
parts are most promising. Another way of putting it is that while depth-�rst algorithms search the
individual nodes in the game tree, the best-�rst-algorithms search for the best �minmax-solution
tree� among all possible solution trees (for details, see [21]).

One example is the SSS*-algorthm, which was introduced in 1979 ([22]), and it was proven to
be better than alpha-beta in the sense that it �never expands a node that alpha-beta does not
expand�, but there are cases where it expands cosiderably less nodes, according to some results
obtained by several researchers in the 80s and early 90s. The widespread opinion was that best-
�rst-algorithms like SSS* are more e�cient than alpha-beta, but that they are unusable in practice

12

because of their enormous storage requirements. However, neither of the propositions of the last
sentence is true, as is shown in the next paragraph.

2.3.2 SSS* as a Special Case of Alpha-Beta

Aske Plaat was able to show an astonishing fact in 1996: SSS* can be reformulated as a special
case of alpha-beta! For this, the use of transposition tables (i.e. �memory-enhanched�-alpha-beta)
is necessary, which leads to the short formula:

SSS*=alpha-beta+transposition tables

Contrary to earlier thoughts, Plaat was also able to show that in practice, SSS* does not
need more memory than alpha-beta. He simply used his alpha-beta-reformulation of SSS*, called
MT-SSS* (that he prooved would examine the nodes in the game tree in exactly the same order
as SSS*), and showed that in practice, the memory-requirements were the same as with alpha-
beta. But additionally, he was able to show that in game-playing practice, SSS* does not evaluate
signi�cantly less nodes than Alpha-Beta, given equal memory ressources. The theoretical and
simulation results that had indicated the supremacy of SSS* compared to alpha-beta of the past
were mostly based on �arti�cial trees, that lack essential properties of the as they are searched by
actual game-playing programs� ([16], p. 5).

So the unexpected result of his research can be summarized with the sentence �the reasons for
ignoring SSS* have been eliminated, but the reasons for using it are gone too� ([16], p.4). He even
states that �we believe that SSS* should from now on be regarded as a footnote in the history of
game tree search�4.

2.4 The In�uence of the Move-Ordering

It is easy to see that the alpha-beta-algorithm yields the same result (both the same bestmove
as well as the same value for the bestmove) like the minmax-algorithm. However, the number of
nodes visited can be quite di�erent, and alpha-beta can perform much better that minmax. How
much better it will perform depends on the order the moves are searched. In order to illustrate
this, the two extreme cases are treated: the best case (i.e. the move ordering is perfect, best moves
are always searched �rst) and the worst case (i.e. the worst moves are searched �rst).

2.4.1 Alpha-Beta (Worst Case)

In the worst-case, no cuto�s occur, cause the moves are searched in exactly the wrong order. Thus,
the alpha-beta-algorithm degenerates to plain minmax, with complexity wd.

2.4.2 Alpha-Beta (Best Case)

In the best case, the move ordering is perfect, i.e. best moves are always searched �rst and the
number of cuto� is maximized. Slagle/Dixon ([20]) showed that the complexity of the best case
depends on the fact whether d is even or odd:

• d even: 2wd/2 − 1

• d odd: w(d+1)/2 + w(d−1)/2 − 1

This formula also has an in�uence on the growth rate of alpha-beta trees, which is not identical for
the transition from odd to even depths compared to the transition from even to odd depths. Ad-
ditionally, the di�erence between the best case and the worst case is getting bigger with increasing
search depths (compare the practical results in section 4).

4Plaat develops a complete framework to give a uni�ed view on the di�erent depth-�rst alpha-beta algorithms as
well as the best-�rst algorithms like SSS* and DUAL*. Additionally, he describes a new instance of this framework
called �MTD(f)� which outperforms all known search algorithms both in computation time as well as on the amount
of nodes visited.

13

2.4.3 Minimal Trees

Historically, the best case of alpha-beta has been treated as beeing the �minimal tree� that has
to be searched by any tree search algorithm, thus beeing the asymtotic optimal case. However,
Plaat has shown that this view is not correct: At �rst, due to transpositions, one should speak of
a �minimal graph� instead of a �minimal tree�. In his terminology, we have 2 graphs:

• the �Left-First-Minimal-Graph� (LFMG), which is best case of alpha-beta

• the �Real Minimal Graph� (RMG), which can be considerably less than the LFMG

The problem of the LFMG is that when it examines a cuto�, it can not be assured that this is
the cuto� eliminating the biggest part of the search tree, and thus leading to the smallest search
tree. The LFMG just takes the �rst cuto� it gets during the traversal of the search tree (which is
done in a left-to-right manner, thus the name �left �rst�). However, there might be cuto�s that are
missed by the LFMG that achieve the same result with less search e�ort. The real minimal graph
(RMG) must always select the cuto� that leads to the smallest search tree. Due to the irregular
branching factor observed in practical game trees, as well as due to transpositions, it is di�cult if
not impossible to compute the RMG in practice, cause the size of the subtrees is inter-dependet,
as for example searching subtree A �rst might make it cheaper to search subtree B afterwards
because of transpostions. Plaats summarizes his results with the follwing sentences: �In other
words, minimizing the tree also implies maximizing the bene�ts of transpositions. Since there is
no known method to predict the occurrence of transpositions, �nding the minimal graph involves
enumerating all possible sub-graphs that prove the minimax value, and thus computing the real
minimal graph is a computationally infeasible problem for non-trivial search depths� ([16], p. 92).

But there are methods to approximate the RMG, leading to the approximate RMG (ARMG).
Details are given in [16], and these results show that there is still more room for improvement of
search e�ciency than belived before, where the best-case of alpha-beta (the LFMG) was believed
to be the theoretical optimum for search algorithms.

2.5 Heuristics for Achieving a Good Move-Ordering

As a good move-ordering is so crucial for achieving e�cient alpha-beta-searches in computer chess
(see section above), static as well as dynamic heuristics have been developed during the past
decades. Static move ordering means that moves are sorted inside the move-generator according
to some static heuristics that are independent from the position of the current node in the tree
(�the move-generator only sees the position, and does not have any knowledge about the search
tree). Dynamic move ordering tries to use information gathered during the search in order to
decide which moves to search �rst. They are mostly domain-independent, i.e. they can be used
for other games, too. We describe the following dynamic move ordering heuristcs here:

• the killer heuristic

• the history heuristic

• the refutation heuristic

How these work exactly in FUSc# is constituting a major part of this work. In this section, the
basic idea of the heuristics is explained. For an explanation of the concrete implementation in
FUSc# please refer to section 3.2.

2.5.1 Static Move Ordering

Inside the move-generator, each move is already assigned a value based on some static heuristics.
These are di�erent for capture and non-capture moves.

14

2.5.1.1 Capture Moves In order to assgin a static value to a capture move, the capturing
piece (�aggressor�) as well as the captured piece (�victim�) must be taken into consideration. A
common strategy is the �MVV/LVA�-heurstic. At �rst, capture moves are sorted according to the
�Most Valuable Victim� (MVV), then according to the �Least Valuable Aggressor� rule. How these
rules are translated into the practive di�ers among the di�erent chess programs, as some have a
feature called �Static Exchange Evaluator� (SEE) that tries to statically evaltuate captures by
considering how many attacks are there on the target �elds. The aim is to be able to distinguish
between winning and loosing captures already in the move generator, without any search! However,
this turns out to be quite di�cult, as normally only captures and re-captures on the same �eld
are considered, and more advanced threats like mate or pins are not included. Also, the amount
of information that is available in the move generator varies and is closely related to the data
structures used in a chess program (e.g. some engines maintain a structure saving the number of
attacks from/to a square incrementally).

2.5.1.2 Non-Capture Moves In order to have an easy-to-compute hierachy for non-capture
moves, the �piece-square-tables�5 that are used in the evaluation-routine of Fusc# are also used
to statically sort moves in the move-generator. Thus, if a piece moves from one square to a new
square, that move is attributed the di�erences of the values of the squares according to the piece-
square table for the moving piece. The formula is:

value = piece_square_table[piece][to] - piece_square_table[piece][from]

Take as an example a move where the knight moves from the edge of the board closer to the
center. It will be attached a positive value, as the value of the from-square will be lower than
the value of the to-square for the knight (which models the rule of thumb for chess that knights
should not stand near the edges of the board, as it limits their number of moves).

2.5.2 The Killer Heuristic

The basic idea of the killer heuristic is that moves that have been good (i.e. causing a cuto�) at
a certain depth should be tried again in the same depth. It was �rst described by Slate/Atkin in
[8]. A simple implementation will just record one killer move at each ply, but already Slate/Atkin
describe why this is not optimal. They suggest to keep 2 killer moves for each ply, and maintain
a counter for both of them. Each time a cuto� occurs, the cuto�-move will be compared to the
killer moves: if it corresponds to one of them, then the respective counter is incremented, if is not
among them, then the killer-move with the lower counter is replaced by the cuto�-move. However,
this heuristic can even be further improved, as we show in section 3.2.

2.5.3 The History Heuristic

The idea behind the histroy heuristic is that moves that have been good �on average over the whole
tree� (i.e. that have good history value) should be tried earlier than others. For this purpose,
a �history-value� is maintained for each possible move (normally, it is saved in an array indexed
by the from and the to-square of the move) that is updated each time a cuto� occurs or a new
best move is found. The history value is incremented by the distance to the horizon that a move
was searched - the idea is that moves that are prooven to be good after a deep search should be
awarded a bigger bonus that those that result from only shallow searches.

5A piece-square-table saves values for all squares for a speci�c piece in an array. These values indicate wheather
it is generally considered to be good for the piece to stand on this �eld (i.e. higher value), or if it is a rather bad
square for the piece. Static piece-square-tables are easy to implement, however there are also some ideas to modify
them according to the current position on the board (e.g. analyse the postion before the search starts and �ll the
piece-square-tables appropriately).

15

2.5.4 The Refutation Heuristic

The idea of the refutation heuristic is that moves that have been good as an answer to a certain
opponent's move should be saved and tried �rst in other parts of the tree if the last of the
opponent's move has been the same. Thus, in the search tree, each time a cuto� occurs, this
cuto� move is saved as refutation of the move that was made by the opponent one ply earlier.
One example where this heuristic can be useful is a situation like the following: Imagine black
has a piece standing on a square attacked by white, but black has his piece covered by another
black piece. Now if black moves the piece that is covering the square, the other piece is left �en-
prise� and can be captured by white without any danger. In this situation, the capture would be
the �refutation-move� for the move that moves the covering piece. Even though the general idea
behind the refutation heuristic has been mentioned by other authors, the heuristic as we describe
it here is to our knowledge only implemented in FUSc# (but e.g. some chess programs attribute
a bonus to moves that capture the piece that was moved last by the opponent, which could be
seen as a primitive try to �refutate� the last opponents move)

3 Practical strategies for e�cient alpha-beta-searces - The
FUSc# Source Code in Detail

As described in 1.2.1, FUSc# is the chess program developed by the �AG Schachprogrammierung�
at the Free University in Berlin. It is written in C# and runs on the Microsoft .NET Framework
(see [12]). In this section, a closer look will be taken to selected parts of the FUSc#-source-code,
which can be downloaded from [6], as FUSc# is an open-source-project.

3.1 Prerequisites: E�cient Move Generation

This section aims to give an overview of how the move generator of FUSc# works. The move-
generator has been described in detail in [2]. At �rst an overview of move generation in FUSc# is
given, then the generation of moves for the di�erent pieces is explained. As explained in section
1.2.3.3, there are three main categories of piece-types for move generation:

1. Pawns (capturing/non-capturing moves)

2. Non-sliding pieces (knight, king)

3. Sliding pieces (bishop, rook, queen)

For each of these categories, one example is treated below (for the other pieces have a look at
[2]). The steps involved in the move-generation in FUSc# are explained and illustrated by some
snippets from the source-code. However, for these explainations, not the latest (�ne-tuned, and
therefor quite unreadable) version of the source-code of the FUSc#-move-generator will be used,
but an earlier version where the concepts involved can be seen much clearer. Those concepts of
course still form the basis of the move-generator of the latest versions of DarkFUSc# (our new
engine, which can be downloaded from [5]). When we speak about �FUSc#� in the following
section (like in the whole paper), we actually mean the current �DarkFUSc#�-engine, as beeing
the latest member of the FUSc#-family (see 1.2.1 for more information about the FUSc# project
history).

3.1.1 Overview of Move Generation in FUSc#

We will discuss now in detail how the move generator in FUSc# works. We will only deal with
�movegen_w� that generates moves for white - there is a symmetrical routine for black, which is
based on the same ideas and will not be treated here. The call for �movegen_w� is:

16

int movegen_w(Move[] movelist, ulong from_squares, ulong to_squares)

You can see that movegen_w expects 3 parameters:

• a �movelist� to store the generated moves in

• a bitboard (ulong is 64bit in .NET!) of �from_squares�, which is normally �board.w_occ�,
i.e. all white pieces

• a bitboard of �to_squares�, which is normally �~board.w_occ�, i.e. the complement of all
white pieces, but could also be e.g. �board.b_occ� to generate only capture moves

In the following sections we will discuss the move generation for some of the pieces in detail.

3.1.2 Pawns

In this work, only non-capturing moves for pawns will be considered (see [2] for the rest). Below
you �nd the code-snippet from the FUSc#-move-generator that generates (one step) non-capturing
pawn moves for white:

1 // WHITE PAWNS (one step)

2 pawn_fields_empty = ((board.pawns & from_squares) < < 8) & (~board.occ.ll);

3 tos = pawn_fields_empty & to_squares;

4 froms = tos > > 8;

5 while (from = GET_LSB(froms))

6 {

7 board.w_attacks |= from;

8 movelist[movenr].from = from;

9 movelist[movenr].to = GET_LSB(tos);

10 movelist[movenr].det.ll = 0;

11 movelist[movenr].det.ail.piece = PAWN;

12 movelist[movenr].det.ail.flags = 0;

13 movenr++;

14 CLEAR_LSB(tos);

15 CLEAR_LSB(froms);

16 };

In line 2, the idea is to compute a bitboard of all the �empty squares in front of white pawns�. To
get this, the pawns (standing on the �from_squares�) are shifted to the left by 8 bits, and the result
is �ANDed� with the complement of the �occupied� squares (found in �board.occ.ll�). Then, this
�pawn_�elds_empty� is �ANDed� with the �to_squares� in order to get the destination squares
(�tos�) for all the desired moves. The from-squares (�froms�) for those moves can be obtained by
shifting back the �tos� by again 8 bits. After line 4, all one-step non-capturing pawn moves (that
origin from �from_squares� and head to �to_squares�) have been genrated and are encoded in
the two bitboards �froms� and �tos�. In the while-loop in lines 5-16 those moved are put into the
movelist indivudally. Therfor, the individual moves that correspond to the bits in the bitboard
�froms� and �tos� must be obtained one-by-one. In line 5, the �Least Signi�cant Bit� (LSB) of
�froms� is extracted and saved in the bitboard �from�, and in line 9 the same is done for the LSB
in �tos� (it is saved in the bitboard �to�). These two bitboards, together with some additional
information (like the piece that is moving) is then saved in the movelist (lines 7-12). In lines 13
and 14, the �Least Signi�cant Bits� of �froms� and �tos� are cleared, as this was the move that has
just been processed. If there is are bits left in �froms�, then the next iteration of the while-loop
will extract them, otherwise the generation of one-step non-capturing pawn moves is �nished.

Two-step non-capturing pawn moves are generated similarily.

17

3.1.3 Non-Sliding pieces

As an example for non-sliding pieces, knight moves will be treated. Here is the code-snippet from
the FUSc#-move-generator that generates moves for the white knight:

1 // WHITE KNIGHT

2 froms = board.knights & from_squares;

3 while (from = GET_LSB(froms))

4 {

5 from_nr = get_LSB_nr(from);

6 tos = knight_moves[from_nr] & to_squares;

7 while (to = GET_LSB(tos))

8 {

9 board.w_attacks |= from;

10 movelist[movenr].from = from;

11 movelist[movenr].to = to;

12 movelist[movenr].det.ll = 0;

13 movelist[movenr].det.ail.piece = KNIGHT;

14 movelist[movenr].det.ail.from_nr = from_nr;

15 movelist[movenr].det.ail.flags |= FROM_NR_COMPUTED;

16 if (board.b_occ & to) movelist[movenr].det.ail.flags |= NORMAL_CAPTURE;

17 movenr++;

18 CLEAR_LSB(tos);

19 };

20 CLEAR_LSB(froms);

21 };

Generating moves for the white knight starts in line 2, where �board.knights� (containing the
knights of both colors) is �ANDed� with the �from_squares� (which normally contain all the white
pieces). The result (a bitboard containing the white knights) is saved in �froms�. In line 3 the
LSB of �froms� is extracted and saved in the bitboard �from�, which then only contains one bit
set (at the position where the �rst white knight resides). Then, in line 5, the number of the
bit set in �from� is computed by the routine �get_LSB_nr(from)� and saved in �from_nr�. The
�from_nr� is needed to index the array �knight_moves� in line 6 (this array contains all ever pos-
sible knight moves from the square that is given as index, see section 1.2.3.3.2). The destination
squares for knight-moves (�tos�) are computed by �ANDing� the �knight_moves[from_nr]� with
the �to_squares�, which could be all empty squares or all black pieces, e.g., if only the generation
of certain types of moves is desired (capturing/non-capturing). After that, the generated moves
are put in the movelist in lines 7-21.

3.1.4 Sliding pieces

As an example for non-sliding pieces, rook moves will be treated. Here is the code-snippet from
the FUSc#-move-generator that generates moves for the white rook:

1 // WHITE ROOK

2 froms = board.rooks & from_squares;

3 while (from = GET_LSB(froms))

4 {

5 from_nr = get_LSB_nr(from);

6 rank_pattern = board.occ.byte[from_nr > > 3];

7 file_pattern = board.occ_l90.byte[l90_to_normal[from_nr] > > 3];

8 tos = (rank_moves[from_nr][rank_pattern] | file_moves[from_nr][file_pattern])

& to_squares;

18

9 while (to = GET_LSB(tos))

10 {

11 board.w_attacks |= from;

12 movelist[movenr].from = from;

13 movelist[movenr].to = to;

14 movelist[movenr].det.ll = 0;

15 movelist[movenr].det.ail.piece = ROOK;

16 movelist[movenr].det.ail.from_nr = from_nr;

17 movelist[movenr].det.ail.flags |= FROM_NR_COMPUTED;

18 if (board.b_occ & to) movelist[movenr].det.ail.flags |= NORMAL_CAPTURE;

19 movenr++;

20 CLEAR_LSB(tos);

21 };

22 CLEAR_LSB(froms);

23 };

For generating rook-moves, the idea of �rotated biboards� (section 1.2.3.3.4) comes into play. But
at �rst, the white rooks are computed and extracted in lines 2-3, and the number of the square
where the rook is standing is computed is line 5 and stored in �from_nr� (see previous sections
for details). In lines 5 and 6 patterns of the rank and the �le on which the rook is standing is
saved in �rank_pattern� and ��le_pattern� respectively. These patterns are 8-bit variables that
are used to index the �rank_moves� and ��le_moves�-arrays in line 8, in addition to �from_nr�,
containing the square where the rook is standing (see section 1.2.3.3.3 for details). In line 7, you
can see how the idea of accessing the �rotated� representations of the occupied squares works in
practice: The desired �le-pattern is found in

�board.occ_l90.byte[l90_to_normal[from_nr] > > 3]�

Let's look at the individual parts of this expression:

• �board.occ_l90� contains a bitboard of the occupied squares, shifted by 90◦ to the left

• this bitboard consists of 8 bytes (i.e. 64bits), that can be accessed individually by �board.occ_l90.byte[0]�
to �board.occ_l90.byte[7]�

• in order to get the correct byte-number, the �from_nr� is converted to the �l90�-square-nr
by accessing the array �l90_to_normal� with index �from_nr� and shifted to the right by 3
bits

• this last shift can also be seen in line 6. When shifting �from_nr� (a number from 0...63) to
the right by 3 bits, you will get the number of the byte where the bit corresponding to the
�from_nr� resides

Thus, after line 6 and 7, you have the correct patterns stored in �rank_pattern� and ��le_pattern�.
These are used to access the pre-computed �rank_moves� and ��le_moves� arrays in line 8, where
the bitboard of the possible destination squares for rook-moves (�tos�) is computed. The individual
moves are put in the movelist in lines 9-23 as decribed above.

3.2 Dynamic Move-Ordering in Fusc#

The current FUSc# source code contains the following dynamic move ordering heuristcs:

1. the killer heuristic

2. the history heuristic

19

3. the refutation heuristic

In this section, a brief description of the data structures used by each heuristic is given. If you
are interested in more detials about these heuristics, e.g. how they are updated when a cuto�
occurs, or in understanding the procedure of applying each of the heuristics to concretely sort
the generated moves inside the search algorithm, please have a look at the FUSc#-source-code
yourself, as describing the steps involved in a line-by-line fashion would go beyond the scope of
this work.

3.2.1 Killer Heuristic

There exists two versions of the killer-heuristic in FUSc#: the �simple killer heuristic� and the
�advanced killer heuristic� (see section 2.5.2).

3.2.1.1 Simple Killer Heuristic The simple killer heuristic maintains 2 killer moves for each
ply, and saves a counter for both of them. Here is the appropriate data structure used in FUSc#:

public struct KillerMove

{

public Move killer1;

public sbyte counter1;

public Move killer2;

public sbyte counter2;

}

KillerMove[] s_killer_at_ply = new KillerMove[DFConstants.MAXDEPTH];

As an example, s_killer_at_ply[5].killer1 contains the �rst killer move at ply 5. Each time a
cuto� occurs, the cuto�-move will be compared to the killer moves: if it corresponds to one of
them, then the respective counter is incremented, if is not among them, then the killer-move with
the lower counter is replaced by the cuto�-move.

3.2.1.2 Advanced Killer Heuristic The advanced killer heuristic uses the same data-structure
as the simple killer heuristic to save 2 killer moves for each ply. However, additionally, a �killer-
value� for each move is maintained, indexed by the �from� and the �to�-square (comparable to the
way the �history-value� maintained for the history-heuristic, see below)

int[�] s_killer_value = new int[200,64,64];

The killer-value of a move is stored in �s_killer_value[depth,from,to]� and is incremented each
time a cuto� occurs for the move causing the cufo�. Therfor, the search keeps track in detail how
often each move has caused a cuto� at a certain ply. This is more advanced than just maintaining
counters for the two most frequent cuto�-moves that are saved as killer-moves in the simple killer
heuristic (in the simple case, also the value of the counter for a killer-move is lost as soon as the
move is replaced. This can lead to a situation where a very good killer move is still replaced fre-
quently, because the simple killer heuristic has no way of saving �globally� how often each move has
already caused a cuto� for each depth. This is exactly the idea behind the �s_killer_value�-array
in the advanced killer heuristic).

3.2.2 History Heuristic

The data structures for the history heuristic are the following:

public struct HistoryMove

20

{

public Move history1;

public sbyte value1;

public Move history2;

public sbyte value2;

}

HistoryMove s_global_history;

// the history-value of a move is stored in s_history_value[from,to]

int[,] s_history_value = new int[64,64];

Unlike the killer-heuristics described above, the history-heuristic does not maintain history
moves for each ply, but does save �global� history moves for the whole search tree. A �history-
value� is maintained for each move in an array indexed by the �from� and the �to�-square. This
history-value is augmented each time a cuto� occurs for the move causing the cuto� (see 2.5.3 for
details).

3.2.3 Refutation Heuristic

For the refutation heuristic, the following data-structures are maintained during the search:

public struct RefutationMove

{

public Move move;

public bool exists;

};

RefutationMove[,] s_refutation = new RefutationMove[64,64];

Each time a cuto� occurs, the cuto�-move is saved as refutation of the move the opponent had
done before. For this move, that was done before by the opponent, the �ag �exists� is set to true,
so that the refutation can be tried the next time the move occurs somewhere else in the search
tree.

4 Practical Experiments with FUSc#

4.1 Verifying the Move-Generator of Fusc#

Constructing a basic move-generator is not too hard, since the basic rules for piece-movements
in chess are manageable both in number and complexity. However, when also considering special
moves like castling, promotion and en-passent and the huge number of possible chess positions
there are some really tricky cases to handle - and the question arises how to make sure that the
move-generator of one's chess program works 100% correct, even in awkward and seldom ocurring
yet possible positions. �Manually� checking the move-lists of the program is possible for only a very
limited number of positions - nevertheless it should of course be done in the process of developing
a chess program, although it can always only be a �rst step. A more advanced method to verify
the move-generator of a chess engine have been developed is to use the command �perft�.

4.1.1 The �perft�-Idea

The basic idea is to implement a �perft�-command to the chess engine which will construct a
minmax-tree untill a �xed depth and count all the generated nodes. This number can be compared
to the number of nodes generated by the �perft�-command of other chess engines, and there

21

exist Web-Sites with both a collection of chess positions and the corresponding correct �perft�-
numbers for several depths (see [11]). Of course, special attention should be given to positions
involving �special moves� like castling, en-passent and promotion. One important point is that the
search conducted by the �perft�-command must construct a plain minmax-tree without alpha-beta,
transpositions tables, quiescence search, search extensions or any forward pruning techniques like
null-moves.

4.1.2 Test Positions

4.1.2.1 The Start Postion The correct results for the �perft�-command at the start position
are given in the following table. It is clear that for depth 1 (i.e. �move generation for white and
counting the nodes�) the result is 20, as there are 20 legalmoves for white in the start position in
chess:

Depth Perft(Depth)

1 20
2 400
3 8,902
4 197,281
5 4,865,609
6 119,060,324
7 3,195,901,860
8 84,998,978,956
9 2,439,530,234,167
10 69,352,859,712,417

4.1.2.2 A Middlegame Position The following position involves castling, en-passent and
promotion (at least in higher depths) for both sides.
The FEN-Code is r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq
-

The correct results are:

Depth Perft(Depth)

1 48
2 2039
3 97,862
4 4,085,603
5 193,690,690
6 8,031,647,685

22

4.1.2.3 An Endgame Position Here is an endgame-poistion with FEN-code 8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8
w - -

The correct results are:

Depth Perft(Depth)

1 14
2 191
3 2,812
4 43,238
5 674,624
6 11,030,083
7 178,633,661

4.1.3 Results of Crafty and FUSc#

In order to test the move-generator of FUSc#, the three positions described above were loaded
into the program and the �perft�-command was executed. In order to re-check the results, the
experiment was also done with Crafty (version 1919p3, see [3]). The result is that the FUSc#-
move-generator works 100% correct! See the Appendix (6.2) for the detailed output of both
programs in the three positions.

4.2 Status of the Fusc#-Search-Algorithm before the Search-Experiments

4.2.1 Getting it Deterministic

Before starting the experiments on the in�uence on the di�erent heuristics for achieving a good
move ordering, the �rst thing to do was assuring that Fusc# plays 100% correct and deterministic,
because otherwise, the results would be worthless. The correctness of the move generator was
prooven in section 4.1. In order to get the Fusc#-search-algorithm 100% deterministic, we had to
check the following things:

• the hash-table implementation: in the past, the hash-table algorithm had been initialized
with random values. This has been changed so that we have a deterministic functioning of
the hash-tables by either hard-coded values or values read by an initialization �le (which
can be changed by a special parameter in the source)

• In the beginning of our developments on Fusc#, we faced the problem that FUSc# was not
able to learn from its mistakes (the evolutionary opening book was not implemented yet),
so when somebody found a way to win against FUSc#, he or she could play this line again
and again, and FUSc# would play exactly the same (bad) moves over and over. Therfor, we
introduced a small random factor that was added to the score of the evaluation function, and
thus changing the play of FUSc# a bit each time (we called this version RANDOMFUSC#).
Of course, we had to switch it o� before the experiments.

23

• the heuristics that we implemented for dynamic move-ordering have to be cleared every time
before a search, so that no �old values� in�uence the search

In the end we could observe a 100% deterministic behaviour of the search of FUSc#.

4.2.2 Introducing a Framework for Conducting the Experiments

4.2.2.1 New Commands for an Automated Performing of the Tests In order to run
automated tests, several new commands were introduced to FUSc#. They can be entered directly
at the command prompt after FUSc# when started from the command-line. Normally, the en-
gine understands only UCI6-commands, but for debugging and testing purposes, some additional
commands were implemented. All of these start with �debug�, one example is �debug board�,
which displays the current con�guration of the boards, or �debug boards�, which displays some
of the bitboards that are used internally for board representation (see 1.2.3.2). A complete list
of these additional commands can be obtained with �debug help�. In the course of this work, we
implemented the following new commands:

• �debug searchpositions positions.fen depth� starts a search on each of the positions contained
in the �le �positions.fen� to a �xed depth that is passed as second parameter. The positions
must be given in the by their FEN-codes, a standard format for describing chess positions.

• �debug test�le commands.txt� passes the commands that are stored in the �le �commands.txt�
to the FUSc#-engine. Additionally, we implemented the possibility to specify a �le with
commands in the command line, e.g. by typing �Fusch commands.txt�.

• �debug loadparams params.txt� loads the engine-parameters speci�ed in the �le �params.txt�
(e.g. speci�c heuristics can be turned on/o�), and thus con�gures the engine according to
these parameters

4.2.2.2 Batch-Mode and Machine-Readable Output In order to do an automated testing
of the FUSc# search algorithm based on the newly commands described above, it was necessary
to implement a new special playing-mode we called �BatchMode� which should be set active when
FUSc# is called not for normal game-playing purposes but for automated testing, e.g. from
a Batch-�le. The Batch-Mode assures absolute deterministic playing (see above), and disables
unwanted features like e.g. pondering that are not useful when running automated tests. A
second extension was a parameter de�ning if FUSc# should format its output in the normal
human-readable manner, or rather in a �MachineReadable�-manner that can be better processed
further when doing some test series. If the �MachineOutput�-parameter is set to �true�, then
FUSc# will only output the current search depth and the number of nodes searched in a csv7-like
notation. This is much easier to process (e.g. for visualization of the data) than trying to parse
the output that FUSc# generates when playing �normally�.

4.2.3 Move Ordering in DarkFusc# 0.9

DarkFusc# 0.9 had only some very basic move ordering implemented, based on the transposition
tables and static piece-square tables8. As shown in section 2.4, the move-ordering has a great
in�uence on the e�ciency of alpha-beta searches. The aim of our experiments was thus to im-
plement more sophisticated heuristics for move-ordering (like killer-moves etc.) and to test which
combination and priority of those heuristics prooves to be most successful in achieving the smallest
tree in typical ches positions.

6�unversal chess interface�, the standard protocol for communicating with a chess engine and the successor of
the older �winboard�-protocol

7csv (�comma seperated values�) is a standard for encoding tables and data in a very simple form and can be
read and written by Mircosoft Excel, e.g.

8In the terminology used later in this section, the e�ciency of the move-ordering of the old FUSc# was probably
somewhere between the �static� and the �static+TT� version, as we did also major improvements to the static move
ordering in the course of this work.

24

4.3 Measuring the In�uence of the Di�erent Heuristics

The following dynamic move ordering heuristcs have been implemented in the course of this work:

1. the killer heuristic

2. the history heuristic

3. the refutation heuristic

In this section, we descibe the experiments that were conducted in order to verify that the heuristics
work correctly. An explaination of the theory behind it is given in section 2.5. For an explanation
of the concrete implementation in FUSc# please refer to section 3.2.

4.3.1 General Experimental Setup

In order to gain some insights in how far the heuristics we implemented serve the goal of reducing
the number of nodes that need to be searched, a number of �xed-depths searches were conducted
by FUSc# in di�erent positions, with the relevant heuristics beeing tuned on/o� indivdually.
Thus, what we did was basically counting nodes for di�erent versions of FUSc# searching the
same positions. This has a clear advantage: the results can be obtained without the need to
evaluate if the �chess playing strength� of FUSc# got better or worse with the introduction of a
new heuristic, which is much more di�cult than just counting nodes.

Another question was whether to use the FUSc# search algorithm as it is used in normal games,
or whether to modify/change it for the experiment. The second option would allow to do some
modi�cations with the aim of getting clearer results by eliminating some parts of the complex set
of functional units inside a chess programm that a�ect the performance of the engine. One option
would be, for example, to reduce the evaluation function to evaluating just the material on the
board, as this would save much time during the experiments, and one could argue that we are not
trying to tune or modify the evaluation function in these experiments anyway, so there is no harm
in disabling it. But the problem is that because of the complexity of the process, the side-e�ects
of parts like e.g. the move-ordering-heuristics are not always clear: what if a heuristic that is best
for the �material-only�-case performs signi�cantly worse compared to the others when the normal
(slower) evaluation function is used, e.g. because the information gained by a more �ne-grained
evaluation can be used better by another heuristic? That's why we decided in favour of the �rst
option, i.e. to run the tests with the unmodi�ed search-algorithm that is used for normal play.
This assures that the heuristics presented here work in practice, i.e. the improvements we achieved
are not only valid in the �testing world�, but did improve the search (and thus the playing strength)
of the FUSc# chess program in real life.

All the experiments were done workstation featuring an AMD Athlon 64 processor9, where
an evaluation copy of �Microsoft Windows XP Professional x64 Edition� was installed in order
to test if FUSc# would pro�t from a native 64bit enviroment10. And indeed, the �nodes per
second� (nps) were 2-3 higher when FUSc# was running on the 64bit platform than when running
the same program on the same computer, but on a 32bit version of �Windows XP Professional�.
The reason for this lies in the bitboard-representation that is used for the board-representation in
FUSc#, which heavily relies on 64bit-operations (see section 1.2.3.2).

4.3.2 Experiment 1

The aim of our �rst experiment was to evaluate the performance of the di�erent move-ordering
heuristics compared to a version of FUSc# that uses no move-ordering at all. A di�culty that

9Here is the exact hardware con�guration used: AMD Athlon 64 3000+, 1024MB DDR-Ram, 2 x 200GB Maxtor
Hard Discs (RAID 0), GeForce 6600 Graphics Adaptor

10In order to achieve a 64bit native runtime enviroment for FUSc#, also a 64bit version of the .NET-Framework
(we used .NET 2.0 Beta 2) has to be installed. The source was compiled with �Visual Studio 2005 Beta 2� with
�x64� as target platform

25

showed up in setting up the experiments is the following: there is an extreme di�erence in perfor-
mance between the di�erent versions (especially between the �no-heuristics-at-all and the �best�-
version). And according to the theoretical results in 2.4, this di�erence gets even much larger with
higher search dephts. Thus, a comparison with the �no-sort�-version was only possible in relatively
small seach depths. For a comparison of the di�erent heuristics among each other, however, we
were able to reach much higher depths in our experiments (see 4.3.3).

4.3.2.1 Questions to be Answered As we described in section 3.2, we have implemented
several move-ordering-heuristics in FUSc#, some of which were already described in the literature,
but for others, to our knowledge, this has not been the case. Consequently, the main question was
of course in how far those heuristics are useful to reduce the tree size of an alpha-beta-search.

4.3.2.2 Experimental Setup A set of test positions was chosen: the LCT-II-Test11. It
contains 35 positions, ranging from the early middlegame to the endgame taken from real games.
In �Experiment 1�, we compared the following versions of FUSc#:

1. �no-sort�, with all move-ordering heuristics turned o�

2. �static�, with static move-ordering, but all dynamic move-ordering heuristics turned o�

3. �static+TT�, with static move-ordering plus the move from the Transposition Table (if avail-
able)

4. �refuation�, which equals version �3.�, plus the refutation heuristic (it should actually be
called �static+TT+refutation�)

5. �history�, with the history-heuristic turned on (i.e. �static+TT+history�)

6. �killer�, with the killer-heuristic12 turned on (i.e. �static+TT+killer�)

7. �all�, with all the heuristics combined (i.e. �static+TT+refutation+history+killer�)

4.3.2.3 Results Here is the diagram of the results:

11The LCT-II-Test is a widely used test suite inside the computer chess community for testing the strength of
chess programs

12the killer-heuristic used in this experiment is actually the �killer-advanced� version. However, in this �rst
experiment we did not aim at comparing the two versions of the killer-heristic we implemented in FUSc#, this was
done later in �Experiment 2�

26

In the �rst diagramm, the versions �1.�-�7.� are shown, while in the second diagramm, the
versions �2.�-�7.� (in the diagramm beeing labeled �1�-�6�) are shown in a di�erent scale for better
comparison.

4.3.2.4 Interpretation of the results The main result is simple and clear: as expected, the
move-ordering has a big in�uence on the e�ciency of alpha-beta-searches. The newly implemented
move-ordering heuristics in FUSc# are alltogether very successfull in reducing the tree size for
typical alpha-beta searches, thus our primary aim of making FUSc#'s search algorithm more
e�ecient was successful. Already in depth 4, the version with all move-ordering heuristics turned
o� searched more than 20 times more nodes than the best version with all the heuristics combined.
Also, all of the heuristics described above seems to contribute to the success of the combined �best
case�. except the �refutation�-heurstic, which searches slighly more nodes than when turned o�.
But one can make another observation: the combined �best case� is only slightly better than the
best single-heuristic (which is the killer-heuristic in this case). There seem to be �side-e�ects� of
the heuristics towards each other! Thus, the �rst experiment lead to the following questions:

• is the �refutation�-heuristic a contribution to achieving a good move-ordering? Up till now,
the results were quite disappointing, as we expected an improvement of the nodes searched,
but observed the number to even go up instead (although only by a few nodes). The question
was whether this was also true for higher search depths, or if the picture would change when

27

going deeper.

• how do the �side-e�ects� of the heuristics in�uence the results of the �all-heuristics-cominded�-
version for higher search depths? Will these �side-e�ects� increase, or will the combination
of all heuristics turn out to be more e�cient than each of the the single heuristics alone?

In order to answer these questions, there was a need to reach higher search depths than in the
�rst experiment. Two more experiments were conducted, which are presented in the following two
sections.

4.3.3 Experiment 2

4.3.3.1 Questions to be Answered Additional to the questions that arose from �Experiment
1� (see above), we were interested in the question how the �advanced killer heuristic� that we
developed in the course of this work would perform. However, the �rst experiment had told us
that �side-e�ects� of the heuristics play an important role in practice, and consequently we were
not so much interested in the performance of the heuristic when applied isolated, but rather in
the performance of the heuristic when combined with the others. Therfor, we send 2 types of the
�all-heuristics-combined�-version to the experiment: one with the simple killer heuristic turned on,
and one with the advanced killer heuristic turned instead.

4.3.3.2 Experimental Setup It turned out that for conducting deeper searches in a reason-
able time-frame, a smaller set of positions was needed. That's why for the �Experiment 2�, a
subset of 26 positions from the 35 �LCT-II�-positions used in �Experiment 1� was chosen in order
to �go deep�. The 9 positions with the hightes number of nodes were neglected, and the remaining
positions were searched up to a depth of 9 plies. The complete test lasted more than 14 hours,
with alone 10 hours for the last search depth 9. In �Experiment 2�, we compared the following
versions of FUSc#:

1. �all (killer-simple)�, with all the heuristics combined (i.e. �static+TT+refutation+history+killer-
simple�)

2. �all (killer-advanced)�, with all the heuristics combined (i.e. �static+TT+refutation+history+killer-
advanced�)

3. �static�, with static move-ordering, but all dynamic move-ordering heuristics turned o�

4. �static+TT�, with static move-ordering plus the move from the Transposition Table

5. �history�, with the history-heuristic turned on (i.e. �static+TT+history�)

6. �killer�, with the killer-advanced-heuristic turned on (i.e. �static+TT+killer-advanced�)

7. �refuation�, with the refutation-heuristic turned on (i.e. �static+TT+refutation�)

4.3.3.3 Results Here is the diagram of the results:

28

In the �rst diagram, the results of the search till depth 8 is shown, whereas the second diagram
shows the results of the search till depth 9.

4.3.3.4 Interpretation of the results The result of �Experiment 2� was ambivalent: On
the one hand, beeing able to search so many postions untill a depth of 9 plies in a resonable
time-frame was a big success for us, and this depth was only reached thanks to the new move-
ordering heuristics. Also, the version applying the �advanced killer heuristic� performed clearly
better than the one applying the �simple� one, which met our expectations. On the other hand,
for the questions that arose from �Experiment 1�, the answers were rather disappointing:

• the �refuation heuristic� was still performing very badly, especially in depth 9, where it
searched considerably more nodes than the plain �static+TT�-version

• the �all-heuristics-combined�-versions (numbers �1� and �2� in the diagrams) were still outper-
formed by the isolated �advanced-killer-heuristic�, and the di�erence seemed to grow larger
with increasing search depths

One question that arose was if the fact that we reduced the set of positions searched in �Experiment
2� could have had a major in�uence on the relative performance of the heuristics. Maybe we
removed just the positions that woud e.g. bene�t from the refutation-heuristic in higher search
depths! Thus, we scheduled a third experiment to �nd out.

29

4.3.4 Experiment 3

4.3.4.1 Experimental Setup In the �Experiment 3�, we were going back to the full set of
the 35 �LCT-II�-positions, but had only 3 versions of FUSc# running:

1. �killer-adv�, with the killer-heuristic turned on (i.e. �static+TT+killer-advanced�)

2. �all (killer-advanced)�, with all the heuristics combined (i.e. �static+TT+refutation+history+killer-
advanced�)

3. �refuation�, with the refutation-heuristic turned on (i.e. �static+TT+refutation�)

A search depth of 7 plies was reached in ca. 8 hours of computing time.

4.3.4.2 Questions to be answered In �Experiment 3�, we just wanted to �nd answers to
the questions that arose after the �nishing of �Experiment 2� (see above).

4.3.4.3 Results Here is the diagram of the results:

In the �rst diagram, the results of the search till depth 7 is shown, whereas the second diagram
shows the results of the search till depth 6.

30

4.3.4.4 Interpretation of the Results For the two still open questions from �Experiment
2� (actually, they already arose in �Experiment 1�), we obtained the following results:

• the �refuation-heuristic� lead to a considerable reduction of the nodes searched at depth 6
and a slight improvement at depth 7

• the �killer-advanced�-heuristic seems to be the best of the currently implemented move-
ordering heuristics, but only when implemented isolated from the others, as there seem to
be many side-e�ects, occuring especially in higher search depths

The second point was a quite unexpected result, and needs further clari�cation (see next para-
graph).

4.4 Interpretation of the Results of the three Search Experiments

The main result of our experiments is that we were successful in improving the move-ordering
in FUSc#: �Experiment 1� showed that already in depth 4, the version with all move-ordering
heuristics turned o� searched more than 20 times more nodes than the best version with all the
heuristics combined. Also, all of the heuristics we implemented in FUSc#, when applied alone,
reduce the number of nodes searched - although there are special cases where certain heuristics
fail, like e.g. the �refutation-heuristic� for smaller search depth, as we observed in �Experiment
1�. But alone beeing able to search so many postions untill a depth of 9 plies in �Experiment 2�
in a resonable time-frame was a big success for us, and this depth was only reached thanks to the
new move-ordering heuristics. Also, the version applying the �advanced killer heuristic� performed
clearly better than the one applying the �simple� one. However, the main challenge seems to be to
control the �side-e�ects� that occur when the individual heuristics are combined: Our experiments
2 and 3 showed that it is not always the case that the �all-heuristics-combined�-version of the
algorithm performs best, instead in our experiments the �killer-advanced�-heuristic was globally
the best when applied alone, without the others! This is a quite astonishing result, and there has
to be done further reasearch and testing in order to verify this hypothesis.

5 Conclusion/Future research

The aim of this work was to give an overview of the theory of e�cient alpha-beta-searches in
computer chess and to explain the practical strategies implemented in the FUSc# chess program.
The main focus was put on two topics: the �rst one was e�cient move generation with �rotated
bitboards�, and the second one was how to carry out e�cient alpha-beta-searches by optimizing
the move-ordering with static and dynamic heuristics. Pracical experiments with FUSc# were
used to verify the theoretical results in both questions.

One of the challenges for optimizing the application of dynamic move ordering heuristics is
that the heuristics tend to perform extremly di�erent depending upon the exact conditions of the
experiment: the result will depend on the selection of positions, on the chosen search depth, and
probably on other factors that were not changed during our experiments but could as well be
included in the set of parameters (like which variant of alpha-beta is used to perform the search,
because it might be that one heuristic performs better with plain alpha-beta while beeing worse
with MTD(f), for example). Also, there are even more parameters to tune concerning the move-
ordering that just switching move-ordering-heuristcs on or o�: one could �ne-tune the exact order
in which the heuristics are applied (e.g. �should the killer move come before the refutation move
or afterwards?�) or even include multiple variants of the heuristics (e.g. allowing captures in the
killer-move slots or not). Alltogether, it seems to us that manually testing all of the di�erent
variants is not desirable, as this will need extremely much time, and is basically a �try-and-error�
procedure. On the contrary, the search-algorithm of FUSc# seems to be at a point where a
systematic testing of all the mentioned parameters would be needed in order to �nd out the best
combination. This could be done either by massively running tests of di�erent versions of FUSc#,

31

and tune the parameters manually according to the results. However, a more promising alternative
seems to be trying to implement a framework where not only the testing but also the adjustment
of the parameters is automatized. This could maybe even be combined with some approaches on
machine learning, leading to a bunch of new research possibilities for the future.

Another aspect is that for doing large-scale experiments on search algorithms, much com-
puting power is needed. An interesting perspective arises with the arrival of 64bit processors
(like AMD64-chips, that are relatively cheaply available), because our experiments show that
the .NET-Framework and FUSc# heavily pro�t from the 64bit enviroment (the �nps� were more
than doubled without any source code changes!). Even more promising could be port of FUSc#
to the new �64bit-Dualcore�-CPUs, although this step would need a rewrite of major parts of
the program (e.g. conducting a parallel the alpha-beta-search). Nevertheless, this could be an
interesting perspective, as there are many multiprocessor systems based on AMD64-processors
(e.g. with AMD Opteron) available, that could form a base for future running enviroments of a
�DeepFUSc#�-program

6 Appendix

6.1 Rotated bitboards in detail

This section should illustrate how the chess-board looks like in the �rotated bitboards�. After the
�normal� bitboard, the �ipped bitboard (rotated to the left by 90◦) as well as the two bitboards
needed for move generation in direction of the two diagonals (the �a1h8� and the �a8h1�-bitboard)
will be shown. For more information, please have a look at [10].

6.1.1 The normal bitboard

This is the �normal� bitboard, as used in many places in the program:

a8 b8 c8 d8 e8 f8 g8 h8

a7 b7 c7 d7 e7 f7 g7 h7

a6 b6 c6 d6 e6 f6 g6 h6

a5 b5 c5 d5 e5 f5 g5 h5

a4 b4 c4 d4 e4 f4 g4 h4

a3 b3 c3 d3 e3 f3 g3 h3

a2 b2 c2 d2 e2 f2 g2 h2

a1 b1 c1 d1 e1 f1 g1 h1

6.1.2 The �ipped bitboard (�l90�)

The ��ipped� bitboard is stored in �board.occ_l90� and used to generate moves along �les for
rooks and queens:

a8 a7 a6 a5 a4 a3 a2 a1

b8 b7 b6 b5 b4 b3 b2 b1

c8 c7 c6 c5 c4 c3 c2 c1

d8 d7 d6 d5 d4 d3 d2 d1

e8 e7 e6 e5 e4 e3 e2 e1

f8 f7 f6 f5 f4 f3 f2 f1

g8 g7 g6 g5 g4 g3 g2 g1

h8 h7 h6 h5 h4 h3 h2 h1

32

6.1.3 The a1h8 bitboard

The a1h8 bitboard is stored in �board.occ_a1h8� and used to generate diagonal moves in direction
of the �a1h8-diagonal� for bishops and queens. Note that in this �compressed� representation, it
must be assured that a piece can not �jump over the edge� of the chessboard and re-enter it on the
other side because this would allow illegal moves. This must be taken care of during the initiali-
sation of the bitboards, where all the legal diagonal moves in the direction of the a1h8-diagonal
are encoded into the �a1h8_moves�-array. The edge of the board is marked with the symbol �|� in
the following �gure:

a8 | b1 c2 d3 e4 f5 g6 h7

a7 b8 | c1 d2 e3 f4 g5 h6

a6 b7 c8 | d1 e2 f3 g4 h5

a5 b6 c7 d8 | e1 f2 g3 h4

a4 b5 c6 d7 e8 | f1 g2 h3

a3 b4 c5 d6 e7 f8 | g1 h2

a2 b3 c4 d5 e6 f7 g8 | h1

a1 b2 c3 d4 e5 f6 g7 h8

6.1.4 The a8h1 bitboard

The a1h8 bitboard is stored in �board.occ_a1h8� and used to generate diagonal moves in direction
of the �a1h8-diagonal� for bishops and queens. The edge of the board is again marked with the
symbol �|� in the following �gure (see above):

a8 b7 c6 d5 e4 f3 g2 h1

a7 b6 c5 d4 e3 f2 g1 | h8

a6 b5 c4 d3 e2 f1 | g8 h7

a5 b4 c3 d2 e1 | f8 g7 h6

a4 b3 c2 d1 | e8 f7 g6 h5

a3 b2 c1 | d8 e7 f6 g5 h4

a2 b1 | c8 d7 e6 f5 g4 h3

a1 | b8 c7 d6 e5 f4 g3 h2

6.2 �perft�-output for FUSc# and Crafty

As a proove for the correctness of the FUSc# move generator, the position described in section
4.1.2 are loaded into FUSc# and Crafty. Then the �perft�-command is executed. All the computed
numbers turn out to be correct for both FUSc# and Crafty! For reference, you �nd the original
output in the following two sections.

6.2.1 FUSc#

In FUSc#, the �perft�-command is implemented as �debug counodes�, in order to be consistent
with the other debugging commands (that can be obtained by entering �debug help� at the com-
mand prompt). Here is the output up to depth 5:

debug countnodes 1

Minmax-Suche bis Tiefe 1

Besuchte Knoten: 20

debug countnodes 2

33

Minmax-Suche bis Tiefe 2

Besuchte Knoten: 400

debug countnodes 3

Minmax-Suche bis Tiefe 3

Besuchte Knoten: 8902

debug countnodes 4

Minmax-Suche bis Tiefe 4

Besuchte Knoten: 197281

debug countnodes 5

Minmax-Suche bis Tiefe 5

Besuchte Knoten: 4865609

Now the middlegame-position:

position fen r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w KQkq -

debug countnodes 1

Minmax-Suche bis Tiefe 1

Besuchte Knoten: 48

debug countnodes 2

Minmax-Suche bis Tiefe 2

Besuchte Knoten: 2039

debug countnodes 3

Minmax-Suche bis Tiefe 3

Besuchte Knoten: 97862

debug countnodes 4

Minmax-Suche bis Tiefe 4

Besuchte Knoten: 4085603

And now the endgame-position:

position fen 8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - -

debug countnodes 1

Minmax-Suche bis Tiefe 1

Besuchte Knoten: 14

debug countnodes 2

Minmax-Suche bis Tiefe 2

Besuchte Knoten: 191

debug countnodes 3

Minmax-Suche bis Tiefe 3

Besuchte Knoten: 2812

debug countnodes 4

Minmax-Suche bis Tiefe 4

Besuchte Knoten: 43238

debug countnodes 5

Minmax-Suche bis Tiefe 5

Besuchte Knoten: 674624

debug countnodes 6

Minmax-Suche bis Tiefe 6

Besuchte Knoten: 11030083

34

6.2.2 Crafty

Here is the output of Crafty in the start-position:

White(1): perft 1

total moves=20 time=0.00

White(1): perft 2

total moves=400 time=0.00

White(1): perft 3

total moves=8902 time=0.00

White(1): perft 4

total moves=197281 time=0.26

White(1): perft 5

total moves=4865609 time=6.66

White(1): perft 6

total moves=119060324 time=283.79

Now the middlegame-position:

White(1): setboard r3k2r/p1ppqpb1/bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPBBPPP/R3K2R w
KQkq -

White(1): perft 1
total moves=48 time=0.00
White(1): perft 2
total moves=2039 time=0.00
White(1): perft 3
total moves=97862 time=0.10
White(1): perft 4
total moves=4085603 time=4.52

And now the endgame-position:

White(1): setboard 8/2p5/3p4/KP5r/1R3p1k/8/4P1P1/8 w - -
White(1): perft 1
total moves=14 time=0.00
White(1): perft 2
total moves=191 time=0.00
White(1): perft 3
total moves=2812 time=0.00
White(1): perft 4
total moves=43238 time=0.04
White(1): perft 5
total moves=674624 time=0.86
White(1): perft 6
total moves=11030083 time=22.34

6.3 Detailed Result of the Experiments

In order to verify the diagrams shown in part 4.3, you will �nd some more detailed �gures from the
experiments described there. However, they represent only parts of the data that was retrieved
during the experiments. The complete dataset will be made available for download, please follow
the link from [6].

35

6.3.1 Experiment 1

36

6.3.2 Experiment 2

Here are the detailed results for depth 8:

Here are the detailed results for depth 9:

37

6.3.3 Experiment 3

Here are the detailed results for depth 6:

Here are the detailed results for depth 7:

38

References

[1] Block, Marco, Verwendung von Temporale-Di�erenz-Methoden im Schachmotor FUSc#,
Diplomarbeit, Berlin, 2004

[2] Buchner, Johannes: Rotated Bitboards in FUSc#, Seminararbeit, Berlin, 2005

[3] Crafty-Homepage: http://www.cis.uab.edu/info/faculty/hyatt/hyatt.html

[4] Dill, Sebastian, Transpositionstabellen, Seminararbeit, Berlin, 2005

[5] Download of DarkFUSc# and FUSc#: http://page.mi.fu-berlin.de/~fusch/download/

[6] FUSc#-Homepage: http://www.fuschmotor.de.vu

[7] FUSc#-Server: http://www.inf.fu-berlin.de/~fusch/

[8] Frey, P.W. (editor), Chess skill in man and machine, Springer, 2nd edition 1983

[9] Heinz, Ernst A., Scalable search in computer chess, Vieweg, 2000

[10] Heinz, Ernst A.: How DarkThought plays chess, http://supertech.lcs.mit.edu/~heinz/dt/node2.html

[11] Homepage of Peter McKenzie on Computer chess: http://homepages.caverock.net.nz/~peter/perft.htm

[12] Homepage Microsoft .NET: http://www.microsoft.com/net/default.mspx

[13] Homepage of gcc: http://gcc.gnu.org/

[14] Kaindl, H., Tree Seaching Algorithms (chapter 8 of [17]).

[15] Luger, George F.: Arti�cial Intelligence, 2nd edition, 1993

[16] Plaat, Aske: RESEARCH, RE:SEARCH & RE-SEARCH, Tinbergen Institute, 1996

[17] T.Antony Marsland, Jonathan Schae�er (Editors), Computers, Chess and Cognition,
Springer, 1990

[18] Reinefeld, Alexander, Spielbaum Suchverfahren, Informatik-Fachberichte 200, Springer Ver-
lag, 1989.

[19] Shannon, Claude, Programming a Computer for Playing Chess, Philosophical Magazine,
Ser.7, Vol. 41, No. 314 - March 1950.

[20] Slagle, James H. and Dixon, John K., Experiments with some programs that search game
trees, Journal of the ACM, 16(2):p.189-207, April 1969

[21] Reinefeld, Alexander, Spielbaum Suchverfahren, Informatik-Fachberichte 200, Springer Ver-
lag, 1989.

[22] Stockman, George C., A minimax algorithm better than Alpha-Beta?, Arti�cial Intelligence,
12(2):p179-196, 1979.

39

